1/*
2 *  Generic process-grouping system.
3 *
4 *  Based originally on the cpuset system, extracted by Paul Menage
5 *  Copyright (C) 2006 Google, Inc
6 *
7 *  Notifications support
8 *  Copyright (C) 2009 Nokia Corporation
9 *  Author: Kirill A. Shutemov
10 *
11 *  Copyright notices from the original cpuset code:
12 *  --------------------------------------------------
13 *  Copyright (C) 2003 BULL SA.
14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 *  Portions derived from Patrick Mochel's sysfs code.
17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 *  2003-10-10 Written by Simon Derr.
20 *  2003-10-22 Updates by Stephen Hemminger.
21 *  2004 May-July Rework by Paul Jackson.
22 *  ---------------------------------------------------
23 *
24 *  This file is subject to the terms and conditions of the GNU General Public
25 *  License.  See the file COPYING in the main directory of the Linux
26 *  distribution for more details.
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include "cgroup-internal.h"
32
33#include <linux/bpf-cgroup.h>
34#include <linux/cred.h>
35#include <linux/errno.h>
36#include <linux/init_task.h>
37#include <linux/kernel.h>
38#include <linux/magic.h>
39#include <linux/mutex.h>
40#include <linux/mount.h>
41#include <linux/pagemap.h>
42#include <linux/proc_fs.h>
43#include <linux/rcupdate.h>
44#include <linux/sched.h>
45#include <linux/sched/task.h>
46#include <linux/slab.h>
47#include <linux/spinlock.h>
48#include <linux/percpu-rwsem.h>
49#include <linux/string.h>
50#include <linux/hashtable.h>
51#include <linux/idr.h>
52#include <linux/kthread.h>
53#include <linux/atomic.h>
54#include <linux/cpuset.h>
55#include <linux/proc_ns.h>
56#include <linux/nsproxy.h>
57#include <linux/file.h>
58#include <linux/fs_parser.h>
59#include <linux/sched/cputime.h>
60#include <linux/sched/deadline.h>
61#include <linux/psi.h>
62#include <net/sock.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/cgroup.h>
66
67#define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
68					 MAX_CFTYPE_NAME + 2)
69/* let's not notify more than 100 times per second */
70#define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
71
72/*
73 * To avoid confusing the compiler (and generating warnings) with code
74 * that attempts to access what would be a 0-element array (i.e. sized
75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76 * constant expression can be added.
77 */
78#define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
79
80/*
81 * cgroup_mutex is the master lock.  Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
84 * css_set_lock protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
89 */
90DEFINE_MUTEX(cgroup_mutex);
91DEFINE_SPINLOCK(css_set_lock);
92
93#ifdef CONFIG_PROVE_RCU
94EXPORT_SYMBOL_GPL(cgroup_mutex);
95EXPORT_SYMBOL_GPL(css_set_lock);
96#endif
97
98DEFINE_SPINLOCK(trace_cgroup_path_lock);
99char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100static bool cgroup_debug __read_mostly;
101
102/*
103 * Protects cgroup_idr and css_idr so that IDs can be released without
104 * grabbing cgroup_mutex.
105 */
106static DEFINE_SPINLOCK(cgroup_idr_lock);
107
108/*
109 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
110 * against file removal/re-creation across css hiding.
111 */
112static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113
114DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115
116#define cgroup_assert_mutex_or_rcu_locked()				\
117	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
118			   !lockdep_is_held(&cgroup_mutex),		\
119			   "cgroup_mutex or RCU read lock required");
120
121/*
122 * cgroup destruction makes heavy use of work items and there can be a lot
123 * of concurrent destructions.  Use a separate workqueue so that cgroup
124 * destruction work items don't end up filling up max_active of system_wq
125 * which may lead to deadlock.
126 */
127static struct workqueue_struct *cgroup_destroy_wq;
128
129/* generate an array of cgroup subsystem pointers */
130#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131struct cgroup_subsys *cgroup_subsys[] = {
132#include <linux/cgroup_subsys.h>
133};
134#undef SUBSYS
135
136/* array of cgroup subsystem names */
137#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138static const char *cgroup_subsys_name[] = {
139#include <linux/cgroup_subsys.h>
140};
141#undef SUBSYS
142
143/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144#define SUBSYS(_x)								\
145	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
146	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
147	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
148	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149#include <linux/cgroup_subsys.h>
150#undef SUBSYS
151
152#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153static struct static_key_true *cgroup_subsys_enabled_key[] = {
154#include <linux/cgroup_subsys.h>
155};
156#undef SUBSYS
157
158#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160#include <linux/cgroup_subsys.h>
161};
162#undef SUBSYS
163
164static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165
166/* the default hierarchy */
167struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169
170/*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time.  This is for backward compatibility.
173 */
174static bool cgrp_dfl_visible;
175
176/* some controllers are not supported in the default hierarchy */
177static u16 cgrp_dfl_inhibit_ss_mask;
178
179/* some controllers are implicitly enabled on the default hierarchy */
180static u16 cgrp_dfl_implicit_ss_mask;
181
182/* some controllers can be threaded on the default hierarchy */
183static u16 cgrp_dfl_threaded_ss_mask;
184
185/* The list of hierarchy roots */
186LIST_HEAD(cgroup_roots);
187static int cgroup_root_count;
188
189/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190static DEFINE_IDR(cgroup_hierarchy_idr);
191
192/*
193 * Assign a monotonically increasing serial number to csses.  It guarantees
194 * cgroups with bigger numbers are newer than those with smaller numbers.
195 * Also, as csses are always appended to the parent's ->children list, it
196 * guarantees that sibling csses are always sorted in the ascending serial
197 * number order on the list.  Protected by cgroup_mutex.
198 */
199static u64 css_serial_nr_next = 1;
200
201/*
202 * These bitmasks identify subsystems with specific features to avoid
203 * having to do iterative checks repeatedly.
204 */
205static u16 have_fork_callback __read_mostly;
206static u16 have_exit_callback __read_mostly;
207static u16 have_release_callback __read_mostly;
208static u16 have_canfork_callback __read_mostly;
209
210static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211
212/* cgroup namespace for init task */
213struct cgroup_namespace init_cgroup_ns = {
214	.ns.count	= REFCOUNT_INIT(2),
215	.user_ns	= &init_user_ns,
216	.ns.ops		= &cgroupns_operations,
217	.ns.inum	= PROC_CGROUP_INIT_INO,
218	.root_cset	= &init_css_set,
219};
220
221static struct file_system_type cgroup2_fs_type;
222static struct cftype cgroup_base_files[];
223static struct cftype cgroup_psi_files[];
224
225/* cgroup optional features */
226enum cgroup_opt_features {
227#ifdef CONFIG_PSI
228	OPT_FEATURE_PRESSURE,
229#endif
230	OPT_FEATURE_COUNT
231};
232
233static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234#ifdef CONFIG_PSI
235	"pressure",
236#endif
237};
238
239static u16 cgroup_feature_disable_mask __read_mostly;
240
241static int cgroup_apply_control(struct cgroup *cgrp);
242static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243static void css_task_iter_skip(struct css_task_iter *it,
244			       struct task_struct *task);
245static int cgroup_destroy_locked(struct cgroup *cgrp);
246static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247					      struct cgroup_subsys *ss);
248static void css_release(struct percpu_ref *ref);
249static void kill_css(struct cgroup_subsys_state *css);
250static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251			      struct cgroup *cgrp, struct cftype cfts[],
252			      bool is_add);
253
254#ifdef CONFIG_DEBUG_CGROUP_REF
255#define CGROUP_REF_FN_ATTRS	noinline
256#define CGROUP_REF_EXPORT(fn)	EXPORT_SYMBOL_GPL(fn);
257#include <linux/cgroup_refcnt.h>
258#endif
259
260/**
261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262 * @ssid: subsys ID of interest
263 *
264 * cgroup_subsys_enabled() can only be used with literal subsys names which
265 * is fine for individual subsystems but unsuitable for cgroup core.  This
266 * is slower static_key_enabled() based test indexed by @ssid.
267 */
268bool cgroup_ssid_enabled(int ssid)
269{
270	if (!CGROUP_HAS_SUBSYS_CONFIG)
271		return false;
272
273	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274}
275
276/**
277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278 * @cgrp: the cgroup of interest
279 *
280 * The default hierarchy is the v2 interface of cgroup and this function
281 * can be used to test whether a cgroup is on the default hierarchy for
282 * cases where a subsystem should behave differently depending on the
283 * interface version.
284 *
285 * List of changed behaviors:
286 *
287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288 *   and "name" are disallowed.
289 *
290 * - When mounting an existing superblock, mount options should match.
291 *
292 * - rename(2) is disallowed.
293 *
294 * - "tasks" is removed.  Everything should be at process granularity.  Use
295 *   "cgroup.procs" instead.
296 *
297 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
298 *   recycled in-between reads.
299 *
300 * - "release_agent" and "notify_on_release" are removed.  Replacement
301 *   notification mechanism will be implemented.
302 *
303 * - "cgroup.clone_children" is removed.
304 *
305 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
306 *   and its descendants contain no task; otherwise, 1.  The file also
307 *   generates kernfs notification which can be monitored through poll and
308 *   [di]notify when the value of the file changes.
309 *
310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311 *   take masks of ancestors with non-empty cpus/mems, instead of being
312 *   moved to an ancestor.
313 *
314 * - cpuset: a task can be moved into an empty cpuset, and again it takes
315 *   masks of ancestors.
316 *
317 * - blkcg: blk-throttle becomes properly hierarchical.
318 */
319bool cgroup_on_dfl(const struct cgroup *cgrp)
320{
321	return cgrp->root == &cgrp_dfl_root;
322}
323
324/* IDR wrappers which synchronize using cgroup_idr_lock */
325static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326			    gfp_t gfp_mask)
327{
328	int ret;
329
330	idr_preload(gfp_mask);
331	spin_lock_bh(&cgroup_idr_lock);
332	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333	spin_unlock_bh(&cgroup_idr_lock);
334	idr_preload_end();
335	return ret;
336}
337
338static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339{
340	void *ret;
341
342	spin_lock_bh(&cgroup_idr_lock);
343	ret = idr_replace(idr, ptr, id);
344	spin_unlock_bh(&cgroup_idr_lock);
345	return ret;
346}
347
348static void cgroup_idr_remove(struct idr *idr, int id)
349{
350	spin_lock_bh(&cgroup_idr_lock);
351	idr_remove(idr, id);
352	spin_unlock_bh(&cgroup_idr_lock);
353}
354
355static bool cgroup_has_tasks(struct cgroup *cgrp)
356{
357	return cgrp->nr_populated_csets;
358}
359
360static bool cgroup_is_threaded(struct cgroup *cgrp)
361{
362	return cgrp->dom_cgrp != cgrp;
363}
364
365/* can @cgrp host both domain and threaded children? */
366static bool cgroup_is_mixable(struct cgroup *cgrp)
367{
368	/*
369	 * Root isn't under domain level resource control exempting it from
370	 * the no-internal-process constraint, so it can serve as a thread
371	 * root and a parent of resource domains at the same time.
372	 */
373	return !cgroup_parent(cgrp);
374}
375
376/* can @cgrp become a thread root? Should always be true for a thread root */
377static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378{
379	/* mixables don't care */
380	if (cgroup_is_mixable(cgrp))
381		return true;
382
383	/* domain roots can't be nested under threaded */
384	if (cgroup_is_threaded(cgrp))
385		return false;
386
387	/* can only have either domain or threaded children */
388	if (cgrp->nr_populated_domain_children)
389		return false;
390
391	/* and no domain controllers can be enabled */
392	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393		return false;
394
395	return true;
396}
397
398/* is @cgrp root of a threaded subtree? */
399static bool cgroup_is_thread_root(struct cgroup *cgrp)
400{
401	/* thread root should be a domain */
402	if (cgroup_is_threaded(cgrp))
403		return false;
404
405	/* a domain w/ threaded children is a thread root */
406	if (cgrp->nr_threaded_children)
407		return true;
408
409	/*
410	 * A domain which has tasks and explicit threaded controllers
411	 * enabled is a thread root.
412	 */
413	if (cgroup_has_tasks(cgrp) &&
414	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415		return true;
416
417	return false;
418}
419
420/* a domain which isn't connected to the root w/o brekage can't be used */
421static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422{
423	/* the cgroup itself can be a thread root */
424	if (cgroup_is_threaded(cgrp))
425		return false;
426
427	/* but the ancestors can't be unless mixable */
428	while ((cgrp = cgroup_parent(cgrp))) {
429		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430			return false;
431		if (cgroup_is_threaded(cgrp))
432			return false;
433	}
434
435	return true;
436}
437
438/* subsystems visibly enabled on a cgroup */
439static u16 cgroup_control(struct cgroup *cgrp)
440{
441	struct cgroup *parent = cgroup_parent(cgrp);
442	u16 root_ss_mask = cgrp->root->subsys_mask;
443
444	if (parent) {
445		u16 ss_mask = parent->subtree_control;
446
447		/* threaded cgroups can only have threaded controllers */
448		if (cgroup_is_threaded(cgrp))
449			ss_mask &= cgrp_dfl_threaded_ss_mask;
450		return ss_mask;
451	}
452
453	if (cgroup_on_dfl(cgrp))
454		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455				  cgrp_dfl_implicit_ss_mask);
456	return root_ss_mask;
457}
458
459/* subsystems enabled on a cgroup */
460static u16 cgroup_ss_mask(struct cgroup *cgrp)
461{
462	struct cgroup *parent = cgroup_parent(cgrp);
463
464	if (parent) {
465		u16 ss_mask = parent->subtree_ss_mask;
466
467		/* threaded cgroups can only have threaded controllers */
468		if (cgroup_is_threaded(cgrp))
469			ss_mask &= cgrp_dfl_threaded_ss_mask;
470		return ss_mask;
471	}
472
473	return cgrp->root->subsys_mask;
474}
475
476/**
477 * cgroup_css - obtain a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480 *
481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
482 * function must be called either under cgroup_mutex or rcu_read_lock() and
483 * the caller is responsible for pinning the returned css if it wants to
484 * keep accessing it outside the said locks.  This function may return
485 * %NULL if @cgrp doesn't have @subsys_id enabled.
486 */
487static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488					      struct cgroup_subsys *ss)
489{
490	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491		return rcu_dereference_check(cgrp->subsys[ss->id],
492					lockdep_is_held(&cgroup_mutex));
493	else
494		return &cgrp->self;
495}
496
497/**
498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501 *
502 * Similar to cgroup_css() but returns the effective css, which is defined
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
506 */
507static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508							struct cgroup_subsys *ss)
509{
510	lockdep_assert_held(&cgroup_mutex);
511
512	if (!ss)
513		return &cgrp->self;
514
515	/*
516	 * This function is used while updating css associations and thus
517	 * can't test the csses directly.  Test ss_mask.
518	 */
519	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520		cgrp = cgroup_parent(cgrp);
521		if (!cgrp)
522			return NULL;
523	}
524
525	return cgroup_css(cgrp, ss);
526}
527
528/**
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
532 *
533 * Find and get the effective css of @cgrp for @ss.  The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
537 *
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsibility to try get a reference for it.
540 */
541struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542					 struct cgroup_subsys *ss)
543{
544	struct cgroup_subsys_state *css;
545
546	if (!CGROUP_HAS_SUBSYS_CONFIG)
547		return NULL;
548
549	do {
550		css = cgroup_css(cgrp, ss);
551
552		if (css)
553			return css;
554		cgrp = cgroup_parent(cgrp);
555	} while (cgrp);
556
557	return init_css_set.subsys[ss->id];
558}
559
560/**
561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562 * @cgrp: the cgroup of interest
563 * @ss: the subsystem of interest
564 *
565 * Find and get the effective css of @cgrp for @ss.  The effective css is
566 * defined as the matching css of the nearest ancestor including self which
567 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
568 * the root css is returned, so this function always returns a valid css.
569 * The returned css must be put using css_put().
570 */
571struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572					     struct cgroup_subsys *ss)
573{
574	struct cgroup_subsys_state *css;
575
576	if (!CGROUP_HAS_SUBSYS_CONFIG)
577		return NULL;
578
579	rcu_read_lock();
580
581	do {
582		css = cgroup_css(cgrp, ss);
583
584		if (css && css_tryget_online(css))
585			goto out_unlock;
586		cgrp = cgroup_parent(cgrp);
587	} while (cgrp);
588
589	css = init_css_set.subsys[ss->id];
590	css_get(css);
591out_unlock:
592	rcu_read_unlock();
593	return css;
594}
595EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596
597static void cgroup_get_live(struct cgroup *cgrp)
598{
599	WARN_ON_ONCE(cgroup_is_dead(cgrp));
600	cgroup_get(cgrp);
601}
602
603/**
604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605 * is responsible for taking the css_set_lock.
606 * @cgrp: the cgroup in question
607 */
608int __cgroup_task_count(const struct cgroup *cgrp)
609{
610	int count = 0;
611	struct cgrp_cset_link *link;
612
613	lockdep_assert_held(&css_set_lock);
614
615	list_for_each_entry(link, &cgrp->cset_links, cset_link)
616		count += link->cset->nr_tasks;
617
618	return count;
619}
620
621/**
622 * cgroup_task_count - count the number of tasks in a cgroup.
623 * @cgrp: the cgroup in question
624 */
625int cgroup_task_count(const struct cgroup *cgrp)
626{
627	int count;
628
629	spin_lock_irq(&css_set_lock);
630	count = __cgroup_task_count(cgrp);
631	spin_unlock_irq(&css_set_lock);
632
633	return count;
634}
635
636struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
637{
638	struct cgroup *cgrp = of->kn->parent->priv;
639	struct cftype *cft = of_cft(of);
640
641	/*
642	 * This is open and unprotected implementation of cgroup_css().
643	 * seq_css() is only called from a kernfs file operation which has
644	 * an active reference on the file.  Because all the subsystem
645	 * files are drained before a css is disassociated with a cgroup,
646	 * the matching css from the cgroup's subsys table is guaranteed to
647	 * be and stay valid until the enclosing operation is complete.
648	 */
649	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
650		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
651	else
652		return &cgrp->self;
653}
654EXPORT_SYMBOL_GPL(of_css);
655
656/**
657 * for_each_css - iterate all css's of a cgroup
658 * @css: the iteration cursor
659 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
660 * @cgrp: the target cgroup to iterate css's of
661 *
662 * Should be called under cgroup_mutex.
663 */
664#define for_each_css(css, ssid, cgrp)					\
665	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
666		if (!((css) = rcu_dereference_check(			\
667				(cgrp)->subsys[(ssid)],			\
668				lockdep_is_held(&cgroup_mutex)))) { }	\
669		else
670
671/**
672 * do_each_subsys_mask - filter for_each_subsys with a bitmask
673 * @ss: the iteration cursor
674 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
675 * @ss_mask: the bitmask
676 *
677 * The block will only run for cases where the ssid-th bit (1 << ssid) of
678 * @ss_mask is set.
679 */
680#define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
681	unsigned long __ss_mask = (ss_mask);				\
682	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
683		(ssid) = 0;						\
684		break;							\
685	}								\
686	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
687		(ss) = cgroup_subsys[ssid];				\
688		{
689
690#define while_each_subsys_mask()					\
691		}							\
692	}								\
693} while (false)
694
695/* iterate over child cgrps, lock should be held throughout iteration */
696#define cgroup_for_each_live_child(child, cgrp)				\
697	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
698		if (({ lockdep_assert_held(&cgroup_mutex);		\
699		       cgroup_is_dead(child); }))			\
700			;						\
701		else
702
703/* walk live descendants in pre order */
704#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
705	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
706		if (({ lockdep_assert_held(&cgroup_mutex);		\
707		       (dsct) = (d_css)->cgroup;			\
708		       cgroup_is_dead(dsct); }))			\
709			;						\
710		else
711
712/* walk live descendants in postorder */
713#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
714	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
715		if (({ lockdep_assert_held(&cgroup_mutex);		\
716		       (dsct) = (d_css)->cgroup;			\
717		       cgroup_is_dead(dsct); }))			\
718			;						\
719		else
720
721/*
722 * The default css_set - used by init and its children prior to any
723 * hierarchies being mounted. It contains a pointer to the root state
724 * for each subsystem. Also used to anchor the list of css_sets. Not
725 * reference-counted, to improve performance when child cgroups
726 * haven't been created.
727 */
728struct css_set init_css_set = {
729	.refcount		= REFCOUNT_INIT(1),
730	.dom_cset		= &init_css_set,
731	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
732	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
733	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
734	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
735	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
736	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
737	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
738	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
739	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
740
741	/*
742	 * The following field is re-initialized when this cset gets linked
743	 * in cgroup_init().  However, let's initialize the field
744	 * statically too so that the default cgroup can be accessed safely
745	 * early during boot.
746	 */
747	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
748};
749
750static int css_set_count	= 1;	/* 1 for init_css_set */
751
752static bool css_set_threaded(struct css_set *cset)
753{
754	return cset->dom_cset != cset;
755}
756
757/**
758 * css_set_populated - does a css_set contain any tasks?
759 * @cset: target css_set
760 *
761 * css_set_populated() should be the same as !!cset->nr_tasks at steady
762 * state. However, css_set_populated() can be called while a task is being
763 * added to or removed from the linked list before the nr_tasks is
764 * properly updated. Hence, we can't just look at ->nr_tasks here.
765 */
766static bool css_set_populated(struct css_set *cset)
767{
768	lockdep_assert_held(&css_set_lock);
769
770	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
771}
772
773/**
774 * cgroup_update_populated - update the populated count of a cgroup
775 * @cgrp: the target cgroup
776 * @populated: inc or dec populated count
777 *
778 * One of the css_sets associated with @cgrp is either getting its first
779 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
780 * count is propagated towards root so that a given cgroup's
781 * nr_populated_children is zero iff none of its descendants contain any
782 * tasks.
783 *
784 * @cgrp's interface file "cgroup.populated" is zero if both
785 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
786 * 1 otherwise.  When the sum changes from or to zero, userland is notified
787 * that the content of the interface file has changed.  This can be used to
788 * detect when @cgrp and its descendants become populated or empty.
789 */
790static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
791{
792	struct cgroup *child = NULL;
793	int adj = populated ? 1 : -1;
794
795	lockdep_assert_held(&css_set_lock);
796
797	do {
798		bool was_populated = cgroup_is_populated(cgrp);
799
800		if (!child) {
801			cgrp->nr_populated_csets += adj;
802		} else {
803			if (cgroup_is_threaded(child))
804				cgrp->nr_populated_threaded_children += adj;
805			else
806				cgrp->nr_populated_domain_children += adj;
807		}
808
809		if (was_populated == cgroup_is_populated(cgrp))
810			break;
811
812		cgroup1_check_for_release(cgrp);
813		TRACE_CGROUP_PATH(notify_populated, cgrp,
814				  cgroup_is_populated(cgrp));
815		cgroup_file_notify(&cgrp->events_file);
816
817		child = cgrp;
818		cgrp = cgroup_parent(cgrp);
819	} while (cgrp);
820}
821
822/**
823 * css_set_update_populated - update populated state of a css_set
824 * @cset: target css_set
825 * @populated: whether @cset is populated or depopulated
826 *
827 * @cset is either getting the first task or losing the last.  Update the
828 * populated counters of all associated cgroups accordingly.
829 */
830static void css_set_update_populated(struct css_set *cset, bool populated)
831{
832	struct cgrp_cset_link *link;
833
834	lockdep_assert_held(&css_set_lock);
835
836	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
837		cgroup_update_populated(link->cgrp, populated);
838}
839
840/*
841 * @task is leaving, advance task iterators which are pointing to it so
842 * that they can resume at the next position.  Advancing an iterator might
843 * remove it from the list, use safe walk.  See css_task_iter_skip() for
844 * details.
845 */
846static void css_set_skip_task_iters(struct css_set *cset,
847				    struct task_struct *task)
848{
849	struct css_task_iter *it, *pos;
850
851	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
852		css_task_iter_skip(it, task);
853}
854
855/**
856 * css_set_move_task - move a task from one css_set to another
857 * @task: task being moved
858 * @from_cset: css_set @task currently belongs to (may be NULL)
859 * @to_cset: new css_set @task is being moved to (may be NULL)
860 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
861 *
862 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
863 * css_set, @from_cset can be NULL.  If @task is being disassociated
864 * instead of moved, @to_cset can be NULL.
865 *
866 * This function automatically handles populated counter updates and
867 * css_task_iter adjustments but the caller is responsible for managing
868 * @from_cset and @to_cset's reference counts.
869 */
870static void css_set_move_task(struct task_struct *task,
871			      struct css_set *from_cset, struct css_set *to_cset,
872			      bool use_mg_tasks)
873{
874	lockdep_assert_held(&css_set_lock);
875
876	if (to_cset && !css_set_populated(to_cset))
877		css_set_update_populated(to_cset, true);
878
879	if (from_cset) {
880		WARN_ON_ONCE(list_empty(&task->cg_list));
881
882		css_set_skip_task_iters(from_cset, task);
883		list_del_init(&task->cg_list);
884		if (!css_set_populated(from_cset))
885			css_set_update_populated(from_cset, false);
886	} else {
887		WARN_ON_ONCE(!list_empty(&task->cg_list));
888	}
889
890	if (to_cset) {
891		/*
892		 * We are synchronized through cgroup_threadgroup_rwsem
893		 * against PF_EXITING setting such that we can't race
894		 * against cgroup_exit()/cgroup_free() dropping the css_set.
895		 */
896		WARN_ON_ONCE(task->flags & PF_EXITING);
897
898		cgroup_move_task(task, to_cset);
899		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
900							     &to_cset->tasks);
901	}
902}
903
904/*
905 * hash table for cgroup groups. This improves the performance to find
906 * an existing css_set. This hash doesn't (currently) take into
907 * account cgroups in empty hierarchies.
908 */
909#define CSS_SET_HASH_BITS	7
910static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
911
912static unsigned long css_set_hash(struct cgroup_subsys_state **css)
913{
914	unsigned long key = 0UL;
915	struct cgroup_subsys *ss;
916	int i;
917
918	for_each_subsys(ss, i)
919		key += (unsigned long)css[i];
920	key = (key >> 16) ^ key;
921
922	return key;
923}
924
925void put_css_set_locked(struct css_set *cset)
926{
927	struct cgrp_cset_link *link, *tmp_link;
928	struct cgroup_subsys *ss;
929	int ssid;
930
931	lockdep_assert_held(&css_set_lock);
932
933	if (!refcount_dec_and_test(&cset->refcount))
934		return;
935
936	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
937
938	/* This css_set is dead. Unlink it and release cgroup and css refs */
939	for_each_subsys(ss, ssid) {
940		list_del(&cset->e_cset_node[ssid]);
941		css_put(cset->subsys[ssid]);
942	}
943	hash_del(&cset->hlist);
944	css_set_count--;
945
946	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
947		list_del(&link->cset_link);
948		list_del(&link->cgrp_link);
949		if (cgroup_parent(link->cgrp))
950			cgroup_put(link->cgrp);
951		kfree(link);
952	}
953
954	if (css_set_threaded(cset)) {
955		list_del(&cset->threaded_csets_node);
956		put_css_set_locked(cset->dom_cset);
957	}
958
959	kfree_rcu(cset, rcu_head);
960}
961
962/**
963 * compare_css_sets - helper function for find_existing_css_set().
964 * @cset: candidate css_set being tested
965 * @old_cset: existing css_set for a task
966 * @new_cgrp: cgroup that's being entered by the task
967 * @template: desired set of css pointers in css_set (pre-calculated)
968 *
969 * Returns true if "cset" matches "old_cset" except for the hierarchy
970 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
971 */
972static bool compare_css_sets(struct css_set *cset,
973			     struct css_set *old_cset,
974			     struct cgroup *new_cgrp,
975			     struct cgroup_subsys_state *template[])
976{
977	struct cgroup *new_dfl_cgrp;
978	struct list_head *l1, *l2;
979
980	/*
981	 * On the default hierarchy, there can be csets which are
982	 * associated with the same set of cgroups but different csses.
983	 * Let's first ensure that csses match.
984	 */
985	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
986		return false;
987
988
989	/* @cset's domain should match the default cgroup's */
990	if (cgroup_on_dfl(new_cgrp))
991		new_dfl_cgrp = new_cgrp;
992	else
993		new_dfl_cgrp = old_cset->dfl_cgrp;
994
995	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
996		return false;
997
998	/*
999	 * Compare cgroup pointers in order to distinguish between
1000	 * different cgroups in hierarchies.  As different cgroups may
1001	 * share the same effective css, this comparison is always
1002	 * necessary.
1003	 */
1004	l1 = &cset->cgrp_links;
1005	l2 = &old_cset->cgrp_links;
1006	while (1) {
1007		struct cgrp_cset_link *link1, *link2;
1008		struct cgroup *cgrp1, *cgrp2;
1009
1010		l1 = l1->next;
1011		l2 = l2->next;
1012		/* See if we reached the end - both lists are equal length. */
1013		if (l1 == &cset->cgrp_links) {
1014			BUG_ON(l2 != &old_cset->cgrp_links);
1015			break;
1016		} else {
1017			BUG_ON(l2 == &old_cset->cgrp_links);
1018		}
1019		/* Locate the cgroups associated with these links. */
1020		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1021		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1022		cgrp1 = link1->cgrp;
1023		cgrp2 = link2->cgrp;
1024		/* Hierarchies should be linked in the same order. */
1025		BUG_ON(cgrp1->root != cgrp2->root);
1026
1027		/*
1028		 * If this hierarchy is the hierarchy of the cgroup
1029		 * that's changing, then we need to check that this
1030		 * css_set points to the new cgroup; if it's any other
1031		 * hierarchy, then this css_set should point to the
1032		 * same cgroup as the old css_set.
1033		 */
1034		if (cgrp1->root == new_cgrp->root) {
1035			if (cgrp1 != new_cgrp)
1036				return false;
1037		} else {
1038			if (cgrp1 != cgrp2)
1039				return false;
1040		}
1041	}
1042	return true;
1043}
1044
1045/**
1046 * find_existing_css_set - init css array and find the matching css_set
1047 * @old_cset: the css_set that we're using before the cgroup transition
1048 * @cgrp: the cgroup that we're moving into
1049 * @template: out param for the new set of csses, should be clear on entry
1050 */
1051static struct css_set *find_existing_css_set(struct css_set *old_cset,
1052					struct cgroup *cgrp,
1053					struct cgroup_subsys_state **template)
1054{
1055	struct cgroup_root *root = cgrp->root;
1056	struct cgroup_subsys *ss;
1057	struct css_set *cset;
1058	unsigned long key;
1059	int i;
1060
1061	/*
1062	 * Build the set of subsystem state objects that we want to see in the
1063	 * new css_set. While subsystems can change globally, the entries here
1064	 * won't change, so no need for locking.
1065	 */
1066	for_each_subsys(ss, i) {
1067		if (root->subsys_mask & (1UL << i)) {
1068			/*
1069			 * @ss is in this hierarchy, so we want the
1070			 * effective css from @cgrp.
1071			 */
1072			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1073		} else {
1074			/*
1075			 * @ss is not in this hierarchy, so we don't want
1076			 * to change the css.
1077			 */
1078			template[i] = old_cset->subsys[i];
1079		}
1080	}
1081
1082	key = css_set_hash(template);
1083	hash_for_each_possible(css_set_table, cset, hlist, key) {
1084		if (!compare_css_sets(cset, old_cset, cgrp, template))
1085			continue;
1086
1087		/* This css_set matches what we need */
1088		return cset;
1089	}
1090
1091	/* No existing cgroup group matched */
1092	return NULL;
1093}
1094
1095static void free_cgrp_cset_links(struct list_head *links_to_free)
1096{
1097	struct cgrp_cset_link *link, *tmp_link;
1098
1099	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1100		list_del(&link->cset_link);
1101		kfree(link);
1102	}
1103}
1104
1105/**
1106 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1107 * @count: the number of links to allocate
1108 * @tmp_links: list_head the allocated links are put on
1109 *
1110 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1111 * through ->cset_link.  Returns 0 on success or -errno.
1112 */
1113static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1114{
1115	struct cgrp_cset_link *link;
1116	int i;
1117
1118	INIT_LIST_HEAD(tmp_links);
1119
1120	for (i = 0; i < count; i++) {
1121		link = kzalloc(sizeof(*link), GFP_KERNEL);
1122		if (!link) {
1123			free_cgrp_cset_links(tmp_links);
1124			return -ENOMEM;
1125		}
1126		list_add(&link->cset_link, tmp_links);
1127	}
1128	return 0;
1129}
1130
1131/**
1132 * link_css_set - a helper function to link a css_set to a cgroup
1133 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1134 * @cset: the css_set to be linked
1135 * @cgrp: the destination cgroup
1136 */
1137static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1138			 struct cgroup *cgrp)
1139{
1140	struct cgrp_cset_link *link;
1141
1142	BUG_ON(list_empty(tmp_links));
1143
1144	if (cgroup_on_dfl(cgrp))
1145		cset->dfl_cgrp = cgrp;
1146
1147	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1148	link->cset = cset;
1149	link->cgrp = cgrp;
1150
1151	/*
1152	 * Always add links to the tail of the lists so that the lists are
1153	 * in chronological order.
1154	 */
1155	list_move_tail(&link->cset_link, &cgrp->cset_links);
1156	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1157
1158	if (cgroup_parent(cgrp))
1159		cgroup_get_live(cgrp);
1160}
1161
1162/**
1163 * find_css_set - return a new css_set with one cgroup updated
1164 * @old_cset: the baseline css_set
1165 * @cgrp: the cgroup to be updated
1166 *
1167 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1168 * substituted into the appropriate hierarchy.
1169 */
1170static struct css_set *find_css_set(struct css_set *old_cset,
1171				    struct cgroup *cgrp)
1172{
1173	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1174	struct css_set *cset;
1175	struct list_head tmp_links;
1176	struct cgrp_cset_link *link;
1177	struct cgroup_subsys *ss;
1178	unsigned long key;
1179	int ssid;
1180
1181	lockdep_assert_held(&cgroup_mutex);
1182
1183	/* First see if we already have a cgroup group that matches
1184	 * the desired set */
1185	spin_lock_irq(&css_set_lock);
1186	cset = find_existing_css_set(old_cset, cgrp, template);
1187	if (cset)
1188		get_css_set(cset);
1189	spin_unlock_irq(&css_set_lock);
1190
1191	if (cset)
1192		return cset;
1193
1194	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1195	if (!cset)
1196		return NULL;
1197
1198	/* Allocate all the cgrp_cset_link objects that we'll need */
1199	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1200		kfree(cset);
1201		return NULL;
1202	}
1203
1204	refcount_set(&cset->refcount, 1);
1205	cset->dom_cset = cset;
1206	INIT_LIST_HEAD(&cset->tasks);
1207	INIT_LIST_HEAD(&cset->mg_tasks);
1208	INIT_LIST_HEAD(&cset->dying_tasks);
1209	INIT_LIST_HEAD(&cset->task_iters);
1210	INIT_LIST_HEAD(&cset->threaded_csets);
1211	INIT_HLIST_NODE(&cset->hlist);
1212	INIT_LIST_HEAD(&cset->cgrp_links);
1213	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1214	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1215	INIT_LIST_HEAD(&cset->mg_node);
1216
1217	/* Copy the set of subsystem state objects generated in
1218	 * find_existing_css_set() */
1219	memcpy(cset->subsys, template, sizeof(cset->subsys));
1220
1221	spin_lock_irq(&css_set_lock);
1222	/* Add reference counts and links from the new css_set. */
1223	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1224		struct cgroup *c = link->cgrp;
1225
1226		if (c->root == cgrp->root)
1227			c = cgrp;
1228		link_css_set(&tmp_links, cset, c);
1229	}
1230
1231	BUG_ON(!list_empty(&tmp_links));
1232
1233	css_set_count++;
1234
1235	/* Add @cset to the hash table */
1236	key = css_set_hash(cset->subsys);
1237	hash_add(css_set_table, &cset->hlist, key);
1238
1239	for_each_subsys(ss, ssid) {
1240		struct cgroup_subsys_state *css = cset->subsys[ssid];
1241
1242		list_add_tail(&cset->e_cset_node[ssid],
1243			      &css->cgroup->e_csets[ssid]);
1244		css_get(css);
1245	}
1246
1247	spin_unlock_irq(&css_set_lock);
1248
1249	/*
1250	 * If @cset should be threaded, look up the matching dom_cset and
1251	 * link them up.  We first fully initialize @cset then look for the
1252	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1253	 * to stay empty until we return.
1254	 */
1255	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1256		struct css_set *dcset;
1257
1258		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1259		if (!dcset) {
1260			put_css_set(cset);
1261			return NULL;
1262		}
1263
1264		spin_lock_irq(&css_set_lock);
1265		cset->dom_cset = dcset;
1266		list_add_tail(&cset->threaded_csets_node,
1267			      &dcset->threaded_csets);
1268		spin_unlock_irq(&css_set_lock);
1269	}
1270
1271	return cset;
1272}
1273
1274struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1275{
1276	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1277
1278	return root_cgrp->root;
1279}
1280
1281void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1282{
1283	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1284
1285	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1286	if (favor && !favoring) {
1287		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1288		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1289	} else if (!favor && favoring) {
1290		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1291		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1292	}
1293}
1294
1295static int cgroup_init_root_id(struct cgroup_root *root)
1296{
1297	int id;
1298
1299	lockdep_assert_held(&cgroup_mutex);
1300
1301	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1302	if (id < 0)
1303		return id;
1304
1305	root->hierarchy_id = id;
1306	return 0;
1307}
1308
1309static void cgroup_exit_root_id(struct cgroup_root *root)
1310{
1311	lockdep_assert_held(&cgroup_mutex);
1312
1313	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1314}
1315
1316void cgroup_free_root(struct cgroup_root *root)
1317{
1318	kfree_rcu(root, rcu);
1319}
1320
1321static void cgroup_destroy_root(struct cgroup_root *root)
1322{
1323	struct cgroup *cgrp = &root->cgrp;
1324	struct cgrp_cset_link *link, *tmp_link;
1325
1326	trace_cgroup_destroy_root(root);
1327
1328	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1329
1330	BUG_ON(atomic_read(&root->nr_cgrps));
1331	BUG_ON(!list_empty(&cgrp->self.children));
1332
1333	/* Rebind all subsystems back to the default hierarchy */
1334	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1335
1336	/*
1337	 * Release all the links from cset_links to this hierarchy's
1338	 * root cgroup
1339	 */
1340	spin_lock_irq(&css_set_lock);
1341
1342	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1343		list_del(&link->cset_link);
1344		list_del(&link->cgrp_link);
1345		kfree(link);
1346	}
1347
1348	spin_unlock_irq(&css_set_lock);
1349
1350	WARN_ON_ONCE(list_empty(&root->root_list));
1351	list_del_rcu(&root->root_list);
1352	cgroup_root_count--;
1353
1354	if (!have_favordynmods)
1355		cgroup_favor_dynmods(root, false);
1356
1357	cgroup_exit_root_id(root);
1358
1359	cgroup_unlock();
1360
1361	cgroup_rstat_exit(cgrp);
1362	kernfs_destroy_root(root->kf_root);
1363	cgroup_free_root(root);
1364}
1365
1366/*
1367 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1368 */
1369static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1370					    struct cgroup_root *root)
1371{
1372	struct cgroup *res_cgroup = NULL;
1373
1374	if (cset == &init_css_set) {
1375		res_cgroup = &root->cgrp;
1376	} else if (root == &cgrp_dfl_root) {
1377		res_cgroup = cset->dfl_cgrp;
1378	} else {
1379		struct cgrp_cset_link *link;
1380		lockdep_assert_held(&css_set_lock);
1381
1382		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1383			struct cgroup *c = link->cgrp;
1384
1385			if (c->root == root) {
1386				res_cgroup = c;
1387				break;
1388			}
1389		}
1390	}
1391
1392	/*
1393	 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1394	 * before we remove the cgroup root from the root_list. Consequently,
1395	 * when accessing a cgroup root, the cset_link may have already been
1396	 * freed, resulting in a NULL res_cgroup. However, by holding the
1397	 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1398	 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1399	 * check.
1400	 */
1401	return res_cgroup;
1402}
1403
1404/*
1405 * look up cgroup associated with current task's cgroup namespace on the
1406 * specified hierarchy
1407 */
1408static struct cgroup *
1409current_cgns_cgroup_from_root(struct cgroup_root *root)
1410{
1411	struct cgroup *res = NULL;
1412	struct css_set *cset;
1413
1414	lockdep_assert_held(&css_set_lock);
1415
1416	rcu_read_lock();
1417
1418	cset = current->nsproxy->cgroup_ns->root_cset;
1419	res = __cset_cgroup_from_root(cset, root);
1420
1421	rcu_read_unlock();
1422
1423	/*
1424	 * The namespace_sem is held by current, so the root cgroup can't
1425	 * be umounted. Therefore, we can ensure that the res is non-NULL.
1426	 */
1427	WARN_ON_ONCE(!res);
1428	return res;
1429}
1430
1431/*
1432 * Look up cgroup associated with current task's cgroup namespace on the default
1433 * hierarchy.
1434 *
1435 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1436 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1437 *   pointers.
1438 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1439 * - As a bonus returned cgrp is pinned with the current because it cannot
1440 *   switch cgroup_ns asynchronously.
1441 */
1442static struct cgroup *current_cgns_cgroup_dfl(void)
1443{
1444	struct css_set *cset;
1445
1446	if (current->nsproxy) {
1447		cset = current->nsproxy->cgroup_ns->root_cset;
1448		return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1449	} else {
1450		/*
1451		 * NOTE: This function may be called from bpf_cgroup_from_id()
1452		 * on a task which has already passed exit_task_namespaces() and
1453		 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1454		 * cgroups visible for lookups.
1455		 */
1456		return &cgrp_dfl_root.cgrp;
1457	}
1458}
1459
1460/* look up cgroup associated with given css_set on the specified hierarchy */
1461static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1462					    struct cgroup_root *root)
1463{
1464	lockdep_assert_held(&css_set_lock);
1465
1466	return __cset_cgroup_from_root(cset, root);
1467}
1468
1469/*
1470 * Return the cgroup for "task" from the given hierarchy. Must be
1471 * called with css_set_lock held to prevent task's groups from being modified.
1472 * Must be called with either cgroup_mutex or rcu read lock to prevent the
1473 * cgroup root from being destroyed.
1474 */
1475struct cgroup *task_cgroup_from_root(struct task_struct *task,
1476				     struct cgroup_root *root)
1477{
1478	/*
1479	 * No need to lock the task - since we hold css_set_lock the
1480	 * task can't change groups.
1481	 */
1482	return cset_cgroup_from_root(task_css_set(task), root);
1483}
1484
1485/*
1486 * A task must hold cgroup_mutex to modify cgroups.
1487 *
1488 * Any task can increment and decrement the count field without lock.
1489 * So in general, code holding cgroup_mutex can't rely on the count
1490 * field not changing.  However, if the count goes to zero, then only
1491 * cgroup_attach_task() can increment it again.  Because a count of zero
1492 * means that no tasks are currently attached, therefore there is no
1493 * way a task attached to that cgroup can fork (the other way to
1494 * increment the count).  So code holding cgroup_mutex can safely
1495 * assume that if the count is zero, it will stay zero. Similarly, if
1496 * a task holds cgroup_mutex on a cgroup with zero count, it
1497 * knows that the cgroup won't be removed, as cgroup_rmdir()
1498 * needs that mutex.
1499 *
1500 * A cgroup can only be deleted if both its 'count' of using tasks
1501 * is zero, and its list of 'children' cgroups is empty.  Since all
1502 * tasks in the system use _some_ cgroup, and since there is always at
1503 * least one task in the system (init, pid == 1), therefore, root cgroup
1504 * always has either children cgroups and/or using tasks.  So we don't
1505 * need a special hack to ensure that root cgroup cannot be deleted.
1506 *
1507 * P.S.  One more locking exception.  RCU is used to guard the
1508 * update of a tasks cgroup pointer by cgroup_attach_task()
1509 */
1510
1511static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1512
1513static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1514			      char *buf)
1515{
1516	struct cgroup_subsys *ss = cft->ss;
1517
1518	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1519	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1520		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1521
1522		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1523			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1524			 cft->name);
1525	} else {
1526		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1527	}
1528	return buf;
1529}
1530
1531/**
1532 * cgroup_file_mode - deduce file mode of a control file
1533 * @cft: the control file in question
1534 *
1535 * S_IRUGO for read, S_IWUSR for write.
1536 */
1537static umode_t cgroup_file_mode(const struct cftype *cft)
1538{
1539	umode_t mode = 0;
1540
1541	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1542		mode |= S_IRUGO;
1543
1544	if (cft->write_u64 || cft->write_s64 || cft->write) {
1545		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1546			mode |= S_IWUGO;
1547		else
1548			mode |= S_IWUSR;
1549	}
1550
1551	return mode;
1552}
1553
1554/**
1555 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1556 * @subtree_control: the new subtree_control mask to consider
1557 * @this_ss_mask: available subsystems
1558 *
1559 * On the default hierarchy, a subsystem may request other subsystems to be
1560 * enabled together through its ->depends_on mask.  In such cases, more
1561 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1562 *
1563 * This function calculates which subsystems need to be enabled if
1564 * @subtree_control is to be applied while restricted to @this_ss_mask.
1565 */
1566static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1567{
1568	u16 cur_ss_mask = subtree_control;
1569	struct cgroup_subsys *ss;
1570	int ssid;
1571
1572	lockdep_assert_held(&cgroup_mutex);
1573
1574	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1575
1576	while (true) {
1577		u16 new_ss_mask = cur_ss_mask;
1578
1579		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1580			new_ss_mask |= ss->depends_on;
1581		} while_each_subsys_mask();
1582
1583		/*
1584		 * Mask out subsystems which aren't available.  This can
1585		 * happen only if some depended-upon subsystems were bound
1586		 * to non-default hierarchies.
1587		 */
1588		new_ss_mask &= this_ss_mask;
1589
1590		if (new_ss_mask == cur_ss_mask)
1591			break;
1592		cur_ss_mask = new_ss_mask;
1593	}
1594
1595	return cur_ss_mask;
1596}
1597
1598/**
1599 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1600 * @kn: the kernfs_node being serviced
1601 *
1602 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1603 * the method finishes if locking succeeded.  Note that once this function
1604 * returns the cgroup returned by cgroup_kn_lock_live() may become
1605 * inaccessible any time.  If the caller intends to continue to access the
1606 * cgroup, it should pin it before invoking this function.
1607 */
1608void cgroup_kn_unlock(struct kernfs_node *kn)
1609{
1610	struct cgroup *cgrp;
1611
1612	if (kernfs_type(kn) == KERNFS_DIR)
1613		cgrp = kn->priv;
1614	else
1615		cgrp = kn->parent->priv;
1616
1617	cgroup_unlock();
1618
1619	kernfs_unbreak_active_protection(kn);
1620	cgroup_put(cgrp);
1621}
1622
1623/**
1624 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1625 * @kn: the kernfs_node being serviced
1626 * @drain_offline: perform offline draining on the cgroup
1627 *
1628 * This helper is to be used by a cgroup kernfs method currently servicing
1629 * @kn.  It breaks the active protection, performs cgroup locking and
1630 * verifies that the associated cgroup is alive.  Returns the cgroup if
1631 * alive; otherwise, %NULL.  A successful return should be undone by a
1632 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1633 * cgroup is drained of offlining csses before return.
1634 *
1635 * Any cgroup kernfs method implementation which requires locking the
1636 * associated cgroup should use this helper.  It avoids nesting cgroup
1637 * locking under kernfs active protection and allows all kernfs operations
1638 * including self-removal.
1639 */
1640struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1641{
1642	struct cgroup *cgrp;
1643
1644	if (kernfs_type(kn) == KERNFS_DIR)
1645		cgrp = kn->priv;
1646	else
1647		cgrp = kn->parent->priv;
1648
1649	/*
1650	 * We're gonna grab cgroup_mutex which nests outside kernfs
1651	 * active_ref.  cgroup liveliness check alone provides enough
1652	 * protection against removal.  Ensure @cgrp stays accessible and
1653	 * break the active_ref protection.
1654	 */
1655	if (!cgroup_tryget(cgrp))
1656		return NULL;
1657	kernfs_break_active_protection(kn);
1658
1659	if (drain_offline)
1660		cgroup_lock_and_drain_offline(cgrp);
1661	else
1662		cgroup_lock();
1663
1664	if (!cgroup_is_dead(cgrp))
1665		return cgrp;
1666
1667	cgroup_kn_unlock(kn);
1668	return NULL;
1669}
1670
1671static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1672{
1673	char name[CGROUP_FILE_NAME_MAX];
1674
1675	lockdep_assert_held(&cgroup_mutex);
1676
1677	if (cft->file_offset) {
1678		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1679		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1680
1681		spin_lock_irq(&cgroup_file_kn_lock);
1682		cfile->kn = NULL;
1683		spin_unlock_irq(&cgroup_file_kn_lock);
1684
1685		del_timer_sync(&cfile->notify_timer);
1686	}
1687
1688	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1689}
1690
1691/**
1692 * css_clear_dir - remove subsys files in a cgroup directory
1693 * @css: target css
1694 */
1695static void css_clear_dir(struct cgroup_subsys_state *css)
1696{
1697	struct cgroup *cgrp = css->cgroup;
1698	struct cftype *cfts;
1699
1700	if (!(css->flags & CSS_VISIBLE))
1701		return;
1702
1703	css->flags &= ~CSS_VISIBLE;
1704
1705	if (!css->ss) {
1706		if (cgroup_on_dfl(cgrp)) {
1707			cgroup_addrm_files(css, cgrp,
1708					   cgroup_base_files, false);
1709			if (cgroup_psi_enabled())
1710				cgroup_addrm_files(css, cgrp,
1711						   cgroup_psi_files, false);
1712		} else {
1713			cgroup_addrm_files(css, cgrp,
1714					   cgroup1_base_files, false);
1715		}
1716	} else {
1717		list_for_each_entry(cfts, &css->ss->cfts, node)
1718			cgroup_addrm_files(css, cgrp, cfts, false);
1719	}
1720}
1721
1722/**
1723 * css_populate_dir - create subsys files in a cgroup directory
1724 * @css: target css
1725 *
1726 * On failure, no file is added.
1727 */
1728static int css_populate_dir(struct cgroup_subsys_state *css)
1729{
1730	struct cgroup *cgrp = css->cgroup;
1731	struct cftype *cfts, *failed_cfts;
1732	int ret;
1733
1734	if (css->flags & CSS_VISIBLE)
1735		return 0;
1736
1737	if (!css->ss) {
1738		if (cgroup_on_dfl(cgrp)) {
1739			ret = cgroup_addrm_files(css, cgrp,
1740						 cgroup_base_files, true);
1741			if (ret < 0)
1742				return ret;
1743
1744			if (cgroup_psi_enabled()) {
1745				ret = cgroup_addrm_files(css, cgrp,
1746							 cgroup_psi_files, true);
1747				if (ret < 0)
1748					return ret;
1749			}
1750		} else {
1751			ret = cgroup_addrm_files(css, cgrp,
1752						 cgroup1_base_files, true);
1753			if (ret < 0)
1754				return ret;
1755		}
1756	} else {
1757		list_for_each_entry(cfts, &css->ss->cfts, node) {
1758			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1759			if (ret < 0) {
1760				failed_cfts = cfts;
1761				goto err;
1762			}
1763		}
1764	}
1765
1766	css->flags |= CSS_VISIBLE;
1767
1768	return 0;
1769err:
1770	list_for_each_entry(cfts, &css->ss->cfts, node) {
1771		if (cfts == failed_cfts)
1772			break;
1773		cgroup_addrm_files(css, cgrp, cfts, false);
1774	}
1775	return ret;
1776}
1777
1778int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1779{
1780	struct cgroup *dcgrp = &dst_root->cgrp;
1781	struct cgroup_subsys *ss;
1782	int ssid, ret;
1783	u16 dfl_disable_ss_mask = 0;
1784
1785	lockdep_assert_held(&cgroup_mutex);
1786
1787	do_each_subsys_mask(ss, ssid, ss_mask) {
1788		/*
1789		 * If @ss has non-root csses attached to it, can't move.
1790		 * If @ss is an implicit controller, it is exempt from this
1791		 * rule and can be stolen.
1792		 */
1793		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1794		    !ss->implicit_on_dfl)
1795			return -EBUSY;
1796
1797		/* can't move between two non-dummy roots either */
1798		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1799			return -EBUSY;
1800
1801		/*
1802		 * Collect ssid's that need to be disabled from default
1803		 * hierarchy.
1804		 */
1805		if (ss->root == &cgrp_dfl_root)
1806			dfl_disable_ss_mask |= 1 << ssid;
1807
1808	} while_each_subsys_mask();
1809
1810	if (dfl_disable_ss_mask) {
1811		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1812
1813		/*
1814		 * Controllers from default hierarchy that need to be rebound
1815		 * are all disabled together in one go.
1816		 */
1817		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1818		WARN_ON(cgroup_apply_control(scgrp));
1819		cgroup_finalize_control(scgrp, 0);
1820	}
1821
1822	do_each_subsys_mask(ss, ssid, ss_mask) {
1823		struct cgroup_root *src_root = ss->root;
1824		struct cgroup *scgrp = &src_root->cgrp;
1825		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1826		struct css_set *cset, *cset_pos;
1827		struct css_task_iter *it;
1828
1829		WARN_ON(!css || cgroup_css(dcgrp, ss));
1830
1831		if (src_root != &cgrp_dfl_root) {
1832			/* disable from the source */
1833			src_root->subsys_mask &= ~(1 << ssid);
1834			WARN_ON(cgroup_apply_control(scgrp));
1835			cgroup_finalize_control(scgrp, 0);
1836		}
1837
1838		/* rebind */
1839		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1840		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1841		ss->root = dst_root;
1842		css->cgroup = dcgrp;
1843
1844		spin_lock_irq(&css_set_lock);
1845		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1846		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1847					 e_cset_node[ss->id]) {
1848			list_move_tail(&cset->e_cset_node[ss->id],
1849				       &dcgrp->e_csets[ss->id]);
1850			/*
1851			 * all css_sets of scgrp together in same order to dcgrp,
1852			 * patch in-flight iterators to preserve correct iteration.
1853			 * since the iterator is always advanced right away and
1854			 * finished when it->cset_pos meets it->cset_head, so only
1855			 * update it->cset_head is enough here.
1856			 */
1857			list_for_each_entry(it, &cset->task_iters, iters_node)
1858				if (it->cset_head == &scgrp->e_csets[ss->id])
1859					it->cset_head = &dcgrp->e_csets[ss->id];
1860		}
1861		spin_unlock_irq(&css_set_lock);
1862
1863		if (ss->css_rstat_flush) {
1864			list_del_rcu(&css->rstat_css_node);
1865			synchronize_rcu();
1866			list_add_rcu(&css->rstat_css_node,
1867				     &dcgrp->rstat_css_list);
1868		}
1869
1870		/* default hierarchy doesn't enable controllers by default */
1871		dst_root->subsys_mask |= 1 << ssid;
1872		if (dst_root == &cgrp_dfl_root) {
1873			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1874		} else {
1875			dcgrp->subtree_control |= 1 << ssid;
1876			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1877		}
1878
1879		ret = cgroup_apply_control(dcgrp);
1880		if (ret)
1881			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1882				ss->name, ret);
1883
1884		if (ss->bind)
1885			ss->bind(css);
1886	} while_each_subsys_mask();
1887
1888	kernfs_activate(dcgrp->kn);
1889	return 0;
1890}
1891
1892int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1893		     struct kernfs_root *kf_root)
1894{
1895	int len = 0;
1896	char *buf = NULL;
1897	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1898	struct cgroup *ns_cgroup;
1899
1900	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1901	if (!buf)
1902		return -ENOMEM;
1903
1904	spin_lock_irq(&css_set_lock);
1905	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1906	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1907	spin_unlock_irq(&css_set_lock);
1908
1909	if (len == -E2BIG)
1910		len = -ERANGE;
1911	else if (len > 0) {
1912		seq_escape(sf, buf, " \t\n\\");
1913		len = 0;
1914	}
1915	kfree(buf);
1916	return len;
1917}
1918
1919enum cgroup2_param {
1920	Opt_nsdelegate,
1921	Opt_favordynmods,
1922	Opt_memory_localevents,
1923	Opt_memory_recursiveprot,
1924	Opt_memory_hugetlb_accounting,
1925	nr__cgroup2_params
1926};
1927
1928static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1929	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1930	fsparam_flag("favordynmods",		Opt_favordynmods),
1931	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1932	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1933	fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1934	{}
1935};
1936
1937static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1938{
1939	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1940	struct fs_parse_result result;
1941	int opt;
1942
1943	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1944	if (opt < 0)
1945		return opt;
1946
1947	switch (opt) {
1948	case Opt_nsdelegate:
1949		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1950		return 0;
1951	case Opt_favordynmods:
1952		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1953		return 0;
1954	case Opt_memory_localevents:
1955		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1956		return 0;
1957	case Opt_memory_recursiveprot:
1958		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1959		return 0;
1960	case Opt_memory_hugetlb_accounting:
1961		ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1962		return 0;
1963	}
1964	return -EINVAL;
1965}
1966
1967static void apply_cgroup_root_flags(unsigned int root_flags)
1968{
1969	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1970		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1971			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1972		else
1973			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1974
1975		cgroup_favor_dynmods(&cgrp_dfl_root,
1976				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1977
1978		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1979			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1980		else
1981			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1982
1983		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1984			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1985		else
1986			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1987
1988		if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
1989			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1990		else
1991			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1992	}
1993}
1994
1995static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1996{
1997	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1998		seq_puts(seq, ",nsdelegate");
1999	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2000		seq_puts(seq, ",favordynmods");
2001	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2002		seq_puts(seq, ",memory_localevents");
2003	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2004		seq_puts(seq, ",memory_recursiveprot");
2005	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2006		seq_puts(seq, ",memory_hugetlb_accounting");
2007	return 0;
2008}
2009
2010static int cgroup_reconfigure(struct fs_context *fc)
2011{
2012	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2013
2014	apply_cgroup_root_flags(ctx->flags);
2015	return 0;
2016}
2017
2018static void init_cgroup_housekeeping(struct cgroup *cgrp)
2019{
2020	struct cgroup_subsys *ss;
2021	int ssid;
2022
2023	INIT_LIST_HEAD(&cgrp->self.sibling);
2024	INIT_LIST_HEAD(&cgrp->self.children);
2025	INIT_LIST_HEAD(&cgrp->cset_links);
2026	INIT_LIST_HEAD(&cgrp->pidlists);
2027	mutex_init(&cgrp->pidlist_mutex);
2028	cgrp->self.cgroup = cgrp;
2029	cgrp->self.flags |= CSS_ONLINE;
2030	cgrp->dom_cgrp = cgrp;
2031	cgrp->max_descendants = INT_MAX;
2032	cgrp->max_depth = INT_MAX;
2033	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2034	prev_cputime_init(&cgrp->prev_cputime);
2035
2036	for_each_subsys(ss, ssid)
2037		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2038
2039	init_waitqueue_head(&cgrp->offline_waitq);
2040	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2041}
2042
2043void init_cgroup_root(struct cgroup_fs_context *ctx)
2044{
2045	struct cgroup_root *root = ctx->root;
2046	struct cgroup *cgrp = &root->cgrp;
2047
2048	INIT_LIST_HEAD_RCU(&root->root_list);
2049	atomic_set(&root->nr_cgrps, 1);
2050	cgrp->root = root;
2051	init_cgroup_housekeeping(cgrp);
2052
2053	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2054	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2055	if (ctx->release_agent)
2056		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2057	if (ctx->name)
2058		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2059	if (ctx->cpuset_clone_children)
2060		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2061}
2062
2063int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2064{
2065	LIST_HEAD(tmp_links);
2066	struct cgroup *root_cgrp = &root->cgrp;
2067	struct kernfs_syscall_ops *kf_sops;
2068	struct css_set *cset;
2069	int i, ret;
2070
2071	lockdep_assert_held(&cgroup_mutex);
2072
2073	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2074			      0, GFP_KERNEL);
2075	if (ret)
2076		goto out;
2077
2078	/*
2079	 * We're accessing css_set_count without locking css_set_lock here,
2080	 * but that's OK - it can only be increased by someone holding
2081	 * cgroup_lock, and that's us.  Later rebinding may disable
2082	 * controllers on the default hierarchy and thus create new csets,
2083	 * which can't be more than the existing ones.  Allocate 2x.
2084	 */
2085	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2086	if (ret)
2087		goto cancel_ref;
2088
2089	ret = cgroup_init_root_id(root);
2090	if (ret)
2091		goto cancel_ref;
2092
2093	kf_sops = root == &cgrp_dfl_root ?
2094		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2095
2096	root->kf_root = kernfs_create_root(kf_sops,
2097					   KERNFS_ROOT_CREATE_DEACTIVATED |
2098					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2099					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2100					   root_cgrp);
2101	if (IS_ERR(root->kf_root)) {
2102		ret = PTR_ERR(root->kf_root);
2103		goto exit_root_id;
2104	}
2105	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2106	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2107	root_cgrp->ancestors[0] = root_cgrp;
2108
2109	ret = css_populate_dir(&root_cgrp->self);
2110	if (ret)
2111		goto destroy_root;
2112
2113	ret = cgroup_rstat_init(root_cgrp);
2114	if (ret)
2115		goto destroy_root;
2116
2117	ret = rebind_subsystems(root, ss_mask);
2118	if (ret)
2119		goto exit_stats;
2120
2121	ret = cgroup_bpf_inherit(root_cgrp);
2122	WARN_ON_ONCE(ret);
2123
2124	trace_cgroup_setup_root(root);
2125
2126	/*
2127	 * There must be no failure case after here, since rebinding takes
2128	 * care of subsystems' refcounts, which are explicitly dropped in
2129	 * the failure exit path.
2130	 */
2131	list_add_rcu(&root->root_list, &cgroup_roots);
2132	cgroup_root_count++;
2133
2134	/*
2135	 * Link the root cgroup in this hierarchy into all the css_set
2136	 * objects.
2137	 */
2138	spin_lock_irq(&css_set_lock);
2139	hash_for_each(css_set_table, i, cset, hlist) {
2140		link_css_set(&tmp_links, cset, root_cgrp);
2141		if (css_set_populated(cset))
2142			cgroup_update_populated(root_cgrp, true);
2143	}
2144	spin_unlock_irq(&css_set_lock);
2145
2146	BUG_ON(!list_empty(&root_cgrp->self.children));
2147	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2148
2149	ret = 0;
2150	goto out;
2151
2152exit_stats:
2153	cgroup_rstat_exit(root_cgrp);
2154destroy_root:
2155	kernfs_destroy_root(root->kf_root);
2156	root->kf_root = NULL;
2157exit_root_id:
2158	cgroup_exit_root_id(root);
2159cancel_ref:
2160	percpu_ref_exit(&root_cgrp->self.refcnt);
2161out:
2162	free_cgrp_cset_links(&tmp_links);
2163	return ret;
2164}
2165
2166int cgroup_do_get_tree(struct fs_context *fc)
2167{
2168	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2169	int ret;
2170
2171	ctx->kfc.root = ctx->root->kf_root;
2172	if (fc->fs_type == &cgroup2_fs_type)
2173		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2174	else
2175		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2176	ret = kernfs_get_tree(fc);
2177
2178	/*
2179	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2180	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2181	 */
2182	if (!ret && ctx->ns != &init_cgroup_ns) {
2183		struct dentry *nsdentry;
2184		struct super_block *sb = fc->root->d_sb;
2185		struct cgroup *cgrp;
2186
2187		cgroup_lock();
2188		spin_lock_irq(&css_set_lock);
2189
2190		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2191
2192		spin_unlock_irq(&css_set_lock);
2193		cgroup_unlock();
2194
2195		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2196		dput(fc->root);
2197		if (IS_ERR(nsdentry)) {
2198			deactivate_locked_super(sb);
2199			ret = PTR_ERR(nsdentry);
2200			nsdentry = NULL;
2201		}
2202		fc->root = nsdentry;
2203	}
2204
2205	if (!ctx->kfc.new_sb_created)
2206		cgroup_put(&ctx->root->cgrp);
2207
2208	return ret;
2209}
2210
2211/*
2212 * Destroy a cgroup filesystem context.
2213 */
2214static void cgroup_fs_context_free(struct fs_context *fc)
2215{
2216	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2217
2218	kfree(ctx->name);
2219	kfree(ctx->release_agent);
2220	put_cgroup_ns(ctx->ns);
2221	kernfs_free_fs_context(fc);
2222	kfree(ctx);
2223}
2224
2225static int cgroup_get_tree(struct fs_context *fc)
2226{
2227	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2228	int ret;
2229
2230	WRITE_ONCE(cgrp_dfl_visible, true);
2231	cgroup_get_live(&cgrp_dfl_root.cgrp);
2232	ctx->root = &cgrp_dfl_root;
2233
2234	ret = cgroup_do_get_tree(fc);
2235	if (!ret)
2236		apply_cgroup_root_flags(ctx->flags);
2237	return ret;
2238}
2239
2240static const struct fs_context_operations cgroup_fs_context_ops = {
2241	.free		= cgroup_fs_context_free,
2242	.parse_param	= cgroup2_parse_param,
2243	.get_tree	= cgroup_get_tree,
2244	.reconfigure	= cgroup_reconfigure,
2245};
2246
2247static const struct fs_context_operations cgroup1_fs_context_ops = {
2248	.free		= cgroup_fs_context_free,
2249	.parse_param	= cgroup1_parse_param,
2250	.get_tree	= cgroup1_get_tree,
2251	.reconfigure	= cgroup1_reconfigure,
2252};
2253
2254/*
2255 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2256 * we select the namespace we're going to use.
2257 */
2258static int cgroup_init_fs_context(struct fs_context *fc)
2259{
2260	struct cgroup_fs_context *ctx;
2261
2262	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2263	if (!ctx)
2264		return -ENOMEM;
2265
2266	ctx->ns = current->nsproxy->cgroup_ns;
2267	get_cgroup_ns(ctx->ns);
2268	fc->fs_private = &ctx->kfc;
2269	if (fc->fs_type == &cgroup2_fs_type)
2270		fc->ops = &cgroup_fs_context_ops;
2271	else
2272		fc->ops = &cgroup1_fs_context_ops;
2273	put_user_ns(fc->user_ns);
2274	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2275	fc->global = true;
2276
2277	if (have_favordynmods)
2278		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2279
2280	return 0;
2281}
2282
2283static void cgroup_kill_sb(struct super_block *sb)
2284{
2285	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2286	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2287
2288	/*
2289	 * If @root doesn't have any children, start killing it.
2290	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2291	 *
2292	 * And don't kill the default root.
2293	 */
2294	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2295	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2296		cgroup_bpf_offline(&root->cgrp);
2297		percpu_ref_kill(&root->cgrp.self.refcnt);
2298	}
2299	cgroup_put(&root->cgrp);
2300	kernfs_kill_sb(sb);
2301}
2302
2303struct file_system_type cgroup_fs_type = {
2304	.name			= "cgroup",
2305	.init_fs_context	= cgroup_init_fs_context,
2306	.parameters		= cgroup1_fs_parameters,
2307	.kill_sb		= cgroup_kill_sb,
2308	.fs_flags		= FS_USERNS_MOUNT,
2309};
2310
2311static struct file_system_type cgroup2_fs_type = {
2312	.name			= "cgroup2",
2313	.init_fs_context	= cgroup_init_fs_context,
2314	.parameters		= cgroup2_fs_parameters,
2315	.kill_sb		= cgroup_kill_sb,
2316	.fs_flags		= FS_USERNS_MOUNT,
2317};
2318
2319#ifdef CONFIG_CPUSETS
2320static const struct fs_context_operations cpuset_fs_context_ops = {
2321	.get_tree	= cgroup1_get_tree,
2322	.free		= cgroup_fs_context_free,
2323};
2324
2325/*
2326 * This is ugly, but preserves the userspace API for existing cpuset
2327 * users. If someone tries to mount the "cpuset" filesystem, we
2328 * silently switch it to mount "cgroup" instead
2329 */
2330static int cpuset_init_fs_context(struct fs_context *fc)
2331{
2332	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2333	struct cgroup_fs_context *ctx;
2334	int err;
2335
2336	err = cgroup_init_fs_context(fc);
2337	if (err) {
2338		kfree(agent);
2339		return err;
2340	}
2341
2342	fc->ops = &cpuset_fs_context_ops;
2343
2344	ctx = cgroup_fc2context(fc);
2345	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2346	ctx->flags |= CGRP_ROOT_NOPREFIX;
2347	ctx->release_agent = agent;
2348
2349	get_filesystem(&cgroup_fs_type);
2350	put_filesystem(fc->fs_type);
2351	fc->fs_type = &cgroup_fs_type;
2352
2353	return 0;
2354}
2355
2356static struct file_system_type cpuset_fs_type = {
2357	.name			= "cpuset",
2358	.init_fs_context	= cpuset_init_fs_context,
2359	.fs_flags		= FS_USERNS_MOUNT,
2360};
2361#endif
2362
2363int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2364			  struct cgroup_namespace *ns)
2365{
2366	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2367
2368	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2369}
2370
2371int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2372		   struct cgroup_namespace *ns)
2373{
2374	int ret;
2375
2376	cgroup_lock();
2377	spin_lock_irq(&css_set_lock);
2378
2379	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2380
2381	spin_unlock_irq(&css_set_lock);
2382	cgroup_unlock();
2383
2384	return ret;
2385}
2386EXPORT_SYMBOL_GPL(cgroup_path_ns);
2387
2388/**
2389 * cgroup_attach_lock - Lock for ->attach()
2390 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2391 *
2392 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2393 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2394 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2395 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2396 * lead to deadlocks.
2397 *
2398 * Bringing up a CPU may involve creating and destroying tasks which requires
2399 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2400 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2401 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2402 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2403 * the threadgroup_rwsem to be released to create new tasks. For more details:
2404 *
2405 *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2406 *
2407 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2408 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2409 * CPU hotplug is disabled on entry.
2410 */
2411void cgroup_attach_lock(bool lock_threadgroup)
2412{
2413	cpus_read_lock();
2414	if (lock_threadgroup)
2415		percpu_down_write(&cgroup_threadgroup_rwsem);
2416}
2417
2418/**
2419 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2420 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2421 */
2422void cgroup_attach_unlock(bool lock_threadgroup)
2423{
2424	if (lock_threadgroup)
2425		percpu_up_write(&cgroup_threadgroup_rwsem);
2426	cpus_read_unlock();
2427}
2428
2429/**
2430 * cgroup_migrate_add_task - add a migration target task to a migration context
2431 * @task: target task
2432 * @mgctx: target migration context
2433 *
2434 * Add @task, which is a migration target, to @mgctx->tset.  This function
2435 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2436 * should have been added as a migration source and @task->cg_list will be
2437 * moved from the css_set's tasks list to mg_tasks one.
2438 */
2439static void cgroup_migrate_add_task(struct task_struct *task,
2440				    struct cgroup_mgctx *mgctx)
2441{
2442	struct css_set *cset;
2443
2444	lockdep_assert_held(&css_set_lock);
2445
2446	/* @task either already exited or can't exit until the end */
2447	if (task->flags & PF_EXITING)
2448		return;
2449
2450	/* cgroup_threadgroup_rwsem protects racing against forks */
2451	WARN_ON_ONCE(list_empty(&task->cg_list));
2452
2453	cset = task_css_set(task);
2454	if (!cset->mg_src_cgrp)
2455		return;
2456
2457	mgctx->tset.nr_tasks++;
2458
2459	list_move_tail(&task->cg_list, &cset->mg_tasks);
2460	if (list_empty(&cset->mg_node))
2461		list_add_tail(&cset->mg_node,
2462			      &mgctx->tset.src_csets);
2463	if (list_empty(&cset->mg_dst_cset->mg_node))
2464		list_add_tail(&cset->mg_dst_cset->mg_node,
2465			      &mgctx->tset.dst_csets);
2466}
2467
2468/**
2469 * cgroup_taskset_first - reset taskset and return the first task
2470 * @tset: taskset of interest
2471 * @dst_cssp: output variable for the destination css
2472 *
2473 * @tset iteration is initialized and the first task is returned.
2474 */
2475struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2476					 struct cgroup_subsys_state **dst_cssp)
2477{
2478	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2479	tset->cur_task = NULL;
2480
2481	return cgroup_taskset_next(tset, dst_cssp);
2482}
2483
2484/**
2485 * cgroup_taskset_next - iterate to the next task in taskset
2486 * @tset: taskset of interest
2487 * @dst_cssp: output variable for the destination css
2488 *
2489 * Return the next task in @tset.  Iteration must have been initialized
2490 * with cgroup_taskset_first().
2491 */
2492struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2493					struct cgroup_subsys_state **dst_cssp)
2494{
2495	struct css_set *cset = tset->cur_cset;
2496	struct task_struct *task = tset->cur_task;
2497
2498	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2499		if (!task)
2500			task = list_first_entry(&cset->mg_tasks,
2501						struct task_struct, cg_list);
2502		else
2503			task = list_next_entry(task, cg_list);
2504
2505		if (&task->cg_list != &cset->mg_tasks) {
2506			tset->cur_cset = cset;
2507			tset->cur_task = task;
2508
2509			/*
2510			 * This function may be called both before and
2511			 * after cgroup_migrate_execute().  The two cases
2512			 * can be distinguished by looking at whether @cset
2513			 * has its ->mg_dst_cset set.
2514			 */
2515			if (cset->mg_dst_cset)
2516				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2517			else
2518				*dst_cssp = cset->subsys[tset->ssid];
2519
2520			return task;
2521		}
2522
2523		cset = list_next_entry(cset, mg_node);
2524		task = NULL;
2525	}
2526
2527	return NULL;
2528}
2529
2530/**
2531 * cgroup_migrate_execute - migrate a taskset
2532 * @mgctx: migration context
2533 *
2534 * Migrate tasks in @mgctx as setup by migration preparation functions.
2535 * This function fails iff one of the ->can_attach callbacks fails and
2536 * guarantees that either all or none of the tasks in @mgctx are migrated.
2537 * @mgctx is consumed regardless of success.
2538 */
2539static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2540{
2541	struct cgroup_taskset *tset = &mgctx->tset;
2542	struct cgroup_subsys *ss;
2543	struct task_struct *task, *tmp_task;
2544	struct css_set *cset, *tmp_cset;
2545	int ssid, failed_ssid, ret;
2546
2547	/* check that we can legitimately attach to the cgroup */
2548	if (tset->nr_tasks) {
2549		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2550			if (ss->can_attach) {
2551				tset->ssid = ssid;
2552				ret = ss->can_attach(tset);
2553				if (ret) {
2554					failed_ssid = ssid;
2555					goto out_cancel_attach;
2556				}
2557			}
2558		} while_each_subsys_mask();
2559	}
2560
2561	/*
2562	 * Now that we're guaranteed success, proceed to move all tasks to
2563	 * the new cgroup.  There are no failure cases after here, so this
2564	 * is the commit point.
2565	 */
2566	spin_lock_irq(&css_set_lock);
2567	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2568		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2569			struct css_set *from_cset = task_css_set(task);
2570			struct css_set *to_cset = cset->mg_dst_cset;
2571
2572			get_css_set(to_cset);
2573			to_cset->nr_tasks++;
2574			css_set_move_task(task, from_cset, to_cset, true);
2575			from_cset->nr_tasks--;
2576			/*
2577			 * If the source or destination cgroup is frozen,
2578			 * the task might require to change its state.
2579			 */
2580			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2581						    to_cset->dfl_cgrp);
2582			put_css_set_locked(from_cset);
2583
2584		}
2585	}
2586	spin_unlock_irq(&css_set_lock);
2587
2588	/*
2589	 * Migration is committed, all target tasks are now on dst_csets.
2590	 * Nothing is sensitive to fork() after this point.  Notify
2591	 * controllers that migration is complete.
2592	 */
2593	tset->csets = &tset->dst_csets;
2594
2595	if (tset->nr_tasks) {
2596		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2597			if (ss->attach) {
2598				tset->ssid = ssid;
2599				ss->attach(tset);
2600			}
2601		} while_each_subsys_mask();
2602	}
2603
2604	ret = 0;
2605	goto out_release_tset;
2606
2607out_cancel_attach:
2608	if (tset->nr_tasks) {
2609		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2610			if (ssid == failed_ssid)
2611				break;
2612			if (ss->cancel_attach) {
2613				tset->ssid = ssid;
2614				ss->cancel_attach(tset);
2615			}
2616		} while_each_subsys_mask();
2617	}
2618out_release_tset:
2619	spin_lock_irq(&css_set_lock);
2620	list_splice_init(&tset->dst_csets, &tset->src_csets);
2621	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2622		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2623		list_del_init(&cset->mg_node);
2624	}
2625	spin_unlock_irq(&css_set_lock);
2626
2627	/*
2628	 * Re-initialize the cgroup_taskset structure in case it is reused
2629	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2630	 * iteration.
2631	 */
2632	tset->nr_tasks = 0;
2633	tset->csets    = &tset->src_csets;
2634	return ret;
2635}
2636
2637/**
2638 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2639 * @dst_cgrp: destination cgroup to test
2640 *
2641 * On the default hierarchy, except for the mixable, (possible) thread root
2642 * and threaded cgroups, subtree_control must be zero for migration
2643 * destination cgroups with tasks so that child cgroups don't compete
2644 * against tasks.
2645 */
2646int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2647{
2648	/* v1 doesn't have any restriction */
2649	if (!cgroup_on_dfl(dst_cgrp))
2650		return 0;
2651
2652	/* verify @dst_cgrp can host resources */
2653	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2654		return -EOPNOTSUPP;
2655
2656	/*
2657	 * If @dst_cgrp is already or can become a thread root or is
2658	 * threaded, it doesn't matter.
2659	 */
2660	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2661		return 0;
2662
2663	/* apply no-internal-process constraint */
2664	if (dst_cgrp->subtree_control)
2665		return -EBUSY;
2666
2667	return 0;
2668}
2669
2670/**
2671 * cgroup_migrate_finish - cleanup after attach
2672 * @mgctx: migration context
2673 *
2674 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2675 * those functions for details.
2676 */
2677void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2678{
2679	struct css_set *cset, *tmp_cset;
2680
2681	lockdep_assert_held(&cgroup_mutex);
2682
2683	spin_lock_irq(&css_set_lock);
2684
2685	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2686				 mg_src_preload_node) {
2687		cset->mg_src_cgrp = NULL;
2688		cset->mg_dst_cgrp = NULL;
2689		cset->mg_dst_cset = NULL;
2690		list_del_init(&cset->mg_src_preload_node);
2691		put_css_set_locked(cset);
2692	}
2693
2694	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2695				 mg_dst_preload_node) {
2696		cset->mg_src_cgrp = NULL;
2697		cset->mg_dst_cgrp = NULL;
2698		cset->mg_dst_cset = NULL;
2699		list_del_init(&cset->mg_dst_preload_node);
2700		put_css_set_locked(cset);
2701	}
2702
2703	spin_unlock_irq(&css_set_lock);
2704}
2705
2706/**
2707 * cgroup_migrate_add_src - add a migration source css_set
2708 * @src_cset: the source css_set to add
2709 * @dst_cgrp: the destination cgroup
2710 * @mgctx: migration context
2711 *
2712 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2713 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2714 * up by cgroup_migrate_finish().
2715 *
2716 * This function may be called without holding cgroup_threadgroup_rwsem
2717 * even if the target is a process.  Threads may be created and destroyed
2718 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2719 * into play and the preloaded css_sets are guaranteed to cover all
2720 * migrations.
2721 */
2722void cgroup_migrate_add_src(struct css_set *src_cset,
2723			    struct cgroup *dst_cgrp,
2724			    struct cgroup_mgctx *mgctx)
2725{
2726	struct cgroup *src_cgrp;
2727
2728	lockdep_assert_held(&cgroup_mutex);
2729	lockdep_assert_held(&css_set_lock);
2730
2731	/*
2732	 * If ->dead, @src_set is associated with one or more dead cgroups
2733	 * and doesn't contain any migratable tasks.  Ignore it early so
2734	 * that the rest of migration path doesn't get confused by it.
2735	 */
2736	if (src_cset->dead)
2737		return;
2738
2739	if (!list_empty(&src_cset->mg_src_preload_node))
2740		return;
2741
2742	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2743
2744	WARN_ON(src_cset->mg_src_cgrp);
2745	WARN_ON(src_cset->mg_dst_cgrp);
2746	WARN_ON(!list_empty(&src_cset->mg_tasks));
2747	WARN_ON(!list_empty(&src_cset->mg_node));
2748
2749	src_cset->mg_src_cgrp = src_cgrp;
2750	src_cset->mg_dst_cgrp = dst_cgrp;
2751	get_css_set(src_cset);
2752	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2753}
2754
2755/**
2756 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2757 * @mgctx: migration context
2758 *
2759 * Tasks are about to be moved and all the source css_sets have been
2760 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2761 * pins all destination css_sets, links each to its source, and append them
2762 * to @mgctx->preloaded_dst_csets.
2763 *
2764 * This function must be called after cgroup_migrate_add_src() has been
2765 * called on each migration source css_set.  After migration is performed
2766 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2767 * @mgctx.
2768 */
2769int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2770{
2771	struct css_set *src_cset, *tmp_cset;
2772
2773	lockdep_assert_held(&cgroup_mutex);
2774
2775	/* look up the dst cset for each src cset and link it to src */
2776	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2777				 mg_src_preload_node) {
2778		struct css_set *dst_cset;
2779		struct cgroup_subsys *ss;
2780		int ssid;
2781
2782		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2783		if (!dst_cset)
2784			return -ENOMEM;
2785
2786		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2787
2788		/*
2789		 * If src cset equals dst, it's noop.  Drop the src.
2790		 * cgroup_migrate() will skip the cset too.  Note that we
2791		 * can't handle src == dst as some nodes are used by both.
2792		 */
2793		if (src_cset == dst_cset) {
2794			src_cset->mg_src_cgrp = NULL;
2795			src_cset->mg_dst_cgrp = NULL;
2796			list_del_init(&src_cset->mg_src_preload_node);
2797			put_css_set(src_cset);
2798			put_css_set(dst_cset);
2799			continue;
2800		}
2801
2802		src_cset->mg_dst_cset = dst_cset;
2803
2804		if (list_empty(&dst_cset->mg_dst_preload_node))
2805			list_add_tail(&dst_cset->mg_dst_preload_node,
2806				      &mgctx->preloaded_dst_csets);
2807		else
2808			put_css_set(dst_cset);
2809
2810		for_each_subsys(ss, ssid)
2811			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2812				mgctx->ss_mask |= 1 << ssid;
2813	}
2814
2815	return 0;
2816}
2817
2818/**
2819 * cgroup_migrate - migrate a process or task to a cgroup
2820 * @leader: the leader of the process or the task to migrate
2821 * @threadgroup: whether @leader points to the whole process or a single task
2822 * @mgctx: migration context
2823 *
2824 * Migrate a process or task denoted by @leader.  If migrating a process,
2825 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2826 * responsible for invoking cgroup_migrate_add_src() and
2827 * cgroup_migrate_prepare_dst() on the targets before invoking this
2828 * function and following up with cgroup_migrate_finish().
2829 *
2830 * As long as a controller's ->can_attach() doesn't fail, this function is
2831 * guaranteed to succeed.  This means that, excluding ->can_attach()
2832 * failure, when migrating multiple targets, the success or failure can be
2833 * decided for all targets by invoking group_migrate_prepare_dst() before
2834 * actually starting migrating.
2835 */
2836int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2837		   struct cgroup_mgctx *mgctx)
2838{
2839	struct task_struct *task;
2840
2841	/*
2842	 * The following thread iteration should be inside an RCU critical
2843	 * section to prevent tasks from being freed while taking the snapshot.
2844	 * spin_lock_irq() implies RCU critical section here.
2845	 */
2846	spin_lock_irq(&css_set_lock);
2847	task = leader;
2848	do {
2849		cgroup_migrate_add_task(task, mgctx);
2850		if (!threadgroup)
2851			break;
2852	} while_each_thread(leader, task);
2853	spin_unlock_irq(&css_set_lock);
2854
2855	return cgroup_migrate_execute(mgctx);
2856}
2857
2858/**
2859 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2860 * @dst_cgrp: the cgroup to attach to
2861 * @leader: the task or the leader of the threadgroup to be attached
2862 * @threadgroup: attach the whole threadgroup?
2863 *
2864 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2865 */
2866int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2867		       bool threadgroup)
2868{
2869	DEFINE_CGROUP_MGCTX(mgctx);
2870	struct task_struct *task;
2871	int ret = 0;
2872
2873	/* look up all src csets */
2874	spin_lock_irq(&css_set_lock);
2875	rcu_read_lock();
2876	task = leader;
2877	do {
2878		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2879		if (!threadgroup)
2880			break;
2881	} while_each_thread(leader, task);
2882	rcu_read_unlock();
2883	spin_unlock_irq(&css_set_lock);
2884
2885	/* prepare dst csets and commit */
2886	ret = cgroup_migrate_prepare_dst(&mgctx);
2887	if (!ret)
2888		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2889
2890	cgroup_migrate_finish(&mgctx);
2891
2892	if (!ret)
2893		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2894
2895	return ret;
2896}
2897
2898struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2899					     bool *threadgroup_locked)
2900{
2901	struct task_struct *tsk;
2902	pid_t pid;
2903
2904	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2905		return ERR_PTR(-EINVAL);
2906
2907	/*
2908	 * If we migrate a single thread, we don't care about threadgroup
2909	 * stability. If the thread is `current`, it won't exit(2) under our
2910	 * hands or change PID through exec(2). We exclude
2911	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2912	 * callers by cgroup_mutex.
2913	 * Therefore, we can skip the global lock.
2914	 */
2915	lockdep_assert_held(&cgroup_mutex);
2916	*threadgroup_locked = pid || threadgroup;
2917	cgroup_attach_lock(*threadgroup_locked);
2918
2919	rcu_read_lock();
2920	if (pid) {
2921		tsk = find_task_by_vpid(pid);
2922		if (!tsk) {
2923			tsk = ERR_PTR(-ESRCH);
2924			goto out_unlock_threadgroup;
2925		}
2926	} else {
2927		tsk = current;
2928	}
2929
2930	if (threadgroup)
2931		tsk = tsk->group_leader;
2932
2933	/*
2934	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2935	 * If userland migrates such a kthread to a non-root cgroup, it can
2936	 * become trapped in a cpuset, or RT kthread may be born in a
2937	 * cgroup with no rt_runtime allocated.  Just say no.
2938	 */
2939	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2940		tsk = ERR_PTR(-EINVAL);
2941		goto out_unlock_threadgroup;
2942	}
2943
2944	get_task_struct(tsk);
2945	goto out_unlock_rcu;
2946
2947out_unlock_threadgroup:
2948	cgroup_attach_unlock(*threadgroup_locked);
2949	*threadgroup_locked = false;
2950out_unlock_rcu:
2951	rcu_read_unlock();
2952	return tsk;
2953}
2954
2955void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2956{
2957	struct cgroup_subsys *ss;
2958	int ssid;
2959
2960	/* release reference from cgroup_procs_write_start() */
2961	put_task_struct(task);
2962
2963	cgroup_attach_unlock(threadgroup_locked);
2964
2965	for_each_subsys(ss, ssid)
2966		if (ss->post_attach)
2967			ss->post_attach();
2968}
2969
2970static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2971{
2972	struct cgroup_subsys *ss;
2973	bool printed = false;
2974	int ssid;
2975
2976	do_each_subsys_mask(ss, ssid, ss_mask) {
2977		if (printed)
2978			seq_putc(seq, ' ');
2979		seq_puts(seq, ss->name);
2980		printed = true;
2981	} while_each_subsys_mask();
2982	if (printed)
2983		seq_putc(seq, '\n');
2984}
2985
2986/* show controllers which are enabled from the parent */
2987static int cgroup_controllers_show(struct seq_file *seq, void *v)
2988{
2989	struct cgroup *cgrp = seq_css(seq)->cgroup;
2990
2991	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2992	return 0;
2993}
2994
2995/* show controllers which are enabled for a given cgroup's children */
2996static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2997{
2998	struct cgroup *cgrp = seq_css(seq)->cgroup;
2999
3000	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3001	return 0;
3002}
3003
3004/**
3005 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3006 * @cgrp: root of the subtree to update csses for
3007 *
3008 * @cgrp's control masks have changed and its subtree's css associations
3009 * need to be updated accordingly.  This function looks up all css_sets
3010 * which are attached to the subtree, creates the matching updated css_sets
3011 * and migrates the tasks to the new ones.
3012 */
3013static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3014{
3015	DEFINE_CGROUP_MGCTX(mgctx);
3016	struct cgroup_subsys_state *d_css;
3017	struct cgroup *dsct;
3018	struct css_set *src_cset;
3019	bool has_tasks;
3020	int ret;
3021
3022	lockdep_assert_held(&cgroup_mutex);
3023
3024	/* look up all csses currently attached to @cgrp's subtree */
3025	spin_lock_irq(&css_set_lock);
3026	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3027		struct cgrp_cset_link *link;
3028
3029		/*
3030		 * As cgroup_update_dfl_csses() is only called by
3031		 * cgroup_apply_control(). The csses associated with the
3032		 * given cgrp will not be affected by changes made to
3033		 * its subtree_control file. We can skip them.
3034		 */
3035		if (dsct == cgrp)
3036			continue;
3037
3038		list_for_each_entry(link, &dsct->cset_links, cset_link)
3039			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3040	}
3041	spin_unlock_irq(&css_set_lock);
3042
3043	/*
3044	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3045	 * However, if there are no source csets for @cgrp, changing its
3046	 * controllers isn't gonna produce any task migrations and the
3047	 * write-locking can be skipped safely.
3048	 */
3049	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3050	cgroup_attach_lock(has_tasks);
3051
3052	/* NULL dst indicates self on default hierarchy */
3053	ret = cgroup_migrate_prepare_dst(&mgctx);
3054	if (ret)
3055		goto out_finish;
3056
3057	spin_lock_irq(&css_set_lock);
3058	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3059			    mg_src_preload_node) {
3060		struct task_struct *task, *ntask;
3061
3062		/* all tasks in src_csets need to be migrated */
3063		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3064			cgroup_migrate_add_task(task, &mgctx);
3065	}
3066	spin_unlock_irq(&css_set_lock);
3067
3068	ret = cgroup_migrate_execute(&mgctx);
3069out_finish:
3070	cgroup_migrate_finish(&mgctx);
3071	cgroup_attach_unlock(has_tasks);
3072	return ret;
3073}
3074
3075/**
3076 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3077 * @cgrp: root of the target subtree
3078 *
3079 * Because css offlining is asynchronous, userland may try to re-enable a
3080 * controller while the previous css is still around.  This function grabs
3081 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3082 */
3083void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3084	__acquires(&cgroup_mutex)
3085{
3086	struct cgroup *dsct;
3087	struct cgroup_subsys_state *d_css;
3088	struct cgroup_subsys *ss;
3089	int ssid;
3090
3091restart:
3092	cgroup_lock();
3093
3094	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3095		for_each_subsys(ss, ssid) {
3096			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3097			DEFINE_WAIT(wait);
3098
3099			if (!css || !percpu_ref_is_dying(&css->refcnt))
3100				continue;
3101
3102			cgroup_get_live(dsct);
3103			prepare_to_wait(&dsct->offline_waitq, &wait,
3104					TASK_UNINTERRUPTIBLE);
3105
3106			cgroup_unlock();
3107			schedule();
3108			finish_wait(&dsct->offline_waitq, &wait);
3109
3110			cgroup_put(dsct);
3111			goto restart;
3112		}
3113	}
3114}
3115
3116/**
3117 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3118 * @cgrp: root of the target subtree
3119 *
3120 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3121 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3122 * itself.
3123 */
3124static void cgroup_save_control(struct cgroup *cgrp)
3125{
3126	struct cgroup *dsct;
3127	struct cgroup_subsys_state *d_css;
3128
3129	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3130		dsct->old_subtree_control = dsct->subtree_control;
3131		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3132		dsct->old_dom_cgrp = dsct->dom_cgrp;
3133	}
3134}
3135
3136/**
3137 * cgroup_propagate_control - refresh control masks of a subtree
3138 * @cgrp: root of the target subtree
3139 *
3140 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3141 * ->subtree_control and propagate controller availability through the
3142 * subtree so that descendants don't have unavailable controllers enabled.
3143 */
3144static void cgroup_propagate_control(struct cgroup *cgrp)
3145{
3146	struct cgroup *dsct;
3147	struct cgroup_subsys_state *d_css;
3148
3149	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3150		dsct->subtree_control &= cgroup_control(dsct);
3151		dsct->subtree_ss_mask =
3152			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3153						    cgroup_ss_mask(dsct));
3154	}
3155}
3156
3157/**
3158 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3159 * @cgrp: root of the target subtree
3160 *
3161 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3162 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3163 * itself.
3164 */
3165static void cgroup_restore_control(struct cgroup *cgrp)
3166{
3167	struct cgroup *dsct;
3168	struct cgroup_subsys_state *d_css;
3169
3170	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3171		dsct->subtree_control = dsct->old_subtree_control;
3172		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3173		dsct->dom_cgrp = dsct->old_dom_cgrp;
3174	}
3175}
3176
3177static bool css_visible(struct cgroup_subsys_state *css)
3178{
3179	struct cgroup_subsys *ss = css->ss;
3180	struct cgroup *cgrp = css->cgroup;
3181
3182	if (cgroup_control(cgrp) & (1 << ss->id))
3183		return true;
3184	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3185		return false;
3186	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3187}
3188
3189/**
3190 * cgroup_apply_control_enable - enable or show csses according to control
3191 * @cgrp: root of the target subtree
3192 *
3193 * Walk @cgrp's subtree and create new csses or make the existing ones
3194 * visible.  A css is created invisible if it's being implicitly enabled
3195 * through dependency.  An invisible css is made visible when the userland
3196 * explicitly enables it.
3197 *
3198 * Returns 0 on success, -errno on failure.  On failure, csses which have
3199 * been processed already aren't cleaned up.  The caller is responsible for
3200 * cleaning up with cgroup_apply_control_disable().
3201 */
3202static int cgroup_apply_control_enable(struct cgroup *cgrp)
3203{
3204	struct cgroup *dsct;
3205	struct cgroup_subsys_state *d_css;
3206	struct cgroup_subsys *ss;
3207	int ssid, ret;
3208
3209	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3210		for_each_subsys(ss, ssid) {
3211			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3212
3213			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3214				continue;
3215
3216			if (!css) {
3217				css = css_create(dsct, ss);
3218				if (IS_ERR(css))
3219					return PTR_ERR(css);
3220			}
3221
3222			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3223
3224			if (css_visible(css)) {
3225				ret = css_populate_dir(css);
3226				if (ret)
3227					return ret;
3228			}
3229		}
3230	}
3231
3232	return 0;
3233}
3234
3235/**
3236 * cgroup_apply_control_disable - kill or hide csses according to control
3237 * @cgrp: root of the target subtree
3238 *
3239 * Walk @cgrp's subtree and kill and hide csses so that they match
3240 * cgroup_ss_mask() and cgroup_visible_mask().
3241 *
3242 * A css is hidden when the userland requests it to be disabled while other
3243 * subsystems are still depending on it.  The css must not actively control
3244 * resources and be in the vanilla state if it's made visible again later.
3245 * Controllers which may be depended upon should provide ->css_reset() for
3246 * this purpose.
3247 */
3248static void cgroup_apply_control_disable(struct cgroup *cgrp)
3249{
3250	struct cgroup *dsct;
3251	struct cgroup_subsys_state *d_css;
3252	struct cgroup_subsys *ss;
3253	int ssid;
3254
3255	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3256		for_each_subsys(ss, ssid) {
3257			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3258
3259			if (!css)
3260				continue;
3261
3262			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3263
3264			if (css->parent &&
3265			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3266				kill_css(css);
3267			} else if (!css_visible(css)) {
3268				css_clear_dir(css);
3269				if (ss->css_reset)
3270					ss->css_reset(css);
3271			}
3272		}
3273	}
3274}
3275
3276/**
3277 * cgroup_apply_control - apply control mask updates to the subtree
3278 * @cgrp: root of the target subtree
3279 *
3280 * subsystems can be enabled and disabled in a subtree using the following
3281 * steps.
3282 *
3283 * 1. Call cgroup_save_control() to stash the current state.
3284 * 2. Update ->subtree_control masks in the subtree as desired.
3285 * 3. Call cgroup_apply_control() to apply the changes.
3286 * 4. Optionally perform other related operations.
3287 * 5. Call cgroup_finalize_control() to finish up.
3288 *
3289 * This function implements step 3 and propagates the mask changes
3290 * throughout @cgrp's subtree, updates csses accordingly and perform
3291 * process migrations.
3292 */
3293static int cgroup_apply_control(struct cgroup *cgrp)
3294{
3295	int ret;
3296
3297	cgroup_propagate_control(cgrp);
3298
3299	ret = cgroup_apply_control_enable(cgrp);
3300	if (ret)
3301		return ret;
3302
3303	/*
3304	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3305	 * making the following cgroup_update_dfl_csses() properly update
3306	 * css associations of all tasks in the subtree.
3307	 */
3308	return cgroup_update_dfl_csses(cgrp);
3309}
3310
3311/**
3312 * cgroup_finalize_control - finalize control mask update
3313 * @cgrp: root of the target subtree
3314 * @ret: the result of the update
3315 *
3316 * Finalize control mask update.  See cgroup_apply_control() for more info.
3317 */
3318static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3319{
3320	if (ret) {
3321		cgroup_restore_control(cgrp);
3322		cgroup_propagate_control(cgrp);
3323	}
3324
3325	cgroup_apply_control_disable(cgrp);
3326}
3327
3328static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3329{
3330	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3331
3332	/* if nothing is getting enabled, nothing to worry about */
3333	if (!enable)
3334		return 0;
3335
3336	/* can @cgrp host any resources? */
3337	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3338		return -EOPNOTSUPP;
3339
3340	/* mixables don't care */
3341	if (cgroup_is_mixable(cgrp))
3342		return 0;
3343
3344	if (domain_enable) {
3345		/* can't enable domain controllers inside a thread subtree */
3346		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3347			return -EOPNOTSUPP;
3348	} else {
3349		/*
3350		 * Threaded controllers can handle internal competitions
3351		 * and are always allowed inside a (prospective) thread
3352		 * subtree.
3353		 */
3354		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3355			return 0;
3356	}
3357
3358	/*
3359	 * Controllers can't be enabled for a cgroup with tasks to avoid
3360	 * child cgroups competing against tasks.
3361	 */
3362	if (cgroup_has_tasks(cgrp))
3363		return -EBUSY;
3364
3365	return 0;
3366}
3367
3368/* change the enabled child controllers for a cgroup in the default hierarchy */
3369static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3370					    char *buf, size_t nbytes,
3371					    loff_t off)
3372{
3373	u16 enable = 0, disable = 0;
3374	struct cgroup *cgrp, *child;
3375	struct cgroup_subsys *ss;
3376	char *tok;
3377	int ssid, ret;
3378
3379	/*
3380	 * Parse input - space separated list of subsystem names prefixed
3381	 * with either + or -.
3382	 */
3383	buf = strstrip(buf);
3384	while ((tok = strsep(&buf, " "))) {
3385		if (tok[0] == '\0')
3386			continue;
3387		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3388			if (!cgroup_ssid_enabled(ssid) ||
3389			    strcmp(tok + 1, ss->name))
3390				continue;
3391
3392			if (*tok == '+') {
3393				enable |= 1 << ssid;
3394				disable &= ~(1 << ssid);
3395			} else if (*tok == '-') {
3396				disable |= 1 << ssid;
3397				enable &= ~(1 << ssid);
3398			} else {
3399				return -EINVAL;
3400			}
3401			break;
3402		} while_each_subsys_mask();
3403		if (ssid == CGROUP_SUBSYS_COUNT)
3404			return -EINVAL;
3405	}
3406
3407	cgrp = cgroup_kn_lock_live(of->kn, true);
3408	if (!cgrp)
3409		return -ENODEV;
3410
3411	for_each_subsys(ss, ssid) {
3412		if (enable & (1 << ssid)) {
3413			if (cgrp->subtree_control & (1 << ssid)) {
3414				enable &= ~(1 << ssid);
3415				continue;
3416			}
3417
3418			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3419				ret = -ENOENT;
3420				goto out_unlock;
3421			}
3422		} else if (disable & (1 << ssid)) {
3423			if (!(cgrp->subtree_control & (1 << ssid))) {
3424				disable &= ~(1 << ssid);
3425				continue;
3426			}
3427
3428			/* a child has it enabled? */
3429			cgroup_for_each_live_child(child, cgrp) {
3430				if (child->subtree_control & (1 << ssid)) {
3431					ret = -EBUSY;
3432					goto out_unlock;
3433				}
3434			}
3435		}
3436	}
3437
3438	if (!enable && !disable) {
3439		ret = 0;
3440		goto out_unlock;
3441	}
3442
3443	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3444	if (ret)
3445		goto out_unlock;
3446
3447	/* save and update control masks and prepare csses */
3448	cgroup_save_control(cgrp);
3449
3450	cgrp->subtree_control |= enable;
3451	cgrp->subtree_control &= ~disable;
3452
3453	ret = cgroup_apply_control(cgrp);
3454	cgroup_finalize_control(cgrp, ret);
3455	if (ret)
3456		goto out_unlock;
3457
3458	kernfs_activate(cgrp->kn);
3459out_unlock:
3460	cgroup_kn_unlock(of->kn);
3461	return ret ?: nbytes;
3462}
3463
3464/**
3465 * cgroup_enable_threaded - make @cgrp threaded
3466 * @cgrp: the target cgroup
3467 *
3468 * Called when "threaded" is written to the cgroup.type interface file and
3469 * tries to make @cgrp threaded and join the parent's resource domain.
3470 * This function is never called on the root cgroup as cgroup.type doesn't
3471 * exist on it.
3472 */
3473static int cgroup_enable_threaded(struct cgroup *cgrp)
3474{
3475	struct cgroup *parent = cgroup_parent(cgrp);
3476	struct cgroup *dom_cgrp = parent->dom_cgrp;
3477	struct cgroup *dsct;
3478	struct cgroup_subsys_state *d_css;
3479	int ret;
3480
3481	lockdep_assert_held(&cgroup_mutex);
3482
3483	/* noop if already threaded */
3484	if (cgroup_is_threaded(cgrp))
3485		return 0;
3486
3487	/*
3488	 * If @cgroup is populated or has domain controllers enabled, it
3489	 * can't be switched.  While the below cgroup_can_be_thread_root()
3490	 * test can catch the same conditions, that's only when @parent is
3491	 * not mixable, so let's check it explicitly.
3492	 */
3493	if (cgroup_is_populated(cgrp) ||
3494	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3495		return -EOPNOTSUPP;
3496
3497	/* we're joining the parent's domain, ensure its validity */
3498	if (!cgroup_is_valid_domain(dom_cgrp) ||
3499	    !cgroup_can_be_thread_root(dom_cgrp))
3500		return -EOPNOTSUPP;
3501
3502	/*
3503	 * The following shouldn't cause actual migrations and should
3504	 * always succeed.
3505	 */
3506	cgroup_save_control(cgrp);
3507
3508	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3509		if (dsct == cgrp || cgroup_is_threaded(dsct))
3510			dsct->dom_cgrp = dom_cgrp;
3511
3512	ret = cgroup_apply_control(cgrp);
3513	if (!ret)
3514		parent->nr_threaded_children++;
3515
3516	cgroup_finalize_control(cgrp, ret);
3517	return ret;
3518}
3519
3520static int cgroup_type_show(struct seq_file *seq, void *v)
3521{
3522	struct cgroup *cgrp = seq_css(seq)->cgroup;
3523
3524	if (cgroup_is_threaded(cgrp))
3525		seq_puts(seq, "threaded\n");
3526	else if (!cgroup_is_valid_domain(cgrp))
3527		seq_puts(seq, "domain invalid\n");
3528	else if (cgroup_is_thread_root(cgrp))
3529		seq_puts(seq, "domain threaded\n");
3530	else
3531		seq_puts(seq, "domain\n");
3532
3533	return 0;
3534}
3535
3536static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3537				 size_t nbytes, loff_t off)
3538{
3539	struct cgroup *cgrp;
3540	int ret;
3541
3542	/* only switching to threaded mode is supported */
3543	if (strcmp(strstrip(buf), "threaded"))
3544		return -EINVAL;
3545
3546	/* drain dying csses before we re-apply (threaded) subtree control */
3547	cgrp = cgroup_kn_lock_live(of->kn, true);
3548	if (!cgrp)
3549		return -ENOENT;
3550
3551	/* threaded can only be enabled */
3552	ret = cgroup_enable_threaded(cgrp);
3553
3554	cgroup_kn_unlock(of->kn);
3555	return ret ?: nbytes;
3556}
3557
3558static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3559{
3560	struct cgroup *cgrp = seq_css(seq)->cgroup;
3561	int descendants = READ_ONCE(cgrp->max_descendants);
3562
3563	if (descendants == INT_MAX)
3564		seq_puts(seq, "max\n");
3565	else
3566		seq_printf(seq, "%d\n", descendants);
3567
3568	return 0;
3569}
3570
3571static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3572					   char *buf, size_t nbytes, loff_t off)
3573{
3574	struct cgroup *cgrp;
3575	int descendants;
3576	ssize_t ret;
3577
3578	buf = strstrip(buf);
3579	if (!strcmp(buf, "max")) {
3580		descendants = INT_MAX;
3581	} else {
3582		ret = kstrtoint(buf, 0, &descendants);
3583		if (ret)
3584			return ret;
3585	}
3586
3587	if (descendants < 0)
3588		return -ERANGE;
3589
3590	cgrp = cgroup_kn_lock_live(of->kn, false);
3591	if (!cgrp)
3592		return -ENOENT;
3593
3594	cgrp->max_descendants = descendants;
3595
3596	cgroup_kn_unlock(of->kn);
3597
3598	return nbytes;
3599}
3600
3601static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3602{
3603	struct cgroup *cgrp = seq_css(seq)->cgroup;
3604	int depth = READ_ONCE(cgrp->max_depth);
3605
3606	if (depth == INT_MAX)
3607		seq_puts(seq, "max\n");
3608	else
3609		seq_printf(seq, "%d\n", depth);
3610
3611	return 0;
3612}
3613
3614static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3615				      char *buf, size_t nbytes, loff_t off)
3616{
3617	struct cgroup *cgrp;
3618	ssize_t ret;
3619	int depth;
3620
3621	buf = strstrip(buf);
3622	if (!strcmp(buf, "max")) {
3623		depth = INT_MAX;
3624	} else {
3625		ret = kstrtoint(buf, 0, &depth);
3626		if (ret)
3627			return ret;
3628	}
3629
3630	if (depth < 0)
3631		return -ERANGE;
3632
3633	cgrp = cgroup_kn_lock_live(of->kn, false);
3634	if (!cgrp)
3635		return -ENOENT;
3636
3637	cgrp->max_depth = depth;
3638
3639	cgroup_kn_unlock(of->kn);
3640
3641	return nbytes;
3642}
3643
3644static int cgroup_events_show(struct seq_file *seq, void *v)
3645{
3646	struct cgroup *cgrp = seq_css(seq)->cgroup;
3647
3648	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3649	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3650
3651	return 0;
3652}
3653
3654static int cgroup_stat_show(struct seq_file *seq, void *v)
3655{
3656	struct cgroup *cgroup = seq_css(seq)->cgroup;
3657
3658	seq_printf(seq, "nr_descendants %d\n",
3659		   cgroup->nr_descendants);
3660	seq_printf(seq, "nr_dying_descendants %d\n",
3661		   cgroup->nr_dying_descendants);
3662
3663	return 0;
3664}
3665
3666#ifdef CONFIG_CGROUP_SCHED
3667/**
3668 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3669 * @cgrp: the cgroup of interest
3670 * @ss: the subsystem of interest
3671 *
3672 * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
3673 * or is offline, %NULL is returned.
3674 */
3675static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3676						     struct cgroup_subsys *ss)
3677{
3678	struct cgroup_subsys_state *css;
3679
3680	rcu_read_lock();
3681	css = cgroup_css(cgrp, ss);
3682	if (css && !css_tryget_online(css))
3683		css = NULL;
3684	rcu_read_unlock();
3685
3686	return css;
3687}
3688
3689static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3690{
3691	struct cgroup *cgrp = seq_css(seq)->cgroup;
3692	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3693	struct cgroup_subsys_state *css;
3694	int ret;
3695
3696	if (!ss->css_extra_stat_show)
3697		return 0;
3698
3699	css = cgroup_tryget_css(cgrp, ss);
3700	if (!css)
3701		return 0;
3702
3703	ret = ss->css_extra_stat_show(seq, css);
3704	css_put(css);
3705	return ret;
3706}
3707
3708static int cgroup_local_stat_show(struct seq_file *seq,
3709				  struct cgroup *cgrp, int ssid)
3710{
3711	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3712	struct cgroup_subsys_state *css;
3713	int ret;
3714
3715	if (!ss->css_local_stat_show)
3716		return 0;
3717
3718	css = cgroup_tryget_css(cgrp, ss);
3719	if (!css)
3720		return 0;
3721
3722	ret = ss->css_local_stat_show(seq, css);
3723	css_put(css);
3724	return ret;
3725}
3726#endif
3727
3728static int cpu_stat_show(struct seq_file *seq, void *v)
3729{
3730	int ret = 0;
3731
3732	cgroup_base_stat_cputime_show(seq);
3733#ifdef CONFIG_CGROUP_SCHED
3734	ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3735#endif
3736	return ret;
3737}
3738
3739static int cpu_local_stat_show(struct seq_file *seq, void *v)
3740{
3741	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3742	int ret = 0;
3743
3744#ifdef CONFIG_CGROUP_SCHED
3745	ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3746#endif
3747	return ret;
3748}
3749
3750#ifdef CONFIG_PSI
3751static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3752{
3753	struct cgroup *cgrp = seq_css(seq)->cgroup;
3754	struct psi_group *psi = cgroup_psi(cgrp);
3755
3756	return psi_show(seq, psi, PSI_IO);
3757}
3758static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3759{
3760	struct cgroup *cgrp = seq_css(seq)->cgroup;
3761	struct psi_group *psi = cgroup_psi(cgrp);
3762
3763	return psi_show(seq, psi, PSI_MEM);
3764}
3765static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3766{
3767	struct cgroup *cgrp = seq_css(seq)->cgroup;
3768	struct psi_group *psi = cgroup_psi(cgrp);
3769
3770	return psi_show(seq, psi, PSI_CPU);
3771}
3772
3773static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3774			      size_t nbytes, enum psi_res res)
3775{
3776	struct cgroup_file_ctx *ctx = of->priv;
3777	struct psi_trigger *new;
3778	struct cgroup *cgrp;
3779	struct psi_group *psi;
3780
3781	cgrp = cgroup_kn_lock_live(of->kn, false);
3782	if (!cgrp)
3783		return -ENODEV;
3784
3785	cgroup_get(cgrp);
3786	cgroup_kn_unlock(of->kn);
3787
3788	/* Allow only one trigger per file descriptor */
3789	if (ctx->psi.trigger) {
3790		cgroup_put(cgrp);
3791		return -EBUSY;
3792	}
3793
3794	psi = cgroup_psi(cgrp);
3795	new = psi_trigger_create(psi, buf, res, of->file, of);
3796	if (IS_ERR(new)) {
3797		cgroup_put(cgrp);
3798		return PTR_ERR(new);
3799	}
3800
3801	smp_store_release(&ctx->psi.trigger, new);
3802	cgroup_put(cgrp);
3803
3804	return nbytes;
3805}
3806
3807static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3808					  char *buf, size_t nbytes,
3809					  loff_t off)
3810{
3811	return pressure_write(of, buf, nbytes, PSI_IO);
3812}
3813
3814static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3815					  char *buf, size_t nbytes,
3816					  loff_t off)
3817{
3818	return pressure_write(of, buf, nbytes, PSI_MEM);
3819}
3820
3821static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3822					  char *buf, size_t nbytes,
3823					  loff_t off)
3824{
3825	return pressure_write(of, buf, nbytes, PSI_CPU);
3826}
3827
3828#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3829static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3830{
3831	struct cgroup *cgrp = seq_css(seq)->cgroup;
3832	struct psi_group *psi = cgroup_psi(cgrp);
3833
3834	return psi_show(seq, psi, PSI_IRQ);
3835}
3836
3837static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3838					 char *buf, size_t nbytes,
3839					 loff_t off)
3840{
3841	return pressure_write(of, buf, nbytes, PSI_IRQ);
3842}
3843#endif
3844
3845static int cgroup_pressure_show(struct seq_file *seq, void *v)
3846{
3847	struct cgroup *cgrp = seq_css(seq)->cgroup;
3848	struct psi_group *psi = cgroup_psi(cgrp);
3849
3850	seq_printf(seq, "%d\n", psi->enabled);
3851
3852	return 0;
3853}
3854
3855static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3856				     char *buf, size_t nbytes,
3857				     loff_t off)
3858{
3859	ssize_t ret;
3860	int enable;
3861	struct cgroup *cgrp;
3862	struct psi_group *psi;
3863
3864	ret = kstrtoint(strstrip(buf), 0, &enable);
3865	if (ret)
3866		return ret;
3867
3868	if (enable < 0 || enable > 1)
3869		return -ERANGE;
3870
3871	cgrp = cgroup_kn_lock_live(of->kn, false);
3872	if (!cgrp)
3873		return -ENOENT;
3874
3875	psi = cgroup_psi(cgrp);
3876	if (psi->enabled != enable) {
3877		int i;
3878
3879		/* show or hide {cpu,memory,io,irq}.pressure files */
3880		for (i = 0; i < NR_PSI_RESOURCES; i++)
3881			cgroup_file_show(&cgrp->psi_files[i], enable);
3882
3883		psi->enabled = enable;
3884		if (enable)
3885			psi_cgroup_restart(psi);
3886	}
3887
3888	cgroup_kn_unlock(of->kn);
3889
3890	return nbytes;
3891}
3892
3893static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3894					  poll_table *pt)
3895{
3896	struct cgroup_file_ctx *ctx = of->priv;
3897
3898	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3899}
3900
3901static void cgroup_pressure_release(struct kernfs_open_file *of)
3902{
3903	struct cgroup_file_ctx *ctx = of->priv;
3904
3905	psi_trigger_destroy(ctx->psi.trigger);
3906}
3907
3908bool cgroup_psi_enabled(void)
3909{
3910	if (static_branch_likely(&psi_disabled))
3911		return false;
3912
3913	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3914}
3915
3916#else /* CONFIG_PSI */
3917bool cgroup_psi_enabled(void)
3918{
3919	return false;
3920}
3921
3922#endif /* CONFIG_PSI */
3923
3924static int cgroup_freeze_show(struct seq_file *seq, void *v)
3925{
3926	struct cgroup *cgrp = seq_css(seq)->cgroup;
3927
3928	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3929
3930	return 0;
3931}
3932
3933static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3934				   char *buf, size_t nbytes, loff_t off)
3935{
3936	struct cgroup *cgrp;
3937	ssize_t ret;
3938	int freeze;
3939
3940	ret = kstrtoint(strstrip(buf), 0, &freeze);
3941	if (ret)
3942		return ret;
3943
3944	if (freeze < 0 || freeze > 1)
3945		return -ERANGE;
3946
3947	cgrp = cgroup_kn_lock_live(of->kn, false);
3948	if (!cgrp)
3949		return -ENOENT;
3950
3951	cgroup_freeze(cgrp, freeze);
3952
3953	cgroup_kn_unlock(of->kn);
3954
3955	return nbytes;
3956}
3957
3958static void __cgroup_kill(struct cgroup *cgrp)
3959{
3960	struct css_task_iter it;
3961	struct task_struct *task;
3962
3963	lockdep_assert_held(&cgroup_mutex);
3964
3965	spin_lock_irq(&css_set_lock);
3966	set_bit(CGRP_KILL, &cgrp->flags);
3967	spin_unlock_irq(&css_set_lock);
3968
3969	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3970	while ((task = css_task_iter_next(&it))) {
3971		/* Ignore kernel threads here. */
3972		if (task->flags & PF_KTHREAD)
3973			continue;
3974
3975		/* Skip tasks that are already dying. */
3976		if (__fatal_signal_pending(task))
3977			continue;
3978
3979		send_sig(SIGKILL, task, 0);
3980	}
3981	css_task_iter_end(&it);
3982
3983	spin_lock_irq(&css_set_lock);
3984	clear_bit(CGRP_KILL, &cgrp->flags);
3985	spin_unlock_irq(&css_set_lock);
3986}
3987
3988static void cgroup_kill(struct cgroup *cgrp)
3989{
3990	struct cgroup_subsys_state *css;
3991	struct cgroup *dsct;
3992
3993	lockdep_assert_held(&cgroup_mutex);
3994
3995	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3996		__cgroup_kill(dsct);
3997}
3998
3999static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4000				 size_t nbytes, loff_t off)
4001{
4002	ssize_t ret = 0;
4003	int kill;
4004	struct cgroup *cgrp;
4005
4006	ret = kstrtoint(strstrip(buf), 0, &kill);
4007	if (ret)
4008		return ret;
4009
4010	if (kill != 1)
4011		return -ERANGE;
4012
4013	cgrp = cgroup_kn_lock_live(of->kn, false);
4014	if (!cgrp)
4015		return -ENOENT;
4016
4017	/*
4018	 * Killing is a process directed operation, i.e. the whole thread-group
4019	 * is taken down so act like we do for cgroup.procs and only make this
4020	 * writable in non-threaded cgroups.
4021	 */
4022	if (cgroup_is_threaded(cgrp))
4023		ret = -EOPNOTSUPP;
4024	else
4025		cgroup_kill(cgrp);
4026
4027	cgroup_kn_unlock(of->kn);
4028
4029	return ret ?: nbytes;
4030}
4031
4032static int cgroup_file_open(struct kernfs_open_file *of)
4033{
4034	struct cftype *cft = of_cft(of);
4035	struct cgroup_file_ctx *ctx;
4036	int ret;
4037
4038	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4039	if (!ctx)
4040		return -ENOMEM;
4041
4042	ctx->ns = current->nsproxy->cgroup_ns;
4043	get_cgroup_ns(ctx->ns);
4044	of->priv = ctx;
4045
4046	if (!cft->open)
4047		return 0;
4048
4049	ret = cft->open(of);
4050	if (ret) {
4051		put_cgroup_ns(ctx->ns);
4052		kfree(ctx);
4053	}
4054	return ret;
4055}
4056
4057static void cgroup_file_release(struct kernfs_open_file *of)
4058{
4059	struct cftype *cft = of_cft(of);
4060	struct cgroup_file_ctx *ctx = of->priv;
4061
4062	if (cft->release)
4063		cft->release(of);
4064	put_cgroup_ns(ctx->ns);
4065	kfree(ctx);
4066}
4067
4068static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4069				 size_t nbytes, loff_t off)
4070{
4071	struct cgroup_file_ctx *ctx = of->priv;
4072	struct cgroup *cgrp = of->kn->parent->priv;
4073	struct cftype *cft = of_cft(of);
4074	struct cgroup_subsys_state *css;
4075	int ret;
4076
4077	if (!nbytes)
4078		return 0;
4079
4080	/*
4081	 * If namespaces are delegation boundaries, disallow writes to
4082	 * files in an non-init namespace root from inside the namespace
4083	 * except for the files explicitly marked delegatable -
4084	 * cgroup.procs and cgroup.subtree_control.
4085	 */
4086	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4087	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4088	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4089		return -EPERM;
4090
4091	if (cft->write)
4092		return cft->write(of, buf, nbytes, off);
4093
4094	/*
4095	 * kernfs guarantees that a file isn't deleted with operations in
4096	 * flight, which means that the matching css is and stays alive and
4097	 * doesn't need to be pinned.  The RCU locking is not necessary
4098	 * either.  It's just for the convenience of using cgroup_css().
4099	 */
4100	rcu_read_lock();
4101	css = cgroup_css(cgrp, cft->ss);
4102	rcu_read_unlock();
4103
4104	if (cft->write_u64) {
4105		unsigned long long v;
4106		ret = kstrtoull(buf, 0, &v);
4107		if (!ret)
4108			ret = cft->write_u64(css, cft, v);
4109	} else if (cft->write_s64) {
4110		long long v;
4111		ret = kstrtoll(buf, 0, &v);
4112		if (!ret)
4113			ret = cft->write_s64(css, cft, v);
4114	} else {
4115		ret = -EINVAL;
4116	}
4117
4118	return ret ?: nbytes;
4119}
4120
4121static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4122{
4123	struct cftype *cft = of_cft(of);
4124
4125	if (cft->poll)
4126		return cft->poll(of, pt);
4127
4128	return kernfs_generic_poll(of, pt);
4129}
4130
4131static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4132{
4133	return seq_cft(seq)->seq_start(seq, ppos);
4134}
4135
4136static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4137{
4138	return seq_cft(seq)->seq_next(seq, v, ppos);
4139}
4140
4141static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4142{
4143	if (seq_cft(seq)->seq_stop)
4144		seq_cft(seq)->seq_stop(seq, v);
4145}
4146
4147static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4148{
4149	struct cftype *cft = seq_cft(m);
4150	struct cgroup_subsys_state *css = seq_css(m);
4151
4152	if (cft->seq_show)
4153		return cft->seq_show(m, arg);
4154
4155	if (cft->read_u64)
4156		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4157	else if (cft->read_s64)
4158		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4159	else
4160		return -EINVAL;
4161	return 0;
4162}
4163
4164static struct kernfs_ops cgroup_kf_single_ops = {
4165	.atomic_write_len	= PAGE_SIZE,
4166	.open			= cgroup_file_open,
4167	.release		= cgroup_file_release,
4168	.write			= cgroup_file_write,
4169	.poll			= cgroup_file_poll,
4170	.seq_show		= cgroup_seqfile_show,
4171};
4172
4173static struct kernfs_ops cgroup_kf_ops = {
4174	.atomic_write_len	= PAGE_SIZE,
4175	.open			= cgroup_file_open,
4176	.release		= cgroup_file_release,
4177	.write			= cgroup_file_write,
4178	.poll			= cgroup_file_poll,
4179	.seq_start		= cgroup_seqfile_start,
4180	.seq_next		= cgroup_seqfile_next,
4181	.seq_stop		= cgroup_seqfile_stop,
4182	.seq_show		= cgroup_seqfile_show,
4183};
4184
4185static void cgroup_file_notify_timer(struct timer_list *timer)
4186{
4187	cgroup_file_notify(container_of(timer, struct cgroup_file,
4188					notify_timer));
4189}
4190
4191static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4192			   struct cftype *cft)
4193{
4194	char name[CGROUP_FILE_NAME_MAX];
4195	struct kernfs_node *kn;
4196	struct lock_class_key *key = NULL;
4197
4198#ifdef CONFIG_DEBUG_LOCK_ALLOC
4199	key = &cft->lockdep_key;
4200#endif
4201	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4202				  cgroup_file_mode(cft),
4203				  current_fsuid(), current_fsgid(),
4204				  0, cft->kf_ops, cft,
4205				  NULL, key);
4206	if (IS_ERR(kn))
4207		return PTR_ERR(kn);
4208
4209	if (cft->file_offset) {
4210		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4211
4212		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4213
4214		spin_lock_irq(&cgroup_file_kn_lock);
4215		cfile->kn = kn;
4216		spin_unlock_irq(&cgroup_file_kn_lock);
4217	}
4218
4219	return 0;
4220}
4221
4222/**
4223 * cgroup_addrm_files - add or remove files to a cgroup directory
4224 * @css: the target css
4225 * @cgrp: the target cgroup (usually css->cgroup)
4226 * @cfts: array of cftypes to be added
4227 * @is_add: whether to add or remove
4228 *
4229 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4230 * For removals, this function never fails.
4231 */
4232static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4233			      struct cgroup *cgrp, struct cftype cfts[],
4234			      bool is_add)
4235{
4236	struct cftype *cft, *cft_end = NULL;
4237	int ret = 0;
4238
4239	lockdep_assert_held(&cgroup_mutex);
4240
4241restart:
4242	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4243		/* does cft->flags tell us to skip this file on @cgrp? */
4244		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4245			continue;
4246		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4247			continue;
4248		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4249			continue;
4250		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4251			continue;
4252		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4253			continue;
4254		if (is_add) {
4255			ret = cgroup_add_file(css, cgrp, cft);
4256			if (ret) {
4257				pr_warn("%s: failed to add %s, err=%d\n",
4258					__func__, cft->name, ret);
4259				cft_end = cft;
4260				is_add = false;
4261				goto restart;
4262			}
4263		} else {
4264			cgroup_rm_file(cgrp, cft);
4265		}
4266	}
4267	return ret;
4268}
4269
4270static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4271{
4272	struct cgroup_subsys *ss = cfts[0].ss;
4273	struct cgroup *root = &ss->root->cgrp;
4274	struct cgroup_subsys_state *css;
4275	int ret = 0;
4276
4277	lockdep_assert_held(&cgroup_mutex);
4278
4279	/* add/rm files for all cgroups created before */
4280	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4281		struct cgroup *cgrp = css->cgroup;
4282
4283		if (!(css->flags & CSS_VISIBLE))
4284			continue;
4285
4286		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4287		if (ret)
4288			break;
4289	}
4290
4291	if (is_add && !ret)
4292		kernfs_activate(root->kn);
4293	return ret;
4294}
4295
4296static void cgroup_exit_cftypes(struct cftype *cfts)
4297{
4298	struct cftype *cft;
4299
4300	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4301		/* free copy for custom atomic_write_len, see init_cftypes() */
4302		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4303			kfree(cft->kf_ops);
4304		cft->kf_ops = NULL;
4305		cft->ss = NULL;
4306
4307		/* revert flags set by cgroup core while adding @cfts */
4308		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4309				__CFTYPE_ADDED);
4310	}
4311}
4312
4313static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4314{
4315	struct cftype *cft;
4316	int ret = 0;
4317
4318	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4319		struct kernfs_ops *kf_ops;
4320
4321		WARN_ON(cft->ss || cft->kf_ops);
4322
4323		if (cft->flags & __CFTYPE_ADDED) {
4324			ret = -EBUSY;
4325			break;
4326		}
4327
4328		if (cft->seq_start)
4329			kf_ops = &cgroup_kf_ops;
4330		else
4331			kf_ops = &cgroup_kf_single_ops;
4332
4333		/*
4334		 * Ugh... if @cft wants a custom max_write_len, we need to
4335		 * make a copy of kf_ops to set its atomic_write_len.
4336		 */
4337		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4338			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4339			if (!kf_ops) {
4340				ret = -ENOMEM;
4341				break;
4342			}
4343			kf_ops->atomic_write_len = cft->max_write_len;
4344		}
4345
4346		cft->kf_ops = kf_ops;
4347		cft->ss = ss;
4348		cft->flags |= __CFTYPE_ADDED;
4349	}
4350
4351	if (ret)
4352		cgroup_exit_cftypes(cfts);
4353	return ret;
4354}
4355
4356static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4357{
4358	lockdep_assert_held(&cgroup_mutex);
4359
4360	list_del(&cfts->node);
4361	cgroup_apply_cftypes(cfts, false);
4362	cgroup_exit_cftypes(cfts);
4363}
4364
4365/**
4366 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4367 * @cfts: zero-length name terminated array of cftypes
4368 *
4369 * Unregister @cfts.  Files described by @cfts are removed from all
4370 * existing cgroups and all future cgroups won't have them either.  This
4371 * function can be called anytime whether @cfts' subsys is attached or not.
4372 *
4373 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4374 * registered.
4375 */
4376int cgroup_rm_cftypes(struct cftype *cfts)
4377{
4378	if (!cfts || cfts[0].name[0] == '\0')
4379		return 0;
4380
4381	if (!(cfts[0].flags & __CFTYPE_ADDED))
4382		return -ENOENT;
4383
4384	cgroup_lock();
4385	cgroup_rm_cftypes_locked(cfts);
4386	cgroup_unlock();
4387	return 0;
4388}
4389
4390/**
4391 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4392 * @ss: target cgroup subsystem
4393 * @cfts: zero-length name terminated array of cftypes
4394 *
4395 * Register @cfts to @ss.  Files described by @cfts are created for all
4396 * existing cgroups to which @ss is attached and all future cgroups will
4397 * have them too.  This function can be called anytime whether @ss is
4398 * attached or not.
4399 *
4400 * Returns 0 on successful registration, -errno on failure.  Note that this
4401 * function currently returns 0 as long as @cfts registration is successful
4402 * even if some file creation attempts on existing cgroups fail.
4403 */
4404static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4405{
4406	int ret;
4407
4408	if (!cgroup_ssid_enabled(ss->id))
4409		return 0;
4410
4411	if (!cfts || cfts[0].name[0] == '\0')
4412		return 0;
4413
4414	ret = cgroup_init_cftypes(ss, cfts);
4415	if (ret)
4416		return ret;
4417
4418	cgroup_lock();
4419
4420	list_add_tail(&cfts->node, &ss->cfts);
4421	ret = cgroup_apply_cftypes(cfts, true);
4422	if (ret)
4423		cgroup_rm_cftypes_locked(cfts);
4424
4425	cgroup_unlock();
4426	return ret;
4427}
4428
4429/**
4430 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4431 * @ss: target cgroup subsystem
4432 * @cfts: zero-length name terminated array of cftypes
4433 *
4434 * Similar to cgroup_add_cftypes() but the added files are only used for
4435 * the default hierarchy.
4436 */
4437int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4438{
4439	struct cftype *cft;
4440
4441	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4442		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4443	return cgroup_add_cftypes(ss, cfts);
4444}
4445
4446/**
4447 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4448 * @ss: target cgroup subsystem
4449 * @cfts: zero-length name terminated array of cftypes
4450 *
4451 * Similar to cgroup_add_cftypes() but the added files are only used for
4452 * the legacy hierarchies.
4453 */
4454int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4455{
4456	struct cftype *cft;
4457
4458	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4459		cft->flags |= __CFTYPE_NOT_ON_DFL;
4460	return cgroup_add_cftypes(ss, cfts);
4461}
4462
4463/**
4464 * cgroup_file_notify - generate a file modified event for a cgroup_file
4465 * @cfile: target cgroup_file
4466 *
4467 * @cfile must have been obtained by setting cftype->file_offset.
4468 */
4469void cgroup_file_notify(struct cgroup_file *cfile)
4470{
4471	unsigned long flags;
4472
4473	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4474	if (cfile->kn) {
4475		unsigned long last = cfile->notified_at;
4476		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4477
4478		if (time_in_range(jiffies, last, next)) {
4479			timer_reduce(&cfile->notify_timer, next);
4480		} else {
4481			kernfs_notify(cfile->kn);
4482			cfile->notified_at = jiffies;
4483		}
4484	}
4485	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4486}
4487
4488/**
4489 * cgroup_file_show - show or hide a hidden cgroup file
4490 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4491 * @show: whether to show or hide
4492 */
4493void cgroup_file_show(struct cgroup_file *cfile, bool show)
4494{
4495	struct kernfs_node *kn;
4496
4497	spin_lock_irq(&cgroup_file_kn_lock);
4498	kn = cfile->kn;
4499	kernfs_get(kn);
4500	spin_unlock_irq(&cgroup_file_kn_lock);
4501
4502	if (kn)
4503		kernfs_show(kn, show);
4504
4505	kernfs_put(kn);
4506}
4507
4508/**
4509 * css_next_child - find the next child of a given css
4510 * @pos: the current position (%NULL to initiate traversal)
4511 * @parent: css whose children to walk
4512 *
4513 * This function returns the next child of @parent and should be called
4514 * under either cgroup_mutex or RCU read lock.  The only requirement is
4515 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4516 * be returned regardless of their states.
4517 *
4518 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4519 * css which finished ->css_online() is guaranteed to be visible in the
4520 * future iterations and will stay visible until the last reference is put.
4521 * A css which hasn't finished ->css_online() or already finished
4522 * ->css_offline() may show up during traversal.  It's each subsystem's
4523 * responsibility to synchronize against on/offlining.
4524 */
4525struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4526					   struct cgroup_subsys_state *parent)
4527{
4528	struct cgroup_subsys_state *next;
4529
4530	cgroup_assert_mutex_or_rcu_locked();
4531
4532	/*
4533	 * @pos could already have been unlinked from the sibling list.
4534	 * Once a cgroup is removed, its ->sibling.next is no longer
4535	 * updated when its next sibling changes.  CSS_RELEASED is set when
4536	 * @pos is taken off list, at which time its next pointer is valid,
4537	 * and, as releases are serialized, the one pointed to by the next
4538	 * pointer is guaranteed to not have started release yet.  This
4539	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4540	 * critical section, the one pointed to by its next pointer is
4541	 * guaranteed to not have finished its RCU grace period even if we
4542	 * have dropped rcu_read_lock() in-between iterations.
4543	 *
4544	 * If @pos has CSS_RELEASED set, its next pointer can't be
4545	 * dereferenced; however, as each css is given a monotonically
4546	 * increasing unique serial number and always appended to the
4547	 * sibling list, the next one can be found by walking the parent's
4548	 * children until the first css with higher serial number than
4549	 * @pos's.  While this path can be slower, it happens iff iteration
4550	 * races against release and the race window is very small.
4551	 */
4552	if (!pos) {
4553		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4554	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4555		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4556	} else {
4557		list_for_each_entry_rcu(next, &parent->children, sibling,
4558					lockdep_is_held(&cgroup_mutex))
4559			if (next->serial_nr > pos->serial_nr)
4560				break;
4561	}
4562
4563	/*
4564	 * @next, if not pointing to the head, can be dereferenced and is
4565	 * the next sibling.
4566	 */
4567	if (&next->sibling != &parent->children)
4568		return next;
4569	return NULL;
4570}
4571
4572/**
4573 * css_next_descendant_pre - find the next descendant for pre-order walk
4574 * @pos: the current position (%NULL to initiate traversal)
4575 * @root: css whose descendants to walk
4576 *
4577 * To be used by css_for_each_descendant_pre().  Find the next descendant
4578 * to visit for pre-order traversal of @root's descendants.  @root is
4579 * included in the iteration and the first node to be visited.
4580 *
4581 * While this function requires cgroup_mutex or RCU read locking, it
4582 * doesn't require the whole traversal to be contained in a single critical
4583 * section.  This function will return the correct next descendant as long
4584 * as both @pos and @root are accessible and @pos is a descendant of @root.
4585 *
4586 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4587 * css which finished ->css_online() is guaranteed to be visible in the
4588 * future iterations and will stay visible until the last reference is put.
4589 * A css which hasn't finished ->css_online() or already finished
4590 * ->css_offline() may show up during traversal.  It's each subsystem's
4591 * responsibility to synchronize against on/offlining.
4592 */
4593struct cgroup_subsys_state *
4594css_next_descendant_pre(struct cgroup_subsys_state *pos,
4595			struct cgroup_subsys_state *root)
4596{
4597	struct cgroup_subsys_state *next;
4598
4599	cgroup_assert_mutex_or_rcu_locked();
4600
4601	/* if first iteration, visit @root */
4602	if (!pos)
4603		return root;
4604
4605	/* visit the first child if exists */
4606	next = css_next_child(NULL, pos);
4607	if (next)
4608		return next;
4609
4610	/* no child, visit my or the closest ancestor's next sibling */
4611	while (pos != root) {
4612		next = css_next_child(pos, pos->parent);
4613		if (next)
4614			return next;
4615		pos = pos->parent;
4616	}
4617
4618	return NULL;
4619}
4620EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4621
4622/**
4623 * css_rightmost_descendant - return the rightmost descendant of a css
4624 * @pos: css of interest
4625 *
4626 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4627 * is returned.  This can be used during pre-order traversal to skip
4628 * subtree of @pos.
4629 *
4630 * While this function requires cgroup_mutex or RCU read locking, it
4631 * doesn't require the whole traversal to be contained in a single critical
4632 * section.  This function will return the correct rightmost descendant as
4633 * long as @pos is accessible.
4634 */
4635struct cgroup_subsys_state *
4636css_rightmost_descendant(struct cgroup_subsys_state *pos)
4637{
4638	struct cgroup_subsys_state *last, *tmp;
4639
4640	cgroup_assert_mutex_or_rcu_locked();
4641
4642	do {
4643		last = pos;
4644		/* ->prev isn't RCU safe, walk ->next till the end */
4645		pos = NULL;
4646		css_for_each_child(tmp, last)
4647			pos = tmp;
4648	} while (pos);
4649
4650	return last;
4651}
4652
4653static struct cgroup_subsys_state *
4654css_leftmost_descendant(struct cgroup_subsys_state *pos)
4655{
4656	struct cgroup_subsys_state *last;
4657
4658	do {
4659		last = pos;
4660		pos = css_next_child(NULL, pos);
4661	} while (pos);
4662
4663	return last;
4664}
4665
4666/**
4667 * css_next_descendant_post - find the next descendant for post-order walk
4668 * @pos: the current position (%NULL to initiate traversal)
4669 * @root: css whose descendants to walk
4670 *
4671 * To be used by css_for_each_descendant_post().  Find the next descendant
4672 * to visit for post-order traversal of @root's descendants.  @root is
4673 * included in the iteration and the last node to be visited.
4674 *
4675 * While this function requires cgroup_mutex or RCU read locking, it
4676 * doesn't require the whole traversal to be contained in a single critical
4677 * section.  This function will return the correct next descendant as long
4678 * as both @pos and @cgroup are accessible and @pos is a descendant of
4679 * @cgroup.
4680 *
4681 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4682 * css which finished ->css_online() is guaranteed to be visible in the
4683 * future iterations and will stay visible until the last reference is put.
4684 * A css which hasn't finished ->css_online() or already finished
4685 * ->css_offline() may show up during traversal.  It's each subsystem's
4686 * responsibility to synchronize against on/offlining.
4687 */
4688struct cgroup_subsys_state *
4689css_next_descendant_post(struct cgroup_subsys_state *pos,
4690			 struct cgroup_subsys_state *root)
4691{
4692	struct cgroup_subsys_state *next;
4693
4694	cgroup_assert_mutex_or_rcu_locked();
4695
4696	/* if first iteration, visit leftmost descendant which may be @root */
4697	if (!pos)
4698		return css_leftmost_descendant(root);
4699
4700	/* if we visited @root, we're done */
4701	if (pos == root)
4702		return NULL;
4703
4704	/* if there's an unvisited sibling, visit its leftmost descendant */
4705	next = css_next_child(pos, pos->parent);
4706	if (next)
4707		return css_leftmost_descendant(next);
4708
4709	/* no sibling left, visit parent */
4710	return pos->parent;
4711}
4712
4713/**
4714 * css_has_online_children - does a css have online children
4715 * @css: the target css
4716 *
4717 * Returns %true if @css has any online children; otherwise, %false.  This
4718 * function can be called from any context but the caller is responsible
4719 * for synchronizing against on/offlining as necessary.
4720 */
4721bool css_has_online_children(struct cgroup_subsys_state *css)
4722{
4723	struct cgroup_subsys_state *child;
4724	bool ret = false;
4725
4726	rcu_read_lock();
4727	css_for_each_child(child, css) {
4728		if (child->flags & CSS_ONLINE) {
4729			ret = true;
4730			break;
4731		}
4732	}
4733	rcu_read_unlock();
4734	return ret;
4735}
4736
4737static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4738{
4739	struct list_head *l;
4740	struct cgrp_cset_link *link;
4741	struct css_set *cset;
4742
4743	lockdep_assert_held(&css_set_lock);
4744
4745	/* find the next threaded cset */
4746	if (it->tcset_pos) {
4747		l = it->tcset_pos->next;
4748
4749		if (l != it->tcset_head) {
4750			it->tcset_pos = l;
4751			return container_of(l, struct css_set,
4752					    threaded_csets_node);
4753		}
4754
4755		it->tcset_pos = NULL;
4756	}
4757
4758	/* find the next cset */
4759	l = it->cset_pos;
4760	l = l->next;
4761	if (l == it->cset_head) {
4762		it->cset_pos = NULL;
4763		return NULL;
4764	}
4765
4766	if (it->ss) {
4767		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4768	} else {
4769		link = list_entry(l, struct cgrp_cset_link, cset_link);
4770		cset = link->cset;
4771	}
4772
4773	it->cset_pos = l;
4774
4775	/* initialize threaded css_set walking */
4776	if (it->flags & CSS_TASK_ITER_THREADED) {
4777		if (it->cur_dcset)
4778			put_css_set_locked(it->cur_dcset);
4779		it->cur_dcset = cset;
4780		get_css_set(cset);
4781
4782		it->tcset_head = &cset->threaded_csets;
4783		it->tcset_pos = &cset->threaded_csets;
4784	}
4785
4786	return cset;
4787}
4788
4789/**
4790 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4791 * @it: the iterator to advance
4792 *
4793 * Advance @it to the next css_set to walk.
4794 */
4795static void css_task_iter_advance_css_set(struct css_task_iter *it)
4796{
4797	struct css_set *cset;
4798
4799	lockdep_assert_held(&css_set_lock);
4800
4801	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4802	while ((cset = css_task_iter_next_css_set(it))) {
4803		if (!list_empty(&cset->tasks)) {
4804			it->cur_tasks_head = &cset->tasks;
4805			break;
4806		} else if (!list_empty(&cset->mg_tasks)) {
4807			it->cur_tasks_head = &cset->mg_tasks;
4808			break;
4809		} else if (!list_empty(&cset->dying_tasks)) {
4810			it->cur_tasks_head = &cset->dying_tasks;
4811			break;
4812		}
4813	}
4814	if (!cset) {
4815		it->task_pos = NULL;
4816		return;
4817	}
4818	it->task_pos = it->cur_tasks_head->next;
4819
4820	/*
4821	 * We don't keep css_sets locked across iteration steps and thus
4822	 * need to take steps to ensure that iteration can be resumed after
4823	 * the lock is re-acquired.  Iteration is performed at two levels -
4824	 * css_sets and tasks in them.
4825	 *
4826	 * Once created, a css_set never leaves its cgroup lists, so a
4827	 * pinned css_set is guaranteed to stay put and we can resume
4828	 * iteration afterwards.
4829	 *
4830	 * Tasks may leave @cset across iteration steps.  This is resolved
4831	 * by registering each iterator with the css_set currently being
4832	 * walked and making css_set_move_task() advance iterators whose
4833	 * next task is leaving.
4834	 */
4835	if (it->cur_cset) {
4836		list_del(&it->iters_node);
4837		put_css_set_locked(it->cur_cset);
4838	}
4839	get_css_set(cset);
4840	it->cur_cset = cset;
4841	list_add(&it->iters_node, &cset->task_iters);
4842}
4843
4844static void css_task_iter_skip(struct css_task_iter *it,
4845			       struct task_struct *task)
4846{
4847	lockdep_assert_held(&css_set_lock);
4848
4849	if (it->task_pos == &task->cg_list) {
4850		it->task_pos = it->task_pos->next;
4851		it->flags |= CSS_TASK_ITER_SKIPPED;
4852	}
4853}
4854
4855static void css_task_iter_advance(struct css_task_iter *it)
4856{
4857	struct task_struct *task;
4858
4859	lockdep_assert_held(&css_set_lock);
4860repeat:
4861	if (it->task_pos) {
4862		/*
4863		 * Advance iterator to find next entry. We go through cset
4864		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4865		 * the next cset.
4866		 */
4867		if (it->flags & CSS_TASK_ITER_SKIPPED)
4868			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4869		else
4870			it->task_pos = it->task_pos->next;
4871
4872		if (it->task_pos == &it->cur_cset->tasks) {
4873			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4874			it->task_pos = it->cur_tasks_head->next;
4875		}
4876		if (it->task_pos == &it->cur_cset->mg_tasks) {
4877			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4878			it->task_pos = it->cur_tasks_head->next;
4879		}
4880		if (it->task_pos == &it->cur_cset->dying_tasks)
4881			css_task_iter_advance_css_set(it);
4882	} else {
4883		/* called from start, proceed to the first cset */
4884		css_task_iter_advance_css_set(it);
4885	}
4886
4887	if (!it->task_pos)
4888		return;
4889
4890	task = list_entry(it->task_pos, struct task_struct, cg_list);
4891
4892	if (it->flags & CSS_TASK_ITER_PROCS) {
4893		/* if PROCS, skip over tasks which aren't group leaders */
4894		if (!thread_group_leader(task))
4895			goto repeat;
4896
4897		/* and dying leaders w/o live member threads */
4898		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4899		    !atomic_read(&task->signal->live))
4900			goto repeat;
4901	} else {
4902		/* skip all dying ones */
4903		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4904			goto repeat;
4905	}
4906}
4907
4908/**
4909 * css_task_iter_start - initiate task iteration
4910 * @css: the css to walk tasks of
4911 * @flags: CSS_TASK_ITER_* flags
4912 * @it: the task iterator to use
4913 *
4914 * Initiate iteration through the tasks of @css.  The caller can call
4915 * css_task_iter_next() to walk through the tasks until the function
4916 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4917 * called.
4918 */
4919void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4920			 struct css_task_iter *it)
4921{
4922	unsigned long irqflags;
4923
4924	memset(it, 0, sizeof(*it));
4925
4926	spin_lock_irqsave(&css_set_lock, irqflags);
4927
4928	it->ss = css->ss;
4929	it->flags = flags;
4930
4931	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4932		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4933	else
4934		it->cset_pos = &css->cgroup->cset_links;
4935
4936	it->cset_head = it->cset_pos;
4937
4938	css_task_iter_advance(it);
4939
4940	spin_unlock_irqrestore(&css_set_lock, irqflags);
4941}
4942
4943/**
4944 * css_task_iter_next - return the next task for the iterator
4945 * @it: the task iterator being iterated
4946 *
4947 * The "next" function for task iteration.  @it should have been
4948 * initialized via css_task_iter_start().  Returns NULL when the iteration
4949 * reaches the end.
4950 */
4951struct task_struct *css_task_iter_next(struct css_task_iter *it)
4952{
4953	unsigned long irqflags;
4954
4955	if (it->cur_task) {
4956		put_task_struct(it->cur_task);
4957		it->cur_task = NULL;
4958	}
4959
4960	spin_lock_irqsave(&css_set_lock, irqflags);
4961
4962	/* @it may be half-advanced by skips, finish advancing */
4963	if (it->flags & CSS_TASK_ITER_SKIPPED)
4964		css_task_iter_advance(it);
4965
4966	if (it->task_pos) {
4967		it->cur_task = list_entry(it->task_pos, struct task_struct,
4968					  cg_list);
4969		get_task_struct(it->cur_task);
4970		css_task_iter_advance(it);
4971	}
4972
4973	spin_unlock_irqrestore(&css_set_lock, irqflags);
4974
4975	return it->cur_task;
4976}
4977
4978/**
4979 * css_task_iter_end - finish task iteration
4980 * @it: the task iterator to finish
4981 *
4982 * Finish task iteration started by css_task_iter_start().
4983 */
4984void css_task_iter_end(struct css_task_iter *it)
4985{
4986	unsigned long irqflags;
4987
4988	if (it->cur_cset) {
4989		spin_lock_irqsave(&css_set_lock, irqflags);
4990		list_del(&it->iters_node);
4991		put_css_set_locked(it->cur_cset);
4992		spin_unlock_irqrestore(&css_set_lock, irqflags);
4993	}
4994
4995	if (it->cur_dcset)
4996		put_css_set(it->cur_dcset);
4997
4998	if (it->cur_task)
4999		put_task_struct(it->cur_task);
5000}
5001
5002static void cgroup_procs_release(struct kernfs_open_file *of)
5003{
5004	struct cgroup_file_ctx *ctx = of->priv;
5005
5006	if (ctx->procs.started)
5007		css_task_iter_end(&ctx->procs.iter);
5008}
5009
5010static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5011{
5012	struct kernfs_open_file *of = s->private;
5013	struct cgroup_file_ctx *ctx = of->priv;
5014
5015	if (pos)
5016		(*pos)++;
5017
5018	return css_task_iter_next(&ctx->procs.iter);
5019}
5020
5021static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5022				  unsigned int iter_flags)
5023{
5024	struct kernfs_open_file *of = s->private;
5025	struct cgroup *cgrp = seq_css(s)->cgroup;
5026	struct cgroup_file_ctx *ctx = of->priv;
5027	struct css_task_iter *it = &ctx->procs.iter;
5028
5029	/*
5030	 * When a seq_file is seeked, it's always traversed sequentially
5031	 * from position 0, so we can simply keep iterating on !0 *pos.
5032	 */
5033	if (!ctx->procs.started) {
5034		if (WARN_ON_ONCE((*pos)))
5035			return ERR_PTR(-EINVAL);
5036		css_task_iter_start(&cgrp->self, iter_flags, it);
5037		ctx->procs.started = true;
5038	} else if (!(*pos)) {
5039		css_task_iter_end(it);
5040		css_task_iter_start(&cgrp->self, iter_flags, it);
5041	} else
5042		return it->cur_task;
5043
5044	return cgroup_procs_next(s, NULL, NULL);
5045}
5046
5047static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5048{
5049	struct cgroup *cgrp = seq_css(s)->cgroup;
5050
5051	/*
5052	 * All processes of a threaded subtree belong to the domain cgroup
5053	 * of the subtree.  Only threads can be distributed across the
5054	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5055	 * They're always empty anyway.
5056	 */
5057	if (cgroup_is_threaded(cgrp))
5058		return ERR_PTR(-EOPNOTSUPP);
5059
5060	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5061					    CSS_TASK_ITER_THREADED);
5062}
5063
5064static int cgroup_procs_show(struct seq_file *s, void *v)
5065{
5066	seq_printf(s, "%d\n", task_pid_vnr(v));
5067	return 0;
5068}
5069
5070static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5071{
5072	int ret;
5073	struct inode *inode;
5074
5075	lockdep_assert_held(&cgroup_mutex);
5076
5077	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5078	if (!inode)
5079		return -ENOMEM;
5080
5081	ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5082	iput(inode);
5083	return ret;
5084}
5085
5086static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5087					 struct cgroup *dst_cgrp,
5088					 struct super_block *sb,
5089					 struct cgroup_namespace *ns)
5090{
5091	struct cgroup *com_cgrp = src_cgrp;
5092	int ret;
5093
5094	lockdep_assert_held(&cgroup_mutex);
5095
5096	/* find the common ancestor */
5097	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5098		com_cgrp = cgroup_parent(com_cgrp);
5099
5100	/* %current should be authorized to migrate to the common ancestor */
5101	ret = cgroup_may_write(com_cgrp, sb);
5102	if (ret)
5103		return ret;
5104
5105	/*
5106	 * If namespaces are delegation boundaries, %current must be able
5107	 * to see both source and destination cgroups from its namespace.
5108	 */
5109	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5110	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5111	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5112		return -ENOENT;
5113
5114	return 0;
5115}
5116
5117static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5118				     struct cgroup *dst_cgrp,
5119				     struct super_block *sb, bool threadgroup,
5120				     struct cgroup_namespace *ns)
5121{
5122	int ret = 0;
5123
5124	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5125	if (ret)
5126		return ret;
5127
5128	ret = cgroup_migrate_vet_dst(dst_cgrp);
5129	if (ret)
5130		return ret;
5131
5132	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5133		ret = -EOPNOTSUPP;
5134
5135	return ret;
5136}
5137
5138static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5139				    bool threadgroup)
5140{
5141	struct cgroup_file_ctx *ctx = of->priv;
5142	struct cgroup *src_cgrp, *dst_cgrp;
5143	struct task_struct *task;
5144	const struct cred *saved_cred;
5145	ssize_t ret;
5146	bool threadgroup_locked;
5147
5148	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5149	if (!dst_cgrp)
5150		return -ENODEV;
5151
5152	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5153	ret = PTR_ERR_OR_ZERO(task);
5154	if (ret)
5155		goto out_unlock;
5156
5157	/* find the source cgroup */
5158	spin_lock_irq(&css_set_lock);
5159	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5160	spin_unlock_irq(&css_set_lock);
5161
5162	/*
5163	 * Process and thread migrations follow same delegation rule. Check
5164	 * permissions using the credentials from file open to protect against
5165	 * inherited fd attacks.
5166	 */
5167	saved_cred = override_creds(of->file->f_cred);
5168	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5169					of->file->f_path.dentry->d_sb,
5170					threadgroup, ctx->ns);
5171	revert_creds(saved_cred);
5172	if (ret)
5173		goto out_finish;
5174
5175	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5176
5177out_finish:
5178	cgroup_procs_write_finish(task, threadgroup_locked);
5179out_unlock:
5180	cgroup_kn_unlock(of->kn);
5181
5182	return ret;
5183}
5184
5185static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5186				  char *buf, size_t nbytes, loff_t off)
5187{
5188	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5189}
5190
5191static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5192{
5193	return __cgroup_procs_start(s, pos, 0);
5194}
5195
5196static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5197				    char *buf, size_t nbytes, loff_t off)
5198{
5199	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5200}
5201
5202/* cgroup core interface files for the default hierarchy */
5203static struct cftype cgroup_base_files[] = {
5204	{
5205		.name = "cgroup.type",
5206		.flags = CFTYPE_NOT_ON_ROOT,
5207		.seq_show = cgroup_type_show,
5208		.write = cgroup_type_write,
5209	},
5210	{
5211		.name = "cgroup.procs",
5212		.flags = CFTYPE_NS_DELEGATABLE,
5213		.file_offset = offsetof(struct cgroup, procs_file),
5214		.release = cgroup_procs_release,
5215		.seq_start = cgroup_procs_start,
5216		.seq_next = cgroup_procs_next,
5217		.seq_show = cgroup_procs_show,
5218		.write = cgroup_procs_write,
5219	},
5220	{
5221		.name = "cgroup.threads",
5222		.flags = CFTYPE_NS_DELEGATABLE,
5223		.release = cgroup_procs_release,
5224		.seq_start = cgroup_threads_start,
5225		.seq_next = cgroup_procs_next,
5226		.seq_show = cgroup_procs_show,
5227		.write = cgroup_threads_write,
5228	},
5229	{
5230		.name = "cgroup.controllers",
5231		.seq_show = cgroup_controllers_show,
5232	},
5233	{
5234		.name = "cgroup.subtree_control",
5235		.flags = CFTYPE_NS_DELEGATABLE,
5236		.seq_show = cgroup_subtree_control_show,
5237		.write = cgroup_subtree_control_write,
5238	},
5239	{
5240		.name = "cgroup.events",
5241		.flags = CFTYPE_NOT_ON_ROOT,
5242		.file_offset = offsetof(struct cgroup, events_file),
5243		.seq_show = cgroup_events_show,
5244	},
5245	{
5246		.name = "cgroup.max.descendants",
5247		.seq_show = cgroup_max_descendants_show,
5248		.write = cgroup_max_descendants_write,
5249	},
5250	{
5251		.name = "cgroup.max.depth",
5252		.seq_show = cgroup_max_depth_show,
5253		.write = cgroup_max_depth_write,
5254	},
5255	{
5256		.name = "cgroup.stat",
5257		.seq_show = cgroup_stat_show,
5258	},
5259	{
5260		.name = "cgroup.freeze",
5261		.flags = CFTYPE_NOT_ON_ROOT,
5262		.seq_show = cgroup_freeze_show,
5263		.write = cgroup_freeze_write,
5264	},
5265	{
5266		.name = "cgroup.kill",
5267		.flags = CFTYPE_NOT_ON_ROOT,
5268		.write = cgroup_kill_write,
5269	},
5270	{
5271		.name = "cpu.stat",
5272		.seq_show = cpu_stat_show,
5273	},
5274	{
5275		.name = "cpu.stat.local",
5276		.seq_show = cpu_local_stat_show,
5277	},
5278	{ }	/* terminate */
5279};
5280
5281static struct cftype cgroup_psi_files[] = {
5282#ifdef CONFIG_PSI
5283	{
5284		.name = "io.pressure",
5285		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5286		.seq_show = cgroup_io_pressure_show,
5287		.write = cgroup_io_pressure_write,
5288		.poll = cgroup_pressure_poll,
5289		.release = cgroup_pressure_release,
5290	},
5291	{
5292		.name = "memory.pressure",
5293		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5294		.seq_show = cgroup_memory_pressure_show,
5295		.write = cgroup_memory_pressure_write,
5296		.poll = cgroup_pressure_poll,
5297		.release = cgroup_pressure_release,
5298	},
5299	{
5300		.name = "cpu.pressure",
5301		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5302		.seq_show = cgroup_cpu_pressure_show,
5303		.write = cgroup_cpu_pressure_write,
5304		.poll = cgroup_pressure_poll,
5305		.release = cgroup_pressure_release,
5306	},
5307#ifdef CONFIG_IRQ_TIME_ACCOUNTING
5308	{
5309		.name = "irq.pressure",
5310		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5311		.seq_show = cgroup_irq_pressure_show,
5312		.write = cgroup_irq_pressure_write,
5313		.poll = cgroup_pressure_poll,
5314		.release = cgroup_pressure_release,
5315	},
5316#endif
5317	{
5318		.name = "cgroup.pressure",
5319		.seq_show = cgroup_pressure_show,
5320		.write = cgroup_pressure_write,
5321	},
5322#endif /* CONFIG_PSI */
5323	{ }	/* terminate */
5324};
5325
5326/*
5327 * css destruction is four-stage process.
5328 *
5329 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5330 *    Implemented in kill_css().
5331 *
5332 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5333 *    and thus css_tryget_online() is guaranteed to fail, the css can be
5334 *    offlined by invoking offline_css().  After offlining, the base ref is
5335 *    put.  Implemented in css_killed_work_fn().
5336 *
5337 * 3. When the percpu_ref reaches zero, the only possible remaining
5338 *    accessors are inside RCU read sections.  css_release() schedules the
5339 *    RCU callback.
5340 *
5341 * 4. After the grace period, the css can be freed.  Implemented in
5342 *    css_free_rwork_fn().
5343 *
5344 * It is actually hairier because both step 2 and 4 require process context
5345 * and thus involve punting to css->destroy_work adding two additional
5346 * steps to the already complex sequence.
5347 */
5348static void css_free_rwork_fn(struct work_struct *work)
5349{
5350	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5351				struct cgroup_subsys_state, destroy_rwork);
5352	struct cgroup_subsys *ss = css->ss;
5353	struct cgroup *cgrp = css->cgroup;
5354
5355	percpu_ref_exit(&css->refcnt);
5356
5357	if (ss) {
5358		/* css free path */
5359		struct cgroup_subsys_state *parent = css->parent;
5360		int id = css->id;
5361
5362		ss->css_free(css);
5363		cgroup_idr_remove(&ss->css_idr, id);
5364		cgroup_put(cgrp);
5365
5366		if (parent)
5367			css_put(parent);
5368	} else {
5369		/* cgroup free path */
5370		atomic_dec(&cgrp->root->nr_cgrps);
5371		cgroup1_pidlist_destroy_all(cgrp);
5372		cancel_work_sync(&cgrp->release_agent_work);
5373		bpf_cgrp_storage_free(cgrp);
5374
5375		if (cgroup_parent(cgrp)) {
5376			/*
5377			 * We get a ref to the parent, and put the ref when
5378			 * this cgroup is being freed, so it's guaranteed
5379			 * that the parent won't be destroyed before its
5380			 * children.
5381			 */
5382			cgroup_put(cgroup_parent(cgrp));
5383			kernfs_put(cgrp->kn);
5384			psi_cgroup_free(cgrp);
5385			cgroup_rstat_exit(cgrp);
5386			kfree(cgrp);
5387		} else {
5388			/*
5389			 * This is root cgroup's refcnt reaching zero,
5390			 * which indicates that the root should be
5391			 * released.
5392			 */
5393			cgroup_destroy_root(cgrp->root);
5394		}
5395	}
5396}
5397
5398static void css_release_work_fn(struct work_struct *work)
5399{
5400	struct cgroup_subsys_state *css =
5401		container_of(work, struct cgroup_subsys_state, destroy_work);
5402	struct cgroup_subsys *ss = css->ss;
5403	struct cgroup *cgrp = css->cgroup;
5404
5405	cgroup_lock();
5406
5407	css->flags |= CSS_RELEASED;
5408	list_del_rcu(&css->sibling);
5409
5410	if (ss) {
5411		/* css release path */
5412		if (!list_empty(&css->rstat_css_node)) {
5413			cgroup_rstat_flush(cgrp);
5414			list_del_rcu(&css->rstat_css_node);
5415		}
5416
5417		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5418		if (ss->css_released)
5419			ss->css_released(css);
5420	} else {
5421		struct cgroup *tcgrp;
5422
5423		/* cgroup release path */
5424		TRACE_CGROUP_PATH(release, cgrp);
5425
5426		cgroup_rstat_flush(cgrp);
5427
5428		spin_lock_irq(&css_set_lock);
5429		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5430		     tcgrp = cgroup_parent(tcgrp))
5431			tcgrp->nr_dying_descendants--;
5432		spin_unlock_irq(&css_set_lock);
5433
5434		/*
5435		 * There are two control paths which try to determine
5436		 * cgroup from dentry without going through kernfs -
5437		 * cgroupstats_build() and css_tryget_online_from_dir().
5438		 * Those are supported by RCU protecting clearing of
5439		 * cgrp->kn->priv backpointer.
5440		 */
5441		if (cgrp->kn)
5442			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5443					 NULL);
5444	}
5445
5446	cgroup_unlock();
5447
5448	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5449	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5450}
5451
5452static void css_release(struct percpu_ref *ref)
5453{
5454	struct cgroup_subsys_state *css =
5455		container_of(ref, struct cgroup_subsys_state, refcnt);
5456
5457	INIT_WORK(&css->destroy_work, css_release_work_fn);
5458	queue_work(cgroup_destroy_wq, &css->destroy_work);
5459}
5460
5461static void init_and_link_css(struct cgroup_subsys_state *css,
5462			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5463{
5464	lockdep_assert_held(&cgroup_mutex);
5465
5466	cgroup_get_live(cgrp);
5467
5468	memset(css, 0, sizeof(*css));
5469	css->cgroup = cgrp;
5470	css->ss = ss;
5471	css->id = -1;
5472	INIT_LIST_HEAD(&css->sibling);
5473	INIT_LIST_HEAD(&css->children);
5474	INIT_LIST_HEAD(&css->rstat_css_node);
5475	css->serial_nr = css_serial_nr_next++;
5476	atomic_set(&css->online_cnt, 0);
5477
5478	if (cgroup_parent(cgrp)) {
5479		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5480		css_get(css->parent);
5481	}
5482
5483	if (ss->css_rstat_flush)
5484		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5485
5486	BUG_ON(cgroup_css(cgrp, ss));
5487}
5488
5489/* invoke ->css_online() on a new CSS and mark it online if successful */
5490static int online_css(struct cgroup_subsys_state *css)
5491{
5492	struct cgroup_subsys *ss = css->ss;
5493	int ret = 0;
5494
5495	lockdep_assert_held(&cgroup_mutex);
5496
5497	if (ss->css_online)
5498		ret = ss->css_online(css);
5499	if (!ret) {
5500		css->flags |= CSS_ONLINE;
5501		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5502
5503		atomic_inc(&css->online_cnt);
5504		if (css->parent)
5505			atomic_inc(&css->parent->online_cnt);
5506	}
5507	return ret;
5508}
5509
5510/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5511static void offline_css(struct cgroup_subsys_state *css)
5512{
5513	struct cgroup_subsys *ss = css->ss;
5514
5515	lockdep_assert_held(&cgroup_mutex);
5516
5517	if (!(css->flags & CSS_ONLINE))
5518		return;
5519
5520	if (ss->css_offline)
5521		ss->css_offline(css);
5522
5523	css->flags &= ~CSS_ONLINE;
5524	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5525
5526	wake_up_all(&css->cgroup->offline_waitq);
5527}
5528
5529/**
5530 * css_create - create a cgroup_subsys_state
5531 * @cgrp: the cgroup new css will be associated with
5532 * @ss: the subsys of new css
5533 *
5534 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5535 * css is online and installed in @cgrp.  This function doesn't create the
5536 * interface files.  Returns 0 on success, -errno on failure.
5537 */
5538static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5539					      struct cgroup_subsys *ss)
5540{
5541	struct cgroup *parent = cgroup_parent(cgrp);
5542	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5543	struct cgroup_subsys_state *css;
5544	int err;
5545
5546	lockdep_assert_held(&cgroup_mutex);
5547
5548	css = ss->css_alloc(parent_css);
5549	if (!css)
5550		css = ERR_PTR(-ENOMEM);
5551	if (IS_ERR(css))
5552		return css;
5553
5554	init_and_link_css(css, ss, cgrp);
5555
5556	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5557	if (err)
5558		goto err_free_css;
5559
5560	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5561	if (err < 0)
5562		goto err_free_css;
5563	css->id = err;
5564
5565	/* @css is ready to be brought online now, make it visible */
5566	list_add_tail_rcu(&css->sibling, &parent_css->children);
5567	cgroup_idr_replace(&ss->css_idr, css, css->id);
5568
5569	err = online_css(css);
5570	if (err)
5571		goto err_list_del;
5572
5573	return css;
5574
5575err_list_del:
5576	list_del_rcu(&css->sibling);
5577err_free_css:
5578	list_del_rcu(&css->rstat_css_node);
5579	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5580	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5581	return ERR_PTR(err);
5582}
5583
5584/*
5585 * The returned cgroup is fully initialized including its control mask, but
5586 * it doesn't have the control mask applied.
5587 */
5588static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5589				    umode_t mode)
5590{
5591	struct cgroup_root *root = parent->root;
5592	struct cgroup *cgrp, *tcgrp;
5593	struct kernfs_node *kn;
5594	int level = parent->level + 1;
5595	int ret;
5596
5597	/* allocate the cgroup and its ID, 0 is reserved for the root */
5598	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5599	if (!cgrp)
5600		return ERR_PTR(-ENOMEM);
5601
5602	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5603	if (ret)
5604		goto out_free_cgrp;
5605
5606	ret = cgroup_rstat_init(cgrp);
5607	if (ret)
5608		goto out_cancel_ref;
5609
5610	/* create the directory */
5611	kn = kernfs_create_dir_ns(parent->kn, name, mode,
5612				  current_fsuid(), current_fsgid(),
5613				  cgrp, NULL);
5614	if (IS_ERR(kn)) {
5615		ret = PTR_ERR(kn);
5616		goto out_stat_exit;
5617	}
5618	cgrp->kn = kn;
5619
5620	init_cgroup_housekeeping(cgrp);
5621
5622	cgrp->self.parent = &parent->self;
5623	cgrp->root = root;
5624	cgrp->level = level;
5625
5626	ret = psi_cgroup_alloc(cgrp);
5627	if (ret)
5628		goto out_kernfs_remove;
5629
5630	ret = cgroup_bpf_inherit(cgrp);
5631	if (ret)
5632		goto out_psi_free;
5633
5634	/*
5635	 * New cgroup inherits effective freeze counter, and
5636	 * if the parent has to be frozen, the child has too.
5637	 */
5638	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5639	if (cgrp->freezer.e_freeze) {
5640		/*
5641		 * Set the CGRP_FREEZE flag, so when a process will be
5642		 * attached to the child cgroup, it will become frozen.
5643		 * At this point the new cgroup is unpopulated, so we can
5644		 * consider it frozen immediately.
5645		 */
5646		set_bit(CGRP_FREEZE, &cgrp->flags);
5647		set_bit(CGRP_FROZEN, &cgrp->flags);
5648	}
5649
5650	spin_lock_irq(&css_set_lock);
5651	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5652		cgrp->ancestors[tcgrp->level] = tcgrp;
5653
5654		if (tcgrp != cgrp) {
5655			tcgrp->nr_descendants++;
5656
5657			/*
5658			 * If the new cgroup is frozen, all ancestor cgroups
5659			 * get a new frozen descendant, but their state can't
5660			 * change because of this.
5661			 */
5662			if (cgrp->freezer.e_freeze)
5663				tcgrp->freezer.nr_frozen_descendants++;
5664		}
5665	}
5666	spin_unlock_irq(&css_set_lock);
5667
5668	if (notify_on_release(parent))
5669		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5670
5671	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5672		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5673
5674	cgrp->self.serial_nr = css_serial_nr_next++;
5675
5676	/* allocation complete, commit to creation */
5677	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5678	atomic_inc(&root->nr_cgrps);
5679	cgroup_get_live(parent);
5680
5681	/*
5682	 * On the default hierarchy, a child doesn't automatically inherit
5683	 * subtree_control from the parent.  Each is configured manually.
5684	 */
5685	if (!cgroup_on_dfl(cgrp))
5686		cgrp->subtree_control = cgroup_control(cgrp);
5687
5688	cgroup_propagate_control(cgrp);
5689
5690	return cgrp;
5691
5692out_psi_free:
5693	psi_cgroup_free(cgrp);
5694out_kernfs_remove:
5695	kernfs_remove(cgrp->kn);
5696out_stat_exit:
5697	cgroup_rstat_exit(cgrp);
5698out_cancel_ref:
5699	percpu_ref_exit(&cgrp->self.refcnt);
5700out_free_cgrp:
5701	kfree(cgrp);
5702	return ERR_PTR(ret);
5703}
5704
5705static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5706{
5707	struct cgroup *cgroup;
5708	int ret = false;
5709	int level = 1;
5710
5711	lockdep_assert_held(&cgroup_mutex);
5712
5713	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5714		if (cgroup->nr_descendants >= cgroup->max_descendants)
5715			goto fail;
5716
5717		if (level > cgroup->max_depth)
5718			goto fail;
5719
5720		level++;
5721	}
5722
5723	ret = true;
5724fail:
5725	return ret;
5726}
5727
5728int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5729{
5730	struct cgroup *parent, *cgrp;
5731	int ret;
5732
5733	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5734	if (strchr(name, '\n'))
5735		return -EINVAL;
5736
5737	parent = cgroup_kn_lock_live(parent_kn, false);
5738	if (!parent)
5739		return -ENODEV;
5740
5741	if (!cgroup_check_hierarchy_limits(parent)) {
5742		ret = -EAGAIN;
5743		goto out_unlock;
5744	}
5745
5746	cgrp = cgroup_create(parent, name, mode);
5747	if (IS_ERR(cgrp)) {
5748		ret = PTR_ERR(cgrp);
5749		goto out_unlock;
5750	}
5751
5752	/*
5753	 * This extra ref will be put in cgroup_free_fn() and guarantees
5754	 * that @cgrp->kn is always accessible.
5755	 */
5756	kernfs_get(cgrp->kn);
5757
5758	ret = css_populate_dir(&cgrp->self);
5759	if (ret)
5760		goto out_destroy;
5761
5762	ret = cgroup_apply_control_enable(cgrp);
5763	if (ret)
5764		goto out_destroy;
5765
5766	TRACE_CGROUP_PATH(mkdir, cgrp);
5767
5768	/* let's create and online css's */
5769	kernfs_activate(cgrp->kn);
5770
5771	ret = 0;
5772	goto out_unlock;
5773
5774out_destroy:
5775	cgroup_destroy_locked(cgrp);
5776out_unlock:
5777	cgroup_kn_unlock(parent_kn);
5778	return ret;
5779}
5780
5781/*
5782 * This is called when the refcnt of a css is confirmed to be killed.
5783 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5784 * initiate destruction and put the css ref from kill_css().
5785 */
5786static void css_killed_work_fn(struct work_struct *work)
5787{
5788	struct cgroup_subsys_state *css =
5789		container_of(work, struct cgroup_subsys_state, destroy_work);
5790
5791	cgroup_lock();
5792
5793	do {
5794		offline_css(css);
5795		css_put(css);
5796		/* @css can't go away while we're holding cgroup_mutex */
5797		css = css->parent;
5798	} while (css && atomic_dec_and_test(&css->online_cnt));
5799
5800	cgroup_unlock();
5801}
5802
5803/* css kill confirmation processing requires process context, bounce */
5804static void css_killed_ref_fn(struct percpu_ref *ref)
5805{
5806	struct cgroup_subsys_state *css =
5807		container_of(ref, struct cgroup_subsys_state, refcnt);
5808
5809	if (atomic_dec_and_test(&css->online_cnt)) {
5810		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5811		queue_work(cgroup_destroy_wq, &css->destroy_work);
5812	}
5813}
5814
5815/**
5816 * kill_css - destroy a css
5817 * @css: css to destroy
5818 *
5819 * This function initiates destruction of @css by removing cgroup interface
5820 * files and putting its base reference.  ->css_offline() will be invoked
5821 * asynchronously once css_tryget_online() is guaranteed to fail and when
5822 * the reference count reaches zero, @css will be released.
5823 */
5824static void kill_css(struct cgroup_subsys_state *css)
5825{
5826	lockdep_assert_held(&cgroup_mutex);
5827
5828	if (css->flags & CSS_DYING)
5829		return;
5830
5831	css->flags |= CSS_DYING;
5832
5833	/*
5834	 * This must happen before css is disassociated with its cgroup.
5835	 * See seq_css() for details.
5836	 */
5837	css_clear_dir(css);
5838
5839	/*
5840	 * Killing would put the base ref, but we need to keep it alive
5841	 * until after ->css_offline().
5842	 */
5843	css_get(css);
5844
5845	/*
5846	 * cgroup core guarantees that, by the time ->css_offline() is
5847	 * invoked, no new css reference will be given out via
5848	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5849	 * proceed to offlining css's because percpu_ref_kill() doesn't
5850	 * guarantee that the ref is seen as killed on all CPUs on return.
5851	 *
5852	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5853	 * css is confirmed to be seen as killed on all CPUs.
5854	 */
5855	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5856}
5857
5858/**
5859 * cgroup_destroy_locked - the first stage of cgroup destruction
5860 * @cgrp: cgroup to be destroyed
5861 *
5862 * css's make use of percpu refcnts whose killing latency shouldn't be
5863 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5864 * guarantee that css_tryget_online() won't succeed by the time
5865 * ->css_offline() is invoked.  To satisfy all the requirements,
5866 * destruction is implemented in the following two steps.
5867 *
5868 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5869 *     userland visible parts and start killing the percpu refcnts of
5870 *     css's.  Set up so that the next stage will be kicked off once all
5871 *     the percpu refcnts are confirmed to be killed.
5872 *
5873 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5874 *     rest of destruction.  Once all cgroup references are gone, the
5875 *     cgroup is RCU-freed.
5876 *
5877 * This function implements s1.  After this step, @cgrp is gone as far as
5878 * the userland is concerned and a new cgroup with the same name may be
5879 * created.  As cgroup doesn't care about the names internally, this
5880 * doesn't cause any problem.
5881 */
5882static int cgroup_destroy_locked(struct cgroup *cgrp)
5883	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5884{
5885	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5886	struct cgroup_subsys_state *css;
5887	struct cgrp_cset_link *link;
5888	int ssid;
5889
5890	lockdep_assert_held(&cgroup_mutex);
5891
5892	/*
5893	 * Only migration can raise populated from zero and we're already
5894	 * holding cgroup_mutex.
5895	 */
5896	if (cgroup_is_populated(cgrp))
5897		return -EBUSY;
5898
5899	/*
5900	 * Make sure there's no live children.  We can't test emptiness of
5901	 * ->self.children as dead children linger on it while being
5902	 * drained; otherwise, "rmdir parent/child parent" may fail.
5903	 */
5904	if (css_has_online_children(&cgrp->self))
5905		return -EBUSY;
5906
5907	/*
5908	 * Mark @cgrp and the associated csets dead.  The former prevents
5909	 * further task migration and child creation by disabling
5910	 * cgroup_kn_lock_live().  The latter makes the csets ignored by
5911	 * the migration path.
5912	 */
5913	cgrp->self.flags &= ~CSS_ONLINE;
5914
5915	spin_lock_irq(&css_set_lock);
5916	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5917		link->cset->dead = true;
5918	spin_unlock_irq(&css_set_lock);
5919
5920	/* initiate massacre of all css's */
5921	for_each_css(css, ssid, cgrp)
5922		kill_css(css);
5923
5924	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5925	css_clear_dir(&cgrp->self);
5926	kernfs_remove(cgrp->kn);
5927
5928	if (cgroup_is_threaded(cgrp))
5929		parent->nr_threaded_children--;
5930
5931	spin_lock_irq(&css_set_lock);
5932	for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5933		tcgrp->nr_descendants--;
5934		tcgrp->nr_dying_descendants++;
5935		/*
5936		 * If the dying cgroup is frozen, decrease frozen descendants
5937		 * counters of ancestor cgroups.
5938		 */
5939		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5940			tcgrp->freezer.nr_frozen_descendants--;
5941	}
5942	spin_unlock_irq(&css_set_lock);
5943
5944	cgroup1_check_for_release(parent);
5945
5946	cgroup_bpf_offline(cgrp);
5947
5948	/* put the base reference */
5949	percpu_ref_kill(&cgrp->self.refcnt);
5950
5951	return 0;
5952};
5953
5954int cgroup_rmdir(struct kernfs_node *kn)
5955{
5956	struct cgroup *cgrp;
5957	int ret = 0;
5958
5959	cgrp = cgroup_kn_lock_live(kn, false);
5960	if (!cgrp)
5961		return 0;
5962
5963	ret = cgroup_destroy_locked(cgrp);
5964	if (!ret)
5965		TRACE_CGROUP_PATH(rmdir, cgrp);
5966
5967	cgroup_kn_unlock(kn);
5968	return ret;
5969}
5970
5971static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5972	.show_options		= cgroup_show_options,
5973	.mkdir			= cgroup_mkdir,
5974	.rmdir			= cgroup_rmdir,
5975	.show_path		= cgroup_show_path,
5976};
5977
5978static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5979{
5980	struct cgroup_subsys_state *css;
5981
5982	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5983
5984	cgroup_lock();
5985
5986	idr_init(&ss->css_idr);
5987	INIT_LIST_HEAD(&ss->cfts);
5988
5989	/* Create the root cgroup state for this subsystem */
5990	ss->root = &cgrp_dfl_root;
5991	css = ss->css_alloc(NULL);
5992	/* We don't handle early failures gracefully */
5993	BUG_ON(IS_ERR(css));
5994	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5995
5996	/*
5997	 * Root csses are never destroyed and we can't initialize
5998	 * percpu_ref during early init.  Disable refcnting.
5999	 */
6000	css->flags |= CSS_NO_REF;
6001
6002	if (early) {
6003		/* allocation can't be done safely during early init */
6004		css->id = 1;
6005	} else {
6006		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6007		BUG_ON(css->id < 0);
6008	}
6009
6010	/* Update the init_css_set to contain a subsys
6011	 * pointer to this state - since the subsystem is
6012	 * newly registered, all tasks and hence the
6013	 * init_css_set is in the subsystem's root cgroup. */
6014	init_css_set.subsys[ss->id] = css;
6015
6016	have_fork_callback |= (bool)ss->fork << ss->id;
6017	have_exit_callback |= (bool)ss->exit << ss->id;
6018	have_release_callback |= (bool)ss->release << ss->id;
6019	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6020
6021	/* At system boot, before all subsystems have been
6022	 * registered, no tasks have been forked, so we don't
6023	 * need to invoke fork callbacks here. */
6024	BUG_ON(!list_empty(&init_task.tasks));
6025
6026	BUG_ON(online_css(css));
6027
6028	cgroup_unlock();
6029}
6030
6031/**
6032 * cgroup_init_early - cgroup initialization at system boot
6033 *
6034 * Initialize cgroups at system boot, and initialize any
6035 * subsystems that request early init.
6036 */
6037int __init cgroup_init_early(void)
6038{
6039	static struct cgroup_fs_context __initdata ctx;
6040	struct cgroup_subsys *ss;
6041	int i;
6042
6043	ctx.root = &cgrp_dfl_root;
6044	init_cgroup_root(&ctx);
6045	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6046
6047	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6048
6049	for_each_subsys(ss, i) {
6050		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6051		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6052		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6053		     ss->id, ss->name);
6054		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6055		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6056
6057		ss->id = i;
6058		ss->name = cgroup_subsys_name[i];
6059		if (!ss->legacy_name)
6060			ss->legacy_name = cgroup_subsys_name[i];
6061
6062		if (ss->early_init)
6063			cgroup_init_subsys(ss, true);
6064	}
6065	return 0;
6066}
6067
6068/**
6069 * cgroup_init - cgroup initialization
6070 *
6071 * Register cgroup filesystem and /proc file, and initialize
6072 * any subsystems that didn't request early init.
6073 */
6074int __init cgroup_init(void)
6075{
6076	struct cgroup_subsys *ss;
6077	int ssid;
6078
6079	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6080	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6081	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6082	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6083
6084	cgroup_rstat_boot();
6085
6086	get_user_ns(init_cgroup_ns.user_ns);
6087
6088	cgroup_lock();
6089
6090	/*
6091	 * Add init_css_set to the hash table so that dfl_root can link to
6092	 * it during init.
6093	 */
6094	hash_add(css_set_table, &init_css_set.hlist,
6095		 css_set_hash(init_css_set.subsys));
6096
6097	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6098
6099	cgroup_unlock();
6100
6101	for_each_subsys(ss, ssid) {
6102		if (ss->early_init) {
6103			struct cgroup_subsys_state *css =
6104				init_css_set.subsys[ss->id];
6105
6106			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6107						   GFP_KERNEL);
6108			BUG_ON(css->id < 0);
6109		} else {
6110			cgroup_init_subsys(ss, false);
6111		}
6112
6113		list_add_tail(&init_css_set.e_cset_node[ssid],
6114			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6115
6116		/*
6117		 * Setting dfl_root subsys_mask needs to consider the
6118		 * disabled flag and cftype registration needs kmalloc,
6119		 * both of which aren't available during early_init.
6120		 */
6121		if (!cgroup_ssid_enabled(ssid))
6122			continue;
6123
6124		if (cgroup1_ssid_disabled(ssid))
6125			pr_info("Disabling %s control group subsystem in v1 mounts\n",
6126				ss->legacy_name);
6127
6128		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6129
6130		/* implicit controllers must be threaded too */
6131		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6132
6133		if (ss->implicit_on_dfl)
6134			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6135		else if (!ss->dfl_cftypes)
6136			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6137
6138		if (ss->threaded)
6139			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6140
6141		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6142			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6143		} else {
6144			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6145			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6146		}
6147
6148		if (ss->bind)
6149			ss->bind(init_css_set.subsys[ssid]);
6150
6151		cgroup_lock();
6152		css_populate_dir(init_css_set.subsys[ssid]);
6153		cgroup_unlock();
6154	}
6155
6156	/* init_css_set.subsys[] has been updated, re-hash */
6157	hash_del(&init_css_set.hlist);
6158	hash_add(css_set_table, &init_css_set.hlist,
6159		 css_set_hash(init_css_set.subsys));
6160
6161	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6162	WARN_ON(register_filesystem(&cgroup_fs_type));
6163	WARN_ON(register_filesystem(&cgroup2_fs_type));
6164	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6165#ifdef CONFIG_CPUSETS
6166	WARN_ON(register_filesystem(&cpuset_fs_type));
6167#endif
6168
6169	return 0;
6170}
6171
6172static int __init cgroup_wq_init(void)
6173{
6174	/*
6175	 * There isn't much point in executing destruction path in
6176	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6177	 * Use 1 for @max_active.
6178	 *
6179	 * We would prefer to do this in cgroup_init() above, but that
6180	 * is called before init_workqueues(): so leave this until after.
6181	 */
6182	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6183	BUG_ON(!cgroup_destroy_wq);
6184	return 0;
6185}
6186core_initcall(cgroup_wq_init);
6187
6188void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6189{
6190	struct kernfs_node *kn;
6191
6192	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6193	if (!kn)
6194		return;
6195	kernfs_path(kn, buf, buflen);
6196	kernfs_put(kn);
6197}
6198
6199/*
6200 * cgroup_get_from_id : get the cgroup associated with cgroup id
6201 * @id: cgroup id
6202 * On success return the cgrp or ERR_PTR on failure
6203 * Only cgroups within current task's cgroup NS are valid.
6204 */
6205struct cgroup *cgroup_get_from_id(u64 id)
6206{
6207	struct kernfs_node *kn;
6208	struct cgroup *cgrp, *root_cgrp;
6209
6210	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6211	if (!kn)
6212		return ERR_PTR(-ENOENT);
6213
6214	if (kernfs_type(kn) != KERNFS_DIR) {
6215		kernfs_put(kn);
6216		return ERR_PTR(-ENOENT);
6217	}
6218
6219	rcu_read_lock();
6220
6221	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6222	if (cgrp && !cgroup_tryget(cgrp))
6223		cgrp = NULL;
6224
6225	rcu_read_unlock();
6226	kernfs_put(kn);
6227
6228	if (!cgrp)
6229		return ERR_PTR(-ENOENT);
6230
6231	root_cgrp = current_cgns_cgroup_dfl();
6232	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6233		cgroup_put(cgrp);
6234		return ERR_PTR(-ENOENT);
6235	}
6236
6237	return cgrp;
6238}
6239EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6240
6241/*
6242 * proc_cgroup_show()
6243 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6244 *  - Used for /proc/<pid>/cgroup.
6245 */
6246int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6247		     struct pid *pid, struct task_struct *tsk)
6248{
6249	char *buf;
6250	int retval;
6251	struct cgroup_root *root;
6252
6253	retval = -ENOMEM;
6254	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6255	if (!buf)
6256		goto out;
6257
6258	rcu_read_lock();
6259	spin_lock_irq(&css_set_lock);
6260
6261	for_each_root(root) {
6262		struct cgroup_subsys *ss;
6263		struct cgroup *cgrp;
6264		int ssid, count = 0;
6265
6266		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6267			continue;
6268
6269		cgrp = task_cgroup_from_root(tsk, root);
6270		/* The root has already been unmounted. */
6271		if (!cgrp)
6272			continue;
6273
6274		seq_printf(m, "%d:", root->hierarchy_id);
6275		if (root != &cgrp_dfl_root)
6276			for_each_subsys(ss, ssid)
6277				if (root->subsys_mask & (1 << ssid))
6278					seq_printf(m, "%s%s", count++ ? "," : "",
6279						   ss->legacy_name);
6280		if (strlen(root->name))
6281			seq_printf(m, "%sname=%s", count ? "," : "",
6282				   root->name);
6283		seq_putc(m, ':');
6284		/*
6285		 * On traditional hierarchies, all zombie tasks show up as
6286		 * belonging to the root cgroup.  On the default hierarchy,
6287		 * while a zombie doesn't show up in "cgroup.procs" and
6288		 * thus can't be migrated, its /proc/PID/cgroup keeps
6289		 * reporting the cgroup it belonged to before exiting.  If
6290		 * the cgroup is removed before the zombie is reaped,
6291		 * " (deleted)" is appended to the cgroup path.
6292		 */
6293		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6294			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6295						current->nsproxy->cgroup_ns);
6296			if (retval == -E2BIG)
6297				retval = -ENAMETOOLONG;
6298			if (retval < 0)
6299				goto out_unlock;
6300
6301			seq_puts(m, buf);
6302		} else {
6303			seq_puts(m, "/");
6304		}
6305
6306		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6307			seq_puts(m, " (deleted)\n");
6308		else
6309			seq_putc(m, '\n');
6310	}
6311
6312	retval = 0;
6313out_unlock:
6314	spin_unlock_irq(&css_set_lock);
6315	rcu_read_unlock();
6316	kfree(buf);
6317out:
6318	return retval;
6319}
6320
6321/**
6322 * cgroup_fork - initialize cgroup related fields during copy_process()
6323 * @child: pointer to task_struct of forking parent process.
6324 *
6325 * A task is associated with the init_css_set until cgroup_post_fork()
6326 * attaches it to the target css_set.
6327 */
6328void cgroup_fork(struct task_struct *child)
6329{
6330	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6331	INIT_LIST_HEAD(&child->cg_list);
6332}
6333
6334/**
6335 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6336 * @f: file corresponding to cgroup_dir
6337 *
6338 * Find the cgroup from a file pointer associated with a cgroup directory.
6339 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6340 * cgroup cannot be found.
6341 */
6342static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6343{
6344	struct cgroup_subsys_state *css;
6345
6346	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6347	if (IS_ERR(css))
6348		return ERR_CAST(css);
6349
6350	return css->cgroup;
6351}
6352
6353/**
6354 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6355 * cgroup2.
6356 * @f: file corresponding to cgroup2_dir
6357 */
6358static struct cgroup *cgroup_get_from_file(struct file *f)
6359{
6360	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6361
6362	if (IS_ERR(cgrp))
6363		return ERR_CAST(cgrp);
6364
6365	if (!cgroup_on_dfl(cgrp)) {
6366		cgroup_put(cgrp);
6367		return ERR_PTR(-EBADF);
6368	}
6369
6370	return cgrp;
6371}
6372
6373/**
6374 * cgroup_css_set_fork - find or create a css_set for a child process
6375 * @kargs: the arguments passed to create the child process
6376 *
6377 * This functions finds or creates a new css_set which the child
6378 * process will be attached to in cgroup_post_fork(). By default,
6379 * the child process will be given the same css_set as its parent.
6380 *
6381 * If CLONE_INTO_CGROUP is specified this function will try to find an
6382 * existing css_set which includes the requested cgroup and if not create
6383 * a new css_set that the child will be attached to later. If this function
6384 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6385 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6386 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6387 * to the target cgroup.
6388 */
6389static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6390	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6391{
6392	int ret;
6393	struct cgroup *dst_cgrp = NULL;
6394	struct css_set *cset;
6395	struct super_block *sb;
6396	struct file *f;
6397
6398	if (kargs->flags & CLONE_INTO_CGROUP)
6399		cgroup_lock();
6400
6401	cgroup_threadgroup_change_begin(current);
6402
6403	spin_lock_irq(&css_set_lock);
6404	cset = task_css_set(current);
6405	get_css_set(cset);
6406	spin_unlock_irq(&css_set_lock);
6407
6408	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6409		kargs->cset = cset;
6410		return 0;
6411	}
6412
6413	f = fget_raw(kargs->cgroup);
6414	if (!f) {
6415		ret = -EBADF;
6416		goto err;
6417	}
6418	sb = f->f_path.dentry->d_sb;
6419
6420	dst_cgrp = cgroup_get_from_file(f);
6421	if (IS_ERR(dst_cgrp)) {
6422		ret = PTR_ERR(dst_cgrp);
6423		dst_cgrp = NULL;
6424		goto err;
6425	}
6426
6427	if (cgroup_is_dead(dst_cgrp)) {
6428		ret = -ENODEV;
6429		goto err;
6430	}
6431
6432	/*
6433	 * Verify that we the target cgroup is writable for us. This is
6434	 * usually done by the vfs layer but since we're not going through
6435	 * the vfs layer here we need to do it "manually".
6436	 */
6437	ret = cgroup_may_write(dst_cgrp, sb);
6438	if (ret)
6439		goto err;
6440
6441	/*
6442	 * Spawning a task directly into a cgroup works by passing a file
6443	 * descriptor to the target cgroup directory. This can even be an O_PATH
6444	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6445	 * This was done on purpose so spawning into a cgroup could be
6446	 * conceptualized as an atomic
6447	 *
6448	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6449	 *   write(fd, <child-pid>, ...);
6450	 *
6451	 * sequence, i.e. it's a shorthand for the caller opening and writing
6452	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6453	 * to always use the caller's credentials.
6454	 */
6455	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6456					!(kargs->flags & CLONE_THREAD),
6457					current->nsproxy->cgroup_ns);
6458	if (ret)
6459		goto err;
6460
6461	kargs->cset = find_css_set(cset, dst_cgrp);
6462	if (!kargs->cset) {
6463		ret = -ENOMEM;
6464		goto err;
6465	}
6466
6467	put_css_set(cset);
6468	fput(f);
6469	kargs->cgrp = dst_cgrp;
6470	return ret;
6471
6472err:
6473	cgroup_threadgroup_change_end(current);
6474	cgroup_unlock();
6475	if (f)
6476		fput(f);
6477	if (dst_cgrp)
6478		cgroup_put(dst_cgrp);
6479	put_css_set(cset);
6480	if (kargs->cset)
6481		put_css_set(kargs->cset);
6482	return ret;
6483}
6484
6485/**
6486 * cgroup_css_set_put_fork - drop references we took during fork
6487 * @kargs: the arguments passed to create the child process
6488 *
6489 * Drop references to the prepared css_set and target cgroup if
6490 * CLONE_INTO_CGROUP was requested.
6491 */
6492static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6493	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6494{
6495	struct cgroup *cgrp = kargs->cgrp;
6496	struct css_set *cset = kargs->cset;
6497
6498	cgroup_threadgroup_change_end(current);
6499
6500	if (cset) {
6501		put_css_set(cset);
6502		kargs->cset = NULL;
6503	}
6504
6505	if (kargs->flags & CLONE_INTO_CGROUP) {
6506		cgroup_unlock();
6507		if (cgrp) {
6508			cgroup_put(cgrp);
6509			kargs->cgrp = NULL;
6510		}
6511	}
6512}
6513
6514/**
6515 * cgroup_can_fork - called on a new task before the process is exposed
6516 * @child: the child process
6517 * @kargs: the arguments passed to create the child process
6518 *
6519 * This prepares a new css_set for the child process which the child will
6520 * be attached to in cgroup_post_fork().
6521 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6522 * callback returns an error, the fork aborts with that error code. This
6523 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6524 */
6525int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6526{
6527	struct cgroup_subsys *ss;
6528	int i, j, ret;
6529
6530	ret = cgroup_css_set_fork(kargs);
6531	if (ret)
6532		return ret;
6533
6534	do_each_subsys_mask(ss, i, have_canfork_callback) {
6535		ret = ss->can_fork(child, kargs->cset);
6536		if (ret)
6537			goto out_revert;
6538	} while_each_subsys_mask();
6539
6540	return 0;
6541
6542out_revert:
6543	for_each_subsys(ss, j) {
6544		if (j >= i)
6545			break;
6546		if (ss->cancel_fork)
6547			ss->cancel_fork(child, kargs->cset);
6548	}
6549
6550	cgroup_css_set_put_fork(kargs);
6551
6552	return ret;
6553}
6554
6555/**
6556 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6557 * @child: the child process
6558 * @kargs: the arguments passed to create the child process
6559 *
6560 * This calls the cancel_fork() callbacks if a fork failed *after*
6561 * cgroup_can_fork() succeeded and cleans up references we took to
6562 * prepare a new css_set for the child process in cgroup_can_fork().
6563 */
6564void cgroup_cancel_fork(struct task_struct *child,
6565			struct kernel_clone_args *kargs)
6566{
6567	struct cgroup_subsys *ss;
6568	int i;
6569
6570	for_each_subsys(ss, i)
6571		if (ss->cancel_fork)
6572			ss->cancel_fork(child, kargs->cset);
6573
6574	cgroup_css_set_put_fork(kargs);
6575}
6576
6577/**
6578 * cgroup_post_fork - finalize cgroup setup for the child process
6579 * @child: the child process
6580 * @kargs: the arguments passed to create the child process
6581 *
6582 * Attach the child process to its css_set calling the subsystem fork()
6583 * callbacks.
6584 */
6585void cgroup_post_fork(struct task_struct *child,
6586		      struct kernel_clone_args *kargs)
6587	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6588{
6589	unsigned long cgrp_flags = 0;
6590	bool kill = false;
6591	struct cgroup_subsys *ss;
6592	struct css_set *cset;
6593	int i;
6594
6595	cset = kargs->cset;
6596	kargs->cset = NULL;
6597
6598	spin_lock_irq(&css_set_lock);
6599
6600	/* init tasks are special, only link regular threads */
6601	if (likely(child->pid)) {
6602		if (kargs->cgrp)
6603			cgrp_flags = kargs->cgrp->flags;
6604		else
6605			cgrp_flags = cset->dfl_cgrp->flags;
6606
6607		WARN_ON_ONCE(!list_empty(&child->cg_list));
6608		cset->nr_tasks++;
6609		css_set_move_task(child, NULL, cset, false);
6610	} else {
6611		put_css_set(cset);
6612		cset = NULL;
6613	}
6614
6615	if (!(child->flags & PF_KTHREAD)) {
6616		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6617			/*
6618			 * If the cgroup has to be frozen, the new task has
6619			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6620			 * get the task into the frozen state.
6621			 */
6622			spin_lock(&child->sighand->siglock);
6623			WARN_ON_ONCE(child->frozen);
6624			child->jobctl |= JOBCTL_TRAP_FREEZE;
6625			spin_unlock(&child->sighand->siglock);
6626
6627			/*
6628			 * Calling cgroup_update_frozen() isn't required here,
6629			 * because it will be called anyway a bit later from
6630			 * do_freezer_trap(). So we avoid cgroup's transient
6631			 * switch from the frozen state and back.
6632			 */
6633		}
6634
6635		/*
6636		 * If the cgroup is to be killed notice it now and take the
6637		 * child down right after we finished preparing it for
6638		 * userspace.
6639		 */
6640		kill = test_bit(CGRP_KILL, &cgrp_flags);
6641	}
6642
6643	spin_unlock_irq(&css_set_lock);
6644
6645	/*
6646	 * Call ss->fork().  This must happen after @child is linked on
6647	 * css_set; otherwise, @child might change state between ->fork()
6648	 * and addition to css_set.
6649	 */
6650	do_each_subsys_mask(ss, i, have_fork_callback) {
6651		ss->fork(child);
6652	} while_each_subsys_mask();
6653
6654	/* Make the new cset the root_cset of the new cgroup namespace. */
6655	if (kargs->flags & CLONE_NEWCGROUP) {
6656		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6657
6658		get_css_set(cset);
6659		child->nsproxy->cgroup_ns->root_cset = cset;
6660		put_css_set(rcset);
6661	}
6662
6663	/* Cgroup has to be killed so take down child immediately. */
6664	if (unlikely(kill))
6665		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6666
6667	cgroup_css_set_put_fork(kargs);
6668}
6669
6670/**
6671 * cgroup_exit - detach cgroup from exiting task
6672 * @tsk: pointer to task_struct of exiting process
6673 *
6674 * Description: Detach cgroup from @tsk.
6675 *
6676 */
6677void cgroup_exit(struct task_struct *tsk)
6678{
6679	struct cgroup_subsys *ss;
6680	struct css_set *cset;
6681	int i;
6682
6683	spin_lock_irq(&css_set_lock);
6684
6685	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6686	cset = task_css_set(tsk);
6687	css_set_move_task(tsk, cset, NULL, false);
6688	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6689	cset->nr_tasks--;
6690
6691	if (dl_task(tsk))
6692		dec_dl_tasks_cs(tsk);
6693
6694	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6695	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6696		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6697		cgroup_update_frozen(task_dfl_cgroup(tsk));
6698
6699	spin_unlock_irq(&css_set_lock);
6700
6701	/* see cgroup_post_fork() for details */
6702	do_each_subsys_mask(ss, i, have_exit_callback) {
6703		ss->exit(tsk);
6704	} while_each_subsys_mask();
6705}
6706
6707void cgroup_release(struct task_struct *task)
6708{
6709	struct cgroup_subsys *ss;
6710	int ssid;
6711
6712	do_each_subsys_mask(ss, ssid, have_release_callback) {
6713		ss->release(task);
6714	} while_each_subsys_mask();
6715
6716	spin_lock_irq(&css_set_lock);
6717	css_set_skip_task_iters(task_css_set(task), task);
6718	list_del_init(&task->cg_list);
6719	spin_unlock_irq(&css_set_lock);
6720}
6721
6722void cgroup_free(struct task_struct *task)
6723{
6724	struct css_set *cset = task_css_set(task);
6725	put_css_set(cset);
6726}
6727
6728static int __init cgroup_disable(char *str)
6729{
6730	struct cgroup_subsys *ss;
6731	char *token;
6732	int i;
6733
6734	while ((token = strsep(&str, ",")) != NULL) {
6735		if (!*token)
6736			continue;
6737
6738		for_each_subsys(ss, i) {
6739			if (strcmp(token, ss->name) &&
6740			    strcmp(token, ss->legacy_name))
6741				continue;
6742
6743			static_branch_disable(cgroup_subsys_enabled_key[i]);
6744			pr_info("Disabling %s control group subsystem\n",
6745				ss->name);
6746		}
6747
6748		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6749			if (strcmp(token, cgroup_opt_feature_names[i]))
6750				continue;
6751			cgroup_feature_disable_mask |= 1 << i;
6752			pr_info("Disabling %s control group feature\n",
6753				cgroup_opt_feature_names[i]);
6754			break;
6755		}
6756	}
6757	return 1;
6758}
6759__setup("cgroup_disable=", cgroup_disable);
6760
6761void __init __weak enable_debug_cgroup(void) { }
6762
6763static int __init enable_cgroup_debug(char *str)
6764{
6765	cgroup_debug = true;
6766	enable_debug_cgroup();
6767	return 1;
6768}
6769__setup("cgroup_debug", enable_cgroup_debug);
6770
6771static int __init cgroup_favordynmods_setup(char *str)
6772{
6773	return (kstrtobool(str, &have_favordynmods) == 0);
6774}
6775__setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6776
6777/**
6778 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6779 * @dentry: directory dentry of interest
6780 * @ss: subsystem of interest
6781 *
6782 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6783 * to get the corresponding css and return it.  If such css doesn't exist
6784 * or can't be pinned, an ERR_PTR value is returned.
6785 */
6786struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6787						       struct cgroup_subsys *ss)
6788{
6789	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6790	struct file_system_type *s_type = dentry->d_sb->s_type;
6791	struct cgroup_subsys_state *css = NULL;
6792	struct cgroup *cgrp;
6793
6794	/* is @dentry a cgroup dir? */
6795	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6796	    !kn || kernfs_type(kn) != KERNFS_DIR)
6797		return ERR_PTR(-EBADF);
6798
6799	rcu_read_lock();
6800
6801	/*
6802	 * This path doesn't originate from kernfs and @kn could already
6803	 * have been or be removed at any point.  @kn->priv is RCU
6804	 * protected for this access.  See css_release_work_fn() for details.
6805	 */
6806	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6807	if (cgrp)
6808		css = cgroup_css(cgrp, ss);
6809
6810	if (!css || !css_tryget_online(css))
6811		css = ERR_PTR(-ENOENT);
6812
6813	rcu_read_unlock();
6814	return css;
6815}
6816
6817/**
6818 * css_from_id - lookup css by id
6819 * @id: the cgroup id
6820 * @ss: cgroup subsys to be looked into
6821 *
6822 * Returns the css if there's valid one with @id, otherwise returns NULL.
6823 * Should be called under rcu_read_lock().
6824 */
6825struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6826{
6827	WARN_ON_ONCE(!rcu_read_lock_held());
6828	return idr_find(&ss->css_idr, id);
6829}
6830
6831/**
6832 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6833 * @path: path on the default hierarchy
6834 *
6835 * Find the cgroup at @path on the default hierarchy, increment its
6836 * reference count and return it.  Returns pointer to the found cgroup on
6837 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6838 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6839 */
6840struct cgroup *cgroup_get_from_path(const char *path)
6841{
6842	struct kernfs_node *kn;
6843	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6844	struct cgroup *root_cgrp;
6845
6846	root_cgrp = current_cgns_cgroup_dfl();
6847	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6848	if (!kn)
6849		goto out;
6850
6851	if (kernfs_type(kn) != KERNFS_DIR) {
6852		cgrp = ERR_PTR(-ENOTDIR);
6853		goto out_kernfs;
6854	}
6855
6856	rcu_read_lock();
6857
6858	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6859	if (!cgrp || !cgroup_tryget(cgrp))
6860		cgrp = ERR_PTR(-ENOENT);
6861
6862	rcu_read_unlock();
6863
6864out_kernfs:
6865	kernfs_put(kn);
6866out:
6867	return cgrp;
6868}
6869EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6870
6871/**
6872 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6873 * @fd: fd obtained by open(cgroup_dir)
6874 *
6875 * Find the cgroup from a fd which should be obtained
6876 * by opening a cgroup directory.  Returns a pointer to the
6877 * cgroup on success. ERR_PTR is returned if the cgroup
6878 * cannot be found.
6879 */
6880struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6881{
6882	struct cgroup *cgrp;
6883	struct fd f = fdget_raw(fd);
6884	if (!f.file)
6885		return ERR_PTR(-EBADF);
6886
6887	cgrp = cgroup_v1v2_get_from_file(f.file);
6888	fdput(f);
6889	return cgrp;
6890}
6891
6892/**
6893 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6894 * cgroup2.
6895 * @fd: fd obtained by open(cgroup2_dir)
6896 */
6897struct cgroup *cgroup_get_from_fd(int fd)
6898{
6899	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6900
6901	if (IS_ERR(cgrp))
6902		return ERR_CAST(cgrp);
6903
6904	if (!cgroup_on_dfl(cgrp)) {
6905		cgroup_put(cgrp);
6906		return ERR_PTR(-EBADF);
6907	}
6908	return cgrp;
6909}
6910EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6911
6912static u64 power_of_ten(int power)
6913{
6914	u64 v = 1;
6915	while (power--)
6916		v *= 10;
6917	return v;
6918}
6919
6920/**
6921 * cgroup_parse_float - parse a floating number
6922 * @input: input string
6923 * @dec_shift: number of decimal digits to shift
6924 * @v: output
6925 *
6926 * Parse a decimal floating point number in @input and store the result in
6927 * @v with decimal point right shifted @dec_shift times.  For example, if
6928 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6929 * Returns 0 on success, -errno otherwise.
6930 *
6931 * There's nothing cgroup specific about this function except that it's
6932 * currently the only user.
6933 */
6934int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6935{
6936	s64 whole, frac = 0;
6937	int fstart = 0, fend = 0, flen;
6938
6939	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6940		return -EINVAL;
6941	if (frac < 0)
6942		return -EINVAL;
6943
6944	flen = fend > fstart ? fend - fstart : 0;
6945	if (flen < dec_shift)
6946		frac *= power_of_ten(dec_shift - flen);
6947	else
6948		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6949
6950	*v = whole * power_of_ten(dec_shift) + frac;
6951	return 0;
6952}
6953
6954/*
6955 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6956 * definition in cgroup-defs.h.
6957 */
6958#ifdef CONFIG_SOCK_CGROUP_DATA
6959
6960void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6961{
6962	struct cgroup *cgroup;
6963
6964	rcu_read_lock();
6965	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6966	if (in_interrupt()) {
6967		cgroup = &cgrp_dfl_root.cgrp;
6968		cgroup_get(cgroup);
6969		goto out;
6970	}
6971
6972	while (true) {
6973		struct css_set *cset;
6974
6975		cset = task_css_set(current);
6976		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6977			cgroup = cset->dfl_cgrp;
6978			break;
6979		}
6980		cpu_relax();
6981	}
6982out:
6983	skcd->cgroup = cgroup;
6984	cgroup_bpf_get(cgroup);
6985	rcu_read_unlock();
6986}
6987
6988void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6989{
6990	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6991
6992	/*
6993	 * We might be cloning a socket which is left in an empty
6994	 * cgroup and the cgroup might have already been rmdir'd.
6995	 * Don't use cgroup_get_live().
6996	 */
6997	cgroup_get(cgrp);
6998	cgroup_bpf_get(cgrp);
6999}
7000
7001void cgroup_sk_free(struct sock_cgroup_data *skcd)
7002{
7003	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7004
7005	cgroup_bpf_put(cgrp);
7006	cgroup_put(cgrp);
7007}
7008
7009#endif	/* CONFIG_SOCK_CGROUP_DATA */
7010
7011#ifdef CONFIG_SYSFS
7012static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7013				      ssize_t size, const char *prefix)
7014{
7015	struct cftype *cft;
7016	ssize_t ret = 0;
7017
7018	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7019		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7020			continue;
7021
7022		if (prefix)
7023			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7024
7025		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7026
7027		if (WARN_ON(ret >= size))
7028			break;
7029	}
7030
7031	return ret;
7032}
7033
7034static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7035			      char *buf)
7036{
7037	struct cgroup_subsys *ss;
7038	int ssid;
7039	ssize_t ret = 0;
7040
7041	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7042				     PAGE_SIZE - ret, NULL);
7043	if (cgroup_psi_enabled())
7044		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7045					      PAGE_SIZE - ret, NULL);
7046
7047	for_each_subsys(ss, ssid)
7048		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7049					      PAGE_SIZE - ret,
7050					      cgroup_subsys_name[ssid]);
7051
7052	return ret;
7053}
7054static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7055
7056static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7057			     char *buf)
7058{
7059	return snprintf(buf, PAGE_SIZE,
7060			"nsdelegate\n"
7061			"favordynmods\n"
7062			"memory_localevents\n"
7063			"memory_recursiveprot\n"
7064			"memory_hugetlb_accounting\n");
7065}
7066static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7067
7068static struct attribute *cgroup_sysfs_attrs[] = {
7069	&cgroup_delegate_attr.attr,
7070	&cgroup_features_attr.attr,
7071	NULL,
7072};
7073
7074static const struct attribute_group cgroup_sysfs_attr_group = {
7075	.attrs = cgroup_sysfs_attrs,
7076	.name = "cgroup",
7077};
7078
7079static int __init cgroup_sysfs_init(void)
7080{
7081	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7082}
7083subsys_initcall(cgroup_sysfs_init);
7084
7085#endif /* CONFIG_SYSFS */
7086