1/* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6#include <linux/sched/mm.h>
7#include <linux/proc_fs.h>
8#include <linux/smp.h>
9#include <linux/init.h>
10#include <linux/notifier.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/hotplug.h>
13#include <linux/sched/isolation.h>
14#include <linux/sched/task.h>
15#include <linux/sched/smt.h>
16#include <linux/unistd.h>
17#include <linux/cpu.h>
18#include <linux/oom.h>
19#include <linux/rcupdate.h>
20#include <linux/delay.h>
21#include <linux/export.h>
22#include <linux/bug.h>
23#include <linux/kthread.h>
24#include <linux/stop_machine.h>
25#include <linux/mutex.h>
26#include <linux/gfp.h>
27#include <linux/suspend.h>
28#include <linux/lockdep.h>
29#include <linux/tick.h>
30#include <linux/irq.h>
31#include <linux/nmi.h>
32#include <linux/smpboot.h>
33#include <linux/relay.h>
34#include <linux/slab.h>
35#include <linux/scs.h>
36#include <linux/percpu-rwsem.h>
37#include <linux/cpuset.h>
38#include <linux/random.h>
39#include <linux/cc_platform.h>
40
41#include <trace/events/power.h>
42#define CREATE_TRACE_POINTS
43#include <trace/events/cpuhp.h>
44
45#include "smpboot.h"
46
47/**
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state:	The current cpu state
50 * @target:	The target state
51 * @fail:	Current CPU hotplug callback state
52 * @thread:	Pointer to the hotplug thread
53 * @should_run:	Thread should execute
54 * @rollback:	Perform a rollback
55 * @single:	Single callback invocation
56 * @bringup:	Single callback bringup or teardown selector
57 * @cpu:	CPU number
58 * @node:	Remote CPU node; for multi-instance, do a
59 *		single entry callback for install/remove
60 * @last:	For multi-instance rollback, remember how far we got
61 * @cb_state:	The state for a single callback (install/uninstall)
62 * @result:	Result of the operation
63 * @ap_sync_state:	State for AP synchronization
64 * @done_up:	Signal completion to the issuer of the task for cpu-up
65 * @done_down:	Signal completion to the issuer of the task for cpu-down
66 */
67struct cpuhp_cpu_state {
68	enum cpuhp_state	state;
69	enum cpuhp_state	target;
70	enum cpuhp_state	fail;
71#ifdef CONFIG_SMP
72	struct task_struct	*thread;
73	bool			should_run;
74	bool			rollback;
75	bool			single;
76	bool			bringup;
77	struct hlist_node	*node;
78	struct hlist_node	*last;
79	enum cpuhp_state	cb_state;
80	int			result;
81	atomic_t		ap_sync_state;
82	struct completion	done_up;
83	struct completion	done_down;
84#endif
85};
86
87static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88	.fail = CPUHP_INVALID,
89};
90
91#ifdef CONFIG_SMP
92cpumask_t cpus_booted_once_mask;
93#endif
94
95#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96static struct lockdep_map cpuhp_state_up_map =
97	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98static struct lockdep_map cpuhp_state_down_map =
99	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102static inline void cpuhp_lock_acquire(bool bringup)
103{
104	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105}
106
107static inline void cpuhp_lock_release(bool bringup)
108{
109	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110}
111#else
112
113static inline void cpuhp_lock_acquire(bool bringup) { }
114static inline void cpuhp_lock_release(bool bringup) { }
115
116#endif
117
118/**
119 * struct cpuhp_step - Hotplug state machine step
120 * @name:	Name of the step
121 * @startup:	Startup function of the step
122 * @teardown:	Teardown function of the step
123 * @cant_stop:	Bringup/teardown can't be stopped at this step
124 * @multi_instance:	State has multiple instances which get added afterwards
125 */
126struct cpuhp_step {
127	const char		*name;
128	union {
129		int		(*single)(unsigned int cpu);
130		int		(*multi)(unsigned int cpu,
131					 struct hlist_node *node);
132	} startup;
133	union {
134		int		(*single)(unsigned int cpu);
135		int		(*multi)(unsigned int cpu,
136					 struct hlist_node *node);
137	} teardown;
138	/* private: */
139	struct hlist_head	list;
140	/* public: */
141	bool			cant_stop;
142	bool			multi_instance;
143};
144
145static DEFINE_MUTEX(cpuhp_state_mutex);
146static struct cpuhp_step cpuhp_hp_states[];
147
148static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149{
150	return cpuhp_hp_states + state;
151}
152
153static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154{
155	return bringup ? !step->startup.single : !step->teardown.single;
156}
157
158/**
159 * cpuhp_invoke_callback - Invoke the callbacks for a given state
160 * @cpu:	The cpu for which the callback should be invoked
161 * @state:	The state to do callbacks for
162 * @bringup:	True if the bringup callback should be invoked
163 * @node:	For multi-instance, do a single entry callback for install/remove
164 * @lastp:	For multi-instance rollback, remember how far we got
165 *
166 * Called from cpu hotplug and from the state register machinery.
167 *
168 * Return: %0 on success or a negative errno code
169 */
170static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171				 bool bringup, struct hlist_node *node,
172				 struct hlist_node **lastp)
173{
174	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175	struct cpuhp_step *step = cpuhp_get_step(state);
176	int (*cbm)(unsigned int cpu, struct hlist_node *node);
177	int (*cb)(unsigned int cpu);
178	int ret, cnt;
179
180	if (st->fail == state) {
181		st->fail = CPUHP_INVALID;
182		return -EAGAIN;
183	}
184
185	if (cpuhp_step_empty(bringup, step)) {
186		WARN_ON_ONCE(1);
187		return 0;
188	}
189
190	if (!step->multi_instance) {
191		WARN_ON_ONCE(lastp && *lastp);
192		cb = bringup ? step->startup.single : step->teardown.single;
193
194		trace_cpuhp_enter(cpu, st->target, state, cb);
195		ret = cb(cpu);
196		trace_cpuhp_exit(cpu, st->state, state, ret);
197		return ret;
198	}
199	cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201	/* Single invocation for instance add/remove */
202	if (node) {
203		WARN_ON_ONCE(lastp && *lastp);
204		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205		ret = cbm(cpu, node);
206		trace_cpuhp_exit(cpu, st->state, state, ret);
207		return ret;
208	}
209
210	/* State transition. Invoke on all instances */
211	cnt = 0;
212	hlist_for_each(node, &step->list) {
213		if (lastp && node == *lastp)
214			break;
215
216		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217		ret = cbm(cpu, node);
218		trace_cpuhp_exit(cpu, st->state, state, ret);
219		if (ret) {
220			if (!lastp)
221				goto err;
222
223			*lastp = node;
224			return ret;
225		}
226		cnt++;
227	}
228	if (lastp)
229		*lastp = NULL;
230	return 0;
231err:
232	/* Rollback the instances if one failed */
233	cbm = !bringup ? step->startup.multi : step->teardown.multi;
234	if (!cbm)
235		return ret;
236
237	hlist_for_each(node, &step->list) {
238		if (!cnt--)
239			break;
240
241		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242		ret = cbm(cpu, node);
243		trace_cpuhp_exit(cpu, st->state, state, ret);
244		/*
245		 * Rollback must not fail,
246		 */
247		WARN_ON_ONCE(ret);
248	}
249	return ret;
250}
251
252#ifdef CONFIG_SMP
253static bool cpuhp_is_ap_state(enum cpuhp_state state)
254{
255	/*
256	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257	 * purposes as that state is handled explicitly in cpu_down.
258	 */
259	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260}
261
262static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263{
264	struct completion *done = bringup ? &st->done_up : &st->done_down;
265	wait_for_completion(done);
266}
267
268static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269{
270	struct completion *done = bringup ? &st->done_up : &st->done_down;
271	complete(done);
272}
273
274/*
275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276 */
277static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278{
279	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280}
281
282/* Synchronization state management */
283enum cpuhp_sync_state {
284	SYNC_STATE_DEAD,
285	SYNC_STATE_KICKED,
286	SYNC_STATE_SHOULD_DIE,
287	SYNC_STATE_ALIVE,
288	SYNC_STATE_SHOULD_ONLINE,
289	SYNC_STATE_ONLINE,
290};
291
292#ifdef CONFIG_HOTPLUG_CORE_SYNC
293/**
294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295 * @state:	The synchronization state to set
296 *
297 * No synchronization point. Just update of the synchronization state, but implies
298 * a full barrier so that the AP changes are visible before the control CPU proceeds.
299 */
300static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301{
302	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304	(void)atomic_xchg(st, state);
305}
306
307void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310				      enum cpuhp_sync_state next_state)
311{
312	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313	ktime_t now, end, start = ktime_get();
314	int sync;
315
316	end = start + 10ULL * NSEC_PER_SEC;
317
318	sync = atomic_read(st);
319	while (1) {
320		if (sync == state) {
321			if (!atomic_try_cmpxchg(st, &sync, next_state))
322				continue;
323			return true;
324		}
325
326		now = ktime_get();
327		if (now > end) {
328			/* Timeout. Leave the state unchanged */
329			return false;
330		} else if (now - start < NSEC_PER_MSEC) {
331			/* Poll for one millisecond */
332			arch_cpuhp_sync_state_poll();
333		} else {
334			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335		}
336		sync = atomic_read(st);
337	}
338	return true;
339}
340#else  /* CONFIG_HOTPLUG_CORE_SYNC */
341static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345/**
346 * cpuhp_ap_report_dead - Update synchronization state to DEAD
347 *
348 * No synchronization point. Just update of the synchronization state.
349 */
350void cpuhp_ap_report_dead(void)
351{
352	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353}
354
355void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357/*
358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359 * because the AP cannot issue complete() at this stage.
360 */
361static void cpuhp_bp_sync_dead(unsigned int cpu)
362{
363	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364	int sync = atomic_read(st);
365
366	do {
367		/* CPU can have reported dead already. Don't overwrite that! */
368		if (sync == SYNC_STATE_DEAD)
369			break;
370	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373		/* CPU reached dead state. Invoke the cleanup function */
374		arch_cpuhp_cleanup_dead_cpu(cpu);
375		return;
376	}
377
378	/* No further action possible. Emit message and give up. */
379	pr_err("CPU%u failed to report dead state\n", cpu);
380}
381#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386/**
387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388 *
389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390 * for the BP to release it.
391 */
392void cpuhp_ap_sync_alive(void)
393{
394	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398	/* Wait for the control CPU to release it. */
399	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400		cpu_relax();
401}
402
403static bool cpuhp_can_boot_ap(unsigned int cpu)
404{
405	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406	int sync = atomic_read(st);
407
408again:
409	switch (sync) {
410	case SYNC_STATE_DEAD:
411		/* CPU is properly dead */
412		break;
413	case SYNC_STATE_KICKED:
414		/* CPU did not come up in previous attempt */
415		break;
416	case SYNC_STATE_ALIVE:
417		/* CPU is stuck cpuhp_ap_sync_alive(). */
418		break;
419	default:
420		/* CPU failed to report online or dead and is in limbo state. */
421		return false;
422	}
423
424	/* Prepare for booting */
425	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426		goto again;
427
428	return true;
429}
430
431void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433/*
434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435 * because the AP cannot issue complete() so early in the bringup.
436 */
437static int cpuhp_bp_sync_alive(unsigned int cpu)
438{
439	int ret = 0;
440
441	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442		return 0;
443
444	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445		pr_err("CPU%u failed to report alive state\n", cpu);
446		ret = -EIO;
447	}
448
449	/* Let the architecture cleanup the kick alive mechanics. */
450	arch_cpuhp_cleanup_kick_cpu(cpu);
451	return ret;
452}
453#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458/* Serializes the updates to cpu_online_mask, cpu_present_mask */
459static DEFINE_MUTEX(cpu_add_remove_lock);
460bool cpuhp_tasks_frozen;
461EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463/*
464 * The following two APIs (cpu_maps_update_begin/done) must be used when
465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466 */
467void cpu_maps_update_begin(void)
468{
469	mutex_lock(&cpu_add_remove_lock);
470}
471
472void cpu_maps_update_done(void)
473{
474	mutex_unlock(&cpu_add_remove_lock);
475}
476
477/*
478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479 * Should always be manipulated under cpu_add_remove_lock
480 */
481static int cpu_hotplug_disabled;
482
483#ifdef CONFIG_HOTPLUG_CPU
484
485DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487void cpus_read_lock(void)
488{
489	percpu_down_read(&cpu_hotplug_lock);
490}
491EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493int cpus_read_trylock(void)
494{
495	return percpu_down_read_trylock(&cpu_hotplug_lock);
496}
497EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499void cpus_read_unlock(void)
500{
501	percpu_up_read(&cpu_hotplug_lock);
502}
503EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505void cpus_write_lock(void)
506{
507	percpu_down_write(&cpu_hotplug_lock);
508}
509
510void cpus_write_unlock(void)
511{
512	percpu_up_write(&cpu_hotplug_lock);
513}
514
515void lockdep_assert_cpus_held(void)
516{
517	/*
518	 * We can't have hotplug operations before userspace starts running,
519	 * and some init codepaths will knowingly not take the hotplug lock.
520	 * This is all valid, so mute lockdep until it makes sense to report
521	 * unheld locks.
522	 */
523	if (system_state < SYSTEM_RUNNING)
524		return;
525
526	percpu_rwsem_assert_held(&cpu_hotplug_lock);
527}
528
529#ifdef CONFIG_LOCKDEP
530int lockdep_is_cpus_held(void)
531{
532	return percpu_rwsem_is_held(&cpu_hotplug_lock);
533}
534#endif
535
536static void lockdep_acquire_cpus_lock(void)
537{
538	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539}
540
541static void lockdep_release_cpus_lock(void)
542{
543	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544}
545
546/*
547 * Wait for currently running CPU hotplug operations to complete (if any) and
548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550 * hotplug path before performing hotplug operations. So acquiring that lock
551 * guarantees mutual exclusion from any currently running hotplug operations.
552 */
553void cpu_hotplug_disable(void)
554{
555	cpu_maps_update_begin();
556	cpu_hotplug_disabled++;
557	cpu_maps_update_done();
558}
559EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561static void __cpu_hotplug_enable(void)
562{
563	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564		return;
565	cpu_hotplug_disabled--;
566}
567
568void cpu_hotplug_enable(void)
569{
570	cpu_maps_update_begin();
571	__cpu_hotplug_enable();
572	cpu_maps_update_done();
573}
574EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576#else
577
578static void lockdep_acquire_cpus_lock(void)
579{
580}
581
582static void lockdep_release_cpus_lock(void)
583{
584}
585
586#endif	/* CONFIG_HOTPLUG_CPU */
587
588/*
589 * Architectures that need SMT-specific errata handling during SMT hotplug
590 * should override this.
591 */
592void __weak arch_smt_update(void) { }
593
594#ifdef CONFIG_HOTPLUG_SMT
595
596enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597static unsigned int cpu_smt_max_threads __ro_after_init;
598unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599
600void __init cpu_smt_disable(bool force)
601{
602	if (!cpu_smt_possible())
603		return;
604
605	if (force) {
606		pr_info("SMT: Force disabled\n");
607		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608	} else {
609		pr_info("SMT: disabled\n");
610		cpu_smt_control = CPU_SMT_DISABLED;
611	}
612	cpu_smt_num_threads = 1;
613}
614
615/*
616 * The decision whether SMT is supported can only be done after the full
617 * CPU identification. Called from architecture code.
618 */
619void __init cpu_smt_set_num_threads(unsigned int num_threads,
620				    unsigned int max_threads)
621{
622	WARN_ON(!num_threads || (num_threads > max_threads));
623
624	if (max_threads == 1)
625		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626
627	cpu_smt_max_threads = max_threads;
628
629	/*
630	 * If SMT has been disabled via the kernel command line or SMT is
631	 * not supported, set cpu_smt_num_threads to 1 for consistency.
632	 * If enabled, take the architecture requested number of threads
633	 * to bring up into account.
634	 */
635	if (cpu_smt_control != CPU_SMT_ENABLED)
636		cpu_smt_num_threads = 1;
637	else if (num_threads < cpu_smt_num_threads)
638		cpu_smt_num_threads = num_threads;
639}
640
641static int __init smt_cmdline_disable(char *str)
642{
643	cpu_smt_disable(str && !strcmp(str, "force"));
644	return 0;
645}
646early_param("nosmt", smt_cmdline_disable);
647
648/*
649 * For Archicture supporting partial SMT states check if the thread is allowed.
650 * Otherwise this has already been checked through cpu_smt_max_threads when
651 * setting the SMT level.
652 */
653static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654{
655#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656	return topology_smt_thread_allowed(cpu);
657#else
658	return true;
659#endif
660}
661
662static inline bool cpu_smt_allowed(unsigned int cpu)
663{
664	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665		return true;
666
667	if (topology_is_primary_thread(cpu))
668		return true;
669
670	/*
671	 * On x86 it's required to boot all logical CPUs at least once so
672	 * that the init code can get a chance to set CR4.MCE on each
673	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
674	 * core will shutdown the machine.
675	 */
676	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
677}
678
679/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
680bool cpu_smt_possible(void)
681{
682	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
683		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
684}
685EXPORT_SYMBOL_GPL(cpu_smt_possible);
686
687#else
688static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
689#endif
690
691static inline enum cpuhp_state
692cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
693{
694	enum cpuhp_state prev_state = st->state;
695	bool bringup = st->state < target;
696
697	st->rollback = false;
698	st->last = NULL;
699
700	st->target = target;
701	st->single = false;
702	st->bringup = bringup;
703	if (cpu_dying(cpu) != !bringup)
704		set_cpu_dying(cpu, !bringup);
705
706	return prev_state;
707}
708
709static inline void
710cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
711		  enum cpuhp_state prev_state)
712{
713	bool bringup = !st->bringup;
714
715	st->target = prev_state;
716
717	/*
718	 * Already rolling back. No need invert the bringup value or to change
719	 * the current state.
720	 */
721	if (st->rollback)
722		return;
723
724	st->rollback = true;
725
726	/*
727	 * If we have st->last we need to undo partial multi_instance of this
728	 * state first. Otherwise start undo at the previous state.
729	 */
730	if (!st->last) {
731		if (st->bringup)
732			st->state--;
733		else
734			st->state++;
735	}
736
737	st->bringup = bringup;
738	if (cpu_dying(cpu) != !bringup)
739		set_cpu_dying(cpu, !bringup);
740}
741
742/* Regular hotplug invocation of the AP hotplug thread */
743static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
744{
745	if (!st->single && st->state == st->target)
746		return;
747
748	st->result = 0;
749	/*
750	 * Make sure the above stores are visible before should_run becomes
751	 * true. Paired with the mb() above in cpuhp_thread_fun()
752	 */
753	smp_mb();
754	st->should_run = true;
755	wake_up_process(st->thread);
756	wait_for_ap_thread(st, st->bringup);
757}
758
759static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
760			 enum cpuhp_state target)
761{
762	enum cpuhp_state prev_state;
763	int ret;
764
765	prev_state = cpuhp_set_state(cpu, st, target);
766	__cpuhp_kick_ap(st);
767	if ((ret = st->result)) {
768		cpuhp_reset_state(cpu, st, prev_state);
769		__cpuhp_kick_ap(st);
770	}
771
772	return ret;
773}
774
775static int bringup_wait_for_ap_online(unsigned int cpu)
776{
777	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
778
779	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
780	wait_for_ap_thread(st, true);
781	if (WARN_ON_ONCE((!cpu_online(cpu))))
782		return -ECANCELED;
783
784	/* Unpark the hotplug thread of the target cpu */
785	kthread_unpark(st->thread);
786
787	/*
788	 * SMT soft disabling on X86 requires to bring the CPU out of the
789	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
790	 * CPU marked itself as booted_once in notify_cpu_starting() so the
791	 * cpu_smt_allowed() check will now return false if this is not the
792	 * primary sibling.
793	 */
794	if (!cpu_smt_allowed(cpu))
795		return -ECANCELED;
796	return 0;
797}
798
799#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
800static int cpuhp_kick_ap_alive(unsigned int cpu)
801{
802	if (!cpuhp_can_boot_ap(cpu))
803		return -EAGAIN;
804
805	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
806}
807
808static int cpuhp_bringup_ap(unsigned int cpu)
809{
810	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811	int ret;
812
813	/*
814	 * Some architectures have to walk the irq descriptors to
815	 * setup the vector space for the cpu which comes online.
816	 * Prevent irq alloc/free across the bringup.
817	 */
818	irq_lock_sparse();
819
820	ret = cpuhp_bp_sync_alive(cpu);
821	if (ret)
822		goto out_unlock;
823
824	ret = bringup_wait_for_ap_online(cpu);
825	if (ret)
826		goto out_unlock;
827
828	irq_unlock_sparse();
829
830	if (st->target <= CPUHP_AP_ONLINE_IDLE)
831		return 0;
832
833	return cpuhp_kick_ap(cpu, st, st->target);
834
835out_unlock:
836	irq_unlock_sparse();
837	return ret;
838}
839#else
840static int bringup_cpu(unsigned int cpu)
841{
842	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
843	struct task_struct *idle = idle_thread_get(cpu);
844	int ret;
845
846	if (!cpuhp_can_boot_ap(cpu))
847		return -EAGAIN;
848
849	/*
850	 * Some architectures have to walk the irq descriptors to
851	 * setup the vector space for the cpu which comes online.
852	 *
853	 * Prevent irq alloc/free across the bringup by acquiring the
854	 * sparse irq lock. Hold it until the upcoming CPU completes the
855	 * startup in cpuhp_online_idle() which allows to avoid
856	 * intermediate synchronization points in the architecture code.
857	 */
858	irq_lock_sparse();
859
860	ret = __cpu_up(cpu, idle);
861	if (ret)
862		goto out_unlock;
863
864	ret = cpuhp_bp_sync_alive(cpu);
865	if (ret)
866		goto out_unlock;
867
868	ret = bringup_wait_for_ap_online(cpu);
869	if (ret)
870		goto out_unlock;
871
872	irq_unlock_sparse();
873
874	if (st->target <= CPUHP_AP_ONLINE_IDLE)
875		return 0;
876
877	return cpuhp_kick_ap(cpu, st, st->target);
878
879out_unlock:
880	irq_unlock_sparse();
881	return ret;
882}
883#endif
884
885static int finish_cpu(unsigned int cpu)
886{
887	struct task_struct *idle = idle_thread_get(cpu);
888	struct mm_struct *mm = idle->active_mm;
889
890	/*
891	 * idle_task_exit() will have switched to &init_mm, now
892	 * clean up any remaining active_mm state.
893	 */
894	if (mm != &init_mm)
895		idle->active_mm = &init_mm;
896	mmdrop_lazy_tlb(mm);
897	return 0;
898}
899
900/*
901 * Hotplug state machine related functions
902 */
903
904/*
905 * Get the next state to run. Empty ones will be skipped. Returns true if a
906 * state must be run.
907 *
908 * st->state will be modified ahead of time, to match state_to_run, as if it
909 * has already ran.
910 */
911static bool cpuhp_next_state(bool bringup,
912			     enum cpuhp_state *state_to_run,
913			     struct cpuhp_cpu_state *st,
914			     enum cpuhp_state target)
915{
916	do {
917		if (bringup) {
918			if (st->state >= target)
919				return false;
920
921			*state_to_run = ++st->state;
922		} else {
923			if (st->state <= target)
924				return false;
925
926			*state_to_run = st->state--;
927		}
928
929		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
930			break;
931	} while (true);
932
933	return true;
934}
935
936static int __cpuhp_invoke_callback_range(bool bringup,
937					 unsigned int cpu,
938					 struct cpuhp_cpu_state *st,
939					 enum cpuhp_state target,
940					 bool nofail)
941{
942	enum cpuhp_state state;
943	int ret = 0;
944
945	while (cpuhp_next_state(bringup, &state, st, target)) {
946		int err;
947
948		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
949		if (!err)
950			continue;
951
952		if (nofail) {
953			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
954				cpu, bringup ? "UP" : "DOWN",
955				cpuhp_get_step(st->state)->name,
956				st->state, err);
957			ret = -1;
958		} else {
959			ret = err;
960			break;
961		}
962	}
963
964	return ret;
965}
966
967static inline int cpuhp_invoke_callback_range(bool bringup,
968					      unsigned int cpu,
969					      struct cpuhp_cpu_state *st,
970					      enum cpuhp_state target)
971{
972	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
973}
974
975static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
976						      unsigned int cpu,
977						      struct cpuhp_cpu_state *st,
978						      enum cpuhp_state target)
979{
980	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
981}
982
983static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
984{
985	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
986		return true;
987	/*
988	 * When CPU hotplug is disabled, then taking the CPU down is not
989	 * possible because takedown_cpu() and the architecture and
990	 * subsystem specific mechanisms are not available. So the CPU
991	 * which would be completely unplugged again needs to stay around
992	 * in the current state.
993	 */
994	return st->state <= CPUHP_BRINGUP_CPU;
995}
996
997static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
998			      enum cpuhp_state target)
999{
1000	enum cpuhp_state prev_state = st->state;
1001	int ret = 0;
1002
1003	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1004	if (ret) {
1005		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1006			 ret, cpu, cpuhp_get_step(st->state)->name,
1007			 st->state);
1008
1009		cpuhp_reset_state(cpu, st, prev_state);
1010		if (can_rollback_cpu(st))
1011			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1012							    prev_state));
1013	}
1014	return ret;
1015}
1016
1017/*
1018 * The cpu hotplug threads manage the bringup and teardown of the cpus
1019 */
1020static int cpuhp_should_run(unsigned int cpu)
1021{
1022	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1023
1024	return st->should_run;
1025}
1026
1027/*
1028 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1029 * callbacks when a state gets [un]installed at runtime.
1030 *
1031 * Each invocation of this function by the smpboot thread does a single AP
1032 * state callback.
1033 *
1034 * It has 3 modes of operation:
1035 *  - single: runs st->cb_state
1036 *  - up:     runs ++st->state, while st->state < st->target
1037 *  - down:   runs st->state--, while st->state > st->target
1038 *
1039 * When complete or on error, should_run is cleared and the completion is fired.
1040 */
1041static void cpuhp_thread_fun(unsigned int cpu)
1042{
1043	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1044	bool bringup = st->bringup;
1045	enum cpuhp_state state;
1046
1047	if (WARN_ON_ONCE(!st->should_run))
1048		return;
1049
1050	/*
1051	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1052	 * that if we see ->should_run we also see the rest of the state.
1053	 */
1054	smp_mb();
1055
1056	/*
1057	 * The BP holds the hotplug lock, but we're now running on the AP,
1058	 * ensure that anybody asserting the lock is held, will actually find
1059	 * it so.
1060	 */
1061	lockdep_acquire_cpus_lock();
1062	cpuhp_lock_acquire(bringup);
1063
1064	if (st->single) {
1065		state = st->cb_state;
1066		st->should_run = false;
1067	} else {
1068		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1069		if (!st->should_run)
1070			goto end;
1071	}
1072
1073	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1074
1075	if (cpuhp_is_atomic_state(state)) {
1076		local_irq_disable();
1077		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1078		local_irq_enable();
1079
1080		/*
1081		 * STARTING/DYING must not fail!
1082		 */
1083		WARN_ON_ONCE(st->result);
1084	} else {
1085		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086	}
1087
1088	if (st->result) {
1089		/*
1090		 * If we fail on a rollback, we're up a creek without no
1091		 * paddle, no way forward, no way back. We loose, thanks for
1092		 * playing.
1093		 */
1094		WARN_ON_ONCE(st->rollback);
1095		st->should_run = false;
1096	}
1097
1098end:
1099	cpuhp_lock_release(bringup);
1100	lockdep_release_cpus_lock();
1101
1102	if (!st->should_run)
1103		complete_ap_thread(st, bringup);
1104}
1105
1106/* Invoke a single callback on a remote cpu */
1107static int
1108cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1109			 struct hlist_node *node)
1110{
1111	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1112	int ret;
1113
1114	if (!cpu_online(cpu))
1115		return 0;
1116
1117	cpuhp_lock_acquire(false);
1118	cpuhp_lock_release(false);
1119
1120	cpuhp_lock_acquire(true);
1121	cpuhp_lock_release(true);
1122
1123	/*
1124	 * If we are up and running, use the hotplug thread. For early calls
1125	 * we invoke the thread function directly.
1126	 */
1127	if (!st->thread)
1128		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1129
1130	st->rollback = false;
1131	st->last = NULL;
1132
1133	st->node = node;
1134	st->bringup = bringup;
1135	st->cb_state = state;
1136	st->single = true;
1137
1138	__cpuhp_kick_ap(st);
1139
1140	/*
1141	 * If we failed and did a partial, do a rollback.
1142	 */
1143	if ((ret = st->result) && st->last) {
1144		st->rollback = true;
1145		st->bringup = !bringup;
1146
1147		__cpuhp_kick_ap(st);
1148	}
1149
1150	/*
1151	 * Clean up the leftovers so the next hotplug operation wont use stale
1152	 * data.
1153	 */
1154	st->node = st->last = NULL;
1155	return ret;
1156}
1157
1158static int cpuhp_kick_ap_work(unsigned int cpu)
1159{
1160	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1161	enum cpuhp_state prev_state = st->state;
1162	int ret;
1163
1164	cpuhp_lock_acquire(false);
1165	cpuhp_lock_release(false);
1166
1167	cpuhp_lock_acquire(true);
1168	cpuhp_lock_release(true);
1169
1170	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1171	ret = cpuhp_kick_ap(cpu, st, st->target);
1172	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1173
1174	return ret;
1175}
1176
1177static struct smp_hotplug_thread cpuhp_threads = {
1178	.store			= &cpuhp_state.thread,
1179	.thread_should_run	= cpuhp_should_run,
1180	.thread_fn		= cpuhp_thread_fun,
1181	.thread_comm		= "cpuhp/%u",
1182	.selfparking		= true,
1183};
1184
1185static __init void cpuhp_init_state(void)
1186{
1187	struct cpuhp_cpu_state *st;
1188	int cpu;
1189
1190	for_each_possible_cpu(cpu) {
1191		st = per_cpu_ptr(&cpuhp_state, cpu);
1192		init_completion(&st->done_up);
1193		init_completion(&st->done_down);
1194	}
1195}
1196
1197void __init cpuhp_threads_init(void)
1198{
1199	cpuhp_init_state();
1200	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1201	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1202}
1203
1204/*
1205 *
1206 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1207 * protected region.
1208 *
1209 * The operation is still serialized against concurrent CPU hotplug via
1210 * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1211 * serialized against other hotplug related activity like adding or
1212 * removing of state callbacks and state instances, which invoke either the
1213 * startup or the teardown callback of the affected state.
1214 *
1215 * This is required for subsystems which are unfixable vs. CPU hotplug and
1216 * evade lock inversion problems by scheduling work which has to be
1217 * completed _before_ cpu_up()/_cpu_down() returns.
1218 *
1219 * Don't even think about adding anything to this for any new code or even
1220 * drivers. It's only purpose is to keep existing lock order trainwrecks
1221 * working.
1222 *
1223 * For cpu_down() there might be valid reasons to finish cleanups which are
1224 * not required to be done under cpu_hotplug_lock, but that's a different
1225 * story and would be not invoked via this.
1226 */
1227static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1228{
1229	/*
1230	 * cpusets delegate hotplug operations to a worker to "solve" the
1231	 * lock order problems. Wait for the worker, but only if tasks are
1232	 * _not_ frozen (suspend, hibernate) as that would wait forever.
1233	 *
1234	 * The wait is required because otherwise the hotplug operation
1235	 * returns with inconsistent state, which could even be observed in
1236	 * user space when a new CPU is brought up. The CPU plug uevent
1237	 * would be delivered and user space reacting on it would fail to
1238	 * move tasks to the newly plugged CPU up to the point where the
1239	 * work has finished because up to that point the newly plugged CPU
1240	 * is not assignable in cpusets/cgroups. On unplug that's not
1241	 * necessarily a visible issue, but it is still inconsistent state,
1242	 * which is the real problem which needs to be "fixed". This can't
1243	 * prevent the transient state between scheduling the work and
1244	 * returning from waiting for it.
1245	 */
1246	if (!tasks_frozen)
1247		cpuset_wait_for_hotplug();
1248}
1249
1250#ifdef CONFIG_HOTPLUG_CPU
1251#ifndef arch_clear_mm_cpumask_cpu
1252#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1253#endif
1254
1255/**
1256 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1257 * @cpu: a CPU id
1258 *
1259 * This function walks all processes, finds a valid mm struct for each one and
1260 * then clears a corresponding bit in mm's cpumask.  While this all sounds
1261 * trivial, there are various non-obvious corner cases, which this function
1262 * tries to solve in a safe manner.
1263 *
1264 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1265 * be called only for an already offlined CPU.
1266 */
1267void clear_tasks_mm_cpumask(int cpu)
1268{
1269	struct task_struct *p;
1270
1271	/*
1272	 * This function is called after the cpu is taken down and marked
1273	 * offline, so its not like new tasks will ever get this cpu set in
1274	 * their mm mask. -- Peter Zijlstra
1275	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1276	 * full-fledged tasklist_lock.
1277	 */
1278	WARN_ON(cpu_online(cpu));
1279	rcu_read_lock();
1280	for_each_process(p) {
1281		struct task_struct *t;
1282
1283		/*
1284		 * Main thread might exit, but other threads may still have
1285		 * a valid mm. Find one.
1286		 */
1287		t = find_lock_task_mm(p);
1288		if (!t)
1289			continue;
1290		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1291		task_unlock(t);
1292	}
1293	rcu_read_unlock();
1294}
1295
1296/* Take this CPU down. */
1297static int take_cpu_down(void *_param)
1298{
1299	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1301	int err, cpu = smp_processor_id();
1302
1303	/* Ensure this CPU doesn't handle any more interrupts. */
1304	err = __cpu_disable();
1305	if (err < 0)
1306		return err;
1307
1308	/*
1309	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1310	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1311	 */
1312	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1313
1314	/*
1315	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1316	 */
1317	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1318
1319	/* Give up timekeeping duties */
1320	tick_handover_do_timer();
1321	/* Remove CPU from timer broadcasting */
1322	tick_offline_cpu(cpu);
1323	/* Park the stopper thread */
1324	stop_machine_park(cpu);
1325	return 0;
1326}
1327
1328static int takedown_cpu(unsigned int cpu)
1329{
1330	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331	int err;
1332
1333	/* Park the smpboot threads */
1334	kthread_park(st->thread);
1335
1336	/*
1337	 * Prevent irq alloc/free while the dying cpu reorganizes the
1338	 * interrupt affinities.
1339	 */
1340	irq_lock_sparse();
1341
1342	/*
1343	 * So now all preempt/rcu users must observe !cpu_active().
1344	 */
1345	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1346	if (err) {
1347		/* CPU refused to die */
1348		irq_unlock_sparse();
1349		/* Unpark the hotplug thread so we can rollback there */
1350		kthread_unpark(st->thread);
1351		return err;
1352	}
1353	BUG_ON(cpu_online(cpu));
1354
1355	/*
1356	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1357	 * all runnable tasks from the CPU, there's only the idle task left now
1358	 * that the migration thread is done doing the stop_machine thing.
1359	 *
1360	 * Wait for the stop thread to go away.
1361	 */
1362	wait_for_ap_thread(st, false);
1363	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1364
1365	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1366	irq_unlock_sparse();
1367
1368	hotplug_cpu__broadcast_tick_pull(cpu);
1369	/* This actually kills the CPU. */
1370	__cpu_die(cpu);
1371
1372	cpuhp_bp_sync_dead(cpu);
1373
1374	tick_cleanup_dead_cpu(cpu);
1375	rcutree_migrate_callbacks(cpu);
1376	return 0;
1377}
1378
1379static void cpuhp_complete_idle_dead(void *arg)
1380{
1381	struct cpuhp_cpu_state *st = arg;
1382
1383	complete_ap_thread(st, false);
1384}
1385
1386void cpuhp_report_idle_dead(void)
1387{
1388	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1389
1390	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1391	rcu_report_dead(smp_processor_id());
1392	st->state = CPUHP_AP_IDLE_DEAD;
1393	/*
1394	 * We cannot call complete after rcu_report_dead() so we delegate it
1395	 * to an online cpu.
1396	 */
1397	smp_call_function_single(cpumask_first(cpu_online_mask),
1398				 cpuhp_complete_idle_dead, st, 0);
1399}
1400
1401static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1402				enum cpuhp_state target)
1403{
1404	enum cpuhp_state prev_state = st->state;
1405	int ret = 0;
1406
1407	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1408	if (ret) {
1409		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1410			 ret, cpu, cpuhp_get_step(st->state)->name,
1411			 st->state);
1412
1413		cpuhp_reset_state(cpu, st, prev_state);
1414
1415		if (st->state < prev_state)
1416			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1417							    prev_state));
1418	}
1419
1420	return ret;
1421}
1422
1423/* Requires cpu_add_remove_lock to be held */
1424static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1425			   enum cpuhp_state target)
1426{
1427	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1428	int prev_state, ret = 0;
1429
1430	if (num_online_cpus() == 1)
1431		return -EBUSY;
1432
1433	if (!cpu_present(cpu))
1434		return -EINVAL;
1435
1436	cpus_write_lock();
1437
1438	cpuhp_tasks_frozen = tasks_frozen;
1439
1440	prev_state = cpuhp_set_state(cpu, st, target);
1441	/*
1442	 * If the current CPU state is in the range of the AP hotplug thread,
1443	 * then we need to kick the thread.
1444	 */
1445	if (st->state > CPUHP_TEARDOWN_CPU) {
1446		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1447		ret = cpuhp_kick_ap_work(cpu);
1448		/*
1449		 * The AP side has done the error rollback already. Just
1450		 * return the error code..
1451		 */
1452		if (ret)
1453			goto out;
1454
1455		/*
1456		 * We might have stopped still in the range of the AP hotplug
1457		 * thread. Nothing to do anymore.
1458		 */
1459		if (st->state > CPUHP_TEARDOWN_CPU)
1460			goto out;
1461
1462		st->target = target;
1463	}
1464	/*
1465	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1466	 * to do the further cleanups.
1467	 */
1468	ret = cpuhp_down_callbacks(cpu, st, target);
1469	if (ret && st->state < prev_state) {
1470		if (st->state == CPUHP_TEARDOWN_CPU) {
1471			cpuhp_reset_state(cpu, st, prev_state);
1472			__cpuhp_kick_ap(st);
1473		} else {
1474			WARN(1, "DEAD callback error for CPU%d", cpu);
1475		}
1476	}
1477
1478out:
1479	cpus_write_unlock();
1480	/*
1481	 * Do post unplug cleanup. This is still protected against
1482	 * concurrent CPU hotplug via cpu_add_remove_lock.
1483	 */
1484	lockup_detector_cleanup();
1485	arch_smt_update();
1486	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1487	return ret;
1488}
1489
1490struct cpu_down_work {
1491	unsigned int		cpu;
1492	enum cpuhp_state	target;
1493};
1494
1495static long __cpu_down_maps_locked(void *arg)
1496{
1497	struct cpu_down_work *work = arg;
1498
1499	return _cpu_down(work->cpu, 0, work->target);
1500}
1501
1502static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1503{
1504	struct cpu_down_work work = { .cpu = cpu, .target = target, };
1505
1506	/*
1507	 * If the platform does not support hotplug, report it explicitly to
1508	 * differentiate it from a transient offlining failure.
1509	 */
1510	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1511		return -EOPNOTSUPP;
1512	if (cpu_hotplug_disabled)
1513		return -EBUSY;
1514
1515	/*
1516	 * Ensure that the control task does not run on the to be offlined
1517	 * CPU to prevent a deadlock against cfs_b->period_timer.
1518	 */
1519	cpu = cpumask_any_but(cpu_online_mask, cpu);
1520	if (cpu >= nr_cpu_ids)
1521		return -EBUSY;
1522	return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1523}
1524
1525static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1526{
1527	int err;
1528
1529	cpu_maps_update_begin();
1530	err = cpu_down_maps_locked(cpu, target);
1531	cpu_maps_update_done();
1532	return err;
1533}
1534
1535/**
1536 * cpu_device_down - Bring down a cpu device
1537 * @dev: Pointer to the cpu device to offline
1538 *
1539 * This function is meant to be used by device core cpu subsystem only.
1540 *
1541 * Other subsystems should use remove_cpu() instead.
1542 *
1543 * Return: %0 on success or a negative errno code
1544 */
1545int cpu_device_down(struct device *dev)
1546{
1547	return cpu_down(dev->id, CPUHP_OFFLINE);
1548}
1549
1550int remove_cpu(unsigned int cpu)
1551{
1552	int ret;
1553
1554	lock_device_hotplug();
1555	ret = device_offline(get_cpu_device(cpu));
1556	unlock_device_hotplug();
1557
1558	return ret;
1559}
1560EXPORT_SYMBOL_GPL(remove_cpu);
1561
1562void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1563{
1564	unsigned int cpu;
1565	int error;
1566
1567	cpu_maps_update_begin();
1568
1569	/*
1570	 * Make certain the cpu I'm about to reboot on is online.
1571	 *
1572	 * This is inline to what migrate_to_reboot_cpu() already do.
1573	 */
1574	if (!cpu_online(primary_cpu))
1575		primary_cpu = cpumask_first(cpu_online_mask);
1576
1577	for_each_online_cpu(cpu) {
1578		if (cpu == primary_cpu)
1579			continue;
1580
1581		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1582		if (error) {
1583			pr_err("Failed to offline CPU%d - error=%d",
1584				cpu, error);
1585			break;
1586		}
1587	}
1588
1589	/*
1590	 * Ensure all but the reboot CPU are offline.
1591	 */
1592	BUG_ON(num_online_cpus() > 1);
1593
1594	/*
1595	 * Make sure the CPUs won't be enabled by someone else after this
1596	 * point. Kexec will reboot to a new kernel shortly resetting
1597	 * everything along the way.
1598	 */
1599	cpu_hotplug_disabled++;
1600
1601	cpu_maps_update_done();
1602}
1603
1604#else
1605#define takedown_cpu		NULL
1606#endif /*CONFIG_HOTPLUG_CPU*/
1607
1608/**
1609 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1610 * @cpu: cpu that just started
1611 *
1612 * It must be called by the arch code on the new cpu, before the new cpu
1613 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1614 */
1615void notify_cpu_starting(unsigned int cpu)
1616{
1617	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1618	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1619
1620	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1621	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1622
1623	/*
1624	 * STARTING must not fail!
1625	 */
1626	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1627}
1628
1629/*
1630 * Called from the idle task. Wake up the controlling task which brings the
1631 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1632 * online bringup to the hotplug thread.
1633 */
1634void cpuhp_online_idle(enum cpuhp_state state)
1635{
1636	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1637
1638	/* Happens for the boot cpu */
1639	if (state != CPUHP_AP_ONLINE_IDLE)
1640		return;
1641
1642	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1643
1644	/*
1645	 * Unpark the stopper thread before we start the idle loop (and start
1646	 * scheduling); this ensures the stopper task is always available.
1647	 */
1648	stop_machine_unpark(smp_processor_id());
1649
1650	st->state = CPUHP_AP_ONLINE_IDLE;
1651	complete_ap_thread(st, true);
1652}
1653
1654/* Requires cpu_add_remove_lock to be held */
1655static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1656{
1657	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1658	struct task_struct *idle;
1659	int ret = 0;
1660
1661	cpus_write_lock();
1662
1663	if (!cpu_present(cpu)) {
1664		ret = -EINVAL;
1665		goto out;
1666	}
1667
1668	/*
1669	 * The caller of cpu_up() might have raced with another
1670	 * caller. Nothing to do.
1671	 */
1672	if (st->state >= target)
1673		goto out;
1674
1675	if (st->state == CPUHP_OFFLINE) {
1676		/* Let it fail before we try to bring the cpu up */
1677		idle = idle_thread_get(cpu);
1678		if (IS_ERR(idle)) {
1679			ret = PTR_ERR(idle);
1680			goto out;
1681		}
1682
1683		/*
1684		 * Reset stale stack state from the last time this CPU was online.
1685		 */
1686		scs_task_reset(idle);
1687		kasan_unpoison_task_stack(idle);
1688	}
1689
1690	cpuhp_tasks_frozen = tasks_frozen;
1691
1692	cpuhp_set_state(cpu, st, target);
1693	/*
1694	 * If the current CPU state is in the range of the AP hotplug thread,
1695	 * then we need to kick the thread once more.
1696	 */
1697	if (st->state > CPUHP_BRINGUP_CPU) {
1698		ret = cpuhp_kick_ap_work(cpu);
1699		/*
1700		 * The AP side has done the error rollback already. Just
1701		 * return the error code..
1702		 */
1703		if (ret)
1704			goto out;
1705	}
1706
1707	/*
1708	 * Try to reach the target state. We max out on the BP at
1709	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1710	 * responsible for bringing it up to the target state.
1711	 */
1712	target = min((int)target, CPUHP_BRINGUP_CPU);
1713	ret = cpuhp_up_callbacks(cpu, st, target);
1714out:
1715	cpus_write_unlock();
1716	arch_smt_update();
1717	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1718	return ret;
1719}
1720
1721static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1722{
1723	int err = 0;
1724
1725	if (!cpu_possible(cpu)) {
1726		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1727		       cpu);
1728#if defined(CONFIG_IA64)
1729		pr_err("please check additional_cpus= boot parameter\n");
1730#endif
1731		return -EINVAL;
1732	}
1733
1734	err = try_online_node(cpu_to_node(cpu));
1735	if (err)
1736		return err;
1737
1738	cpu_maps_update_begin();
1739
1740	if (cpu_hotplug_disabled) {
1741		err = -EBUSY;
1742		goto out;
1743	}
1744	if (!cpu_smt_allowed(cpu)) {
1745		err = -EPERM;
1746		goto out;
1747	}
1748
1749	err = _cpu_up(cpu, 0, target);
1750out:
1751	cpu_maps_update_done();
1752	return err;
1753}
1754
1755/**
1756 * cpu_device_up - Bring up a cpu device
1757 * @dev: Pointer to the cpu device to online
1758 *
1759 * This function is meant to be used by device core cpu subsystem only.
1760 *
1761 * Other subsystems should use add_cpu() instead.
1762 *
1763 * Return: %0 on success or a negative errno code
1764 */
1765int cpu_device_up(struct device *dev)
1766{
1767	return cpu_up(dev->id, CPUHP_ONLINE);
1768}
1769
1770int add_cpu(unsigned int cpu)
1771{
1772	int ret;
1773
1774	lock_device_hotplug();
1775	ret = device_online(get_cpu_device(cpu));
1776	unlock_device_hotplug();
1777
1778	return ret;
1779}
1780EXPORT_SYMBOL_GPL(add_cpu);
1781
1782/**
1783 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1784 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1785 *
1786 * On some architectures like arm64, we can hibernate on any CPU, but on
1787 * wake up the CPU we hibernated on might be offline as a side effect of
1788 * using maxcpus= for example.
1789 *
1790 * Return: %0 on success or a negative errno code
1791 */
1792int bringup_hibernate_cpu(unsigned int sleep_cpu)
1793{
1794	int ret;
1795
1796	if (!cpu_online(sleep_cpu)) {
1797		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1798		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1799		if (ret) {
1800			pr_err("Failed to bring hibernate-CPU up!\n");
1801			return ret;
1802		}
1803	}
1804	return 0;
1805}
1806
1807static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1808				      enum cpuhp_state target)
1809{
1810	unsigned int cpu;
1811
1812	for_each_cpu(cpu, mask) {
1813		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814
1815		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1816			/*
1817			 * If this failed then cpu_up() might have only
1818			 * rolled back to CPUHP_BP_KICK_AP for the final
1819			 * online. Clean it up. NOOP if already rolled back.
1820			 */
1821			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1822		}
1823
1824		if (!--ncpus)
1825			break;
1826	}
1827}
1828
1829#ifdef CONFIG_HOTPLUG_PARALLEL
1830static bool __cpuhp_parallel_bringup __ro_after_init = true;
1831
1832static int __init parallel_bringup_parse_param(char *arg)
1833{
1834	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1835}
1836early_param("cpuhp.parallel", parallel_bringup_parse_param);
1837
1838static inline bool cpuhp_smt_aware(void)
1839{
1840	return cpu_smt_max_threads > 1;
1841}
1842
1843static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1844{
1845	return cpu_primary_thread_mask;
1846}
1847
1848/*
1849 * On architectures which have enabled parallel bringup this invokes all BP
1850 * prepare states for each of the to be onlined APs first. The last state
1851 * sends the startup IPI to the APs. The APs proceed through the low level
1852 * bringup code in parallel and then wait for the control CPU to release
1853 * them one by one for the final onlining procedure.
1854 *
1855 * This avoids waiting for each AP to respond to the startup IPI in
1856 * CPUHP_BRINGUP_CPU.
1857 */
1858static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1859{
1860	const struct cpumask *mask = cpu_present_mask;
1861
1862	if (__cpuhp_parallel_bringup)
1863		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1864	if (!__cpuhp_parallel_bringup)
1865		return false;
1866
1867	if (cpuhp_smt_aware()) {
1868		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1869		static struct cpumask tmp_mask __initdata;
1870
1871		/*
1872		 * X86 requires to prevent that SMT siblings stopped while
1873		 * the primary thread does a microcode update for various
1874		 * reasons. Bring the primary threads up first.
1875		 */
1876		cpumask_and(&tmp_mask, mask, pmask);
1877		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1878		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1879		/* Account for the online CPUs */
1880		ncpus -= num_online_cpus();
1881		if (!ncpus)
1882			return true;
1883		/* Create the mask for secondary CPUs */
1884		cpumask_andnot(&tmp_mask, mask, pmask);
1885		mask = &tmp_mask;
1886	}
1887
1888	/* Bring the not-yet started CPUs up */
1889	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1890	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1891	return true;
1892}
1893#else
1894static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1895#endif /* CONFIG_HOTPLUG_PARALLEL */
1896
1897void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1898{
1899	/* Try parallel bringup optimization if enabled */
1900	if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1901		return;
1902
1903	/* Full per CPU serialized bringup */
1904	cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1905}
1906
1907#ifdef CONFIG_PM_SLEEP_SMP
1908static cpumask_var_t frozen_cpus;
1909
1910int freeze_secondary_cpus(int primary)
1911{
1912	int cpu, error = 0;
1913
1914	cpu_maps_update_begin();
1915	if (primary == -1) {
1916		primary = cpumask_first(cpu_online_mask);
1917		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1918			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1919	} else {
1920		if (!cpu_online(primary))
1921			primary = cpumask_first(cpu_online_mask);
1922	}
1923
1924	/*
1925	 * We take down all of the non-boot CPUs in one shot to avoid races
1926	 * with the userspace trying to use the CPU hotplug at the same time
1927	 */
1928	cpumask_clear(frozen_cpus);
1929
1930	pr_info("Disabling non-boot CPUs ...\n");
1931	for_each_online_cpu(cpu) {
1932		if (cpu == primary)
1933			continue;
1934
1935		if (pm_wakeup_pending()) {
1936			pr_info("Wakeup pending. Abort CPU freeze\n");
1937			error = -EBUSY;
1938			break;
1939		}
1940
1941		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1942		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1943		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1944		if (!error)
1945			cpumask_set_cpu(cpu, frozen_cpus);
1946		else {
1947			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1948			break;
1949		}
1950	}
1951
1952	if (!error)
1953		BUG_ON(num_online_cpus() > 1);
1954	else
1955		pr_err("Non-boot CPUs are not disabled\n");
1956
1957	/*
1958	 * Make sure the CPUs won't be enabled by someone else. We need to do
1959	 * this even in case of failure as all freeze_secondary_cpus() users are
1960	 * supposed to do thaw_secondary_cpus() on the failure path.
1961	 */
1962	cpu_hotplug_disabled++;
1963
1964	cpu_maps_update_done();
1965	return error;
1966}
1967
1968void __weak arch_thaw_secondary_cpus_begin(void)
1969{
1970}
1971
1972void __weak arch_thaw_secondary_cpus_end(void)
1973{
1974}
1975
1976void thaw_secondary_cpus(void)
1977{
1978	int cpu, error;
1979
1980	/* Allow everyone to use the CPU hotplug again */
1981	cpu_maps_update_begin();
1982	__cpu_hotplug_enable();
1983	if (cpumask_empty(frozen_cpus))
1984		goto out;
1985
1986	pr_info("Enabling non-boot CPUs ...\n");
1987
1988	arch_thaw_secondary_cpus_begin();
1989
1990	for_each_cpu(cpu, frozen_cpus) {
1991		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1992		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1993		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1994		if (!error) {
1995			pr_info("CPU%d is up\n", cpu);
1996			continue;
1997		}
1998		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1999	}
2000
2001	arch_thaw_secondary_cpus_end();
2002
2003	cpumask_clear(frozen_cpus);
2004out:
2005	cpu_maps_update_done();
2006}
2007
2008static int __init alloc_frozen_cpus(void)
2009{
2010	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2011		return -ENOMEM;
2012	return 0;
2013}
2014core_initcall(alloc_frozen_cpus);
2015
2016/*
2017 * When callbacks for CPU hotplug notifications are being executed, we must
2018 * ensure that the state of the system with respect to the tasks being frozen
2019 * or not, as reported by the notification, remains unchanged *throughout the
2020 * duration* of the execution of the callbacks.
2021 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2022 *
2023 * This synchronization is implemented by mutually excluding regular CPU
2024 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2025 * Hibernate notifications.
2026 */
2027static int
2028cpu_hotplug_pm_callback(struct notifier_block *nb,
2029			unsigned long action, void *ptr)
2030{
2031	switch (action) {
2032
2033	case PM_SUSPEND_PREPARE:
2034	case PM_HIBERNATION_PREPARE:
2035		cpu_hotplug_disable();
2036		break;
2037
2038	case PM_POST_SUSPEND:
2039	case PM_POST_HIBERNATION:
2040		cpu_hotplug_enable();
2041		break;
2042
2043	default:
2044		return NOTIFY_DONE;
2045	}
2046
2047	return NOTIFY_OK;
2048}
2049
2050
2051static int __init cpu_hotplug_pm_sync_init(void)
2052{
2053	/*
2054	 * cpu_hotplug_pm_callback has higher priority than x86
2055	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2056	 * to disable cpu hotplug to avoid cpu hotplug race.
2057	 */
2058	pm_notifier(cpu_hotplug_pm_callback, 0);
2059	return 0;
2060}
2061core_initcall(cpu_hotplug_pm_sync_init);
2062
2063#endif /* CONFIG_PM_SLEEP_SMP */
2064
2065int __boot_cpu_id;
2066
2067#endif /* CONFIG_SMP */
2068
2069/* Boot processor state steps */
2070static struct cpuhp_step cpuhp_hp_states[] = {
2071	[CPUHP_OFFLINE] = {
2072		.name			= "offline",
2073		.startup.single		= NULL,
2074		.teardown.single	= NULL,
2075	},
2076#ifdef CONFIG_SMP
2077	[CPUHP_CREATE_THREADS]= {
2078		.name			= "threads:prepare",
2079		.startup.single		= smpboot_create_threads,
2080		.teardown.single	= NULL,
2081		.cant_stop		= true,
2082	},
2083	[CPUHP_PERF_PREPARE] = {
2084		.name			= "perf:prepare",
2085		.startup.single		= perf_event_init_cpu,
2086		.teardown.single	= perf_event_exit_cpu,
2087	},
2088	[CPUHP_RANDOM_PREPARE] = {
2089		.name			= "random:prepare",
2090		.startup.single		= random_prepare_cpu,
2091		.teardown.single	= NULL,
2092	},
2093	[CPUHP_WORKQUEUE_PREP] = {
2094		.name			= "workqueue:prepare",
2095		.startup.single		= workqueue_prepare_cpu,
2096		.teardown.single	= NULL,
2097	},
2098	[CPUHP_HRTIMERS_PREPARE] = {
2099		.name			= "hrtimers:prepare",
2100		.startup.single		= hrtimers_prepare_cpu,
2101		.teardown.single	= hrtimers_dead_cpu,
2102	},
2103	[CPUHP_SMPCFD_PREPARE] = {
2104		.name			= "smpcfd:prepare",
2105		.startup.single		= smpcfd_prepare_cpu,
2106		.teardown.single	= smpcfd_dead_cpu,
2107	},
2108	[CPUHP_RELAY_PREPARE] = {
2109		.name			= "relay:prepare",
2110		.startup.single		= relay_prepare_cpu,
2111		.teardown.single	= NULL,
2112	},
2113	[CPUHP_SLAB_PREPARE] = {
2114		.name			= "slab:prepare",
2115		.startup.single		= slab_prepare_cpu,
2116		.teardown.single	= slab_dead_cpu,
2117	},
2118	[CPUHP_RCUTREE_PREP] = {
2119		.name			= "RCU/tree:prepare",
2120		.startup.single		= rcutree_prepare_cpu,
2121		.teardown.single	= rcutree_dead_cpu,
2122	},
2123	/*
2124	 * On the tear-down path, timers_dead_cpu() must be invoked
2125	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2126	 * otherwise a RCU stall occurs.
2127	 */
2128	[CPUHP_TIMERS_PREPARE] = {
2129		.name			= "timers:prepare",
2130		.startup.single		= timers_prepare_cpu,
2131		.teardown.single	= timers_dead_cpu,
2132	},
2133
2134#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2135	/*
2136	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2137	 * the next step will release it.
2138	 */
2139	[CPUHP_BP_KICK_AP] = {
2140		.name			= "cpu:kick_ap",
2141		.startup.single		= cpuhp_kick_ap_alive,
2142	},
2143
2144	/*
2145	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2146	 * releases it for the complete bringup.
2147	 */
2148	[CPUHP_BRINGUP_CPU] = {
2149		.name			= "cpu:bringup",
2150		.startup.single		= cpuhp_bringup_ap,
2151		.teardown.single	= finish_cpu,
2152		.cant_stop		= true,
2153	},
2154#else
2155	/*
2156	 * All-in-one CPU bringup state which includes the kick alive.
2157	 */
2158	[CPUHP_BRINGUP_CPU] = {
2159		.name			= "cpu:bringup",
2160		.startup.single		= bringup_cpu,
2161		.teardown.single	= finish_cpu,
2162		.cant_stop		= true,
2163	},
2164#endif
2165	/* Final state before CPU kills itself */
2166	[CPUHP_AP_IDLE_DEAD] = {
2167		.name			= "idle:dead",
2168	},
2169	/*
2170	 * Last state before CPU enters the idle loop to die. Transient state
2171	 * for synchronization.
2172	 */
2173	[CPUHP_AP_OFFLINE] = {
2174		.name			= "ap:offline",
2175		.cant_stop		= true,
2176	},
2177	/* First state is scheduler control. Interrupts are disabled */
2178	[CPUHP_AP_SCHED_STARTING] = {
2179		.name			= "sched:starting",
2180		.startup.single		= sched_cpu_starting,
2181		.teardown.single	= sched_cpu_dying,
2182	},
2183	[CPUHP_AP_RCUTREE_DYING] = {
2184		.name			= "RCU/tree:dying",
2185		.startup.single		= NULL,
2186		.teardown.single	= rcutree_dying_cpu,
2187	},
2188	[CPUHP_AP_SMPCFD_DYING] = {
2189		.name			= "smpcfd:dying",
2190		.startup.single		= NULL,
2191		.teardown.single	= smpcfd_dying_cpu,
2192	},
2193	/* Entry state on starting. Interrupts enabled from here on. Transient
2194	 * state for synchronsization */
2195	[CPUHP_AP_ONLINE] = {
2196		.name			= "ap:online",
2197	},
2198	/*
2199	 * Handled on control processor until the plugged processor manages
2200	 * this itself.
2201	 */
2202	[CPUHP_TEARDOWN_CPU] = {
2203		.name			= "cpu:teardown",
2204		.startup.single		= NULL,
2205		.teardown.single	= takedown_cpu,
2206		.cant_stop		= true,
2207	},
2208
2209	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2210		.name			= "sched:waitempty",
2211		.startup.single		= NULL,
2212		.teardown.single	= sched_cpu_wait_empty,
2213	},
2214
2215	/* Handle smpboot threads park/unpark */
2216	[CPUHP_AP_SMPBOOT_THREADS] = {
2217		.name			= "smpboot/threads:online",
2218		.startup.single		= smpboot_unpark_threads,
2219		.teardown.single	= smpboot_park_threads,
2220	},
2221	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2222		.name			= "irq/affinity:online",
2223		.startup.single		= irq_affinity_online_cpu,
2224		.teardown.single	= NULL,
2225	},
2226	[CPUHP_AP_PERF_ONLINE] = {
2227		.name			= "perf:online",
2228		.startup.single		= perf_event_init_cpu,
2229		.teardown.single	= perf_event_exit_cpu,
2230	},
2231	[CPUHP_AP_WATCHDOG_ONLINE] = {
2232		.name			= "lockup_detector:online",
2233		.startup.single		= lockup_detector_online_cpu,
2234		.teardown.single	= lockup_detector_offline_cpu,
2235	},
2236	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2237		.name			= "workqueue:online",
2238		.startup.single		= workqueue_online_cpu,
2239		.teardown.single	= workqueue_offline_cpu,
2240	},
2241	[CPUHP_AP_RANDOM_ONLINE] = {
2242		.name			= "random:online",
2243		.startup.single		= random_online_cpu,
2244		.teardown.single	= NULL,
2245	},
2246	[CPUHP_AP_RCUTREE_ONLINE] = {
2247		.name			= "RCU/tree:online",
2248		.startup.single		= rcutree_online_cpu,
2249		.teardown.single	= rcutree_offline_cpu,
2250	},
2251#endif
2252	/*
2253	 * The dynamically registered state space is here
2254	 */
2255
2256#ifdef CONFIG_SMP
2257	/* Last state is scheduler control setting the cpu active */
2258	[CPUHP_AP_ACTIVE] = {
2259		.name			= "sched:active",
2260		.startup.single		= sched_cpu_activate,
2261		.teardown.single	= sched_cpu_deactivate,
2262	},
2263#endif
2264
2265	/* CPU is fully up and running. */
2266	[CPUHP_ONLINE] = {
2267		.name			= "online",
2268		.startup.single		= NULL,
2269		.teardown.single	= NULL,
2270	},
2271};
2272
2273/* Sanity check for callbacks */
2274static int cpuhp_cb_check(enum cpuhp_state state)
2275{
2276	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2277		return -EINVAL;
2278	return 0;
2279}
2280
2281/*
2282 * Returns a free for dynamic slot assignment of the Online state. The states
2283 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2284 * by having no name assigned.
2285 */
2286static int cpuhp_reserve_state(enum cpuhp_state state)
2287{
2288	enum cpuhp_state i, end;
2289	struct cpuhp_step *step;
2290
2291	switch (state) {
2292	case CPUHP_AP_ONLINE_DYN:
2293		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2294		end = CPUHP_AP_ONLINE_DYN_END;
2295		break;
2296	case CPUHP_BP_PREPARE_DYN:
2297		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2298		end = CPUHP_BP_PREPARE_DYN_END;
2299		break;
2300	default:
2301		return -EINVAL;
2302	}
2303
2304	for (i = state; i <= end; i++, step++) {
2305		if (!step->name)
2306			return i;
2307	}
2308	WARN(1, "No more dynamic states available for CPU hotplug\n");
2309	return -ENOSPC;
2310}
2311
2312static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2313				 int (*startup)(unsigned int cpu),
2314				 int (*teardown)(unsigned int cpu),
2315				 bool multi_instance)
2316{
2317	/* (Un)Install the callbacks for further cpu hotplug operations */
2318	struct cpuhp_step *sp;
2319	int ret = 0;
2320
2321	/*
2322	 * If name is NULL, then the state gets removed.
2323	 *
2324	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2325	 * the first allocation from these dynamic ranges, so the removal
2326	 * would trigger a new allocation and clear the wrong (already
2327	 * empty) state, leaving the callbacks of the to be cleared state
2328	 * dangling, which causes wreckage on the next hotplug operation.
2329	 */
2330	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2331		     state == CPUHP_BP_PREPARE_DYN)) {
2332		ret = cpuhp_reserve_state(state);
2333		if (ret < 0)
2334			return ret;
2335		state = ret;
2336	}
2337	sp = cpuhp_get_step(state);
2338	if (name && sp->name)
2339		return -EBUSY;
2340
2341	sp->startup.single = startup;
2342	sp->teardown.single = teardown;
2343	sp->name = name;
2344	sp->multi_instance = multi_instance;
2345	INIT_HLIST_HEAD(&sp->list);
2346	return ret;
2347}
2348
2349static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2350{
2351	return cpuhp_get_step(state)->teardown.single;
2352}
2353
2354/*
2355 * Call the startup/teardown function for a step either on the AP or
2356 * on the current CPU.
2357 */
2358static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2359			    struct hlist_node *node)
2360{
2361	struct cpuhp_step *sp = cpuhp_get_step(state);
2362	int ret;
2363
2364	/*
2365	 * If there's nothing to do, we done.
2366	 * Relies on the union for multi_instance.
2367	 */
2368	if (cpuhp_step_empty(bringup, sp))
2369		return 0;
2370	/*
2371	 * The non AP bound callbacks can fail on bringup. On teardown
2372	 * e.g. module removal we crash for now.
2373	 */
2374#ifdef CONFIG_SMP
2375	if (cpuhp_is_ap_state(state))
2376		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2377	else
2378		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2379#else
2380	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2381#endif
2382	BUG_ON(ret && !bringup);
2383	return ret;
2384}
2385
2386/*
2387 * Called from __cpuhp_setup_state on a recoverable failure.
2388 *
2389 * Note: The teardown callbacks for rollback are not allowed to fail!
2390 */
2391static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2392				   struct hlist_node *node)
2393{
2394	int cpu;
2395
2396	/* Roll back the already executed steps on the other cpus */
2397	for_each_present_cpu(cpu) {
2398		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2399		int cpustate = st->state;
2400
2401		if (cpu >= failedcpu)
2402			break;
2403
2404		/* Did we invoke the startup call on that cpu ? */
2405		if (cpustate >= state)
2406			cpuhp_issue_call(cpu, state, false, node);
2407	}
2408}
2409
2410int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2411					  struct hlist_node *node,
2412					  bool invoke)
2413{
2414	struct cpuhp_step *sp;
2415	int cpu;
2416	int ret;
2417
2418	lockdep_assert_cpus_held();
2419
2420	sp = cpuhp_get_step(state);
2421	if (sp->multi_instance == false)
2422		return -EINVAL;
2423
2424	mutex_lock(&cpuhp_state_mutex);
2425
2426	if (!invoke || !sp->startup.multi)
2427		goto add_node;
2428
2429	/*
2430	 * Try to call the startup callback for each present cpu
2431	 * depending on the hotplug state of the cpu.
2432	 */
2433	for_each_present_cpu(cpu) {
2434		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2435		int cpustate = st->state;
2436
2437		if (cpustate < state)
2438			continue;
2439
2440		ret = cpuhp_issue_call(cpu, state, true, node);
2441		if (ret) {
2442			if (sp->teardown.multi)
2443				cpuhp_rollback_install(cpu, state, node);
2444			goto unlock;
2445		}
2446	}
2447add_node:
2448	ret = 0;
2449	hlist_add_head(node, &sp->list);
2450unlock:
2451	mutex_unlock(&cpuhp_state_mutex);
2452	return ret;
2453}
2454
2455int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2456			       bool invoke)
2457{
2458	int ret;
2459
2460	cpus_read_lock();
2461	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2462	cpus_read_unlock();
2463	return ret;
2464}
2465EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2466
2467/**
2468 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2469 * @state:		The state to setup
2470 * @name:		Name of the step
2471 * @invoke:		If true, the startup function is invoked for cpus where
2472 *			cpu state >= @state
2473 * @startup:		startup callback function
2474 * @teardown:		teardown callback function
2475 * @multi_instance:	State is set up for multiple instances which get
2476 *			added afterwards.
2477 *
2478 * The caller needs to hold cpus read locked while calling this function.
2479 * Return:
2480 *   On success:
2481 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2482 *      0 for all other states
2483 *   On failure: proper (negative) error code
2484 */
2485int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2486				   const char *name, bool invoke,
2487				   int (*startup)(unsigned int cpu),
2488				   int (*teardown)(unsigned int cpu),
2489				   bool multi_instance)
2490{
2491	int cpu, ret = 0;
2492	bool dynstate;
2493
2494	lockdep_assert_cpus_held();
2495
2496	if (cpuhp_cb_check(state) || !name)
2497		return -EINVAL;
2498
2499	mutex_lock(&cpuhp_state_mutex);
2500
2501	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2502				    multi_instance);
2503
2504	dynstate = state == CPUHP_AP_ONLINE_DYN;
2505	if (ret > 0 && dynstate) {
2506		state = ret;
2507		ret = 0;
2508	}
2509
2510	if (ret || !invoke || !startup)
2511		goto out;
2512
2513	/*
2514	 * Try to call the startup callback for each present cpu
2515	 * depending on the hotplug state of the cpu.
2516	 */
2517	for_each_present_cpu(cpu) {
2518		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2519		int cpustate = st->state;
2520
2521		if (cpustate < state)
2522			continue;
2523
2524		ret = cpuhp_issue_call(cpu, state, true, NULL);
2525		if (ret) {
2526			if (teardown)
2527				cpuhp_rollback_install(cpu, state, NULL);
2528			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2529			goto out;
2530		}
2531	}
2532out:
2533	mutex_unlock(&cpuhp_state_mutex);
2534	/*
2535	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2536	 * dynamically allocated state in case of success.
2537	 */
2538	if (!ret && dynstate)
2539		return state;
2540	return ret;
2541}
2542EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2543
2544int __cpuhp_setup_state(enum cpuhp_state state,
2545			const char *name, bool invoke,
2546			int (*startup)(unsigned int cpu),
2547			int (*teardown)(unsigned int cpu),
2548			bool multi_instance)
2549{
2550	int ret;
2551
2552	cpus_read_lock();
2553	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2554					     teardown, multi_instance);
2555	cpus_read_unlock();
2556	return ret;
2557}
2558EXPORT_SYMBOL(__cpuhp_setup_state);
2559
2560int __cpuhp_state_remove_instance(enum cpuhp_state state,
2561				  struct hlist_node *node, bool invoke)
2562{
2563	struct cpuhp_step *sp = cpuhp_get_step(state);
2564	int cpu;
2565
2566	BUG_ON(cpuhp_cb_check(state));
2567
2568	if (!sp->multi_instance)
2569		return -EINVAL;
2570
2571	cpus_read_lock();
2572	mutex_lock(&cpuhp_state_mutex);
2573
2574	if (!invoke || !cpuhp_get_teardown_cb(state))
2575		goto remove;
2576	/*
2577	 * Call the teardown callback for each present cpu depending
2578	 * on the hotplug state of the cpu. This function is not
2579	 * allowed to fail currently!
2580	 */
2581	for_each_present_cpu(cpu) {
2582		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2583		int cpustate = st->state;
2584
2585		if (cpustate >= state)
2586			cpuhp_issue_call(cpu, state, false, node);
2587	}
2588
2589remove:
2590	hlist_del(node);
2591	mutex_unlock(&cpuhp_state_mutex);
2592	cpus_read_unlock();
2593
2594	return 0;
2595}
2596EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2597
2598/**
2599 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2600 * @state:	The state to remove
2601 * @invoke:	If true, the teardown function is invoked for cpus where
2602 *		cpu state >= @state
2603 *
2604 * The caller needs to hold cpus read locked while calling this function.
2605 * The teardown callback is currently not allowed to fail. Think
2606 * about module removal!
2607 */
2608void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2609{
2610	struct cpuhp_step *sp = cpuhp_get_step(state);
2611	int cpu;
2612
2613	BUG_ON(cpuhp_cb_check(state));
2614
2615	lockdep_assert_cpus_held();
2616
2617	mutex_lock(&cpuhp_state_mutex);
2618	if (sp->multi_instance) {
2619		WARN(!hlist_empty(&sp->list),
2620		     "Error: Removing state %d which has instances left.\n",
2621		     state);
2622		goto remove;
2623	}
2624
2625	if (!invoke || !cpuhp_get_teardown_cb(state))
2626		goto remove;
2627
2628	/*
2629	 * Call the teardown callback for each present cpu depending
2630	 * on the hotplug state of the cpu. This function is not
2631	 * allowed to fail currently!
2632	 */
2633	for_each_present_cpu(cpu) {
2634		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2635		int cpustate = st->state;
2636
2637		if (cpustate >= state)
2638			cpuhp_issue_call(cpu, state, false, NULL);
2639	}
2640remove:
2641	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2642	mutex_unlock(&cpuhp_state_mutex);
2643}
2644EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2645
2646void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2647{
2648	cpus_read_lock();
2649	__cpuhp_remove_state_cpuslocked(state, invoke);
2650	cpus_read_unlock();
2651}
2652EXPORT_SYMBOL(__cpuhp_remove_state);
2653
2654#ifdef CONFIG_HOTPLUG_SMT
2655static void cpuhp_offline_cpu_device(unsigned int cpu)
2656{
2657	struct device *dev = get_cpu_device(cpu);
2658
2659	dev->offline = true;
2660	/* Tell user space about the state change */
2661	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2662}
2663
2664static void cpuhp_online_cpu_device(unsigned int cpu)
2665{
2666	struct device *dev = get_cpu_device(cpu);
2667
2668	dev->offline = false;
2669	/* Tell user space about the state change */
2670	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2671}
2672
2673int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2674{
2675	int cpu, ret = 0;
2676
2677	cpu_maps_update_begin();
2678	for_each_online_cpu(cpu) {
2679		if (topology_is_primary_thread(cpu))
2680			continue;
2681		/*
2682		 * Disable can be called with CPU_SMT_ENABLED when changing
2683		 * from a higher to lower number of SMT threads per core.
2684		 */
2685		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2686			continue;
2687		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2688		if (ret)
2689			break;
2690		/*
2691		 * As this needs to hold the cpu maps lock it's impossible
2692		 * to call device_offline() because that ends up calling
2693		 * cpu_down() which takes cpu maps lock. cpu maps lock
2694		 * needs to be held as this might race against in kernel
2695		 * abusers of the hotplug machinery (thermal management).
2696		 *
2697		 * So nothing would update device:offline state. That would
2698		 * leave the sysfs entry stale and prevent onlining after
2699		 * smt control has been changed to 'off' again. This is
2700		 * called under the sysfs hotplug lock, so it is properly
2701		 * serialized against the regular offline usage.
2702		 */
2703		cpuhp_offline_cpu_device(cpu);
2704	}
2705	if (!ret)
2706		cpu_smt_control = ctrlval;
2707	cpu_maps_update_done();
2708	return ret;
2709}
2710
2711int cpuhp_smt_enable(void)
2712{
2713	int cpu, ret = 0;
2714
2715	cpu_maps_update_begin();
2716	cpu_smt_control = CPU_SMT_ENABLED;
2717	for_each_present_cpu(cpu) {
2718		/* Skip online CPUs and CPUs on offline nodes */
2719		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2720			continue;
2721		if (!cpu_smt_thread_allowed(cpu))
2722			continue;
2723		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2724		if (ret)
2725			break;
2726		/* See comment in cpuhp_smt_disable() */
2727		cpuhp_online_cpu_device(cpu);
2728	}
2729	cpu_maps_update_done();
2730	return ret;
2731}
2732#endif
2733
2734#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2735static ssize_t state_show(struct device *dev,
2736			  struct device_attribute *attr, char *buf)
2737{
2738	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2739
2740	return sprintf(buf, "%d\n", st->state);
2741}
2742static DEVICE_ATTR_RO(state);
2743
2744static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2745			    const char *buf, size_t count)
2746{
2747	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2748	struct cpuhp_step *sp;
2749	int target, ret;
2750
2751	ret = kstrtoint(buf, 10, &target);
2752	if (ret)
2753		return ret;
2754
2755#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2756	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2757		return -EINVAL;
2758#else
2759	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2760		return -EINVAL;
2761#endif
2762
2763	ret = lock_device_hotplug_sysfs();
2764	if (ret)
2765		return ret;
2766
2767	mutex_lock(&cpuhp_state_mutex);
2768	sp = cpuhp_get_step(target);
2769	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2770	mutex_unlock(&cpuhp_state_mutex);
2771	if (ret)
2772		goto out;
2773
2774	if (st->state < target)
2775		ret = cpu_up(dev->id, target);
2776	else if (st->state > target)
2777		ret = cpu_down(dev->id, target);
2778	else if (WARN_ON(st->target != target))
2779		st->target = target;
2780out:
2781	unlock_device_hotplug();
2782	return ret ? ret : count;
2783}
2784
2785static ssize_t target_show(struct device *dev,
2786			   struct device_attribute *attr, char *buf)
2787{
2788	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2789
2790	return sprintf(buf, "%d\n", st->target);
2791}
2792static DEVICE_ATTR_RW(target);
2793
2794static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2795			  const char *buf, size_t count)
2796{
2797	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2798	struct cpuhp_step *sp;
2799	int fail, ret;
2800
2801	ret = kstrtoint(buf, 10, &fail);
2802	if (ret)
2803		return ret;
2804
2805	if (fail == CPUHP_INVALID) {
2806		st->fail = fail;
2807		return count;
2808	}
2809
2810	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2811		return -EINVAL;
2812
2813	/*
2814	 * Cannot fail STARTING/DYING callbacks.
2815	 */
2816	if (cpuhp_is_atomic_state(fail))
2817		return -EINVAL;
2818
2819	/*
2820	 * DEAD callbacks cannot fail...
2821	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2822	 * triggering STARTING callbacks, a failure in this state would
2823	 * hinder rollback.
2824	 */
2825	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2826		return -EINVAL;
2827
2828	/*
2829	 * Cannot fail anything that doesn't have callbacks.
2830	 */
2831	mutex_lock(&cpuhp_state_mutex);
2832	sp = cpuhp_get_step(fail);
2833	if (!sp->startup.single && !sp->teardown.single)
2834		ret = -EINVAL;
2835	mutex_unlock(&cpuhp_state_mutex);
2836	if (ret)
2837		return ret;
2838
2839	st->fail = fail;
2840
2841	return count;
2842}
2843
2844static ssize_t fail_show(struct device *dev,
2845			 struct device_attribute *attr, char *buf)
2846{
2847	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2848
2849	return sprintf(buf, "%d\n", st->fail);
2850}
2851
2852static DEVICE_ATTR_RW(fail);
2853
2854static struct attribute *cpuhp_cpu_attrs[] = {
2855	&dev_attr_state.attr,
2856	&dev_attr_target.attr,
2857	&dev_attr_fail.attr,
2858	NULL
2859};
2860
2861static const struct attribute_group cpuhp_cpu_attr_group = {
2862	.attrs = cpuhp_cpu_attrs,
2863	.name = "hotplug",
2864	NULL
2865};
2866
2867static ssize_t states_show(struct device *dev,
2868				 struct device_attribute *attr, char *buf)
2869{
2870	ssize_t cur, res = 0;
2871	int i;
2872
2873	mutex_lock(&cpuhp_state_mutex);
2874	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2875		struct cpuhp_step *sp = cpuhp_get_step(i);
2876
2877		if (sp->name) {
2878			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2879			buf += cur;
2880			res += cur;
2881		}
2882	}
2883	mutex_unlock(&cpuhp_state_mutex);
2884	return res;
2885}
2886static DEVICE_ATTR_RO(states);
2887
2888static struct attribute *cpuhp_cpu_root_attrs[] = {
2889	&dev_attr_states.attr,
2890	NULL
2891};
2892
2893static const struct attribute_group cpuhp_cpu_root_attr_group = {
2894	.attrs = cpuhp_cpu_root_attrs,
2895	.name = "hotplug",
2896	NULL
2897};
2898
2899#ifdef CONFIG_HOTPLUG_SMT
2900
2901static bool cpu_smt_num_threads_valid(unsigned int threads)
2902{
2903	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2904		return threads >= 1 && threads <= cpu_smt_max_threads;
2905	return threads == 1 || threads == cpu_smt_max_threads;
2906}
2907
2908static ssize_t
2909__store_smt_control(struct device *dev, struct device_attribute *attr,
2910		    const char *buf, size_t count)
2911{
2912	int ctrlval, ret, num_threads, orig_threads;
2913	bool force_off;
2914
2915	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2916		return -EPERM;
2917
2918	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2919		return -ENODEV;
2920
2921	if (sysfs_streq(buf, "on")) {
2922		ctrlval = CPU_SMT_ENABLED;
2923		num_threads = cpu_smt_max_threads;
2924	} else if (sysfs_streq(buf, "off")) {
2925		ctrlval = CPU_SMT_DISABLED;
2926		num_threads = 1;
2927	} else if (sysfs_streq(buf, "forceoff")) {
2928		ctrlval = CPU_SMT_FORCE_DISABLED;
2929		num_threads = 1;
2930	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2931		if (num_threads == 1)
2932			ctrlval = CPU_SMT_DISABLED;
2933		else if (cpu_smt_num_threads_valid(num_threads))
2934			ctrlval = CPU_SMT_ENABLED;
2935		else
2936			return -EINVAL;
2937	} else {
2938		return -EINVAL;
2939	}
2940
2941	ret = lock_device_hotplug_sysfs();
2942	if (ret)
2943		return ret;
2944
2945	orig_threads = cpu_smt_num_threads;
2946	cpu_smt_num_threads = num_threads;
2947
2948	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2949
2950	if (num_threads > orig_threads)
2951		ret = cpuhp_smt_enable();
2952	else if (num_threads < orig_threads || force_off)
2953		ret = cpuhp_smt_disable(ctrlval);
2954
2955	unlock_device_hotplug();
2956	return ret ? ret : count;
2957}
2958
2959#else /* !CONFIG_HOTPLUG_SMT */
2960static ssize_t
2961__store_smt_control(struct device *dev, struct device_attribute *attr,
2962		    const char *buf, size_t count)
2963{
2964	return -ENODEV;
2965}
2966#endif /* CONFIG_HOTPLUG_SMT */
2967
2968static const char *smt_states[] = {
2969	[CPU_SMT_ENABLED]		= "on",
2970	[CPU_SMT_DISABLED]		= "off",
2971	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2972	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2973	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2974};
2975
2976static ssize_t control_show(struct device *dev,
2977			    struct device_attribute *attr, char *buf)
2978{
2979	const char *state = smt_states[cpu_smt_control];
2980
2981#ifdef CONFIG_HOTPLUG_SMT
2982	/*
2983	 * If SMT is enabled but not all threads are enabled then show the
2984	 * number of threads. If all threads are enabled show "on". Otherwise
2985	 * show the state name.
2986	 */
2987	if (cpu_smt_control == CPU_SMT_ENABLED &&
2988	    cpu_smt_num_threads != cpu_smt_max_threads)
2989		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2990#endif
2991
2992	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2993}
2994
2995static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2996			     const char *buf, size_t count)
2997{
2998	return __store_smt_control(dev, attr, buf, count);
2999}
3000static DEVICE_ATTR_RW(control);
3001
3002static ssize_t active_show(struct device *dev,
3003			   struct device_attribute *attr, char *buf)
3004{
3005	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3006}
3007static DEVICE_ATTR_RO(active);
3008
3009static struct attribute *cpuhp_smt_attrs[] = {
3010	&dev_attr_control.attr,
3011	&dev_attr_active.attr,
3012	NULL
3013};
3014
3015static const struct attribute_group cpuhp_smt_attr_group = {
3016	.attrs = cpuhp_smt_attrs,
3017	.name = "smt",
3018	NULL
3019};
3020
3021static int __init cpu_smt_sysfs_init(void)
3022{
3023	struct device *dev_root;
3024	int ret = -ENODEV;
3025
3026	dev_root = bus_get_dev_root(&cpu_subsys);
3027	if (dev_root) {
3028		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3029		put_device(dev_root);
3030	}
3031	return ret;
3032}
3033
3034static int __init cpuhp_sysfs_init(void)
3035{
3036	struct device *dev_root;
3037	int cpu, ret;
3038
3039	ret = cpu_smt_sysfs_init();
3040	if (ret)
3041		return ret;
3042
3043	dev_root = bus_get_dev_root(&cpu_subsys);
3044	if (dev_root) {
3045		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3046		put_device(dev_root);
3047		if (ret)
3048			return ret;
3049	}
3050
3051	for_each_possible_cpu(cpu) {
3052		struct device *dev = get_cpu_device(cpu);
3053
3054		if (!dev)
3055			continue;
3056		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3057		if (ret)
3058			return ret;
3059	}
3060	return 0;
3061}
3062device_initcall(cpuhp_sysfs_init);
3063#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3064
3065/*
3066 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3067 * represents all NR_CPUS bits binary values of 1<<nr.
3068 *
3069 * It is used by cpumask_of() to get a constant address to a CPU
3070 * mask value that has a single bit set only.
3071 */
3072
3073/* cpu_bit_bitmap[0] is empty - so we can back into it */
3074#define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3075#define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3076#define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3077#define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3078
3079const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3080
3081	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3082	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3083#if BITS_PER_LONG > 32
3084	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3085	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3086#endif
3087};
3088EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3089
3090const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3091EXPORT_SYMBOL(cpu_all_bits);
3092
3093#ifdef CONFIG_INIT_ALL_POSSIBLE
3094struct cpumask __cpu_possible_mask __read_mostly
3095	= {CPU_BITS_ALL};
3096#else
3097struct cpumask __cpu_possible_mask __read_mostly;
3098#endif
3099EXPORT_SYMBOL(__cpu_possible_mask);
3100
3101struct cpumask __cpu_online_mask __read_mostly;
3102EXPORT_SYMBOL(__cpu_online_mask);
3103
3104struct cpumask __cpu_present_mask __read_mostly;
3105EXPORT_SYMBOL(__cpu_present_mask);
3106
3107struct cpumask __cpu_active_mask __read_mostly;
3108EXPORT_SYMBOL(__cpu_active_mask);
3109
3110struct cpumask __cpu_dying_mask __read_mostly;
3111EXPORT_SYMBOL(__cpu_dying_mask);
3112
3113atomic_t __num_online_cpus __read_mostly;
3114EXPORT_SYMBOL(__num_online_cpus);
3115
3116void init_cpu_present(const struct cpumask *src)
3117{
3118	cpumask_copy(&__cpu_present_mask, src);
3119}
3120
3121void init_cpu_possible(const struct cpumask *src)
3122{
3123	cpumask_copy(&__cpu_possible_mask, src);
3124}
3125
3126void init_cpu_online(const struct cpumask *src)
3127{
3128	cpumask_copy(&__cpu_online_mask, src);
3129}
3130
3131void set_cpu_online(unsigned int cpu, bool online)
3132{
3133	/*
3134	 * atomic_inc/dec() is required to handle the horrid abuse of this
3135	 * function by the reboot and kexec code which invoke it from
3136	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3137	 * regular CPU hotplug is properly serialized.
3138	 *
3139	 * Note, that the fact that __num_online_cpus is of type atomic_t
3140	 * does not protect readers which are not serialized against
3141	 * concurrent hotplug operations.
3142	 */
3143	if (online) {
3144		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3145			atomic_inc(&__num_online_cpus);
3146	} else {
3147		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3148			atomic_dec(&__num_online_cpus);
3149	}
3150}
3151
3152/*
3153 * Activate the first processor.
3154 */
3155void __init boot_cpu_init(void)
3156{
3157	int cpu = smp_processor_id();
3158
3159	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3160	set_cpu_online(cpu, true);
3161	set_cpu_active(cpu, true);
3162	set_cpu_present(cpu, true);
3163	set_cpu_possible(cpu, true);
3164
3165#ifdef CONFIG_SMP
3166	__boot_cpu_id = cpu;
3167#endif
3168}
3169
3170/*
3171 * Must be called _AFTER_ setting up the per_cpu areas
3172 */
3173void __init boot_cpu_hotplug_init(void)
3174{
3175#ifdef CONFIG_SMP
3176	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3177	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3178#endif
3179	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3180	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3181}
3182
3183/*
3184 * These are used for a global "mitigations=" cmdline option for toggling
3185 * optional CPU mitigations.
3186 */
3187enum cpu_mitigations {
3188	CPU_MITIGATIONS_OFF,
3189	CPU_MITIGATIONS_AUTO,
3190	CPU_MITIGATIONS_AUTO_NOSMT,
3191};
3192
3193static enum cpu_mitigations cpu_mitigations __ro_after_init =
3194	CPU_MITIGATIONS_AUTO;
3195
3196static int __init mitigations_parse_cmdline(char *arg)
3197{
3198	if (!strcmp(arg, "off"))
3199		cpu_mitigations = CPU_MITIGATIONS_OFF;
3200	else if (!strcmp(arg, "auto"))
3201		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3202	else if (!strcmp(arg, "auto,nosmt"))
3203		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3204	else
3205		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3206			arg);
3207
3208	return 0;
3209}
3210early_param("mitigations", mitigations_parse_cmdline);
3211
3212/* mitigations=off */
3213bool cpu_mitigations_off(void)
3214{
3215	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3216}
3217EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3218
3219/* mitigations=auto,nosmt */
3220bool cpu_mitigations_auto_nosmt(void)
3221{
3222	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3223}
3224EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3225