1/*
2 *  kernel/cpuset.c
3 *
4 *  Processor and Memory placement constraints for sets of tasks.
5 *
6 *  Copyright (C) 2003 BULL SA.
7 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 *  Copyright (C) 2006 Google, Inc
9 *
10 *  Portions derived from Patrick Mochel's sysfs code.
11 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 *  2003-10-10 Written by Simon Derr.
14 *  2003-10-22 Updates by Stephen Hemminger.
15 *  2004 May-July Rework by Paul Jackson.
16 *  2006 Rework by Paul Menage to use generic cgroups
17 *  2008 Rework of the scheduler domains and CPU hotplug handling
18 *       by Max Krasnyansky
19 *
20 *  This file is subject to the terms and conditions of the GNU General Public
21 *  License.  See the file COPYING in the main directory of the Linux
22 *  distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/delay.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/kernel.h>
32#include <linux/mempolicy.h>
33#include <linux/mm.h>
34#include <linux/memory.h>
35#include <linux/export.h>
36#include <linux/rcupdate.h>
37#include <linux/sched.h>
38#include <linux/sched/deadline.h>
39#include <linux/sched/mm.h>
40#include <linux/sched/task.h>
41#include <linux/security.h>
42#include <linux/spinlock.h>
43#include <linux/oom.h>
44#include <linux/sched/isolation.h>
45#include <linux/cgroup.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48
49DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
50DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
51
52/*
53 * There could be abnormal cpuset configurations for cpu or memory
54 * node binding, add this key to provide a quick low-cost judgment
55 * of the situation.
56 */
57DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
58
59/* See "Frequency meter" comments, below. */
60
61struct fmeter {
62	int cnt;		/* unprocessed events count */
63	int val;		/* most recent output value */
64	time64_t time;		/* clock (secs) when val computed */
65	spinlock_t lock;	/* guards read or write of above */
66};
67
68/*
69 * Invalid partition error code
70 */
71enum prs_errcode {
72	PERR_NONE = 0,
73	PERR_INVCPUS,
74	PERR_INVPARENT,
75	PERR_NOTPART,
76	PERR_NOTEXCL,
77	PERR_NOCPUS,
78	PERR_HOTPLUG,
79	PERR_CPUSEMPTY,
80	PERR_HKEEPING,
81};
82
83static const char * const perr_strings[] = {
84	[PERR_INVCPUS]   = "Invalid cpu list in cpuset.cpus.exclusive",
85	[PERR_INVPARENT] = "Parent is an invalid partition root",
86	[PERR_NOTPART]   = "Parent is not a partition root",
87	[PERR_NOTEXCL]   = "Cpu list in cpuset.cpus not exclusive",
88	[PERR_NOCPUS]    = "Parent unable to distribute cpu downstream",
89	[PERR_HOTPLUG]   = "No cpu available due to hotplug",
90	[PERR_CPUSEMPTY] = "cpuset.cpus is empty",
91	[PERR_HKEEPING]  = "partition config conflicts with housekeeping setup",
92};
93
94struct cpuset {
95	struct cgroup_subsys_state css;
96
97	unsigned long flags;		/* "unsigned long" so bitops work */
98
99	/*
100	 * On default hierarchy:
101	 *
102	 * The user-configured masks can only be changed by writing to
103	 * cpuset.cpus and cpuset.mems, and won't be limited by the
104	 * parent masks.
105	 *
106	 * The effective masks is the real masks that apply to the tasks
107	 * in the cpuset. They may be changed if the configured masks are
108	 * changed or hotplug happens.
109	 *
110	 * effective_mask == configured_mask & parent's effective_mask,
111	 * and if it ends up empty, it will inherit the parent's mask.
112	 *
113	 *
114	 * On legacy hierarchy:
115	 *
116	 * The user-configured masks are always the same with effective masks.
117	 */
118
119	/* user-configured CPUs and Memory Nodes allow to tasks */
120	cpumask_var_t cpus_allowed;
121	nodemask_t mems_allowed;
122
123	/* effective CPUs and Memory Nodes allow to tasks */
124	cpumask_var_t effective_cpus;
125	nodemask_t effective_mems;
126
127	/*
128	 * Exclusive CPUs dedicated to current cgroup (default hierarchy only)
129	 *
130	 * This exclusive CPUs must be a subset of cpus_allowed. A parent
131	 * cgroup can only grant exclusive CPUs to one of its children.
132	 *
133	 * When the cgroup becomes a valid partition root, effective_xcpus
134	 * defaults to cpus_allowed if not set. The effective_cpus of a valid
135	 * partition root comes solely from its effective_xcpus and some of the
136	 * effective_xcpus may be distributed to sub-partitions below & hence
137	 * excluded from its effective_cpus.
138	 */
139	cpumask_var_t effective_xcpus;
140
141	/*
142	 * Exclusive CPUs as requested by the user (default hierarchy only)
143	 */
144	cpumask_var_t exclusive_cpus;
145
146	/*
147	 * This is old Memory Nodes tasks took on.
148	 *
149	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
150	 * - A new cpuset's old_mems_allowed is initialized when some
151	 *   task is moved into it.
152	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
153	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
154	 *   then old_mems_allowed is updated to mems_allowed.
155	 */
156	nodemask_t old_mems_allowed;
157
158	struct fmeter fmeter;		/* memory_pressure filter */
159
160	/*
161	 * Tasks are being attached to this cpuset.  Used to prevent
162	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
163	 */
164	int attach_in_progress;
165
166	/* partition number for rebuild_sched_domains() */
167	int pn;
168
169	/* for custom sched domain */
170	int relax_domain_level;
171
172	/* number of valid sub-partitions */
173	int nr_subparts;
174
175	/* partition root state */
176	int partition_root_state;
177
178	/*
179	 * Default hierarchy only:
180	 * use_parent_ecpus - set if using parent's effective_cpus
181	 * child_ecpus_count - # of children with use_parent_ecpus set
182	 */
183	int use_parent_ecpus;
184	int child_ecpus_count;
185
186	/*
187	 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
188	 * know when to rebuild associated root domain bandwidth information.
189	 */
190	int nr_deadline_tasks;
191	int nr_migrate_dl_tasks;
192	u64 sum_migrate_dl_bw;
193
194	/* Invalid partition error code, not lock protected */
195	enum prs_errcode prs_err;
196
197	/* Handle for cpuset.cpus.partition */
198	struct cgroup_file partition_file;
199
200	/* Remote partition silbling list anchored at remote_children */
201	struct list_head remote_sibling;
202};
203
204/*
205 * Exclusive CPUs distributed out to sub-partitions of top_cpuset
206 */
207static cpumask_var_t	subpartitions_cpus;
208
209/*
210 * Exclusive CPUs in isolated partitions
211 */
212static cpumask_var_t	isolated_cpus;
213
214/* List of remote partition root children */
215static struct list_head remote_children;
216
217/*
218 * Partition root states:
219 *
220 *   0 - member (not a partition root)
221 *   1 - partition root
222 *   2 - partition root without load balancing (isolated)
223 *  -1 - invalid partition root
224 *  -2 - invalid isolated partition root
225 */
226#define PRS_MEMBER		0
227#define PRS_ROOT		1
228#define PRS_ISOLATED		2
229#define PRS_INVALID_ROOT	-1
230#define PRS_INVALID_ISOLATED	-2
231
232static inline bool is_prs_invalid(int prs_state)
233{
234	return prs_state < 0;
235}
236
237/*
238 * Temporary cpumasks for working with partitions that are passed among
239 * functions to avoid memory allocation in inner functions.
240 */
241struct tmpmasks {
242	cpumask_var_t addmask, delmask;	/* For partition root */
243	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
244};
245
246static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
247{
248	return css ? container_of(css, struct cpuset, css) : NULL;
249}
250
251/* Retrieve the cpuset for a task */
252static inline struct cpuset *task_cs(struct task_struct *task)
253{
254	return css_cs(task_css(task, cpuset_cgrp_id));
255}
256
257static inline struct cpuset *parent_cs(struct cpuset *cs)
258{
259	return css_cs(cs->css.parent);
260}
261
262void inc_dl_tasks_cs(struct task_struct *p)
263{
264	struct cpuset *cs = task_cs(p);
265
266	cs->nr_deadline_tasks++;
267}
268
269void dec_dl_tasks_cs(struct task_struct *p)
270{
271	struct cpuset *cs = task_cs(p);
272
273	cs->nr_deadline_tasks--;
274}
275
276/* bits in struct cpuset flags field */
277typedef enum {
278	CS_ONLINE,
279	CS_CPU_EXCLUSIVE,
280	CS_MEM_EXCLUSIVE,
281	CS_MEM_HARDWALL,
282	CS_MEMORY_MIGRATE,
283	CS_SCHED_LOAD_BALANCE,
284	CS_SPREAD_PAGE,
285	CS_SPREAD_SLAB,
286} cpuset_flagbits_t;
287
288/* convenient tests for these bits */
289static inline bool is_cpuset_online(struct cpuset *cs)
290{
291	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
292}
293
294static inline int is_cpu_exclusive(const struct cpuset *cs)
295{
296	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
297}
298
299static inline int is_mem_exclusive(const struct cpuset *cs)
300{
301	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
302}
303
304static inline int is_mem_hardwall(const struct cpuset *cs)
305{
306	return test_bit(CS_MEM_HARDWALL, &cs->flags);
307}
308
309static inline int is_sched_load_balance(const struct cpuset *cs)
310{
311	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
312}
313
314static inline int is_memory_migrate(const struct cpuset *cs)
315{
316	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
317}
318
319static inline int is_spread_page(const struct cpuset *cs)
320{
321	return test_bit(CS_SPREAD_PAGE, &cs->flags);
322}
323
324static inline int is_spread_slab(const struct cpuset *cs)
325{
326	return test_bit(CS_SPREAD_SLAB, &cs->flags);
327}
328
329static inline int is_partition_valid(const struct cpuset *cs)
330{
331	return cs->partition_root_state > 0;
332}
333
334static inline int is_partition_invalid(const struct cpuset *cs)
335{
336	return cs->partition_root_state < 0;
337}
338
339/*
340 * Callers should hold callback_lock to modify partition_root_state.
341 */
342static inline void make_partition_invalid(struct cpuset *cs)
343{
344	if (cs->partition_root_state > 0)
345		cs->partition_root_state = -cs->partition_root_state;
346}
347
348/*
349 * Send notification event of whenever partition_root_state changes.
350 */
351static inline void notify_partition_change(struct cpuset *cs, int old_prs)
352{
353	if (old_prs == cs->partition_root_state)
354		return;
355	cgroup_file_notify(&cs->partition_file);
356
357	/* Reset prs_err if not invalid */
358	if (is_partition_valid(cs))
359		WRITE_ONCE(cs->prs_err, PERR_NONE);
360}
361
362static struct cpuset top_cpuset = {
363	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
364		  (1 << CS_MEM_EXCLUSIVE)),
365	.partition_root_state = PRS_ROOT,
366	.remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
367};
368
369/**
370 * cpuset_for_each_child - traverse online children of a cpuset
371 * @child_cs: loop cursor pointing to the current child
372 * @pos_css: used for iteration
373 * @parent_cs: target cpuset to walk children of
374 *
375 * Walk @child_cs through the online children of @parent_cs.  Must be used
376 * with RCU read locked.
377 */
378#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
379	css_for_each_child((pos_css), &(parent_cs)->css)		\
380		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
381
382/**
383 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
384 * @des_cs: loop cursor pointing to the current descendant
385 * @pos_css: used for iteration
386 * @root_cs: target cpuset to walk ancestor of
387 *
388 * Walk @des_cs through the online descendants of @root_cs.  Must be used
389 * with RCU read locked.  The caller may modify @pos_css by calling
390 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
391 * iteration and the first node to be visited.
392 */
393#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
394	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
395		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
396
397/*
398 * There are two global locks guarding cpuset structures - cpuset_mutex and
399 * callback_lock. We also require taking task_lock() when dereferencing a
400 * task's cpuset pointer. See "The task_lock() exception", at the end of this
401 * comment.  The cpuset code uses only cpuset_mutex. Other kernel subsystems
402 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
403 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
404 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
405 * correctness.
406 *
407 * A task must hold both locks to modify cpusets.  If a task holds
408 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
409 * also acquire callback_lock and be able to modify cpusets.  It can perform
410 * various checks on the cpuset structure first, knowing nothing will change.
411 * It can also allocate memory while just holding cpuset_mutex.  While it is
412 * performing these checks, various callback routines can briefly acquire
413 * callback_lock to query cpusets.  Once it is ready to make the changes, it
414 * takes callback_lock, blocking everyone else.
415 *
416 * Calls to the kernel memory allocator can not be made while holding
417 * callback_lock, as that would risk double tripping on callback_lock
418 * from one of the callbacks into the cpuset code from within
419 * __alloc_pages().
420 *
421 * If a task is only holding callback_lock, then it has read-only
422 * access to cpusets.
423 *
424 * Now, the task_struct fields mems_allowed and mempolicy may be changed
425 * by other task, we use alloc_lock in the task_struct fields to protect
426 * them.
427 *
428 * The cpuset_common_file_read() handlers only hold callback_lock across
429 * small pieces of code, such as when reading out possibly multi-word
430 * cpumasks and nodemasks.
431 *
432 * Accessing a task's cpuset should be done in accordance with the
433 * guidelines for accessing subsystem state in kernel/cgroup.c
434 */
435
436static DEFINE_MUTEX(cpuset_mutex);
437
438void cpuset_lock(void)
439{
440	mutex_lock(&cpuset_mutex);
441}
442
443void cpuset_unlock(void)
444{
445	mutex_unlock(&cpuset_mutex);
446}
447
448static DEFINE_SPINLOCK(callback_lock);
449
450static struct workqueue_struct *cpuset_migrate_mm_wq;
451
452/*
453 * CPU / memory hotplug is handled asynchronously.
454 */
455static void cpuset_hotplug_workfn(struct work_struct *work);
456static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
457
458static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
459
460static inline void check_insane_mems_config(nodemask_t *nodes)
461{
462	if (!cpusets_insane_config() &&
463		movable_only_nodes(nodes)) {
464		static_branch_enable(&cpusets_insane_config_key);
465		pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
466			"Cpuset allocations might fail even with a lot of memory available.\n",
467			nodemask_pr_args(nodes));
468	}
469}
470
471/*
472 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
473 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
474 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
475 * With v2 behavior, "cpus" and "mems" are always what the users have
476 * requested and won't be changed by hotplug events. Only the effective
477 * cpus or mems will be affected.
478 */
479static inline bool is_in_v2_mode(void)
480{
481	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
482	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
483}
484
485/**
486 * partition_is_populated - check if partition has tasks
487 * @cs: partition root to be checked
488 * @excluded_child: a child cpuset to be excluded in task checking
489 * Return: true if there are tasks, false otherwise
490 *
491 * It is assumed that @cs is a valid partition root. @excluded_child should
492 * be non-NULL when this cpuset is going to become a partition itself.
493 */
494static inline bool partition_is_populated(struct cpuset *cs,
495					  struct cpuset *excluded_child)
496{
497	struct cgroup_subsys_state *css;
498	struct cpuset *child;
499
500	if (cs->css.cgroup->nr_populated_csets)
501		return true;
502	if (!excluded_child && !cs->nr_subparts)
503		return cgroup_is_populated(cs->css.cgroup);
504
505	rcu_read_lock();
506	cpuset_for_each_child(child, css, cs) {
507		if (child == excluded_child)
508			continue;
509		if (is_partition_valid(child))
510			continue;
511		if (cgroup_is_populated(child->css.cgroup)) {
512			rcu_read_unlock();
513			return true;
514		}
515	}
516	rcu_read_unlock();
517	return false;
518}
519
520/*
521 * Return in pmask the portion of a task's cpusets's cpus_allowed that
522 * are online and are capable of running the task.  If none are found,
523 * walk up the cpuset hierarchy until we find one that does have some
524 * appropriate cpus.
525 *
526 * One way or another, we guarantee to return some non-empty subset
527 * of cpu_online_mask.
528 *
529 * Call with callback_lock or cpuset_mutex held.
530 */
531static void guarantee_online_cpus(struct task_struct *tsk,
532				  struct cpumask *pmask)
533{
534	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
535	struct cpuset *cs;
536
537	if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
538		cpumask_copy(pmask, cpu_online_mask);
539
540	rcu_read_lock();
541	cs = task_cs(tsk);
542
543	while (!cpumask_intersects(cs->effective_cpus, pmask)) {
544		cs = parent_cs(cs);
545		if (unlikely(!cs)) {
546			/*
547			 * The top cpuset doesn't have any online cpu as a
548			 * consequence of a race between cpuset_hotplug_work
549			 * and cpu hotplug notifier.  But we know the top
550			 * cpuset's effective_cpus is on its way to be
551			 * identical to cpu_online_mask.
552			 */
553			goto out_unlock;
554		}
555	}
556	cpumask_and(pmask, pmask, cs->effective_cpus);
557
558out_unlock:
559	rcu_read_unlock();
560}
561
562/*
563 * Return in *pmask the portion of a cpusets's mems_allowed that
564 * are online, with memory.  If none are online with memory, walk
565 * up the cpuset hierarchy until we find one that does have some
566 * online mems.  The top cpuset always has some mems online.
567 *
568 * One way or another, we guarantee to return some non-empty subset
569 * of node_states[N_MEMORY].
570 *
571 * Call with callback_lock or cpuset_mutex held.
572 */
573static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
574{
575	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
576		cs = parent_cs(cs);
577	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
578}
579
580/*
581 * update task's spread flag if cpuset's page/slab spread flag is set
582 *
583 * Call with callback_lock or cpuset_mutex held. The check can be skipped
584 * if on default hierarchy.
585 */
586static void cpuset_update_task_spread_flags(struct cpuset *cs,
587					struct task_struct *tsk)
588{
589	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
590		return;
591
592	if (is_spread_page(cs))
593		task_set_spread_page(tsk);
594	else
595		task_clear_spread_page(tsk);
596
597	if (is_spread_slab(cs))
598		task_set_spread_slab(tsk);
599	else
600		task_clear_spread_slab(tsk);
601}
602
603/*
604 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
605 *
606 * One cpuset is a subset of another if all its allowed CPUs and
607 * Memory Nodes are a subset of the other, and its exclusive flags
608 * are only set if the other's are set.  Call holding cpuset_mutex.
609 */
610
611static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
612{
613	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
614		nodes_subset(p->mems_allowed, q->mems_allowed) &&
615		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
616		is_mem_exclusive(p) <= is_mem_exclusive(q);
617}
618
619/**
620 * alloc_cpumasks - allocate three cpumasks for cpuset
621 * @cs:  the cpuset that have cpumasks to be allocated.
622 * @tmp: the tmpmasks structure pointer
623 * Return: 0 if successful, -ENOMEM otherwise.
624 *
625 * Only one of the two input arguments should be non-NULL.
626 */
627static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
628{
629	cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
630
631	if (cs) {
632		pmask1 = &cs->cpus_allowed;
633		pmask2 = &cs->effective_cpus;
634		pmask3 = &cs->effective_xcpus;
635		pmask4 = &cs->exclusive_cpus;
636	} else {
637		pmask1 = &tmp->new_cpus;
638		pmask2 = &tmp->addmask;
639		pmask3 = &tmp->delmask;
640		pmask4 = NULL;
641	}
642
643	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
644		return -ENOMEM;
645
646	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
647		goto free_one;
648
649	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
650		goto free_two;
651
652	if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
653		goto free_three;
654
655
656	return 0;
657
658free_three:
659	free_cpumask_var(*pmask3);
660free_two:
661	free_cpumask_var(*pmask2);
662free_one:
663	free_cpumask_var(*pmask1);
664	return -ENOMEM;
665}
666
667/**
668 * free_cpumasks - free cpumasks in a tmpmasks structure
669 * @cs:  the cpuset that have cpumasks to be free.
670 * @tmp: the tmpmasks structure pointer
671 */
672static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
673{
674	if (cs) {
675		free_cpumask_var(cs->cpus_allowed);
676		free_cpumask_var(cs->effective_cpus);
677		free_cpumask_var(cs->effective_xcpus);
678		free_cpumask_var(cs->exclusive_cpus);
679	}
680	if (tmp) {
681		free_cpumask_var(tmp->new_cpus);
682		free_cpumask_var(tmp->addmask);
683		free_cpumask_var(tmp->delmask);
684	}
685}
686
687/**
688 * alloc_trial_cpuset - allocate a trial cpuset
689 * @cs: the cpuset that the trial cpuset duplicates
690 */
691static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
692{
693	struct cpuset *trial;
694
695	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
696	if (!trial)
697		return NULL;
698
699	if (alloc_cpumasks(trial, NULL)) {
700		kfree(trial);
701		return NULL;
702	}
703
704	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
705	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
706	cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
707	cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
708	return trial;
709}
710
711/**
712 * free_cpuset - free the cpuset
713 * @cs: the cpuset to be freed
714 */
715static inline void free_cpuset(struct cpuset *cs)
716{
717	free_cpumasks(cs, NULL);
718	kfree(cs);
719}
720
721static inline struct cpumask *fetch_xcpus(struct cpuset *cs)
722{
723	return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus :
724	       cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed
725						  : cs->effective_xcpus;
726}
727
728/*
729 * cpusets_are_exclusive() - check if two cpusets are exclusive
730 *
731 * Return true if exclusive, false if not
732 */
733static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
734{
735	struct cpumask *xcpus1 = fetch_xcpus(cs1);
736	struct cpumask *xcpus2 = fetch_xcpus(cs2);
737
738	if (cpumask_intersects(xcpus1, xcpus2))
739		return false;
740	return true;
741}
742
743/*
744 * validate_change_legacy() - Validate conditions specific to legacy (v1)
745 *                            behavior.
746 */
747static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
748{
749	struct cgroup_subsys_state *css;
750	struct cpuset *c, *par;
751	int ret;
752
753	WARN_ON_ONCE(!rcu_read_lock_held());
754
755	/* Each of our child cpusets must be a subset of us */
756	ret = -EBUSY;
757	cpuset_for_each_child(c, css, cur)
758		if (!is_cpuset_subset(c, trial))
759			goto out;
760
761	/* On legacy hierarchy, we must be a subset of our parent cpuset. */
762	ret = -EACCES;
763	par = parent_cs(cur);
764	if (par && !is_cpuset_subset(trial, par))
765		goto out;
766
767	ret = 0;
768out:
769	return ret;
770}
771
772/*
773 * validate_change() - Used to validate that any proposed cpuset change
774 *		       follows the structural rules for cpusets.
775 *
776 * If we replaced the flag and mask values of the current cpuset
777 * (cur) with those values in the trial cpuset (trial), would
778 * our various subset and exclusive rules still be valid?  Presumes
779 * cpuset_mutex held.
780 *
781 * 'cur' is the address of an actual, in-use cpuset.  Operations
782 * such as list traversal that depend on the actual address of the
783 * cpuset in the list must use cur below, not trial.
784 *
785 * 'trial' is the address of bulk structure copy of cur, with
786 * perhaps one or more of the fields cpus_allowed, mems_allowed,
787 * or flags changed to new, trial values.
788 *
789 * Return 0 if valid, -errno if not.
790 */
791
792static int validate_change(struct cpuset *cur, struct cpuset *trial)
793{
794	struct cgroup_subsys_state *css;
795	struct cpuset *c, *par;
796	int ret = 0;
797
798	rcu_read_lock();
799
800	if (!is_in_v2_mode())
801		ret = validate_change_legacy(cur, trial);
802	if (ret)
803		goto out;
804
805	/* Remaining checks don't apply to root cpuset */
806	if (cur == &top_cpuset)
807		goto out;
808
809	par = parent_cs(cur);
810
811	/*
812	 * Cpusets with tasks - existing or newly being attached - can't
813	 * be changed to have empty cpus_allowed or mems_allowed.
814	 */
815	ret = -ENOSPC;
816	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
817		if (!cpumask_empty(cur->cpus_allowed) &&
818		    cpumask_empty(trial->cpus_allowed))
819			goto out;
820		if (!nodes_empty(cur->mems_allowed) &&
821		    nodes_empty(trial->mems_allowed))
822			goto out;
823	}
824
825	/*
826	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
827	 * tasks.
828	 */
829	ret = -EBUSY;
830	if (is_cpu_exclusive(cur) &&
831	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
832				       trial->cpus_allowed))
833		goto out;
834
835	/*
836	 * If either I or some sibling (!= me) is exclusive, we can't
837	 * overlap
838	 */
839	ret = -EINVAL;
840	cpuset_for_each_child(c, css, par) {
841		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
842		    c != cur) {
843			if (!cpusets_are_exclusive(trial, c))
844				goto out;
845		}
846		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
847		    c != cur &&
848		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
849			goto out;
850	}
851
852	ret = 0;
853out:
854	rcu_read_unlock();
855	return ret;
856}
857
858#ifdef CONFIG_SMP
859/*
860 * Helper routine for generate_sched_domains().
861 * Do cpusets a, b have overlapping effective cpus_allowed masks?
862 */
863static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
864{
865	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
866}
867
868static void
869update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
870{
871	if (dattr->relax_domain_level < c->relax_domain_level)
872		dattr->relax_domain_level = c->relax_domain_level;
873	return;
874}
875
876static void update_domain_attr_tree(struct sched_domain_attr *dattr,
877				    struct cpuset *root_cs)
878{
879	struct cpuset *cp;
880	struct cgroup_subsys_state *pos_css;
881
882	rcu_read_lock();
883	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
884		/* skip the whole subtree if @cp doesn't have any CPU */
885		if (cpumask_empty(cp->cpus_allowed)) {
886			pos_css = css_rightmost_descendant(pos_css);
887			continue;
888		}
889
890		if (is_sched_load_balance(cp))
891			update_domain_attr(dattr, cp);
892	}
893	rcu_read_unlock();
894}
895
896/* Must be called with cpuset_mutex held.  */
897static inline int nr_cpusets(void)
898{
899	/* jump label reference count + the top-level cpuset */
900	return static_key_count(&cpusets_enabled_key.key) + 1;
901}
902
903/*
904 * generate_sched_domains()
905 *
906 * This function builds a partial partition of the systems CPUs
907 * A 'partial partition' is a set of non-overlapping subsets whose
908 * union is a subset of that set.
909 * The output of this function needs to be passed to kernel/sched/core.c
910 * partition_sched_domains() routine, which will rebuild the scheduler's
911 * load balancing domains (sched domains) as specified by that partial
912 * partition.
913 *
914 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
915 * for a background explanation of this.
916 *
917 * Does not return errors, on the theory that the callers of this
918 * routine would rather not worry about failures to rebuild sched
919 * domains when operating in the severe memory shortage situations
920 * that could cause allocation failures below.
921 *
922 * Must be called with cpuset_mutex held.
923 *
924 * The three key local variables below are:
925 *    cp - cpuset pointer, used (together with pos_css) to perform a
926 *	   top-down scan of all cpusets. For our purposes, rebuilding
927 *	   the schedulers sched domains, we can ignore !is_sched_load_
928 *	   balance cpusets.
929 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
930 *	   that need to be load balanced, for convenient iterative
931 *	   access by the subsequent code that finds the best partition,
932 *	   i.e the set of domains (subsets) of CPUs such that the
933 *	   cpus_allowed of every cpuset marked is_sched_load_balance
934 *	   is a subset of one of these domains, while there are as
935 *	   many such domains as possible, each as small as possible.
936 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
937 *	   the kernel/sched/core.c routine partition_sched_domains() in a
938 *	   convenient format, that can be easily compared to the prior
939 *	   value to determine what partition elements (sched domains)
940 *	   were changed (added or removed.)
941 *
942 * Finding the best partition (set of domains):
943 *	The triple nested loops below over i, j, k scan over the
944 *	load balanced cpusets (using the array of cpuset pointers in
945 *	csa[]) looking for pairs of cpusets that have overlapping
946 *	cpus_allowed, but which don't have the same 'pn' partition
947 *	number and gives them in the same partition number.  It keeps
948 *	looping on the 'restart' label until it can no longer find
949 *	any such pairs.
950 *
951 *	The union of the cpus_allowed masks from the set of
952 *	all cpusets having the same 'pn' value then form the one
953 *	element of the partition (one sched domain) to be passed to
954 *	partition_sched_domains().
955 */
956static int generate_sched_domains(cpumask_var_t **domains,
957			struct sched_domain_attr **attributes)
958{
959	struct cpuset *cp;	/* top-down scan of cpusets */
960	struct cpuset **csa;	/* array of all cpuset ptrs */
961	int csn;		/* how many cpuset ptrs in csa so far */
962	int i, j, k;		/* indices for partition finding loops */
963	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
964	struct sched_domain_attr *dattr;  /* attributes for custom domains */
965	int ndoms = 0;		/* number of sched domains in result */
966	int nslot;		/* next empty doms[] struct cpumask slot */
967	struct cgroup_subsys_state *pos_css;
968	bool root_load_balance = is_sched_load_balance(&top_cpuset);
969
970	doms = NULL;
971	dattr = NULL;
972	csa = NULL;
973
974	/* Special case for the 99% of systems with one, full, sched domain */
975	if (root_load_balance && !top_cpuset.nr_subparts) {
976		ndoms = 1;
977		doms = alloc_sched_domains(ndoms);
978		if (!doms)
979			goto done;
980
981		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
982		if (dattr) {
983			*dattr = SD_ATTR_INIT;
984			update_domain_attr_tree(dattr, &top_cpuset);
985		}
986		cpumask_and(doms[0], top_cpuset.effective_cpus,
987			    housekeeping_cpumask(HK_TYPE_DOMAIN));
988
989		goto done;
990	}
991
992	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
993	if (!csa)
994		goto done;
995	csn = 0;
996
997	rcu_read_lock();
998	if (root_load_balance)
999		csa[csn++] = &top_cpuset;
1000	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
1001		if (cp == &top_cpuset)
1002			continue;
1003		/*
1004		 * Continue traversing beyond @cp iff @cp has some CPUs and
1005		 * isn't load balancing.  The former is obvious.  The
1006		 * latter: All child cpusets contain a subset of the
1007		 * parent's cpus, so just skip them, and then we call
1008		 * update_domain_attr_tree() to calc relax_domain_level of
1009		 * the corresponding sched domain.
1010		 *
1011		 * If root is load-balancing, we can skip @cp if it
1012		 * is a subset of the root's effective_cpus.
1013		 */
1014		if (!cpumask_empty(cp->cpus_allowed) &&
1015		    !(is_sched_load_balance(cp) &&
1016		      cpumask_intersects(cp->cpus_allowed,
1017					 housekeeping_cpumask(HK_TYPE_DOMAIN))))
1018			continue;
1019
1020		if (root_load_balance &&
1021		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
1022			continue;
1023
1024		if (is_sched_load_balance(cp) &&
1025		    !cpumask_empty(cp->effective_cpus))
1026			csa[csn++] = cp;
1027
1028		/* skip @cp's subtree if not a partition root */
1029		if (!is_partition_valid(cp))
1030			pos_css = css_rightmost_descendant(pos_css);
1031	}
1032	rcu_read_unlock();
1033
1034	for (i = 0; i < csn; i++)
1035		csa[i]->pn = i;
1036	ndoms = csn;
1037
1038restart:
1039	/* Find the best partition (set of sched domains) */
1040	for (i = 0; i < csn; i++) {
1041		struct cpuset *a = csa[i];
1042		int apn = a->pn;
1043
1044		for (j = 0; j < csn; j++) {
1045			struct cpuset *b = csa[j];
1046			int bpn = b->pn;
1047
1048			if (apn != bpn && cpusets_overlap(a, b)) {
1049				for (k = 0; k < csn; k++) {
1050					struct cpuset *c = csa[k];
1051
1052					if (c->pn == bpn)
1053						c->pn = apn;
1054				}
1055				ndoms--;	/* one less element */
1056				goto restart;
1057			}
1058		}
1059	}
1060
1061	/*
1062	 * Now we know how many domains to create.
1063	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1064	 */
1065	doms = alloc_sched_domains(ndoms);
1066	if (!doms)
1067		goto done;
1068
1069	/*
1070	 * The rest of the code, including the scheduler, can deal with
1071	 * dattr==NULL case. No need to abort if alloc fails.
1072	 */
1073	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1074			      GFP_KERNEL);
1075
1076	for (nslot = 0, i = 0; i < csn; i++) {
1077		struct cpuset *a = csa[i];
1078		struct cpumask *dp;
1079		int apn = a->pn;
1080
1081		if (apn < 0) {
1082			/* Skip completed partitions */
1083			continue;
1084		}
1085
1086		dp = doms[nslot];
1087
1088		if (nslot == ndoms) {
1089			static int warnings = 10;
1090			if (warnings) {
1091				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1092					nslot, ndoms, csn, i, apn);
1093				warnings--;
1094			}
1095			continue;
1096		}
1097
1098		cpumask_clear(dp);
1099		if (dattr)
1100			*(dattr + nslot) = SD_ATTR_INIT;
1101		for (j = i; j < csn; j++) {
1102			struct cpuset *b = csa[j];
1103
1104			if (apn == b->pn) {
1105				cpumask_or(dp, dp, b->effective_cpus);
1106				cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1107				if (dattr)
1108					update_domain_attr_tree(dattr + nslot, b);
1109
1110				/* Done with this partition */
1111				b->pn = -1;
1112			}
1113		}
1114		nslot++;
1115	}
1116	BUG_ON(nslot != ndoms);
1117
1118done:
1119	kfree(csa);
1120
1121	/*
1122	 * Fallback to the default domain if kmalloc() failed.
1123	 * See comments in partition_sched_domains().
1124	 */
1125	if (doms == NULL)
1126		ndoms = 1;
1127
1128	*domains    = doms;
1129	*attributes = dattr;
1130	return ndoms;
1131}
1132
1133static void dl_update_tasks_root_domain(struct cpuset *cs)
1134{
1135	struct css_task_iter it;
1136	struct task_struct *task;
1137
1138	if (cs->nr_deadline_tasks == 0)
1139		return;
1140
1141	css_task_iter_start(&cs->css, 0, &it);
1142
1143	while ((task = css_task_iter_next(&it)))
1144		dl_add_task_root_domain(task);
1145
1146	css_task_iter_end(&it);
1147}
1148
1149static void dl_rebuild_rd_accounting(void)
1150{
1151	struct cpuset *cs = NULL;
1152	struct cgroup_subsys_state *pos_css;
1153
1154	lockdep_assert_held(&cpuset_mutex);
1155	lockdep_assert_cpus_held();
1156	lockdep_assert_held(&sched_domains_mutex);
1157
1158	rcu_read_lock();
1159
1160	/*
1161	 * Clear default root domain DL accounting, it will be computed again
1162	 * if a task belongs to it.
1163	 */
1164	dl_clear_root_domain(&def_root_domain);
1165
1166	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1167
1168		if (cpumask_empty(cs->effective_cpus)) {
1169			pos_css = css_rightmost_descendant(pos_css);
1170			continue;
1171		}
1172
1173		css_get(&cs->css);
1174
1175		rcu_read_unlock();
1176
1177		dl_update_tasks_root_domain(cs);
1178
1179		rcu_read_lock();
1180		css_put(&cs->css);
1181	}
1182	rcu_read_unlock();
1183}
1184
1185static void
1186partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1187				    struct sched_domain_attr *dattr_new)
1188{
1189	mutex_lock(&sched_domains_mutex);
1190	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1191	dl_rebuild_rd_accounting();
1192	mutex_unlock(&sched_domains_mutex);
1193}
1194
1195/*
1196 * Rebuild scheduler domains.
1197 *
1198 * If the flag 'sched_load_balance' of any cpuset with non-empty
1199 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1200 * which has that flag enabled, or if any cpuset with a non-empty
1201 * 'cpus' is removed, then call this routine to rebuild the
1202 * scheduler's dynamic sched domains.
1203 *
1204 * Call with cpuset_mutex held.  Takes cpus_read_lock().
1205 */
1206static void rebuild_sched_domains_locked(void)
1207{
1208	struct cgroup_subsys_state *pos_css;
1209	struct sched_domain_attr *attr;
1210	cpumask_var_t *doms;
1211	struct cpuset *cs;
1212	int ndoms;
1213
1214	lockdep_assert_cpus_held();
1215	lockdep_assert_held(&cpuset_mutex);
1216
1217	/*
1218	 * If we have raced with CPU hotplug, return early to avoid
1219	 * passing doms with offlined cpu to partition_sched_domains().
1220	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1221	 *
1222	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1223	 * should be the same as the active CPUs, so checking only top_cpuset
1224	 * is enough to detect racing CPU offlines.
1225	 */
1226	if (cpumask_empty(subpartitions_cpus) &&
1227	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1228		return;
1229
1230	/*
1231	 * With subpartition CPUs, however, the effective CPUs of a partition
1232	 * root should be only a subset of the active CPUs.  Since a CPU in any
1233	 * partition root could be offlined, all must be checked.
1234	 */
1235	if (top_cpuset.nr_subparts) {
1236		rcu_read_lock();
1237		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1238			if (!is_partition_valid(cs)) {
1239				pos_css = css_rightmost_descendant(pos_css);
1240				continue;
1241			}
1242			if (!cpumask_subset(cs->effective_cpus,
1243					    cpu_active_mask)) {
1244				rcu_read_unlock();
1245				return;
1246			}
1247		}
1248		rcu_read_unlock();
1249	}
1250
1251	/* Generate domain masks and attrs */
1252	ndoms = generate_sched_domains(&doms, &attr);
1253
1254	/* Have scheduler rebuild the domains */
1255	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1256}
1257#else /* !CONFIG_SMP */
1258static void rebuild_sched_domains_locked(void)
1259{
1260}
1261#endif /* CONFIG_SMP */
1262
1263void rebuild_sched_domains(void)
1264{
1265	cpus_read_lock();
1266	mutex_lock(&cpuset_mutex);
1267	rebuild_sched_domains_locked();
1268	mutex_unlock(&cpuset_mutex);
1269	cpus_read_unlock();
1270}
1271
1272/**
1273 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1274 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1275 * @new_cpus: the temp variable for the new effective_cpus mask
1276 *
1277 * Iterate through each task of @cs updating its cpus_allowed to the
1278 * effective cpuset's.  As this function is called with cpuset_mutex held,
1279 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1280 * is used instead of effective_cpus to make sure all offline CPUs are also
1281 * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1282 */
1283static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1284{
1285	struct css_task_iter it;
1286	struct task_struct *task;
1287	bool top_cs = cs == &top_cpuset;
1288
1289	css_task_iter_start(&cs->css, 0, &it);
1290	while ((task = css_task_iter_next(&it))) {
1291		const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1292
1293		if (top_cs) {
1294			/*
1295			 * Percpu kthreads in top_cpuset are ignored
1296			 */
1297			if (kthread_is_per_cpu(task))
1298				continue;
1299			cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1300		} else {
1301			cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1302		}
1303		set_cpus_allowed_ptr(task, new_cpus);
1304	}
1305	css_task_iter_end(&it);
1306}
1307
1308/**
1309 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1310 * @new_cpus: the temp variable for the new effective_cpus mask
1311 * @cs: the cpuset the need to recompute the new effective_cpus mask
1312 * @parent: the parent cpuset
1313 *
1314 * The result is valid only if the given cpuset isn't a partition root.
1315 */
1316static void compute_effective_cpumask(struct cpumask *new_cpus,
1317				      struct cpuset *cs, struct cpuset *parent)
1318{
1319	cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1320}
1321
1322/*
1323 * Commands for update_parent_effective_cpumask
1324 */
1325enum partition_cmd {
1326	partcmd_enable,		/* Enable partition root	  */
1327	partcmd_enablei,	/* Enable isolated partition root */
1328	partcmd_disable,	/* Disable partition root	  */
1329	partcmd_update,		/* Update parent's effective_cpus */
1330	partcmd_invalidate,	/* Make partition invalid	  */
1331};
1332
1333static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1334		       int turning_on);
1335static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1336				    struct tmpmasks *tmp);
1337
1338/*
1339 * Update partition exclusive flag
1340 *
1341 * Return: 0 if successful, an error code otherwise
1342 */
1343static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1344{
1345	bool exclusive = (new_prs > 0);
1346
1347	if (exclusive && !is_cpu_exclusive(cs)) {
1348		if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1349			return PERR_NOTEXCL;
1350	} else if (!exclusive && is_cpu_exclusive(cs)) {
1351		/* Turning off CS_CPU_EXCLUSIVE will not return error */
1352		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1353	}
1354	return 0;
1355}
1356
1357/*
1358 * Update partition load balance flag and/or rebuild sched domain
1359 *
1360 * Changing load balance flag will automatically call
1361 * rebuild_sched_domains_locked().
1362 * This function is for cgroup v2 only.
1363 */
1364static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1365{
1366	int new_prs = cs->partition_root_state;
1367	bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1368	bool new_lb;
1369
1370	/*
1371	 * If cs is not a valid partition root, the load balance state
1372	 * will follow its parent.
1373	 */
1374	if (new_prs > 0) {
1375		new_lb = (new_prs != PRS_ISOLATED);
1376	} else {
1377		new_lb = is_sched_load_balance(parent_cs(cs));
1378	}
1379	if (new_lb != !!is_sched_load_balance(cs)) {
1380		rebuild_domains = true;
1381		if (new_lb)
1382			set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1383		else
1384			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1385	}
1386
1387	if (rebuild_domains)
1388		rebuild_sched_domains_locked();
1389}
1390
1391/*
1392 * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1393 */
1394static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1395			      struct cpumask *xcpus)
1396{
1397	/*
1398	 * A populated partition (cs or parent) can't have empty effective_cpus
1399	 */
1400	return (cpumask_subset(parent->effective_cpus, xcpus) &&
1401		partition_is_populated(parent, cs)) ||
1402	       (!cpumask_intersects(xcpus, cpu_active_mask) &&
1403		partition_is_populated(cs, NULL));
1404}
1405
1406static void reset_partition_data(struct cpuset *cs)
1407{
1408	struct cpuset *parent = parent_cs(cs);
1409
1410	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
1411		return;
1412
1413	lockdep_assert_held(&callback_lock);
1414
1415	cs->nr_subparts = 0;
1416	if (cpumask_empty(cs->exclusive_cpus)) {
1417		cpumask_clear(cs->effective_xcpus);
1418		if (is_cpu_exclusive(cs))
1419			clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1420	}
1421	if (!cpumask_and(cs->effective_cpus,
1422			 parent->effective_cpus, cs->cpus_allowed)) {
1423		cs->use_parent_ecpus = true;
1424		parent->child_ecpus_count++;
1425		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1426	}
1427}
1428
1429/*
1430 * partition_xcpus_newstate - Exclusive CPUs state change
1431 * @old_prs: old partition_root_state
1432 * @new_prs: new partition_root_state
1433 * @xcpus: exclusive CPUs with state change
1434 */
1435static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1436{
1437	WARN_ON_ONCE(old_prs == new_prs);
1438	if (new_prs == PRS_ISOLATED)
1439		cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1440	else
1441		cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1442}
1443
1444/*
1445 * partition_xcpus_add - Add new exclusive CPUs to partition
1446 * @new_prs: new partition_root_state
1447 * @parent: parent cpuset
1448 * @xcpus: exclusive CPUs to be added
1449 * Return: true if isolated_cpus modified, false otherwise
1450 *
1451 * Remote partition if parent == NULL
1452 */
1453static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1454				struct cpumask *xcpus)
1455{
1456	bool isolcpus_updated;
1457
1458	WARN_ON_ONCE(new_prs < 0);
1459	lockdep_assert_held(&callback_lock);
1460	if (!parent)
1461		parent = &top_cpuset;
1462
1463
1464	if (parent == &top_cpuset)
1465		cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1466
1467	isolcpus_updated = (new_prs != parent->partition_root_state);
1468	if (isolcpus_updated)
1469		partition_xcpus_newstate(parent->partition_root_state, new_prs,
1470					 xcpus);
1471
1472	cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1473	return isolcpus_updated;
1474}
1475
1476/*
1477 * partition_xcpus_del - Remove exclusive CPUs from partition
1478 * @old_prs: old partition_root_state
1479 * @parent: parent cpuset
1480 * @xcpus: exclusive CPUs to be removed
1481 * Return: true if isolated_cpus modified, false otherwise
1482 *
1483 * Remote partition if parent == NULL
1484 */
1485static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1486				struct cpumask *xcpus)
1487{
1488	bool isolcpus_updated;
1489
1490	WARN_ON_ONCE(old_prs < 0);
1491	lockdep_assert_held(&callback_lock);
1492	if (!parent)
1493		parent = &top_cpuset;
1494
1495	if (parent == &top_cpuset)
1496		cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1497
1498	isolcpus_updated = (old_prs != parent->partition_root_state);
1499	if (isolcpus_updated)
1500		partition_xcpus_newstate(old_prs, parent->partition_root_state,
1501					 xcpus);
1502
1503	cpumask_and(xcpus, xcpus, cpu_active_mask);
1504	cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1505	return isolcpus_updated;
1506}
1507
1508static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1509{
1510	int ret;
1511
1512	lockdep_assert_cpus_held();
1513
1514	if (!isolcpus_updated)
1515		return;
1516
1517	ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1518	WARN_ON_ONCE(ret < 0);
1519}
1520
1521/**
1522 * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1523 * @cpu: the CPU number to be checked
1524 * Return: true if CPU is used in an isolated partition, false otherwise
1525 */
1526bool cpuset_cpu_is_isolated(int cpu)
1527{
1528	return cpumask_test_cpu(cpu, isolated_cpus);
1529}
1530EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1531
1532/*
1533 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1534 * @cs: cpuset
1535 * @xcpus: effective exclusive CPUs value to be set
1536 * Return: true if xcpus is not empty, false otherwise.
1537 *
1538 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1539 * it must be a subset of cpus_allowed and parent's effective_xcpus.
1540 */
1541static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1542						struct cpumask *xcpus)
1543{
1544	struct cpuset *parent = parent_cs(cs);
1545
1546	if (!xcpus)
1547		xcpus = cs->effective_xcpus;
1548
1549	if (!cpumask_empty(cs->exclusive_cpus))
1550		cpumask_and(xcpus, cs->exclusive_cpus, cs->cpus_allowed);
1551	else
1552		cpumask_copy(xcpus, cs->cpus_allowed);
1553
1554	return cpumask_and(xcpus, xcpus, parent->effective_xcpus);
1555}
1556
1557static inline bool is_remote_partition(struct cpuset *cs)
1558{
1559	return !list_empty(&cs->remote_sibling);
1560}
1561
1562static inline bool is_local_partition(struct cpuset *cs)
1563{
1564	return is_partition_valid(cs) && !is_remote_partition(cs);
1565}
1566
1567/*
1568 * remote_partition_enable - Enable current cpuset as a remote partition root
1569 * @cs: the cpuset to update
1570 * @new_prs: new partition_root_state
1571 * @tmp: temparary masks
1572 * Return: 1 if successful, 0 if error
1573 *
1574 * Enable the current cpuset to become a remote partition root taking CPUs
1575 * directly from the top cpuset. cpuset_mutex must be held by the caller.
1576 */
1577static int remote_partition_enable(struct cpuset *cs, int new_prs,
1578				   struct tmpmasks *tmp)
1579{
1580	bool isolcpus_updated;
1581
1582	/*
1583	 * The user must have sysadmin privilege.
1584	 */
1585	if (!capable(CAP_SYS_ADMIN))
1586		return 0;
1587
1588	/*
1589	 * The requested exclusive_cpus must not be allocated to other
1590	 * partitions and it can't use up all the root's effective_cpus.
1591	 *
1592	 * Note that if there is any local partition root above it or
1593	 * remote partition root underneath it, its exclusive_cpus must
1594	 * have overlapped with subpartitions_cpus.
1595	 */
1596	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1597	if (cpumask_empty(tmp->new_cpus) ||
1598	    cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1599	    cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1600		return 0;
1601
1602	spin_lock_irq(&callback_lock);
1603	isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1604	list_add(&cs->remote_sibling, &remote_children);
1605	if (cs->use_parent_ecpus) {
1606		struct cpuset *parent = parent_cs(cs);
1607
1608		cs->use_parent_ecpus = false;
1609		parent->child_ecpus_count--;
1610	}
1611	spin_unlock_irq(&callback_lock);
1612	update_unbound_workqueue_cpumask(isolcpus_updated);
1613
1614	/*
1615	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1616	 */
1617	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1618	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1619	return 1;
1620}
1621
1622/*
1623 * remote_partition_disable - Remove current cpuset from remote partition list
1624 * @cs: the cpuset to update
1625 * @tmp: temparary masks
1626 *
1627 * The effective_cpus is also updated.
1628 *
1629 * cpuset_mutex must be held by the caller.
1630 */
1631static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1632{
1633	bool isolcpus_updated;
1634
1635	compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1636	WARN_ON_ONCE(!is_remote_partition(cs));
1637	WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1638
1639	spin_lock_irq(&callback_lock);
1640	list_del_init(&cs->remote_sibling);
1641	isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1642					       NULL, tmp->new_cpus);
1643	cs->partition_root_state = -cs->partition_root_state;
1644	if (!cs->prs_err)
1645		cs->prs_err = PERR_INVCPUS;
1646	reset_partition_data(cs);
1647	spin_unlock_irq(&callback_lock);
1648	update_unbound_workqueue_cpumask(isolcpus_updated);
1649
1650	/*
1651	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1652	 */
1653	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1654	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1655}
1656
1657/*
1658 * remote_cpus_update - cpus_exclusive change of remote partition
1659 * @cs: the cpuset to be updated
1660 * @newmask: the new effective_xcpus mask
1661 * @tmp: temparary masks
1662 *
1663 * top_cpuset and subpartitions_cpus will be updated or partition can be
1664 * invalidated.
1665 */
1666static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1667			       struct tmpmasks *tmp)
1668{
1669	bool adding, deleting;
1670	int prs = cs->partition_root_state;
1671	int isolcpus_updated = 0;
1672
1673	if (WARN_ON_ONCE(!is_remote_partition(cs)))
1674		return;
1675
1676	WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1677
1678	if (cpumask_empty(newmask))
1679		goto invalidate;
1680
1681	adding   = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1682	deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1683
1684	/*
1685	 * Additions of remote CPUs is only allowed if those CPUs are
1686	 * not allocated to other partitions and there are effective_cpus
1687	 * left in the top cpuset.
1688	 */
1689	if (adding && (!capable(CAP_SYS_ADMIN) ||
1690		       cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1691		       cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1692		goto invalidate;
1693
1694	spin_lock_irq(&callback_lock);
1695	if (adding)
1696		isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1697	if (deleting)
1698		isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1699	spin_unlock_irq(&callback_lock);
1700	update_unbound_workqueue_cpumask(isolcpus_updated);
1701
1702	/*
1703	 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1704	 */
1705	update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1706	update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1707	return;
1708
1709invalidate:
1710	remote_partition_disable(cs, tmp);
1711}
1712
1713/*
1714 * remote_partition_check - check if a child remote partition needs update
1715 * @cs: the cpuset to be updated
1716 * @newmask: the new effective_xcpus mask
1717 * @delmask: temporary mask for deletion (not in tmp)
1718 * @tmp: temparary masks
1719 *
1720 * This should be called before the given cs has updated its cpus_allowed
1721 * and/or effective_xcpus.
1722 */
1723static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1724				   struct cpumask *delmask, struct tmpmasks *tmp)
1725{
1726	struct cpuset *child, *next;
1727	int disable_cnt = 0;
1728
1729	/*
1730	 * Compute the effective exclusive CPUs that will be deleted.
1731	 */
1732	if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1733	    !cpumask_intersects(delmask, subpartitions_cpus))
1734		return;	/* No deletion of exclusive CPUs in partitions */
1735
1736	/*
1737	 * Searching the remote children list to look for those that will
1738	 * be impacted by the deletion of exclusive CPUs.
1739	 *
1740	 * Since a cpuset must be removed from the remote children list
1741	 * before it can go offline and holding cpuset_mutex will prevent
1742	 * any change in cpuset status. RCU read lock isn't needed.
1743	 */
1744	lockdep_assert_held(&cpuset_mutex);
1745	list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1746		if (cpumask_intersects(child->effective_cpus, delmask)) {
1747			remote_partition_disable(child, tmp);
1748			disable_cnt++;
1749		}
1750	if (disable_cnt)
1751		rebuild_sched_domains_locked();
1752}
1753
1754/*
1755 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1756 * @prstate: partition root state to be checked
1757 * @new_cpus: cpu mask
1758 * Return: true if there is conflict, false otherwise
1759 *
1760 * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in
1761 * an isolated partition.
1762 */
1763static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1764{
1765	const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN);
1766	bool all_in_hk = cpumask_subset(new_cpus, hk_domain);
1767
1768	if (!all_in_hk && (prstate != PRS_ISOLATED))
1769		return true;
1770
1771	return false;
1772}
1773
1774/**
1775 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1776 * @cs:      The cpuset that requests change in partition root state
1777 * @cmd:     Partition root state change command
1778 * @newmask: Optional new cpumask for partcmd_update
1779 * @tmp:     Temporary addmask and delmask
1780 * Return:   0 or a partition root state error code
1781 *
1782 * For partcmd_enable*, the cpuset is being transformed from a non-partition
1783 * root to a partition root. The effective_xcpus (cpus_allowed if
1784 * effective_xcpus not set) mask of the given cpuset will be taken away from
1785 * parent's effective_cpus. The function will return 0 if all the CPUs listed
1786 * in effective_xcpus can be granted or an error code will be returned.
1787 *
1788 * For partcmd_disable, the cpuset is being transformed from a partition
1789 * root back to a non-partition root. Any CPUs in effective_xcpus will be
1790 * given back to parent's effective_cpus. 0 will always be returned.
1791 *
1792 * For partcmd_update, if the optional newmask is specified, the cpu list is
1793 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1794 * assumed to remain the same. The cpuset should either be a valid or invalid
1795 * partition root. The partition root state may change from valid to invalid
1796 * or vice versa. An error code will be returned if transitioning from
1797 * invalid to valid violates the exclusivity rule.
1798 *
1799 * For partcmd_invalidate, the current partition will be made invalid.
1800 *
1801 * The partcmd_enable* and partcmd_disable commands are used by
1802 * update_prstate(). An error code may be returned and the caller will check
1803 * for error.
1804 *
1805 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1806 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1807 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1808 * check for error and so partition_root_state and prs_error will be updated
1809 * directly.
1810 */
1811static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1812					   struct cpumask *newmask,
1813					   struct tmpmasks *tmp)
1814{
1815	struct cpuset *parent = parent_cs(cs);
1816	int adding;	/* Adding cpus to parent's effective_cpus	*/
1817	int deleting;	/* Deleting cpus from parent's effective_cpus	*/
1818	int old_prs, new_prs;
1819	int part_error = PERR_NONE;	/* Partition error? */
1820	int subparts_delta = 0;
1821	struct cpumask *xcpus;		/* cs effective_xcpus */
1822	int isolcpus_updated = 0;
1823	bool nocpu;
1824
1825	lockdep_assert_held(&cpuset_mutex);
1826
1827	/*
1828	 * new_prs will only be changed for the partcmd_update and
1829	 * partcmd_invalidate commands.
1830	 */
1831	adding = deleting = false;
1832	old_prs = new_prs = cs->partition_root_state;
1833	xcpus = !cpumask_empty(cs->exclusive_cpus)
1834		? cs->effective_xcpus : cs->cpus_allowed;
1835
1836	if (cmd == partcmd_invalidate) {
1837		if (is_prs_invalid(old_prs))
1838			return 0;
1839
1840		/*
1841		 * Make the current partition invalid.
1842		 */
1843		if (is_partition_valid(parent))
1844			adding = cpumask_and(tmp->addmask,
1845					     xcpus, parent->effective_xcpus);
1846		if (old_prs > 0) {
1847			new_prs = -old_prs;
1848			subparts_delta--;
1849		}
1850		goto write_error;
1851	}
1852
1853	/*
1854	 * The parent must be a partition root.
1855	 * The new cpumask, if present, or the current cpus_allowed must
1856	 * not be empty.
1857	 */
1858	if (!is_partition_valid(parent)) {
1859		return is_partition_invalid(parent)
1860		       ? PERR_INVPARENT : PERR_NOTPART;
1861	}
1862	if (!newmask && cpumask_empty(cs->cpus_allowed))
1863		return PERR_CPUSEMPTY;
1864
1865	nocpu = tasks_nocpu_error(parent, cs, xcpus);
1866
1867	if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1868		/*
1869		 * Enabling partition root is not allowed if its
1870		 * effective_xcpus is empty or doesn't overlap with
1871		 * parent's effective_xcpus.
1872		 */
1873		if (cpumask_empty(xcpus) ||
1874		    !cpumask_intersects(xcpus, parent->effective_xcpus))
1875			return PERR_INVCPUS;
1876
1877		if (prstate_housekeeping_conflict(new_prs, xcpus))
1878			return PERR_HKEEPING;
1879
1880		/*
1881		 * A parent can be left with no CPU as long as there is no
1882		 * task directly associated with the parent partition.
1883		 */
1884		if (nocpu)
1885			return PERR_NOCPUS;
1886
1887		cpumask_copy(tmp->delmask, xcpus);
1888		deleting = true;
1889		subparts_delta++;
1890		new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1891	} else if (cmd == partcmd_disable) {
1892		/*
1893		 * May need to add cpus to parent's effective_cpus for
1894		 * valid partition root.
1895		 */
1896		adding = !is_prs_invalid(old_prs) &&
1897			  cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1898		if (adding)
1899			subparts_delta--;
1900		new_prs = PRS_MEMBER;
1901	} else if (newmask) {
1902		/*
1903		 * Empty cpumask is not allowed
1904		 */
1905		if (cpumask_empty(newmask)) {
1906			part_error = PERR_CPUSEMPTY;
1907			goto write_error;
1908		}
1909
1910		/*
1911		 * partcmd_update with newmask:
1912		 *
1913		 * Compute add/delete mask to/from effective_cpus
1914		 *
1915		 * For valid partition:
1916		 *   addmask = exclusive_cpus & ~newmask
1917		 *			      & parent->effective_xcpus
1918		 *   delmask = newmask & ~exclusive_cpus
1919		 *		       & parent->effective_xcpus
1920		 *
1921		 * For invalid partition:
1922		 *   delmask = newmask & parent->effective_xcpus
1923		 */
1924		if (is_prs_invalid(old_prs)) {
1925			adding = false;
1926			deleting = cpumask_and(tmp->delmask,
1927					newmask, parent->effective_xcpus);
1928		} else {
1929			cpumask_andnot(tmp->addmask, xcpus, newmask);
1930			adding = cpumask_and(tmp->addmask, tmp->addmask,
1931					     parent->effective_xcpus);
1932
1933			cpumask_andnot(tmp->delmask, newmask, xcpus);
1934			deleting = cpumask_and(tmp->delmask, tmp->delmask,
1935					       parent->effective_xcpus);
1936		}
1937		/*
1938		 * Make partition invalid if parent's effective_cpus could
1939		 * become empty and there are tasks in the parent.
1940		 */
1941		if (nocpu && (!adding ||
1942		    !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1943			part_error = PERR_NOCPUS;
1944			deleting = false;
1945			adding = cpumask_and(tmp->addmask,
1946					     xcpus, parent->effective_xcpus);
1947		}
1948	} else {
1949		/*
1950		 * partcmd_update w/o newmask
1951		 *
1952		 * delmask = effective_xcpus & parent->effective_cpus
1953		 *
1954		 * This can be called from:
1955		 * 1) update_cpumasks_hier()
1956		 * 2) cpuset_hotplug_update_tasks()
1957		 *
1958		 * Check to see if it can be transitioned from valid to
1959		 * invalid partition or vice versa.
1960		 *
1961		 * A partition error happens when parent has tasks and all
1962		 * its effective CPUs will have to be distributed out.
1963		 */
1964		WARN_ON_ONCE(!is_partition_valid(parent));
1965		if (nocpu) {
1966			part_error = PERR_NOCPUS;
1967			if (is_partition_valid(cs))
1968				adding = cpumask_and(tmp->addmask,
1969						xcpus, parent->effective_xcpus);
1970		} else if (is_partition_invalid(cs) &&
1971			   cpumask_subset(xcpus, parent->effective_xcpus)) {
1972			struct cgroup_subsys_state *css;
1973			struct cpuset *child;
1974			bool exclusive = true;
1975
1976			/*
1977			 * Convert invalid partition to valid has to
1978			 * pass the cpu exclusivity test.
1979			 */
1980			rcu_read_lock();
1981			cpuset_for_each_child(child, css, parent) {
1982				if (child == cs)
1983					continue;
1984				if (!cpusets_are_exclusive(cs, child)) {
1985					exclusive = false;
1986					break;
1987				}
1988			}
1989			rcu_read_unlock();
1990			if (exclusive)
1991				deleting = cpumask_and(tmp->delmask,
1992						xcpus, parent->effective_cpus);
1993			else
1994				part_error = PERR_NOTEXCL;
1995		}
1996	}
1997
1998write_error:
1999	if (part_error)
2000		WRITE_ONCE(cs->prs_err, part_error);
2001
2002	if (cmd == partcmd_update) {
2003		/*
2004		 * Check for possible transition between valid and invalid
2005		 * partition root.
2006		 */
2007		switch (cs->partition_root_state) {
2008		case PRS_ROOT:
2009		case PRS_ISOLATED:
2010			if (part_error) {
2011				new_prs = -old_prs;
2012				subparts_delta--;
2013			}
2014			break;
2015		case PRS_INVALID_ROOT:
2016		case PRS_INVALID_ISOLATED:
2017			if (!part_error) {
2018				new_prs = -old_prs;
2019				subparts_delta++;
2020			}
2021			break;
2022		}
2023	}
2024
2025	if (!adding && !deleting && (new_prs == old_prs))
2026		return 0;
2027
2028	/*
2029	 * Transitioning between invalid to valid or vice versa may require
2030	 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2031	 * validate_change() has already been successfully called and
2032	 * CPU lists in cs haven't been updated yet. So defer it to later.
2033	 */
2034	if ((old_prs != new_prs) && (cmd != partcmd_update))  {
2035		int err = update_partition_exclusive(cs, new_prs);
2036
2037		if (err)
2038			return err;
2039	}
2040
2041	/*
2042	 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2043	 * only).
2044	 *
2045	 * Newly added CPUs will be removed from effective_cpus and
2046	 * newly deleted ones will be added back to effective_cpus.
2047	 */
2048	spin_lock_irq(&callback_lock);
2049	if (old_prs != new_prs) {
2050		cs->partition_root_state = new_prs;
2051		if (new_prs <= 0)
2052			cs->nr_subparts = 0;
2053	}
2054	/*
2055	 * Adding to parent's effective_cpus means deletion CPUs from cs
2056	 * and vice versa.
2057	 */
2058	if (adding)
2059		isolcpus_updated += partition_xcpus_del(old_prs, parent,
2060							tmp->addmask);
2061	if (deleting)
2062		isolcpus_updated += partition_xcpus_add(new_prs, parent,
2063							tmp->delmask);
2064
2065	if (is_partition_valid(parent)) {
2066		parent->nr_subparts += subparts_delta;
2067		WARN_ON_ONCE(parent->nr_subparts < 0);
2068	}
2069	spin_unlock_irq(&callback_lock);
2070	update_unbound_workqueue_cpumask(isolcpus_updated);
2071
2072	if ((old_prs != new_prs) && (cmd == partcmd_update))
2073		update_partition_exclusive(cs, new_prs);
2074
2075	if (adding || deleting) {
2076		update_tasks_cpumask(parent, tmp->addmask);
2077		update_sibling_cpumasks(parent, cs, tmp);
2078	}
2079
2080	/*
2081	 * For partcmd_update without newmask, it is being called from
2082	 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken.
2083	 * Update the load balance flag and scheduling domain if
2084	 * cpus_read_trylock() is successful.
2085	 */
2086	if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
2087		update_partition_sd_lb(cs, old_prs);
2088		cpus_read_unlock();
2089	}
2090
2091	notify_partition_change(cs, old_prs);
2092	return 0;
2093}
2094
2095/**
2096 * compute_partition_effective_cpumask - compute effective_cpus for partition
2097 * @cs: partition root cpuset
2098 * @new_ecpus: previously computed effective_cpus to be updated
2099 *
2100 * Compute the effective_cpus of a partition root by scanning effective_xcpus
2101 * of child partition roots and excluding their effective_xcpus.
2102 *
2103 * This has the side effect of invalidating valid child partition roots,
2104 * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2105 * or update_cpumasks_hier() where parent and children are modified
2106 * successively, we don't need to call update_parent_effective_cpumask()
2107 * and the child's effective_cpus will be updated in later iterations.
2108 *
2109 * Note that rcu_read_lock() is assumed to be held.
2110 */
2111static void compute_partition_effective_cpumask(struct cpuset *cs,
2112						struct cpumask *new_ecpus)
2113{
2114	struct cgroup_subsys_state *css;
2115	struct cpuset *child;
2116	bool populated = partition_is_populated(cs, NULL);
2117
2118	/*
2119	 * Check child partition roots to see if they should be
2120	 * invalidated when
2121	 *  1) child effective_xcpus not a subset of new
2122	 *     excluisve_cpus
2123	 *  2) All the effective_cpus will be used up and cp
2124	 *     has tasks
2125	 */
2126	compute_effective_exclusive_cpumask(cs, new_ecpus);
2127	cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2128
2129	rcu_read_lock();
2130	cpuset_for_each_child(child, css, cs) {
2131		if (!is_partition_valid(child))
2132			continue;
2133
2134		child->prs_err = 0;
2135		if (!cpumask_subset(child->effective_xcpus,
2136				    cs->effective_xcpus))
2137			child->prs_err = PERR_INVCPUS;
2138		else if (populated &&
2139			 cpumask_subset(new_ecpus, child->effective_xcpus))
2140			child->prs_err = PERR_NOCPUS;
2141
2142		if (child->prs_err) {
2143			int old_prs = child->partition_root_state;
2144
2145			/*
2146			 * Invalidate child partition
2147			 */
2148			spin_lock_irq(&callback_lock);
2149			make_partition_invalid(child);
2150			cs->nr_subparts--;
2151			child->nr_subparts = 0;
2152			spin_unlock_irq(&callback_lock);
2153			notify_partition_change(child, old_prs);
2154			continue;
2155		}
2156		cpumask_andnot(new_ecpus, new_ecpus,
2157			       child->effective_xcpus);
2158	}
2159	rcu_read_unlock();
2160}
2161
2162/*
2163 * update_cpumasks_hier() flags
2164 */
2165#define HIER_CHECKALL		0x01	/* Check all cpusets with no skipping */
2166#define HIER_NO_SD_REBUILD	0x02	/* Don't rebuild sched domains */
2167
2168/*
2169 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2170 * @cs:  the cpuset to consider
2171 * @tmp: temp variables for calculating effective_cpus & partition setup
2172 * @force: don't skip any descendant cpusets if set
2173 *
2174 * When configured cpumask is changed, the effective cpumasks of this cpuset
2175 * and all its descendants need to be updated.
2176 *
2177 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2178 *
2179 * Called with cpuset_mutex held
2180 */
2181static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2182				 int flags)
2183{
2184	struct cpuset *cp;
2185	struct cgroup_subsys_state *pos_css;
2186	bool need_rebuild_sched_domains = false;
2187	int old_prs, new_prs;
2188
2189	rcu_read_lock();
2190	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2191		struct cpuset *parent = parent_cs(cp);
2192		bool remote = is_remote_partition(cp);
2193		bool update_parent = false;
2194
2195		/*
2196		 * Skip descendent remote partition that acquires CPUs
2197		 * directly from top cpuset unless it is cs.
2198		 */
2199		if (remote && (cp != cs)) {
2200			pos_css = css_rightmost_descendant(pos_css);
2201			continue;
2202		}
2203
2204		/*
2205		 * Update effective_xcpus if exclusive_cpus set.
2206		 * The case when exclusive_cpus isn't set is handled later.
2207		 */
2208		if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
2209			spin_lock_irq(&callback_lock);
2210			compute_effective_exclusive_cpumask(cp, NULL);
2211			spin_unlock_irq(&callback_lock);
2212		}
2213
2214		old_prs = new_prs = cp->partition_root_state;
2215		if (remote || (is_partition_valid(parent) &&
2216			       is_partition_valid(cp)))
2217			compute_partition_effective_cpumask(cp, tmp->new_cpus);
2218		else
2219			compute_effective_cpumask(tmp->new_cpus, cp, parent);
2220
2221		/*
2222		 * A partition with no effective_cpus is allowed as long as
2223		 * there is no task associated with it. Call
2224		 * update_parent_effective_cpumask() to check it.
2225		 */
2226		if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2227			update_parent = true;
2228			goto update_parent_effective;
2229		}
2230
2231		/*
2232		 * If it becomes empty, inherit the effective mask of the
2233		 * parent, which is guaranteed to have some CPUs unless
2234		 * it is a partition root that has explicitly distributed
2235		 * out all its CPUs.
2236		 */
2237		if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) {
2238			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2239			if (!cp->use_parent_ecpus) {
2240				cp->use_parent_ecpus = true;
2241				parent->child_ecpus_count++;
2242			}
2243		} else if (cp->use_parent_ecpus) {
2244			cp->use_parent_ecpus = false;
2245			WARN_ON_ONCE(!parent->child_ecpus_count);
2246			parent->child_ecpus_count--;
2247		}
2248
2249		if (remote)
2250			goto get_css;
2251
2252		/*
2253		 * Skip the whole subtree if
2254		 * 1) the cpumask remains the same,
2255		 * 2) has no partition root state,
2256		 * 3) HIER_CHECKALL flag not set, and
2257		 * 4) for v2 load balance state same as its parent.
2258		 */
2259		if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
2260		    cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2261		    (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2262		    (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2263			pos_css = css_rightmost_descendant(pos_css);
2264			continue;
2265		}
2266
2267update_parent_effective:
2268		/*
2269		 * update_parent_effective_cpumask() should have been called
2270		 * for cs already in update_cpumask(). We should also call
2271		 * update_tasks_cpumask() again for tasks in the parent
2272		 * cpuset if the parent's effective_cpus changes.
2273		 */
2274		if ((cp != cs) && old_prs) {
2275			switch (parent->partition_root_state) {
2276			case PRS_ROOT:
2277			case PRS_ISOLATED:
2278				update_parent = true;
2279				break;
2280
2281			default:
2282				/*
2283				 * When parent is not a partition root or is
2284				 * invalid, child partition roots become
2285				 * invalid too.
2286				 */
2287				if (is_partition_valid(cp))
2288					new_prs = -cp->partition_root_state;
2289				WRITE_ONCE(cp->prs_err,
2290					   is_partition_invalid(parent)
2291					   ? PERR_INVPARENT : PERR_NOTPART);
2292				break;
2293			}
2294		}
2295get_css:
2296		if (!css_tryget_online(&cp->css))
2297			continue;
2298		rcu_read_unlock();
2299
2300		if (update_parent) {
2301			update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2302			/*
2303			 * The cpuset partition_root_state may become
2304			 * invalid. Capture it.
2305			 */
2306			new_prs = cp->partition_root_state;
2307		}
2308
2309		spin_lock_irq(&callback_lock);
2310		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2311		cp->partition_root_state = new_prs;
2312		/*
2313		 * Make sure effective_xcpus is properly set for a valid
2314		 * partition root.
2315		 */
2316		if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2317			cpumask_and(cp->effective_xcpus,
2318				    cp->cpus_allowed, parent->effective_xcpus);
2319		else if (new_prs < 0)
2320			reset_partition_data(cp);
2321		spin_unlock_irq(&callback_lock);
2322
2323		notify_partition_change(cp, old_prs);
2324
2325		WARN_ON(!is_in_v2_mode() &&
2326			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2327
2328		update_tasks_cpumask(cp, cp->effective_cpus);
2329
2330		/*
2331		 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2332		 * from parent if current cpuset isn't a valid partition root
2333		 * and their load balance states differ.
2334		 */
2335		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2336		    !is_partition_valid(cp) &&
2337		    (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2338			if (is_sched_load_balance(parent))
2339				set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2340			else
2341				clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2342		}
2343
2344		/*
2345		 * On legacy hierarchy, if the effective cpumask of any non-
2346		 * empty cpuset is changed, we need to rebuild sched domains.
2347		 * On default hierarchy, the cpuset needs to be a partition
2348		 * root as well.
2349		 */
2350		if (!cpumask_empty(cp->cpus_allowed) &&
2351		    is_sched_load_balance(cp) &&
2352		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2353		    is_partition_valid(cp)))
2354			need_rebuild_sched_domains = true;
2355
2356		rcu_read_lock();
2357		css_put(&cp->css);
2358	}
2359	rcu_read_unlock();
2360
2361	if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
2362		rebuild_sched_domains_locked();
2363}
2364
2365/**
2366 * update_sibling_cpumasks - Update siblings cpumasks
2367 * @parent:  Parent cpuset
2368 * @cs:      Current cpuset
2369 * @tmp:     Temp variables
2370 */
2371static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2372				    struct tmpmasks *tmp)
2373{
2374	struct cpuset *sibling;
2375	struct cgroup_subsys_state *pos_css;
2376
2377	lockdep_assert_held(&cpuset_mutex);
2378
2379	/*
2380	 * Check all its siblings and call update_cpumasks_hier()
2381	 * if their effective_cpus will need to be changed.
2382	 *
2383	 * With the addition of effective_xcpus which is a subset of
2384	 * cpus_allowed. It is possible a change in parent's effective_cpus
2385	 * due to a change in a child partition's effective_xcpus will impact
2386	 * its siblings even if they do not inherit parent's effective_cpus
2387	 * directly.
2388	 *
2389	 * The update_cpumasks_hier() function may sleep. So we have to
2390	 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
2391	 * flag is used to suppress rebuild of sched domains as the callers
2392	 * will take care of that.
2393	 */
2394	rcu_read_lock();
2395	cpuset_for_each_child(sibling, pos_css, parent) {
2396		if (sibling == cs)
2397			continue;
2398		if (!sibling->use_parent_ecpus &&
2399		    !is_partition_valid(sibling)) {
2400			compute_effective_cpumask(tmp->new_cpus, sibling,
2401						  parent);
2402			if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2403				continue;
2404		}
2405		if (!css_tryget_online(&sibling->css))
2406			continue;
2407
2408		rcu_read_unlock();
2409		update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
2410		rcu_read_lock();
2411		css_put(&sibling->css);
2412	}
2413	rcu_read_unlock();
2414}
2415
2416/**
2417 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2418 * @cs: the cpuset to consider
2419 * @trialcs: trial cpuset
2420 * @buf: buffer of cpu numbers written to this cpuset
2421 */
2422static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2423			  const char *buf)
2424{
2425	int retval;
2426	struct tmpmasks tmp;
2427	struct cpuset *parent = parent_cs(cs);
2428	bool invalidate = false;
2429	int hier_flags = 0;
2430	int old_prs = cs->partition_root_state;
2431
2432	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2433	if (cs == &top_cpuset)
2434		return -EACCES;
2435
2436	/*
2437	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2438	 * Since cpulist_parse() fails on an empty mask, we special case
2439	 * that parsing.  The validate_change() call ensures that cpusets
2440	 * with tasks have cpus.
2441	 */
2442	if (!*buf) {
2443		cpumask_clear(trialcs->cpus_allowed);
2444		cpumask_clear(trialcs->effective_xcpus);
2445	} else {
2446		retval = cpulist_parse(buf, trialcs->cpus_allowed);
2447		if (retval < 0)
2448			return retval;
2449
2450		if (!cpumask_subset(trialcs->cpus_allowed,
2451				    top_cpuset.cpus_allowed))
2452			return -EINVAL;
2453
2454		/*
2455		 * When exclusive_cpus isn't explicitly set, it is constrainted
2456		 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2457		 * trialcs->effective_xcpus is used as a temporary cpumask
2458		 * for checking validity of the partition root.
2459		 */
2460		if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2461			compute_effective_exclusive_cpumask(trialcs, NULL);
2462	}
2463
2464	/* Nothing to do if the cpus didn't change */
2465	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2466		return 0;
2467
2468	if (alloc_cpumasks(NULL, &tmp))
2469		return -ENOMEM;
2470
2471	if (old_prs) {
2472		if (is_partition_valid(cs) &&
2473		    cpumask_empty(trialcs->effective_xcpus)) {
2474			invalidate = true;
2475			cs->prs_err = PERR_INVCPUS;
2476		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2477			invalidate = true;
2478			cs->prs_err = PERR_HKEEPING;
2479		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2480			invalidate = true;
2481			cs->prs_err = PERR_NOCPUS;
2482		}
2483	}
2484
2485	/*
2486	 * Check all the descendants in update_cpumasks_hier() if
2487	 * effective_xcpus is to be changed.
2488	 */
2489	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2490		hier_flags = HIER_CHECKALL;
2491
2492	retval = validate_change(cs, trialcs);
2493
2494	if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2495		struct cgroup_subsys_state *css;
2496		struct cpuset *cp;
2497
2498		/*
2499		 * The -EINVAL error code indicates that partition sibling
2500		 * CPU exclusivity rule has been violated. We still allow
2501		 * the cpumask change to proceed while invalidating the
2502		 * partition. However, any conflicting sibling partitions
2503		 * have to be marked as invalid too.
2504		 */
2505		invalidate = true;
2506		rcu_read_lock();
2507		cpuset_for_each_child(cp, css, parent) {
2508			struct cpumask *xcpus = fetch_xcpus(trialcs);
2509
2510			if (is_partition_valid(cp) &&
2511			    cpumask_intersects(xcpus, cp->effective_xcpus)) {
2512				rcu_read_unlock();
2513				update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2514				rcu_read_lock();
2515			}
2516		}
2517		rcu_read_unlock();
2518		retval = 0;
2519	}
2520
2521	if (retval < 0)
2522		goto out_free;
2523
2524	if (is_partition_valid(cs) ||
2525	   (is_partition_invalid(cs) && !invalidate)) {
2526		struct cpumask *xcpus = trialcs->effective_xcpus;
2527
2528		if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2529			xcpus = trialcs->cpus_allowed;
2530
2531		/*
2532		 * Call remote_cpus_update() to handle valid remote partition
2533		 */
2534		if (is_remote_partition(cs))
2535			remote_cpus_update(cs, xcpus, &tmp);
2536		else if (invalidate)
2537			update_parent_effective_cpumask(cs, partcmd_invalidate,
2538							NULL, &tmp);
2539		else
2540			update_parent_effective_cpumask(cs, partcmd_update,
2541							xcpus, &tmp);
2542	} else if (!cpumask_empty(cs->exclusive_cpus)) {
2543		/*
2544		 * Use trialcs->effective_cpus as a temp cpumask
2545		 */
2546		remote_partition_check(cs, trialcs->effective_xcpus,
2547				       trialcs->effective_cpus, &tmp);
2548	}
2549
2550	spin_lock_irq(&callback_lock);
2551	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2552	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2553	if ((old_prs > 0) && !is_partition_valid(cs))
2554		reset_partition_data(cs);
2555	spin_unlock_irq(&callback_lock);
2556
2557	/* effective_cpus/effective_xcpus will be updated here */
2558	update_cpumasks_hier(cs, &tmp, hier_flags);
2559
2560	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2561	if (cs->partition_root_state)
2562		update_partition_sd_lb(cs, old_prs);
2563out_free:
2564	free_cpumasks(NULL, &tmp);
2565	return retval;
2566}
2567
2568/**
2569 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2570 * @cs: the cpuset to consider
2571 * @trialcs: trial cpuset
2572 * @buf: buffer of cpu numbers written to this cpuset
2573 *
2574 * The tasks' cpumask will be updated if cs is a valid partition root.
2575 */
2576static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2577				    const char *buf)
2578{
2579	int retval;
2580	struct tmpmasks tmp;
2581	struct cpuset *parent = parent_cs(cs);
2582	bool invalidate = false;
2583	int hier_flags = 0;
2584	int old_prs = cs->partition_root_state;
2585
2586	if (!*buf) {
2587		cpumask_clear(trialcs->exclusive_cpus);
2588		cpumask_clear(trialcs->effective_xcpus);
2589	} else {
2590		retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2591		if (retval < 0)
2592			return retval;
2593		if (!is_cpu_exclusive(cs))
2594			set_bit(CS_CPU_EXCLUSIVE, &trialcs->flags);
2595	}
2596
2597	/* Nothing to do if the CPUs didn't change */
2598	if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2599		return 0;
2600
2601	if (*buf)
2602		compute_effective_exclusive_cpumask(trialcs, NULL);
2603
2604	/*
2605	 * Check all the descendants in update_cpumasks_hier() if
2606	 * effective_xcpus is to be changed.
2607	 */
2608	if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2609		hier_flags = HIER_CHECKALL;
2610
2611	retval = validate_change(cs, trialcs);
2612	if (retval)
2613		return retval;
2614
2615	if (alloc_cpumasks(NULL, &tmp))
2616		return -ENOMEM;
2617
2618	if (old_prs) {
2619		if (cpumask_empty(trialcs->effective_xcpus)) {
2620			invalidate = true;
2621			cs->prs_err = PERR_INVCPUS;
2622		} else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2623			invalidate = true;
2624			cs->prs_err = PERR_HKEEPING;
2625		} else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2626			invalidate = true;
2627			cs->prs_err = PERR_NOCPUS;
2628		}
2629
2630		if (is_remote_partition(cs)) {
2631			if (invalidate)
2632				remote_partition_disable(cs, &tmp);
2633			else
2634				remote_cpus_update(cs, trialcs->effective_xcpus,
2635						   &tmp);
2636		} else if (invalidate) {
2637			update_parent_effective_cpumask(cs, partcmd_invalidate,
2638							NULL, &tmp);
2639		} else {
2640			update_parent_effective_cpumask(cs, partcmd_update,
2641						trialcs->effective_xcpus, &tmp);
2642		}
2643	} else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2644		/*
2645		 * Use trialcs->effective_cpus as a temp cpumask
2646		 */
2647		remote_partition_check(cs, trialcs->effective_xcpus,
2648				       trialcs->effective_cpus, &tmp);
2649	}
2650	spin_lock_irq(&callback_lock);
2651	cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2652	cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2653	if ((old_prs > 0) && !is_partition_valid(cs))
2654		reset_partition_data(cs);
2655	spin_unlock_irq(&callback_lock);
2656
2657	/*
2658	 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2659	 * of the subtree when it is a valid partition root or effective_xcpus
2660	 * is updated.
2661	 */
2662	if (is_partition_valid(cs) || hier_flags)
2663		update_cpumasks_hier(cs, &tmp, hier_flags);
2664
2665	/* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2666	if (cs->partition_root_state)
2667		update_partition_sd_lb(cs, old_prs);
2668
2669	free_cpumasks(NULL, &tmp);
2670	return 0;
2671}
2672
2673/*
2674 * Migrate memory region from one set of nodes to another.  This is
2675 * performed asynchronously as it can be called from process migration path
2676 * holding locks involved in process management.  All mm migrations are
2677 * performed in the queued order and can be waited for by flushing
2678 * cpuset_migrate_mm_wq.
2679 */
2680
2681struct cpuset_migrate_mm_work {
2682	struct work_struct	work;
2683	struct mm_struct	*mm;
2684	nodemask_t		from;
2685	nodemask_t		to;
2686};
2687
2688static void cpuset_migrate_mm_workfn(struct work_struct *work)
2689{
2690	struct cpuset_migrate_mm_work *mwork =
2691		container_of(work, struct cpuset_migrate_mm_work, work);
2692
2693	/* on a wq worker, no need to worry about %current's mems_allowed */
2694	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2695	mmput(mwork->mm);
2696	kfree(mwork);
2697}
2698
2699static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2700							const nodemask_t *to)
2701{
2702	struct cpuset_migrate_mm_work *mwork;
2703
2704	if (nodes_equal(*from, *to)) {
2705		mmput(mm);
2706		return;
2707	}
2708
2709	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2710	if (mwork) {
2711		mwork->mm = mm;
2712		mwork->from = *from;
2713		mwork->to = *to;
2714		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2715		queue_work(cpuset_migrate_mm_wq, &mwork->work);
2716	} else {
2717		mmput(mm);
2718	}
2719}
2720
2721static void cpuset_post_attach(void)
2722{
2723	flush_workqueue(cpuset_migrate_mm_wq);
2724}
2725
2726/*
2727 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2728 * @tsk: the task to change
2729 * @newmems: new nodes that the task will be set
2730 *
2731 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2732 * and rebind an eventual tasks' mempolicy. If the task is allocating in
2733 * parallel, it might temporarily see an empty intersection, which results in
2734 * a seqlock check and retry before OOM or allocation failure.
2735 */
2736static void cpuset_change_task_nodemask(struct task_struct *tsk,
2737					nodemask_t *newmems)
2738{
2739	task_lock(tsk);
2740
2741	local_irq_disable();
2742	write_seqcount_begin(&tsk->mems_allowed_seq);
2743
2744	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2745	mpol_rebind_task(tsk, newmems);
2746	tsk->mems_allowed = *newmems;
2747
2748	write_seqcount_end(&tsk->mems_allowed_seq);
2749	local_irq_enable();
2750
2751	task_unlock(tsk);
2752}
2753
2754static void *cpuset_being_rebound;
2755
2756/**
2757 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2758 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2759 *
2760 * Iterate through each task of @cs updating its mems_allowed to the
2761 * effective cpuset's.  As this function is called with cpuset_mutex held,
2762 * cpuset membership stays stable.
2763 */
2764static void update_tasks_nodemask(struct cpuset *cs)
2765{
2766	static nodemask_t newmems;	/* protected by cpuset_mutex */
2767	struct css_task_iter it;
2768	struct task_struct *task;
2769
2770	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
2771
2772	guarantee_online_mems(cs, &newmems);
2773
2774	/*
2775	 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2776	 * take while holding tasklist_lock.  Forks can happen - the
2777	 * mpol_dup() cpuset_being_rebound check will catch such forks,
2778	 * and rebind their vma mempolicies too.  Because we still hold
2779	 * the global cpuset_mutex, we know that no other rebind effort
2780	 * will be contending for the global variable cpuset_being_rebound.
2781	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2782	 * is idempotent.  Also migrate pages in each mm to new nodes.
2783	 */
2784	css_task_iter_start(&cs->css, 0, &it);
2785	while ((task = css_task_iter_next(&it))) {
2786		struct mm_struct *mm;
2787		bool migrate;
2788
2789		cpuset_change_task_nodemask(task, &newmems);
2790
2791		mm = get_task_mm(task);
2792		if (!mm)
2793			continue;
2794
2795		migrate = is_memory_migrate(cs);
2796
2797		mpol_rebind_mm(mm, &cs->mems_allowed);
2798		if (migrate)
2799			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2800		else
2801			mmput(mm);
2802	}
2803	css_task_iter_end(&it);
2804
2805	/*
2806	 * All the tasks' nodemasks have been updated, update
2807	 * cs->old_mems_allowed.
2808	 */
2809	cs->old_mems_allowed = newmems;
2810
2811	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
2812	cpuset_being_rebound = NULL;
2813}
2814
2815/*
2816 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2817 * @cs: the cpuset to consider
2818 * @new_mems: a temp variable for calculating new effective_mems
2819 *
2820 * When configured nodemask is changed, the effective nodemasks of this cpuset
2821 * and all its descendants need to be updated.
2822 *
2823 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2824 *
2825 * Called with cpuset_mutex held
2826 */
2827static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2828{
2829	struct cpuset *cp;
2830	struct cgroup_subsys_state *pos_css;
2831
2832	rcu_read_lock();
2833	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2834		struct cpuset *parent = parent_cs(cp);
2835
2836		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2837
2838		/*
2839		 * If it becomes empty, inherit the effective mask of the
2840		 * parent, which is guaranteed to have some MEMs.
2841		 */
2842		if (is_in_v2_mode() && nodes_empty(*new_mems))
2843			*new_mems = parent->effective_mems;
2844
2845		/* Skip the whole subtree if the nodemask remains the same. */
2846		if (nodes_equal(*new_mems, cp->effective_mems)) {
2847			pos_css = css_rightmost_descendant(pos_css);
2848			continue;
2849		}
2850
2851		if (!css_tryget_online(&cp->css))
2852			continue;
2853		rcu_read_unlock();
2854
2855		spin_lock_irq(&callback_lock);
2856		cp->effective_mems = *new_mems;
2857		spin_unlock_irq(&callback_lock);
2858
2859		WARN_ON(!is_in_v2_mode() &&
2860			!nodes_equal(cp->mems_allowed, cp->effective_mems));
2861
2862		update_tasks_nodemask(cp);
2863
2864		rcu_read_lock();
2865		css_put(&cp->css);
2866	}
2867	rcu_read_unlock();
2868}
2869
2870/*
2871 * Handle user request to change the 'mems' memory placement
2872 * of a cpuset.  Needs to validate the request, update the
2873 * cpusets mems_allowed, and for each task in the cpuset,
2874 * update mems_allowed and rebind task's mempolicy and any vma
2875 * mempolicies and if the cpuset is marked 'memory_migrate',
2876 * migrate the tasks pages to the new memory.
2877 *
2878 * Call with cpuset_mutex held. May take callback_lock during call.
2879 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2880 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2881 * their mempolicies to the cpusets new mems_allowed.
2882 */
2883static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2884			   const char *buf)
2885{
2886	int retval;
2887
2888	/*
2889	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2890	 * it's read-only
2891	 */
2892	if (cs == &top_cpuset) {
2893		retval = -EACCES;
2894		goto done;
2895	}
2896
2897	/*
2898	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2899	 * Since nodelist_parse() fails on an empty mask, we special case
2900	 * that parsing.  The validate_change() call ensures that cpusets
2901	 * with tasks have memory.
2902	 */
2903	if (!*buf) {
2904		nodes_clear(trialcs->mems_allowed);
2905	} else {
2906		retval = nodelist_parse(buf, trialcs->mems_allowed);
2907		if (retval < 0)
2908			goto done;
2909
2910		if (!nodes_subset(trialcs->mems_allowed,
2911				  top_cpuset.mems_allowed)) {
2912			retval = -EINVAL;
2913			goto done;
2914		}
2915	}
2916
2917	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2918		retval = 0;		/* Too easy - nothing to do */
2919		goto done;
2920	}
2921	retval = validate_change(cs, trialcs);
2922	if (retval < 0)
2923		goto done;
2924
2925	check_insane_mems_config(&trialcs->mems_allowed);
2926
2927	spin_lock_irq(&callback_lock);
2928	cs->mems_allowed = trialcs->mems_allowed;
2929	spin_unlock_irq(&callback_lock);
2930
2931	/* use trialcs->mems_allowed as a temp variable */
2932	update_nodemasks_hier(cs, &trialcs->mems_allowed);
2933done:
2934	return retval;
2935}
2936
2937bool current_cpuset_is_being_rebound(void)
2938{
2939	bool ret;
2940
2941	rcu_read_lock();
2942	ret = task_cs(current) == cpuset_being_rebound;
2943	rcu_read_unlock();
2944
2945	return ret;
2946}
2947
2948static int update_relax_domain_level(struct cpuset *cs, s64 val)
2949{
2950#ifdef CONFIG_SMP
2951	if (val < -1 || val >= sched_domain_level_max)
2952		return -EINVAL;
2953#endif
2954
2955	if (val != cs->relax_domain_level) {
2956		cs->relax_domain_level = val;
2957		if (!cpumask_empty(cs->cpus_allowed) &&
2958		    is_sched_load_balance(cs))
2959			rebuild_sched_domains_locked();
2960	}
2961
2962	return 0;
2963}
2964
2965/**
2966 * update_tasks_flags - update the spread flags of tasks in the cpuset.
2967 * @cs: the cpuset in which each task's spread flags needs to be changed
2968 *
2969 * Iterate through each task of @cs updating its spread flags.  As this
2970 * function is called with cpuset_mutex held, cpuset membership stays
2971 * stable.
2972 */
2973static void update_tasks_flags(struct cpuset *cs)
2974{
2975	struct css_task_iter it;
2976	struct task_struct *task;
2977
2978	css_task_iter_start(&cs->css, 0, &it);
2979	while ((task = css_task_iter_next(&it)))
2980		cpuset_update_task_spread_flags(cs, task);
2981	css_task_iter_end(&it);
2982}
2983
2984/*
2985 * update_flag - read a 0 or a 1 in a file and update associated flag
2986 * bit:		the bit to update (see cpuset_flagbits_t)
2987 * cs:		the cpuset to update
2988 * turning_on: 	whether the flag is being set or cleared
2989 *
2990 * Call with cpuset_mutex held.
2991 */
2992
2993static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2994		       int turning_on)
2995{
2996	struct cpuset *trialcs;
2997	int balance_flag_changed;
2998	int spread_flag_changed;
2999	int err;
3000
3001	trialcs = alloc_trial_cpuset(cs);
3002	if (!trialcs)
3003		return -ENOMEM;
3004
3005	if (turning_on)
3006		set_bit(bit, &trialcs->flags);
3007	else
3008		clear_bit(bit, &trialcs->flags);
3009
3010	err = validate_change(cs, trialcs);
3011	if (err < 0)
3012		goto out;
3013
3014	balance_flag_changed = (is_sched_load_balance(cs) !=
3015				is_sched_load_balance(trialcs));
3016
3017	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
3018			|| (is_spread_page(cs) != is_spread_page(trialcs)));
3019
3020	spin_lock_irq(&callback_lock);
3021	cs->flags = trialcs->flags;
3022	spin_unlock_irq(&callback_lock);
3023
3024	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
3025		rebuild_sched_domains_locked();
3026
3027	if (spread_flag_changed)
3028		update_tasks_flags(cs);
3029out:
3030	free_cpuset(trialcs);
3031	return err;
3032}
3033
3034/**
3035 * update_prstate - update partition_root_state
3036 * @cs: the cpuset to update
3037 * @new_prs: new partition root state
3038 * Return: 0 if successful, != 0 if error
3039 *
3040 * Call with cpuset_mutex held.
3041 */
3042static int update_prstate(struct cpuset *cs, int new_prs)
3043{
3044	int err = PERR_NONE, old_prs = cs->partition_root_state;
3045	struct cpuset *parent = parent_cs(cs);
3046	struct tmpmasks tmpmask;
3047	bool new_xcpus_state = false;
3048
3049	if (old_prs == new_prs)
3050		return 0;
3051
3052	/*
3053	 * Treat a previously invalid partition root as if it is a "member".
3054	 */
3055	if (new_prs && is_prs_invalid(old_prs))
3056		old_prs = PRS_MEMBER;
3057
3058	if (alloc_cpumasks(NULL, &tmpmask))
3059		return -ENOMEM;
3060
3061	/*
3062	 * Setup effective_xcpus if not properly set yet, it will be cleared
3063	 * later if partition becomes invalid.
3064	 */
3065	if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
3066		spin_lock_irq(&callback_lock);
3067		cpumask_and(cs->effective_xcpus,
3068			    cs->cpus_allowed, parent->effective_xcpus);
3069		spin_unlock_irq(&callback_lock);
3070	}
3071
3072	err = update_partition_exclusive(cs, new_prs);
3073	if (err)
3074		goto out;
3075
3076	if (!old_prs) {
3077		enum partition_cmd cmd = (new_prs == PRS_ROOT)
3078				       ? partcmd_enable : partcmd_enablei;
3079
3080		/*
3081		 * cpus_allowed cannot be empty.
3082		 */
3083		if (cpumask_empty(cs->cpus_allowed)) {
3084			err = PERR_CPUSEMPTY;
3085			goto out;
3086		}
3087
3088		err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3089		/*
3090		 * If an attempt to become local partition root fails,
3091		 * try to become a remote partition root instead.
3092		 */
3093		if (err && remote_partition_enable(cs, new_prs, &tmpmask))
3094			err = 0;
3095	} else if (old_prs && new_prs) {
3096		/*
3097		 * A change in load balance state only, no change in cpumasks.
3098		 */
3099		new_xcpus_state = true;
3100	} else {
3101		/*
3102		 * Switching back to member is always allowed even if it
3103		 * disables child partitions.
3104		 */
3105		if (is_remote_partition(cs))
3106			remote_partition_disable(cs, &tmpmask);
3107		else
3108			update_parent_effective_cpumask(cs, partcmd_disable,
3109							NULL, &tmpmask);
3110
3111		/*
3112		 * Invalidation of child partitions will be done in
3113		 * update_cpumasks_hier().
3114		 */
3115	}
3116out:
3117	/*
3118	 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3119	 * happens.
3120	 */
3121	if (err) {
3122		new_prs = -new_prs;
3123		update_partition_exclusive(cs, new_prs);
3124	}
3125
3126	spin_lock_irq(&callback_lock);
3127	cs->partition_root_state = new_prs;
3128	WRITE_ONCE(cs->prs_err, err);
3129	if (!is_partition_valid(cs))
3130		reset_partition_data(cs);
3131	else if (new_xcpus_state)
3132		partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
3133	spin_unlock_irq(&callback_lock);
3134	update_unbound_workqueue_cpumask(new_xcpus_state);
3135
3136	/* Force update if switching back to member */
3137	update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
3138
3139	/* Update sched domains and load balance flag */
3140	update_partition_sd_lb(cs, old_prs);
3141
3142	notify_partition_change(cs, old_prs);
3143	free_cpumasks(NULL, &tmpmask);
3144	return 0;
3145}
3146
3147/*
3148 * Frequency meter - How fast is some event occurring?
3149 *
3150 * These routines manage a digitally filtered, constant time based,
3151 * event frequency meter.  There are four routines:
3152 *   fmeter_init() - initialize a frequency meter.
3153 *   fmeter_markevent() - called each time the event happens.
3154 *   fmeter_getrate() - returns the recent rate of such events.
3155 *   fmeter_update() - internal routine used to update fmeter.
3156 *
3157 * A common data structure is passed to each of these routines,
3158 * which is used to keep track of the state required to manage the
3159 * frequency meter and its digital filter.
3160 *
3161 * The filter works on the number of events marked per unit time.
3162 * The filter is single-pole low-pass recursive (IIR).  The time unit
3163 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
3164 * simulate 3 decimal digits of precision (multiplied by 1000).
3165 *
3166 * With an FM_COEF of 933, and a time base of 1 second, the filter
3167 * has a half-life of 10 seconds, meaning that if the events quit
3168 * happening, then the rate returned from the fmeter_getrate()
3169 * will be cut in half each 10 seconds, until it converges to zero.
3170 *
3171 * It is not worth doing a real infinitely recursive filter.  If more
3172 * than FM_MAXTICKS ticks have elapsed since the last filter event,
3173 * just compute FM_MAXTICKS ticks worth, by which point the level
3174 * will be stable.
3175 *
3176 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
3177 * arithmetic overflow in the fmeter_update() routine.
3178 *
3179 * Given the simple 32 bit integer arithmetic used, this meter works
3180 * best for reporting rates between one per millisecond (msec) and
3181 * one per 32 (approx) seconds.  At constant rates faster than one
3182 * per msec it maxes out at values just under 1,000,000.  At constant
3183 * rates between one per msec, and one per second it will stabilize
3184 * to a value N*1000, where N is the rate of events per second.
3185 * At constant rates between one per second and one per 32 seconds,
3186 * it will be choppy, moving up on the seconds that have an event,
3187 * and then decaying until the next event.  At rates slower than
3188 * about one in 32 seconds, it decays all the way back to zero between
3189 * each event.
3190 */
3191
3192#define FM_COEF 933		/* coefficient for half-life of 10 secs */
3193#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
3194#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
3195#define FM_SCALE 1000		/* faux fixed point scale */
3196
3197/* Initialize a frequency meter */
3198static void fmeter_init(struct fmeter *fmp)
3199{
3200	fmp->cnt = 0;
3201	fmp->val = 0;
3202	fmp->time = 0;
3203	spin_lock_init(&fmp->lock);
3204}
3205
3206/* Internal meter update - process cnt events and update value */
3207static void fmeter_update(struct fmeter *fmp)
3208{
3209	time64_t now;
3210	u32 ticks;
3211
3212	now = ktime_get_seconds();
3213	ticks = now - fmp->time;
3214
3215	if (ticks == 0)
3216		return;
3217
3218	ticks = min(FM_MAXTICKS, ticks);
3219	while (ticks-- > 0)
3220		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
3221	fmp->time = now;
3222
3223	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
3224	fmp->cnt = 0;
3225}
3226
3227/* Process any previous ticks, then bump cnt by one (times scale). */
3228static void fmeter_markevent(struct fmeter *fmp)
3229{
3230	spin_lock(&fmp->lock);
3231	fmeter_update(fmp);
3232	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
3233	spin_unlock(&fmp->lock);
3234}
3235
3236/* Process any previous ticks, then return current value. */
3237static int fmeter_getrate(struct fmeter *fmp)
3238{
3239	int val;
3240
3241	spin_lock(&fmp->lock);
3242	fmeter_update(fmp);
3243	val = fmp->val;
3244	spin_unlock(&fmp->lock);
3245	return val;
3246}
3247
3248static struct cpuset *cpuset_attach_old_cs;
3249
3250/*
3251 * Check to see if a cpuset can accept a new task
3252 * For v1, cpus_allowed and mems_allowed can't be empty.
3253 * For v2, effective_cpus can't be empty.
3254 * Note that in v1, effective_cpus = cpus_allowed.
3255 */
3256static int cpuset_can_attach_check(struct cpuset *cs)
3257{
3258	if (cpumask_empty(cs->effective_cpus) ||
3259	   (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3260		return -ENOSPC;
3261	return 0;
3262}
3263
3264static void reset_migrate_dl_data(struct cpuset *cs)
3265{
3266	cs->nr_migrate_dl_tasks = 0;
3267	cs->sum_migrate_dl_bw = 0;
3268}
3269
3270/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3271static int cpuset_can_attach(struct cgroup_taskset *tset)
3272{
3273	struct cgroup_subsys_state *css;
3274	struct cpuset *cs, *oldcs;
3275	struct task_struct *task;
3276	bool cpus_updated, mems_updated;
3277	int ret;
3278
3279	/* used later by cpuset_attach() */
3280	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3281	oldcs = cpuset_attach_old_cs;
3282	cs = css_cs(css);
3283
3284	mutex_lock(&cpuset_mutex);
3285
3286	/* Check to see if task is allowed in the cpuset */
3287	ret = cpuset_can_attach_check(cs);
3288	if (ret)
3289		goto out_unlock;
3290
3291	cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3292	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3293
3294	cgroup_taskset_for_each(task, css, tset) {
3295		ret = task_can_attach(task);
3296		if (ret)
3297			goto out_unlock;
3298
3299		/*
3300		 * Skip rights over task check in v2 when nothing changes,
3301		 * migration permission derives from hierarchy ownership in
3302		 * cgroup_procs_write_permission()).
3303		 */
3304		if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
3305		    (cpus_updated || mems_updated)) {
3306			ret = security_task_setscheduler(task);
3307			if (ret)
3308				goto out_unlock;
3309		}
3310
3311		if (dl_task(task)) {
3312			cs->nr_migrate_dl_tasks++;
3313			cs->sum_migrate_dl_bw += task->dl.dl_bw;
3314		}
3315	}
3316
3317	if (!cs->nr_migrate_dl_tasks)
3318		goto out_success;
3319
3320	if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3321		int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3322
3323		if (unlikely(cpu >= nr_cpu_ids)) {
3324			reset_migrate_dl_data(cs);
3325			ret = -EINVAL;
3326			goto out_unlock;
3327		}
3328
3329		ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3330		if (ret) {
3331			reset_migrate_dl_data(cs);
3332			goto out_unlock;
3333		}
3334	}
3335
3336out_success:
3337	/*
3338	 * Mark attach is in progress.  This makes validate_change() fail
3339	 * changes which zero cpus/mems_allowed.
3340	 */
3341	cs->attach_in_progress++;
3342out_unlock:
3343	mutex_unlock(&cpuset_mutex);
3344	return ret;
3345}
3346
3347static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3348{
3349	struct cgroup_subsys_state *css;
3350	struct cpuset *cs;
3351
3352	cgroup_taskset_first(tset, &css);
3353	cs = css_cs(css);
3354
3355	mutex_lock(&cpuset_mutex);
3356	cs->attach_in_progress--;
3357	if (!cs->attach_in_progress)
3358		wake_up(&cpuset_attach_wq);
3359
3360	if (cs->nr_migrate_dl_tasks) {
3361		int cpu = cpumask_any(cs->effective_cpus);
3362
3363		dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3364		reset_migrate_dl_data(cs);
3365	}
3366
3367	mutex_unlock(&cpuset_mutex);
3368}
3369
3370/*
3371 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3372 * but we can't allocate it dynamically there.  Define it global and
3373 * allocate from cpuset_init().
3374 */
3375static cpumask_var_t cpus_attach;
3376static nodemask_t cpuset_attach_nodemask_to;
3377
3378static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3379{
3380	lockdep_assert_held(&cpuset_mutex);
3381
3382	if (cs != &top_cpuset)
3383		guarantee_online_cpus(task, cpus_attach);
3384	else
3385		cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3386			       subpartitions_cpus);
3387	/*
3388	 * can_attach beforehand should guarantee that this doesn't
3389	 * fail.  TODO: have a better way to handle failure here
3390	 */
3391	WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3392
3393	cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3394	cpuset_update_task_spread_flags(cs, task);
3395}
3396
3397static void cpuset_attach(struct cgroup_taskset *tset)
3398{
3399	struct task_struct *task;
3400	struct task_struct *leader;
3401	struct cgroup_subsys_state *css;
3402	struct cpuset *cs;
3403	struct cpuset *oldcs = cpuset_attach_old_cs;
3404	bool cpus_updated, mems_updated;
3405
3406	cgroup_taskset_first(tset, &css);
3407	cs = css_cs(css);
3408
3409	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
3410	mutex_lock(&cpuset_mutex);
3411	cpus_updated = !cpumask_equal(cs->effective_cpus,
3412				      oldcs->effective_cpus);
3413	mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3414
3415	/*
3416	 * In the default hierarchy, enabling cpuset in the child cgroups
3417	 * will trigger a number of cpuset_attach() calls with no change
3418	 * in effective cpus and mems. In that case, we can optimize out
3419	 * by skipping the task iteration and update.
3420	 */
3421	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3422	    !cpus_updated && !mems_updated) {
3423		cpuset_attach_nodemask_to = cs->effective_mems;
3424		goto out;
3425	}
3426
3427	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3428
3429	cgroup_taskset_for_each(task, css, tset)
3430		cpuset_attach_task(cs, task);
3431
3432	/*
3433	 * Change mm for all threadgroup leaders. This is expensive and may
3434	 * sleep and should be moved outside migration path proper. Skip it
3435	 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3436	 * not set.
3437	 */
3438	cpuset_attach_nodemask_to = cs->effective_mems;
3439	if (!is_memory_migrate(cs) && !mems_updated)
3440		goto out;
3441
3442	cgroup_taskset_for_each_leader(leader, css, tset) {
3443		struct mm_struct *mm = get_task_mm(leader);
3444
3445		if (mm) {
3446			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3447
3448			/*
3449			 * old_mems_allowed is the same with mems_allowed
3450			 * here, except if this task is being moved
3451			 * automatically due to hotplug.  In that case
3452			 * @mems_allowed has been updated and is empty, so
3453			 * @old_mems_allowed is the right nodesets that we
3454			 * migrate mm from.
3455			 */
3456			if (is_memory_migrate(cs))
3457				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3458						  &cpuset_attach_nodemask_to);
3459			else
3460				mmput(mm);
3461		}
3462	}
3463
3464out:
3465	cs->old_mems_allowed = cpuset_attach_nodemask_to;
3466
3467	if (cs->nr_migrate_dl_tasks) {
3468		cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3469		oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3470		reset_migrate_dl_data(cs);
3471	}
3472
3473	cs->attach_in_progress--;
3474	if (!cs->attach_in_progress)
3475		wake_up(&cpuset_attach_wq);
3476
3477	mutex_unlock(&cpuset_mutex);
3478}
3479
3480/* The various types of files and directories in a cpuset file system */
3481
3482typedef enum {
3483	FILE_MEMORY_MIGRATE,
3484	FILE_CPULIST,
3485	FILE_MEMLIST,
3486	FILE_EFFECTIVE_CPULIST,
3487	FILE_EFFECTIVE_MEMLIST,
3488	FILE_SUBPARTS_CPULIST,
3489	FILE_EXCLUSIVE_CPULIST,
3490	FILE_EFFECTIVE_XCPULIST,
3491	FILE_ISOLATED_CPULIST,
3492	FILE_CPU_EXCLUSIVE,
3493	FILE_MEM_EXCLUSIVE,
3494	FILE_MEM_HARDWALL,
3495	FILE_SCHED_LOAD_BALANCE,
3496	FILE_PARTITION_ROOT,
3497	FILE_SCHED_RELAX_DOMAIN_LEVEL,
3498	FILE_MEMORY_PRESSURE_ENABLED,
3499	FILE_MEMORY_PRESSURE,
3500	FILE_SPREAD_PAGE,
3501	FILE_SPREAD_SLAB,
3502} cpuset_filetype_t;
3503
3504static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
3505			    u64 val)
3506{
3507	struct cpuset *cs = css_cs(css);
3508	cpuset_filetype_t type = cft->private;
3509	int retval = 0;
3510
3511	cpus_read_lock();
3512	mutex_lock(&cpuset_mutex);
3513	if (!is_cpuset_online(cs)) {
3514		retval = -ENODEV;
3515		goto out_unlock;
3516	}
3517
3518	switch (type) {
3519	case FILE_CPU_EXCLUSIVE:
3520		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
3521		break;
3522	case FILE_MEM_EXCLUSIVE:
3523		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
3524		break;
3525	case FILE_MEM_HARDWALL:
3526		retval = update_flag(CS_MEM_HARDWALL, cs, val);
3527		break;
3528	case FILE_SCHED_LOAD_BALANCE:
3529		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
3530		break;
3531	case FILE_MEMORY_MIGRATE:
3532		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
3533		break;
3534	case FILE_MEMORY_PRESSURE_ENABLED:
3535		cpuset_memory_pressure_enabled = !!val;
3536		break;
3537	case FILE_SPREAD_PAGE:
3538		retval = update_flag(CS_SPREAD_PAGE, cs, val);
3539		break;
3540	case FILE_SPREAD_SLAB:
3541		retval = update_flag(CS_SPREAD_SLAB, cs, val);
3542		break;
3543	default:
3544		retval = -EINVAL;
3545		break;
3546	}
3547out_unlock:
3548	mutex_unlock(&cpuset_mutex);
3549	cpus_read_unlock();
3550	return retval;
3551}
3552
3553static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
3554			    s64 val)
3555{
3556	struct cpuset *cs = css_cs(css);
3557	cpuset_filetype_t type = cft->private;
3558	int retval = -ENODEV;
3559
3560	cpus_read_lock();
3561	mutex_lock(&cpuset_mutex);
3562	if (!is_cpuset_online(cs))
3563		goto out_unlock;
3564
3565	switch (type) {
3566	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3567		retval = update_relax_domain_level(cs, val);
3568		break;
3569	default:
3570		retval = -EINVAL;
3571		break;
3572	}
3573out_unlock:
3574	mutex_unlock(&cpuset_mutex);
3575	cpus_read_unlock();
3576	return retval;
3577}
3578
3579/*
3580 * Common handling for a write to a "cpus" or "mems" file.
3581 */
3582static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3583				    char *buf, size_t nbytes, loff_t off)
3584{
3585	struct cpuset *cs = css_cs(of_css(of));
3586	struct cpuset *trialcs;
3587	int retval = -ENODEV;
3588
3589	buf = strstrip(buf);
3590
3591	/*
3592	 * CPU or memory hotunplug may leave @cs w/o any execution
3593	 * resources, in which case the hotplug code asynchronously updates
3594	 * configuration and transfers all tasks to the nearest ancestor
3595	 * which can execute.
3596	 *
3597	 * As writes to "cpus" or "mems" may restore @cs's execution
3598	 * resources, wait for the previously scheduled operations before
3599	 * proceeding, so that we don't end up keep removing tasks added
3600	 * after execution capability is restored.
3601	 *
3602	 * cpuset_hotplug_work calls back into cgroup core via
3603	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
3604	 * operation like this one can lead to a deadlock through kernfs
3605	 * active_ref protection.  Let's break the protection.  Losing the
3606	 * protection is okay as we check whether @cs is online after
3607	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
3608	 * hierarchies.
3609	 */
3610	css_get(&cs->css);
3611	kernfs_break_active_protection(of->kn);
3612	flush_work(&cpuset_hotplug_work);
3613
3614	cpus_read_lock();
3615	mutex_lock(&cpuset_mutex);
3616	if (!is_cpuset_online(cs))
3617		goto out_unlock;
3618
3619	trialcs = alloc_trial_cpuset(cs);
3620	if (!trialcs) {
3621		retval = -ENOMEM;
3622		goto out_unlock;
3623	}
3624
3625	switch (of_cft(of)->private) {
3626	case FILE_CPULIST:
3627		retval = update_cpumask(cs, trialcs, buf);
3628		break;
3629	case FILE_EXCLUSIVE_CPULIST:
3630		retval = update_exclusive_cpumask(cs, trialcs, buf);
3631		break;
3632	case FILE_MEMLIST:
3633		retval = update_nodemask(cs, trialcs, buf);
3634		break;
3635	default:
3636		retval = -EINVAL;
3637		break;
3638	}
3639
3640	free_cpuset(trialcs);
3641out_unlock:
3642	mutex_unlock(&cpuset_mutex);
3643	cpus_read_unlock();
3644	kernfs_unbreak_active_protection(of->kn);
3645	css_put(&cs->css);
3646	flush_workqueue(cpuset_migrate_mm_wq);
3647	return retval ?: nbytes;
3648}
3649
3650/*
3651 * These ascii lists should be read in a single call, by using a user
3652 * buffer large enough to hold the entire map.  If read in smaller
3653 * chunks, there is no guarantee of atomicity.  Since the display format
3654 * used, list of ranges of sequential numbers, is variable length,
3655 * and since these maps can change value dynamically, one could read
3656 * gibberish by doing partial reads while a list was changing.
3657 */
3658static int cpuset_common_seq_show(struct seq_file *sf, void *v)
3659{
3660	struct cpuset *cs = css_cs(seq_css(sf));
3661	cpuset_filetype_t type = seq_cft(sf)->private;
3662	int ret = 0;
3663
3664	spin_lock_irq(&callback_lock);
3665
3666	switch (type) {
3667	case FILE_CPULIST:
3668		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3669		break;
3670	case FILE_MEMLIST:
3671		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3672		break;
3673	case FILE_EFFECTIVE_CPULIST:
3674		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3675		break;
3676	case FILE_EFFECTIVE_MEMLIST:
3677		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3678		break;
3679	case FILE_EXCLUSIVE_CPULIST:
3680		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3681		break;
3682	case FILE_EFFECTIVE_XCPULIST:
3683		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3684		break;
3685	case FILE_SUBPARTS_CPULIST:
3686		seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3687		break;
3688	case FILE_ISOLATED_CPULIST:
3689		seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3690		break;
3691	default:
3692		ret = -EINVAL;
3693	}
3694
3695	spin_unlock_irq(&callback_lock);
3696	return ret;
3697}
3698
3699static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
3700{
3701	struct cpuset *cs = css_cs(css);
3702	cpuset_filetype_t type = cft->private;
3703	switch (type) {
3704	case FILE_CPU_EXCLUSIVE:
3705		return is_cpu_exclusive(cs);
3706	case FILE_MEM_EXCLUSIVE:
3707		return is_mem_exclusive(cs);
3708	case FILE_MEM_HARDWALL:
3709		return is_mem_hardwall(cs);
3710	case FILE_SCHED_LOAD_BALANCE:
3711		return is_sched_load_balance(cs);
3712	case FILE_MEMORY_MIGRATE:
3713		return is_memory_migrate(cs);
3714	case FILE_MEMORY_PRESSURE_ENABLED:
3715		return cpuset_memory_pressure_enabled;
3716	case FILE_MEMORY_PRESSURE:
3717		return fmeter_getrate(&cs->fmeter);
3718	case FILE_SPREAD_PAGE:
3719		return is_spread_page(cs);
3720	case FILE_SPREAD_SLAB:
3721		return is_spread_slab(cs);
3722	default:
3723		BUG();
3724	}
3725
3726	/* Unreachable but makes gcc happy */
3727	return 0;
3728}
3729
3730static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
3731{
3732	struct cpuset *cs = css_cs(css);
3733	cpuset_filetype_t type = cft->private;
3734	switch (type) {
3735	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3736		return cs->relax_domain_level;
3737	default:
3738		BUG();
3739	}
3740
3741	/* Unreachable but makes gcc happy */
3742	return 0;
3743}
3744
3745static int sched_partition_show(struct seq_file *seq, void *v)
3746{
3747	struct cpuset *cs = css_cs(seq_css(seq));
3748	const char *err, *type = NULL;
3749
3750	switch (cs->partition_root_state) {
3751	case PRS_ROOT:
3752		seq_puts(seq, "root\n");
3753		break;
3754	case PRS_ISOLATED:
3755		seq_puts(seq, "isolated\n");
3756		break;
3757	case PRS_MEMBER:
3758		seq_puts(seq, "member\n");
3759		break;
3760	case PRS_INVALID_ROOT:
3761		type = "root";
3762		fallthrough;
3763	case PRS_INVALID_ISOLATED:
3764		if (!type)
3765			type = "isolated";
3766		err = perr_strings[READ_ONCE(cs->prs_err)];
3767		if (err)
3768			seq_printf(seq, "%s invalid (%s)\n", type, err);
3769		else
3770			seq_printf(seq, "%s invalid\n", type);
3771		break;
3772	}
3773	return 0;
3774}
3775
3776static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3777				     size_t nbytes, loff_t off)
3778{
3779	struct cpuset *cs = css_cs(of_css(of));
3780	int val;
3781	int retval = -ENODEV;
3782
3783	buf = strstrip(buf);
3784
3785	/*
3786	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
3787	 */
3788	if (!strcmp(buf, "root"))
3789		val = PRS_ROOT;
3790	else if (!strcmp(buf, "member"))
3791		val = PRS_MEMBER;
3792	else if (!strcmp(buf, "isolated"))
3793		val = PRS_ISOLATED;
3794	else
3795		return -EINVAL;
3796
3797	css_get(&cs->css);
3798	cpus_read_lock();
3799	mutex_lock(&cpuset_mutex);
3800	if (!is_cpuset_online(cs))
3801		goto out_unlock;
3802
3803	retval = update_prstate(cs, val);
3804out_unlock:
3805	mutex_unlock(&cpuset_mutex);
3806	cpus_read_unlock();
3807	css_put(&cs->css);
3808	return retval ?: nbytes;
3809}
3810
3811/*
3812 * for the common functions, 'private' gives the type of file
3813 */
3814
3815static struct cftype legacy_files[] = {
3816	{
3817		.name = "cpus",
3818		.seq_show = cpuset_common_seq_show,
3819		.write = cpuset_write_resmask,
3820		.max_write_len = (100U + 6 * NR_CPUS),
3821		.private = FILE_CPULIST,
3822	},
3823
3824	{
3825		.name = "mems",
3826		.seq_show = cpuset_common_seq_show,
3827		.write = cpuset_write_resmask,
3828		.max_write_len = (100U + 6 * MAX_NUMNODES),
3829		.private = FILE_MEMLIST,
3830	},
3831
3832	{
3833		.name = "effective_cpus",
3834		.seq_show = cpuset_common_seq_show,
3835		.private = FILE_EFFECTIVE_CPULIST,
3836	},
3837
3838	{
3839		.name = "effective_mems",
3840		.seq_show = cpuset_common_seq_show,
3841		.private = FILE_EFFECTIVE_MEMLIST,
3842	},
3843
3844	{
3845		.name = "cpu_exclusive",
3846		.read_u64 = cpuset_read_u64,
3847		.write_u64 = cpuset_write_u64,
3848		.private = FILE_CPU_EXCLUSIVE,
3849	},
3850
3851	{
3852		.name = "mem_exclusive",
3853		.read_u64 = cpuset_read_u64,
3854		.write_u64 = cpuset_write_u64,
3855		.private = FILE_MEM_EXCLUSIVE,
3856	},
3857
3858	{
3859		.name = "mem_hardwall",
3860		.read_u64 = cpuset_read_u64,
3861		.write_u64 = cpuset_write_u64,
3862		.private = FILE_MEM_HARDWALL,
3863	},
3864
3865	{
3866		.name = "sched_load_balance",
3867		.read_u64 = cpuset_read_u64,
3868		.write_u64 = cpuset_write_u64,
3869		.private = FILE_SCHED_LOAD_BALANCE,
3870	},
3871
3872	{
3873		.name = "sched_relax_domain_level",
3874		.read_s64 = cpuset_read_s64,
3875		.write_s64 = cpuset_write_s64,
3876		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3877	},
3878
3879	{
3880		.name = "memory_migrate",
3881		.read_u64 = cpuset_read_u64,
3882		.write_u64 = cpuset_write_u64,
3883		.private = FILE_MEMORY_MIGRATE,
3884	},
3885
3886	{
3887		.name = "memory_pressure",
3888		.read_u64 = cpuset_read_u64,
3889		.private = FILE_MEMORY_PRESSURE,
3890	},
3891
3892	{
3893		.name = "memory_spread_page",
3894		.read_u64 = cpuset_read_u64,
3895		.write_u64 = cpuset_write_u64,
3896		.private = FILE_SPREAD_PAGE,
3897	},
3898
3899	{
3900		/* obsolete, may be removed in the future */
3901		.name = "memory_spread_slab",
3902		.read_u64 = cpuset_read_u64,
3903		.write_u64 = cpuset_write_u64,
3904		.private = FILE_SPREAD_SLAB,
3905	},
3906
3907	{
3908		.name = "memory_pressure_enabled",
3909		.flags = CFTYPE_ONLY_ON_ROOT,
3910		.read_u64 = cpuset_read_u64,
3911		.write_u64 = cpuset_write_u64,
3912		.private = FILE_MEMORY_PRESSURE_ENABLED,
3913	},
3914
3915	{ }	/* terminate */
3916};
3917
3918/*
3919 * This is currently a minimal set for the default hierarchy. It can be
3920 * expanded later on by migrating more features and control files from v1.
3921 */
3922static struct cftype dfl_files[] = {
3923	{
3924		.name = "cpus",
3925		.seq_show = cpuset_common_seq_show,
3926		.write = cpuset_write_resmask,
3927		.max_write_len = (100U + 6 * NR_CPUS),
3928		.private = FILE_CPULIST,
3929		.flags = CFTYPE_NOT_ON_ROOT,
3930	},
3931
3932	{
3933		.name = "mems",
3934		.seq_show = cpuset_common_seq_show,
3935		.write = cpuset_write_resmask,
3936		.max_write_len = (100U + 6 * MAX_NUMNODES),
3937		.private = FILE_MEMLIST,
3938		.flags = CFTYPE_NOT_ON_ROOT,
3939	},
3940
3941	{
3942		.name = "cpus.effective",
3943		.seq_show = cpuset_common_seq_show,
3944		.private = FILE_EFFECTIVE_CPULIST,
3945	},
3946
3947	{
3948		.name = "mems.effective",
3949		.seq_show = cpuset_common_seq_show,
3950		.private = FILE_EFFECTIVE_MEMLIST,
3951	},
3952
3953	{
3954		.name = "cpus.partition",
3955		.seq_show = sched_partition_show,
3956		.write = sched_partition_write,
3957		.private = FILE_PARTITION_ROOT,
3958		.flags = CFTYPE_NOT_ON_ROOT,
3959		.file_offset = offsetof(struct cpuset, partition_file),
3960	},
3961
3962	{
3963		.name = "cpus.exclusive",
3964		.seq_show = cpuset_common_seq_show,
3965		.write = cpuset_write_resmask,
3966		.max_write_len = (100U + 6 * NR_CPUS),
3967		.private = FILE_EXCLUSIVE_CPULIST,
3968		.flags = CFTYPE_NOT_ON_ROOT,
3969	},
3970
3971	{
3972		.name = "cpus.exclusive.effective",
3973		.seq_show = cpuset_common_seq_show,
3974		.private = FILE_EFFECTIVE_XCPULIST,
3975		.flags = CFTYPE_NOT_ON_ROOT,
3976	},
3977
3978	{
3979		.name = "cpus.subpartitions",
3980		.seq_show = cpuset_common_seq_show,
3981		.private = FILE_SUBPARTS_CPULIST,
3982		.flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3983	},
3984
3985	{
3986		.name = "cpus.isolated",
3987		.seq_show = cpuset_common_seq_show,
3988		.private = FILE_ISOLATED_CPULIST,
3989		.flags = CFTYPE_ONLY_ON_ROOT,
3990	},
3991
3992	{ }	/* terminate */
3993};
3994
3995
3996/**
3997 * cpuset_css_alloc - Allocate a cpuset css
3998 * @parent_css: Parent css of the control group that the new cpuset will be
3999 *              part of
4000 * Return: cpuset css on success, -ENOMEM on failure.
4001 *
4002 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
4003 * top cpuset css otherwise.
4004 */
4005static struct cgroup_subsys_state *
4006cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
4007{
4008	struct cpuset *cs;
4009
4010	if (!parent_css)
4011		return &top_cpuset.css;
4012
4013	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
4014	if (!cs)
4015		return ERR_PTR(-ENOMEM);
4016
4017	if (alloc_cpumasks(cs, NULL)) {
4018		kfree(cs);
4019		return ERR_PTR(-ENOMEM);
4020	}
4021
4022	__set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4023	nodes_clear(cs->mems_allowed);
4024	nodes_clear(cs->effective_mems);
4025	fmeter_init(&cs->fmeter);
4026	cs->relax_domain_level = -1;
4027	INIT_LIST_HEAD(&cs->remote_sibling);
4028
4029	/* Set CS_MEMORY_MIGRATE for default hierarchy */
4030	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
4031		__set_bit(CS_MEMORY_MIGRATE, &cs->flags);
4032
4033	return &cs->css;
4034}
4035
4036static int cpuset_css_online(struct cgroup_subsys_state *css)
4037{
4038	struct cpuset *cs = css_cs(css);
4039	struct cpuset *parent = parent_cs(cs);
4040	struct cpuset *tmp_cs;
4041	struct cgroup_subsys_state *pos_css;
4042
4043	if (!parent)
4044		return 0;
4045
4046	cpus_read_lock();
4047	mutex_lock(&cpuset_mutex);
4048
4049	set_bit(CS_ONLINE, &cs->flags);
4050	if (is_spread_page(parent))
4051		set_bit(CS_SPREAD_PAGE, &cs->flags);
4052	if (is_spread_slab(parent))
4053		set_bit(CS_SPREAD_SLAB, &cs->flags);
4054
4055	cpuset_inc();
4056
4057	spin_lock_irq(&callback_lock);
4058	if (is_in_v2_mode()) {
4059		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
4060		cs->effective_mems = parent->effective_mems;
4061		cs->use_parent_ecpus = true;
4062		parent->child_ecpus_count++;
4063		/*
4064		 * Clear CS_SCHED_LOAD_BALANCE if parent is isolated
4065		 */
4066		if (!is_sched_load_balance(parent))
4067			clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4068	}
4069
4070	/*
4071	 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
4072	 */
4073	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4074	    !is_sched_load_balance(parent))
4075		clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4076
4077	spin_unlock_irq(&callback_lock);
4078
4079	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
4080		goto out_unlock;
4081
4082	/*
4083	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
4084	 * set.  This flag handling is implemented in cgroup core for
4085	 * historical reasons - the flag may be specified during mount.
4086	 *
4087	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
4088	 * refuse to clone the configuration - thereby refusing the task to
4089	 * be entered, and as a result refusing the sys_unshare() or
4090	 * clone() which initiated it.  If this becomes a problem for some
4091	 * users who wish to allow that scenario, then this could be
4092	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
4093	 * (and likewise for mems) to the new cgroup.
4094	 */
4095	rcu_read_lock();
4096	cpuset_for_each_child(tmp_cs, pos_css, parent) {
4097		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
4098			rcu_read_unlock();
4099			goto out_unlock;
4100		}
4101	}
4102	rcu_read_unlock();
4103
4104	spin_lock_irq(&callback_lock);
4105	cs->mems_allowed = parent->mems_allowed;
4106	cs->effective_mems = parent->mems_allowed;
4107	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
4108	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
4109	spin_unlock_irq(&callback_lock);
4110out_unlock:
4111	mutex_unlock(&cpuset_mutex);
4112	cpus_read_unlock();
4113	return 0;
4114}
4115
4116/*
4117 * If the cpuset being removed has its flag 'sched_load_balance'
4118 * enabled, then simulate turning sched_load_balance off, which
4119 * will call rebuild_sched_domains_locked(). That is not needed
4120 * in the default hierarchy where only changes in partition
4121 * will cause repartitioning.
4122 *
4123 * If the cpuset has the 'sched.partition' flag enabled, simulate
4124 * turning 'sched.partition" off.
4125 */
4126
4127static void cpuset_css_offline(struct cgroup_subsys_state *css)
4128{
4129	struct cpuset *cs = css_cs(css);
4130
4131	cpus_read_lock();
4132	mutex_lock(&cpuset_mutex);
4133
4134	if (is_partition_valid(cs))
4135		update_prstate(cs, 0);
4136
4137	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4138	    is_sched_load_balance(cs))
4139		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
4140
4141	if (cs->use_parent_ecpus) {
4142		struct cpuset *parent = parent_cs(cs);
4143
4144		cs->use_parent_ecpus = false;
4145		parent->child_ecpus_count--;
4146	}
4147
4148	cpuset_dec();
4149	clear_bit(CS_ONLINE, &cs->flags);
4150
4151	mutex_unlock(&cpuset_mutex);
4152	cpus_read_unlock();
4153}
4154
4155static void cpuset_css_free(struct cgroup_subsys_state *css)
4156{
4157	struct cpuset *cs = css_cs(css);
4158
4159	free_cpuset(cs);
4160}
4161
4162static void cpuset_bind(struct cgroup_subsys_state *root_css)
4163{
4164	mutex_lock(&cpuset_mutex);
4165	spin_lock_irq(&callback_lock);
4166
4167	if (is_in_v2_mode()) {
4168		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
4169		cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
4170		top_cpuset.mems_allowed = node_possible_map;
4171	} else {
4172		cpumask_copy(top_cpuset.cpus_allowed,
4173			     top_cpuset.effective_cpus);
4174		top_cpuset.mems_allowed = top_cpuset.effective_mems;
4175	}
4176
4177	spin_unlock_irq(&callback_lock);
4178	mutex_unlock(&cpuset_mutex);
4179}
4180
4181/*
4182 * In case the child is cloned into a cpuset different from its parent,
4183 * additional checks are done to see if the move is allowed.
4184 */
4185static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
4186{
4187	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4188	bool same_cs;
4189	int ret;
4190
4191	rcu_read_lock();
4192	same_cs = (cs == task_cs(current));
4193	rcu_read_unlock();
4194
4195	if (same_cs)
4196		return 0;
4197
4198	lockdep_assert_held(&cgroup_mutex);
4199	mutex_lock(&cpuset_mutex);
4200
4201	/* Check to see if task is allowed in the cpuset */
4202	ret = cpuset_can_attach_check(cs);
4203	if (ret)
4204		goto out_unlock;
4205
4206	ret = task_can_attach(task);
4207	if (ret)
4208		goto out_unlock;
4209
4210	ret = security_task_setscheduler(task);
4211	if (ret)
4212		goto out_unlock;
4213
4214	/*
4215	 * Mark attach is in progress.  This makes validate_change() fail
4216	 * changes which zero cpus/mems_allowed.
4217	 */
4218	cs->attach_in_progress++;
4219out_unlock:
4220	mutex_unlock(&cpuset_mutex);
4221	return ret;
4222}
4223
4224static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
4225{
4226	struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4227	bool same_cs;
4228
4229	rcu_read_lock();
4230	same_cs = (cs == task_cs(current));
4231	rcu_read_unlock();
4232
4233	if (same_cs)
4234		return;
4235
4236	mutex_lock(&cpuset_mutex);
4237	cs->attach_in_progress--;
4238	if (!cs->attach_in_progress)
4239		wake_up(&cpuset_attach_wq);
4240	mutex_unlock(&cpuset_mutex);
4241}
4242
4243/*
4244 * Make sure the new task conform to the current state of its parent,
4245 * which could have been changed by cpuset just after it inherits the
4246 * state from the parent and before it sits on the cgroup's task list.
4247 */
4248static void cpuset_fork(struct task_struct *task)
4249{
4250	struct cpuset *cs;
4251	bool same_cs;
4252
4253	rcu_read_lock();
4254	cs = task_cs(task);
4255	same_cs = (cs == task_cs(current));
4256	rcu_read_unlock();
4257
4258	if (same_cs) {
4259		if (cs == &top_cpuset)
4260			return;
4261
4262		set_cpus_allowed_ptr(task, current->cpus_ptr);
4263		task->mems_allowed = current->mems_allowed;
4264		return;
4265	}
4266
4267	/* CLONE_INTO_CGROUP */
4268	mutex_lock(&cpuset_mutex);
4269	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4270	cpuset_attach_task(cs, task);
4271
4272	cs->attach_in_progress--;
4273	if (!cs->attach_in_progress)
4274		wake_up(&cpuset_attach_wq);
4275
4276	mutex_unlock(&cpuset_mutex);
4277}
4278
4279struct cgroup_subsys cpuset_cgrp_subsys = {
4280	.css_alloc	= cpuset_css_alloc,
4281	.css_online	= cpuset_css_online,
4282	.css_offline	= cpuset_css_offline,
4283	.css_free	= cpuset_css_free,
4284	.can_attach	= cpuset_can_attach,
4285	.cancel_attach	= cpuset_cancel_attach,
4286	.attach		= cpuset_attach,
4287	.post_attach	= cpuset_post_attach,
4288	.bind		= cpuset_bind,
4289	.can_fork	= cpuset_can_fork,
4290	.cancel_fork	= cpuset_cancel_fork,
4291	.fork		= cpuset_fork,
4292	.legacy_cftypes	= legacy_files,
4293	.dfl_cftypes	= dfl_files,
4294	.early_init	= true,
4295	.threaded	= true,
4296};
4297
4298/**
4299 * cpuset_init - initialize cpusets at system boot
4300 *
4301 * Description: Initialize top_cpuset
4302 **/
4303
4304int __init cpuset_init(void)
4305{
4306	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
4307	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
4308	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
4309	BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
4310	BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
4311	BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
4312
4313	cpumask_setall(top_cpuset.cpus_allowed);
4314	nodes_setall(top_cpuset.mems_allowed);
4315	cpumask_setall(top_cpuset.effective_cpus);
4316	cpumask_setall(top_cpuset.effective_xcpus);
4317	cpumask_setall(top_cpuset.exclusive_cpus);
4318	nodes_setall(top_cpuset.effective_mems);
4319
4320	fmeter_init(&top_cpuset.fmeter);
4321	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
4322	top_cpuset.relax_domain_level = -1;
4323	INIT_LIST_HEAD(&remote_children);
4324
4325	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
4326
4327	return 0;
4328}
4329
4330/*
4331 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
4332 * or memory nodes, we need to walk over the cpuset hierarchy,
4333 * removing that CPU or node from all cpusets.  If this removes the
4334 * last CPU or node from a cpuset, then move the tasks in the empty
4335 * cpuset to its next-highest non-empty parent.
4336 */
4337static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
4338{
4339	struct cpuset *parent;
4340
4341	/*
4342	 * Find its next-highest non-empty parent, (top cpuset
4343	 * has online cpus, so can't be empty).
4344	 */
4345	parent = parent_cs(cs);
4346	while (cpumask_empty(parent->cpus_allowed) ||
4347			nodes_empty(parent->mems_allowed))
4348		parent = parent_cs(parent);
4349
4350	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
4351		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
4352		pr_cont_cgroup_name(cs->css.cgroup);
4353		pr_cont("\n");
4354	}
4355}
4356
4357static void
4358hotplug_update_tasks_legacy(struct cpuset *cs,
4359			    struct cpumask *new_cpus, nodemask_t *new_mems,
4360			    bool cpus_updated, bool mems_updated)
4361{
4362	bool is_empty;
4363
4364	spin_lock_irq(&callback_lock);
4365	cpumask_copy(cs->cpus_allowed, new_cpus);
4366	cpumask_copy(cs->effective_cpus, new_cpus);
4367	cs->mems_allowed = *new_mems;
4368	cs->effective_mems = *new_mems;
4369	spin_unlock_irq(&callback_lock);
4370
4371	/*
4372	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
4373	 * as the tasks will be migrated to an ancestor.
4374	 */
4375	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
4376		update_tasks_cpumask(cs, new_cpus);
4377	if (mems_updated && !nodes_empty(cs->mems_allowed))
4378		update_tasks_nodemask(cs);
4379
4380	is_empty = cpumask_empty(cs->cpus_allowed) ||
4381		   nodes_empty(cs->mems_allowed);
4382
4383	/*
4384	 * Move tasks to the nearest ancestor with execution resources,
4385	 * This is full cgroup operation which will also call back into
4386	 * cpuset. Should be done outside any lock.
4387	 */
4388	if (is_empty) {
4389		mutex_unlock(&cpuset_mutex);
4390		remove_tasks_in_empty_cpuset(cs);
4391		mutex_lock(&cpuset_mutex);
4392	}
4393}
4394
4395static void
4396hotplug_update_tasks(struct cpuset *cs,
4397		     struct cpumask *new_cpus, nodemask_t *new_mems,
4398		     bool cpus_updated, bool mems_updated)
4399{
4400	/* A partition root is allowed to have empty effective cpus */
4401	if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
4402		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
4403	if (nodes_empty(*new_mems))
4404		*new_mems = parent_cs(cs)->effective_mems;
4405
4406	spin_lock_irq(&callback_lock);
4407	cpumask_copy(cs->effective_cpus, new_cpus);
4408	cs->effective_mems = *new_mems;
4409	spin_unlock_irq(&callback_lock);
4410
4411	if (cpus_updated)
4412		update_tasks_cpumask(cs, new_cpus);
4413	if (mems_updated)
4414		update_tasks_nodemask(cs);
4415}
4416
4417static bool force_rebuild;
4418
4419void cpuset_force_rebuild(void)
4420{
4421	force_rebuild = true;
4422}
4423
4424/*
4425 * Attempt to acquire a cpus_read_lock while a hotplug operation may be in
4426 * progress.
4427 * Return: true if successful, false otherwise
4428 *
4429 * To avoid circular lock dependency between cpuset_mutex and cpus_read_lock,
4430 * cpus_read_trylock() is used here to acquire the lock.
4431 */
4432static bool cpuset_hotplug_cpus_read_trylock(void)
4433{
4434	int retries = 0;
4435
4436	while (!cpus_read_trylock()) {
4437		/*
4438		 * CPU hotplug still in progress. Retry 5 times
4439		 * with a 10ms wait before bailing out.
4440		 */
4441		if (++retries > 5)
4442			return false;
4443		msleep(10);
4444	}
4445	return true;
4446}
4447
4448/**
4449 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
4450 * @cs: cpuset in interest
4451 * @tmp: the tmpmasks structure pointer
4452 *
4453 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
4454 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
4455 * all its tasks are moved to the nearest ancestor with both resources.
4456 */
4457static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
4458{
4459	static cpumask_t new_cpus;
4460	static nodemask_t new_mems;
4461	bool cpus_updated;
4462	bool mems_updated;
4463	bool remote;
4464	int partcmd = -1;
4465	struct cpuset *parent;
4466retry:
4467	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
4468
4469	mutex_lock(&cpuset_mutex);
4470
4471	/*
4472	 * We have raced with task attaching. We wait until attaching
4473	 * is finished, so we won't attach a task to an empty cpuset.
4474	 */
4475	if (cs->attach_in_progress) {
4476		mutex_unlock(&cpuset_mutex);
4477		goto retry;
4478	}
4479
4480	parent = parent_cs(cs);
4481	compute_effective_cpumask(&new_cpus, cs, parent);
4482	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
4483
4484	if (!tmp || !cs->partition_root_state)
4485		goto update_tasks;
4486
4487	/*
4488	 * Compute effective_cpus for valid partition root, may invalidate
4489	 * child partition roots if necessary.
4490	 */
4491	remote = is_remote_partition(cs);
4492	if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
4493		compute_partition_effective_cpumask(cs, &new_cpus);
4494
4495	if (remote && cpumask_empty(&new_cpus) &&
4496	    partition_is_populated(cs, NULL) &&
4497	    cpuset_hotplug_cpus_read_trylock()) {
4498		remote_partition_disable(cs, tmp);
4499		compute_effective_cpumask(&new_cpus, cs, parent);
4500		remote = false;
4501		cpuset_force_rebuild();
4502		cpus_read_unlock();
4503	}
4504
4505	/*
4506	 * Force the partition to become invalid if either one of
4507	 * the following conditions hold:
4508	 * 1) empty effective cpus but not valid empty partition.
4509	 * 2) parent is invalid or doesn't grant any cpus to child
4510	 *    partitions.
4511	 */
4512	if (is_local_partition(cs) && (!is_partition_valid(parent) ||
4513				tasks_nocpu_error(parent, cs, &new_cpus)))
4514		partcmd = partcmd_invalidate;
4515	/*
4516	 * On the other hand, an invalid partition root may be transitioned
4517	 * back to a regular one.
4518	 */
4519	else if (is_partition_valid(parent) && is_partition_invalid(cs))
4520		partcmd = partcmd_update;
4521
4522	/*
4523	 * cpus_read_lock needs to be held before calling
4524	 * update_parent_effective_cpumask(). To avoid circular lock
4525	 * dependency between cpuset_mutex and cpus_read_lock,
4526	 * cpus_read_trylock() is used here to acquire the lock.
4527	 */
4528	if (partcmd >= 0) {
4529		if (!cpuset_hotplug_cpus_read_trylock())
4530			goto update_tasks;
4531
4532		update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4533		cpus_read_unlock();
4534		if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4535			compute_partition_effective_cpumask(cs, &new_cpus);
4536			cpuset_force_rebuild();
4537		}
4538	}
4539
4540update_tasks:
4541	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4542	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4543	if (!cpus_updated && !mems_updated)
4544		goto unlock;	/* Hotplug doesn't affect this cpuset */
4545
4546	if (mems_updated)
4547		check_insane_mems_config(&new_mems);
4548
4549	if (is_in_v2_mode())
4550		hotplug_update_tasks(cs, &new_cpus, &new_mems,
4551				     cpus_updated, mems_updated);
4552	else
4553		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
4554					    cpus_updated, mems_updated);
4555
4556unlock:
4557	mutex_unlock(&cpuset_mutex);
4558}
4559
4560/**
4561 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
4562 * @work: unused
4563 *
4564 * This function is called after either CPU or memory configuration has
4565 * changed and updates cpuset accordingly.  The top_cpuset is always
4566 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4567 * order to make cpusets transparent (of no affect) on systems that are
4568 * actively using CPU hotplug but making no active use of cpusets.
4569 *
4570 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
4571 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4572 * all descendants.
4573 *
4574 * Note that CPU offlining during suspend is ignored.  We don't modify
4575 * cpusets across suspend/resume cycles at all.
4576 */
4577static void cpuset_hotplug_workfn(struct work_struct *work)
4578{
4579	static cpumask_t new_cpus;
4580	static nodemask_t new_mems;
4581	bool cpus_updated, mems_updated;
4582	bool on_dfl = is_in_v2_mode();
4583	struct tmpmasks tmp, *ptmp = NULL;
4584
4585	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
4586		ptmp = &tmp;
4587
4588	mutex_lock(&cpuset_mutex);
4589
4590	/* fetch the available cpus/mems and find out which changed how */
4591	cpumask_copy(&new_cpus, cpu_active_mask);
4592	new_mems = node_states[N_MEMORY];
4593
4594	/*
4595	 * If subpartitions_cpus is populated, it is likely that the check
4596	 * below will produce a false positive on cpus_updated when the cpu
4597	 * list isn't changed. It is extra work, but it is better to be safe.
4598	 */
4599	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4600		       !cpumask_empty(subpartitions_cpus);
4601	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4602
4603	/*
4604	 * In the rare case that hotplug removes all the cpus in
4605	 * subpartitions_cpus, we assumed that cpus are updated.
4606	 */
4607	if (!cpus_updated && top_cpuset.nr_subparts)
4608		cpus_updated = true;
4609
4610	/* For v1, synchronize cpus_allowed to cpu_active_mask */
4611	if (cpus_updated) {
4612		spin_lock_irq(&callback_lock);
4613		if (!on_dfl)
4614			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4615		/*
4616		 * Make sure that CPUs allocated to child partitions
4617		 * do not show up in effective_cpus. If no CPU is left,
4618		 * we clear the subpartitions_cpus & let the child partitions
4619		 * fight for the CPUs again.
4620		 */
4621		if (!cpumask_empty(subpartitions_cpus)) {
4622			if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4623				top_cpuset.nr_subparts = 0;
4624				cpumask_clear(subpartitions_cpus);
4625			} else {
4626				cpumask_andnot(&new_cpus, &new_cpus,
4627					       subpartitions_cpus);
4628			}
4629		}
4630		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4631		spin_unlock_irq(&callback_lock);
4632		/* we don't mess with cpumasks of tasks in top_cpuset */
4633	}
4634
4635	/* synchronize mems_allowed to N_MEMORY */
4636	if (mems_updated) {
4637		spin_lock_irq(&callback_lock);
4638		if (!on_dfl)
4639			top_cpuset.mems_allowed = new_mems;
4640		top_cpuset.effective_mems = new_mems;
4641		spin_unlock_irq(&callback_lock);
4642		update_tasks_nodemask(&top_cpuset);
4643	}
4644
4645	mutex_unlock(&cpuset_mutex);
4646
4647	/* if cpus or mems changed, we need to propagate to descendants */
4648	if (cpus_updated || mems_updated) {
4649		struct cpuset *cs;
4650		struct cgroup_subsys_state *pos_css;
4651
4652		rcu_read_lock();
4653		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4654			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4655				continue;
4656			rcu_read_unlock();
4657
4658			cpuset_hotplug_update_tasks(cs, ptmp);
4659
4660			rcu_read_lock();
4661			css_put(&cs->css);
4662		}
4663		rcu_read_unlock();
4664	}
4665
4666	/* rebuild sched domains if cpus_allowed has changed */
4667	if (cpus_updated || force_rebuild) {
4668		force_rebuild = false;
4669		rebuild_sched_domains();
4670	}
4671
4672	free_cpumasks(NULL, ptmp);
4673}
4674
4675void cpuset_update_active_cpus(void)
4676{
4677	/*
4678	 * We're inside cpu hotplug critical region which usually nests
4679	 * inside cgroup synchronization.  Bounce actual hotplug processing
4680	 * to a work item to avoid reverse locking order.
4681	 */
4682	schedule_work(&cpuset_hotplug_work);
4683}
4684
4685void cpuset_wait_for_hotplug(void)
4686{
4687	flush_work(&cpuset_hotplug_work);
4688}
4689
4690/*
4691 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4692 * Call this routine anytime after node_states[N_MEMORY] changes.
4693 * See cpuset_update_active_cpus() for CPU hotplug handling.
4694 */
4695static int cpuset_track_online_nodes(struct notifier_block *self,
4696				unsigned long action, void *arg)
4697{
4698	schedule_work(&cpuset_hotplug_work);
4699	return NOTIFY_OK;
4700}
4701
4702/**
4703 * cpuset_init_smp - initialize cpus_allowed
4704 *
4705 * Description: Finish top cpuset after cpu, node maps are initialized
4706 */
4707void __init cpuset_init_smp(void)
4708{
4709	/*
4710	 * cpus_allowd/mems_allowed set to v2 values in the initial
4711	 * cpuset_bind() call will be reset to v1 values in another
4712	 * cpuset_bind() call when v1 cpuset is mounted.
4713	 */
4714	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4715
4716	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4717	top_cpuset.effective_mems = node_states[N_MEMORY];
4718
4719	hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4720
4721	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4722	BUG_ON(!cpuset_migrate_mm_wq);
4723}
4724
4725/**
4726 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
4727 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4728 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4729 *
4730 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4731 * attached to the specified @tsk.  Guaranteed to return some non-empty
4732 * subset of cpu_online_mask, even if this means going outside the
4733 * tasks cpuset, except when the task is in the top cpuset.
4734 **/
4735
4736void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4737{
4738	unsigned long flags;
4739	struct cpuset *cs;
4740
4741	spin_lock_irqsave(&callback_lock, flags);
4742	rcu_read_lock();
4743
4744	cs = task_cs(tsk);
4745	if (cs != &top_cpuset)
4746		guarantee_online_cpus(tsk, pmask);
4747	/*
4748	 * Tasks in the top cpuset won't get update to their cpumasks
4749	 * when a hotplug online/offline event happens. So we include all
4750	 * offline cpus in the allowed cpu list.
4751	 */
4752	if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4753		const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4754
4755		/*
4756		 * We first exclude cpus allocated to partitions. If there is no
4757		 * allowable online cpu left, we fall back to all possible cpus.
4758		 */
4759		cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4760		if (!cpumask_intersects(pmask, cpu_online_mask))
4761			cpumask_copy(pmask, possible_mask);
4762	}
4763
4764	rcu_read_unlock();
4765	spin_unlock_irqrestore(&callback_lock, flags);
4766}
4767
4768/**
4769 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4770 * @tsk: pointer to task_struct with which the scheduler is struggling
4771 *
4772 * Description: In the case that the scheduler cannot find an allowed cpu in
4773 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4774 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4775 * which will not contain a sane cpumask during cases such as cpu hotplugging.
4776 * This is the absolute last resort for the scheduler and it is only used if
4777 * _every_ other avenue has been traveled.
4778 *
4779 * Returns true if the affinity of @tsk was changed, false otherwise.
4780 **/
4781
4782bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4783{
4784	const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4785	const struct cpumask *cs_mask;
4786	bool changed = false;
4787
4788	rcu_read_lock();
4789	cs_mask = task_cs(tsk)->cpus_allowed;
4790	if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4791		do_set_cpus_allowed(tsk, cs_mask);
4792		changed = true;
4793	}
4794	rcu_read_unlock();
4795
4796	/*
4797	 * We own tsk->cpus_allowed, nobody can change it under us.
4798	 *
4799	 * But we used cs && cs->cpus_allowed lockless and thus can
4800	 * race with cgroup_attach_task() or update_cpumask() and get
4801	 * the wrong tsk->cpus_allowed. However, both cases imply the
4802	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4803	 * which takes task_rq_lock().
4804	 *
4805	 * If we are called after it dropped the lock we must see all
4806	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4807	 * set any mask even if it is not right from task_cs() pov,
4808	 * the pending set_cpus_allowed_ptr() will fix things.
4809	 *
4810	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4811	 * if required.
4812	 */
4813	return changed;
4814}
4815
4816void __init cpuset_init_current_mems_allowed(void)
4817{
4818	nodes_setall(current->mems_allowed);
4819}
4820
4821/**
4822 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4823 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4824 *
4825 * Description: Returns the nodemask_t mems_allowed of the cpuset
4826 * attached to the specified @tsk.  Guaranteed to return some non-empty
4827 * subset of node_states[N_MEMORY], even if this means going outside the
4828 * tasks cpuset.
4829 **/
4830
4831nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4832{
4833	nodemask_t mask;
4834	unsigned long flags;
4835
4836	spin_lock_irqsave(&callback_lock, flags);
4837	rcu_read_lock();
4838	guarantee_online_mems(task_cs(tsk), &mask);
4839	rcu_read_unlock();
4840	spin_unlock_irqrestore(&callback_lock, flags);
4841
4842	return mask;
4843}
4844
4845/**
4846 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4847 * @nodemask: the nodemask to be checked
4848 *
4849 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4850 */
4851int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4852{
4853	return nodes_intersects(*nodemask, current->mems_allowed);
4854}
4855
4856/*
4857 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4858 * mem_hardwall ancestor to the specified cpuset.  Call holding
4859 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
4860 * (an unusual configuration), then returns the root cpuset.
4861 */
4862static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4863{
4864	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4865		cs = parent_cs(cs);
4866	return cs;
4867}
4868
4869/*
4870 * cpuset_node_allowed - Can we allocate on a memory node?
4871 * @node: is this an allowed node?
4872 * @gfp_mask: memory allocation flags
4873 *
4874 * If we're in interrupt, yes, we can always allocate.  If @node is set in
4875 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
4876 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4877 * yes.  If current has access to memory reserves as an oom victim, yes.
4878 * Otherwise, no.
4879 *
4880 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4881 * and do not allow allocations outside the current tasks cpuset
4882 * unless the task has been OOM killed.
4883 * GFP_KERNEL allocations are not so marked, so can escape to the
4884 * nearest enclosing hardwalled ancestor cpuset.
4885 *
4886 * Scanning up parent cpusets requires callback_lock.  The
4887 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4888 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4889 * current tasks mems_allowed came up empty on the first pass over
4890 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
4891 * cpuset are short of memory, might require taking the callback_lock.
4892 *
4893 * The first call here from mm/page_alloc:get_page_from_freelist()
4894 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4895 * so no allocation on a node outside the cpuset is allowed (unless
4896 * in interrupt, of course).
4897 *
4898 * The second pass through get_page_from_freelist() doesn't even call
4899 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
4900 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4901 * in alloc_flags.  That logic and the checks below have the combined
4902 * affect that:
4903 *	in_interrupt - any node ok (current task context irrelevant)
4904 *	GFP_ATOMIC   - any node ok
4905 *	tsk_is_oom_victim   - any node ok
4906 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
4907 *	GFP_USER     - only nodes in current tasks mems allowed ok.
4908 */
4909bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4910{
4911	struct cpuset *cs;		/* current cpuset ancestors */
4912	bool allowed;			/* is allocation in zone z allowed? */
4913	unsigned long flags;
4914
4915	if (in_interrupt())
4916		return true;
4917	if (node_isset(node, current->mems_allowed))
4918		return true;
4919	/*
4920	 * Allow tasks that have access to memory reserves because they have
4921	 * been OOM killed to get memory anywhere.
4922	 */
4923	if (unlikely(tsk_is_oom_victim(current)))
4924		return true;
4925	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
4926		return false;
4927
4928	if (current->flags & PF_EXITING) /* Let dying task have memory */
4929		return true;
4930
4931	/* Not hardwall and node outside mems_allowed: scan up cpusets */
4932	spin_lock_irqsave(&callback_lock, flags);
4933
4934	rcu_read_lock();
4935	cs = nearest_hardwall_ancestor(task_cs(current));
4936	allowed = node_isset(node, cs->mems_allowed);
4937	rcu_read_unlock();
4938
4939	spin_unlock_irqrestore(&callback_lock, flags);
4940	return allowed;
4941}
4942
4943/**
4944 * cpuset_spread_node() - On which node to begin search for a page
4945 * @rotor: round robin rotor
4946 *
4947 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4948 * tasks in a cpuset with is_spread_page or is_spread_slab set),
4949 * and if the memory allocation used cpuset_mem_spread_node()
4950 * to determine on which node to start looking, as it will for
4951 * certain page cache or slab cache pages such as used for file
4952 * system buffers and inode caches, then instead of starting on the
4953 * local node to look for a free page, rather spread the starting
4954 * node around the tasks mems_allowed nodes.
4955 *
4956 * We don't have to worry about the returned node being offline
4957 * because "it can't happen", and even if it did, it would be ok.
4958 *
4959 * The routines calling guarantee_online_mems() are careful to
4960 * only set nodes in task->mems_allowed that are online.  So it
4961 * should not be possible for the following code to return an
4962 * offline node.  But if it did, that would be ok, as this routine
4963 * is not returning the node where the allocation must be, only
4964 * the node where the search should start.  The zonelist passed to
4965 * __alloc_pages() will include all nodes.  If the slab allocator
4966 * is passed an offline node, it will fall back to the local node.
4967 * See kmem_cache_alloc_node().
4968 */
4969static int cpuset_spread_node(int *rotor)
4970{
4971	return *rotor = next_node_in(*rotor, current->mems_allowed);
4972}
4973
4974/**
4975 * cpuset_mem_spread_node() - On which node to begin search for a file page
4976 */
4977int cpuset_mem_spread_node(void)
4978{
4979	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4980		current->cpuset_mem_spread_rotor =
4981			node_random(&current->mems_allowed);
4982
4983	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
4984}
4985
4986/**
4987 * cpuset_slab_spread_node() - On which node to begin search for a slab page
4988 */
4989int cpuset_slab_spread_node(void)
4990{
4991	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4992		current->cpuset_slab_spread_rotor =
4993			node_random(&current->mems_allowed);
4994
4995	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
4996}
4997EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4998
4999/**
5000 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
5001 * @tsk1: pointer to task_struct of some task.
5002 * @tsk2: pointer to task_struct of some other task.
5003 *
5004 * Description: Return true if @tsk1's mems_allowed intersects the
5005 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
5006 * one of the task's memory usage might impact the memory available
5007 * to the other.
5008 **/
5009
5010int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
5011				   const struct task_struct *tsk2)
5012{
5013	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
5014}
5015
5016/**
5017 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
5018 *
5019 * Description: Prints current's name, cpuset name, and cached copy of its
5020 * mems_allowed to the kernel log.
5021 */
5022void cpuset_print_current_mems_allowed(void)
5023{
5024	struct cgroup *cgrp;
5025
5026	rcu_read_lock();
5027
5028	cgrp = task_cs(current)->css.cgroup;
5029	pr_cont(",cpuset=");
5030	pr_cont_cgroup_name(cgrp);
5031	pr_cont(",mems_allowed=%*pbl",
5032		nodemask_pr_args(&current->mems_allowed));
5033
5034	rcu_read_unlock();
5035}
5036
5037/*
5038 * Collection of memory_pressure is suppressed unless
5039 * this flag is enabled by writing "1" to the special
5040 * cpuset file 'memory_pressure_enabled' in the root cpuset.
5041 */
5042
5043int cpuset_memory_pressure_enabled __read_mostly;
5044
5045/*
5046 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
5047 *
5048 * Keep a running average of the rate of synchronous (direct)
5049 * page reclaim efforts initiated by tasks in each cpuset.
5050 *
5051 * This represents the rate at which some task in the cpuset
5052 * ran low on memory on all nodes it was allowed to use, and
5053 * had to enter the kernels page reclaim code in an effort to
5054 * create more free memory by tossing clean pages or swapping
5055 * or writing dirty pages.
5056 *
5057 * Display to user space in the per-cpuset read-only file
5058 * "memory_pressure".  Value displayed is an integer
5059 * representing the recent rate of entry into the synchronous
5060 * (direct) page reclaim by any task attached to the cpuset.
5061 */
5062
5063void __cpuset_memory_pressure_bump(void)
5064{
5065	rcu_read_lock();
5066	fmeter_markevent(&task_cs(current)->fmeter);
5067	rcu_read_unlock();
5068}
5069
5070#ifdef CONFIG_PROC_PID_CPUSET
5071/*
5072 * proc_cpuset_show()
5073 *  - Print tasks cpuset path into seq_file.
5074 *  - Used for /proc/<pid>/cpuset.
5075 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
5076 *    doesn't really matter if tsk->cpuset changes after we read it,
5077 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
5078 *    anyway.
5079 */
5080int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
5081		     struct pid *pid, struct task_struct *tsk)
5082{
5083	char *buf;
5084	struct cgroup_subsys_state *css;
5085	int retval;
5086
5087	retval = -ENOMEM;
5088	buf = kmalloc(PATH_MAX, GFP_KERNEL);
5089	if (!buf)
5090		goto out;
5091
5092	css = task_get_css(tsk, cpuset_cgrp_id);
5093	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
5094				current->nsproxy->cgroup_ns);
5095	css_put(css);
5096	if (retval == -E2BIG)
5097		retval = -ENAMETOOLONG;
5098	if (retval < 0)
5099		goto out_free;
5100	seq_puts(m, buf);
5101	seq_putc(m, '\n');
5102	retval = 0;
5103out_free:
5104	kfree(buf);
5105out:
5106	return retval;
5107}
5108#endif /* CONFIG_PROC_PID_CPUSET */
5109
5110/* Display task mems_allowed in /proc/<pid>/status file. */
5111void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
5112{
5113	seq_printf(m, "Mems_allowed:\t%*pb\n",
5114		   nodemask_pr_args(&task->mems_allowed));
5115	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
5116		   nodemask_pr_args(&task->mems_allowed));
5117}
5118