1// SPDX-License-Identifier: GPL-2.0-only
2#include "cgroup-internal.h"
3
4#include <linux/ctype.h>
5#include <linux/kmod.h>
6#include <linux/sort.h>
7#include <linux/delay.h>
8#include <linux/mm.h>
9#include <linux/sched/signal.h>
10#include <linux/sched/task.h>
11#include <linux/magic.h>
12#include <linux/slab.h>
13#include <linux/vmalloc.h>
14#include <linux/delayacct.h>
15#include <linux/pid_namespace.h>
16#include <linux/cgroupstats.h>
17#include <linux/fs_parser.h>
18
19#include <trace/events/cgroup.h>
20
21/*
22 * pidlists linger the following amount before being destroyed.  The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27#define CGROUP_PIDLIST_DESTROY_DELAY	HZ
28
29/* Controllers blocked by the commandline in v1 */
30static u16 cgroup_no_v1_mask;
31
32/* disable named v1 mounts */
33static bool cgroup_no_v1_named;
34
35/*
36 * pidlist destructions need to be flushed on cgroup destruction.  Use a
37 * separate workqueue as flush domain.
38 */
39static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40
41/* protects cgroup_subsys->release_agent_path */
42static DEFINE_SPINLOCK(release_agent_path_lock);
43
44bool cgroup1_ssid_disabled(int ssid)
45{
46	return cgroup_no_v1_mask & (1 << ssid);
47}
48
49/**
50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51 * @from: attach to all cgroups of a given task
52 * @tsk: the task to be attached
53 *
54 * Return: %0 on success or a negative errno code on failure
55 */
56int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
57{
58	struct cgroup_root *root;
59	int retval = 0;
60
61	cgroup_lock();
62	cgroup_attach_lock(true);
63	for_each_root(root) {
64		struct cgroup *from_cgrp;
65
66		spin_lock_irq(&css_set_lock);
67		from_cgrp = task_cgroup_from_root(from, root);
68		spin_unlock_irq(&css_set_lock);
69
70		retval = cgroup_attach_task(from_cgrp, tsk, false);
71		if (retval)
72			break;
73	}
74	cgroup_attach_unlock(true);
75	cgroup_unlock();
76
77	return retval;
78}
79EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
80
81/**
82 * cgroup_transfer_tasks - move tasks from one cgroup to another
83 * @to: cgroup to which the tasks will be moved
84 * @from: cgroup in which the tasks currently reside
85 *
86 * Locking rules between cgroup_post_fork() and the migration path
87 * guarantee that, if a task is forking while being migrated, the new child
88 * is guaranteed to be either visible in the source cgroup after the
89 * parent's migration is complete or put into the target cgroup.  No task
90 * can slip out of migration through forking.
91 *
92 * Return: %0 on success or a negative errno code on failure
93 */
94int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
95{
96	DEFINE_CGROUP_MGCTX(mgctx);
97	struct cgrp_cset_link *link;
98	struct css_task_iter it;
99	struct task_struct *task;
100	int ret;
101
102	if (cgroup_on_dfl(to))
103		return -EINVAL;
104
105	ret = cgroup_migrate_vet_dst(to);
106	if (ret)
107		return ret;
108
109	cgroup_lock();
110
111	cgroup_attach_lock(true);
112
113	/* all tasks in @from are being moved, all csets are source */
114	spin_lock_irq(&css_set_lock);
115	list_for_each_entry(link, &from->cset_links, cset_link)
116		cgroup_migrate_add_src(link->cset, to, &mgctx);
117	spin_unlock_irq(&css_set_lock);
118
119	ret = cgroup_migrate_prepare_dst(&mgctx);
120	if (ret)
121		goto out_err;
122
123	/*
124	 * Migrate tasks one-by-one until @from is empty.  This fails iff
125	 * ->can_attach() fails.
126	 */
127	do {
128		css_task_iter_start(&from->self, 0, &it);
129
130		do {
131			task = css_task_iter_next(&it);
132		} while (task && (task->flags & PF_EXITING));
133
134		if (task)
135			get_task_struct(task);
136		css_task_iter_end(&it);
137
138		if (task) {
139			ret = cgroup_migrate(task, false, &mgctx);
140			if (!ret)
141				TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
142			put_task_struct(task);
143		}
144	} while (task && !ret);
145out_err:
146	cgroup_migrate_finish(&mgctx);
147	cgroup_attach_unlock(true);
148	cgroup_unlock();
149	return ret;
150}
151
152/*
153 * Stuff for reading the 'tasks'/'procs' files.
154 *
155 * Reading this file can return large amounts of data if a cgroup has
156 * *lots* of attached tasks. So it may need several calls to read(),
157 * but we cannot guarantee that the information we produce is correct
158 * unless we produce it entirely atomically.
159 *
160 */
161
162/* which pidlist file are we talking about? */
163enum cgroup_filetype {
164	CGROUP_FILE_PROCS,
165	CGROUP_FILE_TASKS,
166};
167
168/*
169 * A pidlist is a list of pids that virtually represents the contents of one
170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
172 * to the cgroup.
173 */
174struct cgroup_pidlist {
175	/*
176	 * used to find which pidlist is wanted. doesn't change as long as
177	 * this particular list stays in the list.
178	*/
179	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
180	/* array of xids */
181	pid_t *list;
182	/* how many elements the above list has */
183	int length;
184	/* each of these stored in a list by its cgroup */
185	struct list_head links;
186	/* pointer to the cgroup we belong to, for list removal purposes */
187	struct cgroup *owner;
188	/* for delayed destruction */
189	struct delayed_work destroy_dwork;
190};
191
192/*
193 * Used to destroy all pidlists lingering waiting for destroy timer.  None
194 * should be left afterwards.
195 */
196void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
197{
198	struct cgroup_pidlist *l, *tmp_l;
199
200	mutex_lock(&cgrp->pidlist_mutex);
201	list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
202		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
203	mutex_unlock(&cgrp->pidlist_mutex);
204
205	flush_workqueue(cgroup_pidlist_destroy_wq);
206	BUG_ON(!list_empty(&cgrp->pidlists));
207}
208
209static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
210{
211	struct delayed_work *dwork = to_delayed_work(work);
212	struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
213						destroy_dwork);
214	struct cgroup_pidlist *tofree = NULL;
215
216	mutex_lock(&l->owner->pidlist_mutex);
217
218	/*
219	 * Destroy iff we didn't get queued again.  The state won't change
220	 * as destroy_dwork can only be queued while locked.
221	 */
222	if (!delayed_work_pending(dwork)) {
223		list_del(&l->links);
224		kvfree(l->list);
225		put_pid_ns(l->key.ns);
226		tofree = l;
227	}
228
229	mutex_unlock(&l->owner->pidlist_mutex);
230	kfree(tofree);
231}
232
233/*
234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
235 * Returns the number of unique elements.
236 */
237static int pidlist_uniq(pid_t *list, int length)
238{
239	int src, dest = 1;
240
241	/*
242	 * we presume the 0th element is unique, so i starts at 1. trivial
243	 * edge cases first; no work needs to be done for either
244	 */
245	if (length == 0 || length == 1)
246		return length;
247	/* src and dest walk down the list; dest counts unique elements */
248	for (src = 1; src < length; src++) {
249		/* find next unique element */
250		while (list[src] == list[src-1]) {
251			src++;
252			if (src == length)
253				goto after;
254		}
255		/* dest always points to where the next unique element goes */
256		list[dest] = list[src];
257		dest++;
258	}
259after:
260	return dest;
261}
262
263/*
264 * The two pid files - task and cgroup.procs - guaranteed that the result
265 * is sorted, which forced this whole pidlist fiasco.  As pid order is
266 * different per namespace, each namespace needs differently sorted list,
267 * making it impossible to use, for example, single rbtree of member tasks
268 * sorted by task pointer.  As pidlists can be fairly large, allocating one
269 * per open file is dangerous, so cgroup had to implement shared pool of
270 * pidlists keyed by cgroup and namespace.
271 */
272static int cmppid(const void *a, const void *b)
273{
274	return *(pid_t *)a - *(pid_t *)b;
275}
276
277static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
278						  enum cgroup_filetype type)
279{
280	struct cgroup_pidlist *l;
281	/* don't need task_nsproxy() if we're looking at ourself */
282	struct pid_namespace *ns = task_active_pid_ns(current);
283
284	lockdep_assert_held(&cgrp->pidlist_mutex);
285
286	list_for_each_entry(l, &cgrp->pidlists, links)
287		if (l->key.type == type && l->key.ns == ns)
288			return l;
289	return NULL;
290}
291
292/*
293 * find the appropriate pidlist for our purpose (given procs vs tasks)
294 * returns with the lock on that pidlist already held, and takes care
295 * of the use count, or returns NULL with no locks held if we're out of
296 * memory.
297 */
298static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
299						enum cgroup_filetype type)
300{
301	struct cgroup_pidlist *l;
302
303	lockdep_assert_held(&cgrp->pidlist_mutex);
304
305	l = cgroup_pidlist_find(cgrp, type);
306	if (l)
307		return l;
308
309	/* entry not found; create a new one */
310	l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
311	if (!l)
312		return l;
313
314	INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
315	l->key.type = type;
316	/* don't need task_nsproxy() if we're looking at ourself */
317	l->key.ns = get_pid_ns(task_active_pid_ns(current));
318	l->owner = cgrp;
319	list_add(&l->links, &cgrp->pidlists);
320	return l;
321}
322
323/*
324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
325 */
326static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
327			      struct cgroup_pidlist **lp)
328{
329	pid_t *array;
330	int length;
331	int pid, n = 0; /* used for populating the array */
332	struct css_task_iter it;
333	struct task_struct *tsk;
334	struct cgroup_pidlist *l;
335
336	lockdep_assert_held(&cgrp->pidlist_mutex);
337
338	/*
339	 * If cgroup gets more users after we read count, we won't have
340	 * enough space - tough.  This race is indistinguishable to the
341	 * caller from the case that the additional cgroup users didn't
342	 * show up until sometime later on.
343	 */
344	length = cgroup_task_count(cgrp);
345	array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
346	if (!array)
347		return -ENOMEM;
348	/* now, populate the array */
349	css_task_iter_start(&cgrp->self, 0, &it);
350	while ((tsk = css_task_iter_next(&it))) {
351		if (unlikely(n == length))
352			break;
353		/* get tgid or pid for procs or tasks file respectively */
354		if (type == CGROUP_FILE_PROCS)
355			pid = task_tgid_vnr(tsk);
356		else
357			pid = task_pid_vnr(tsk);
358		if (pid > 0) /* make sure to only use valid results */
359			array[n++] = pid;
360	}
361	css_task_iter_end(&it);
362	length = n;
363	/* now sort & strip out duplicates (tgids or recycled thread PIDs) */
364	sort(array, length, sizeof(pid_t), cmppid, NULL);
365	length = pidlist_uniq(array, length);
366
367	l = cgroup_pidlist_find_create(cgrp, type);
368	if (!l) {
369		kvfree(array);
370		return -ENOMEM;
371	}
372
373	/* store array, freeing old if necessary */
374	kvfree(l->list);
375	l->list = array;
376	l->length = length;
377	*lp = l;
378	return 0;
379}
380
381/*
382 * seq_file methods for the tasks/procs files. The seq_file position is the
383 * next pid to display; the seq_file iterator is a pointer to the pid
384 * in the cgroup->l->list array.
385 */
386
387static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
388{
389	/*
390	 * Initially we receive a position value that corresponds to
391	 * one more than the last pid shown (or 0 on the first call or
392	 * after a seek to the start). Use a binary-search to find the
393	 * next pid to display, if any
394	 */
395	struct kernfs_open_file *of = s->private;
396	struct cgroup_file_ctx *ctx = of->priv;
397	struct cgroup *cgrp = seq_css(s)->cgroup;
398	struct cgroup_pidlist *l;
399	enum cgroup_filetype type = seq_cft(s)->private;
400	int index = 0, pid = *pos;
401	int *iter, ret;
402
403	mutex_lock(&cgrp->pidlist_mutex);
404
405	/*
406	 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
407	 * start() after open. If the matching pidlist is around, we can use
408	 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
409	 * directly. It could already have been destroyed.
410	 */
411	if (ctx->procs1.pidlist)
412		ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
413
414	/*
415	 * Either this is the first start() after open or the matching
416	 * pidlist has been destroyed inbetween.  Create a new one.
417	 */
418	if (!ctx->procs1.pidlist) {
419		ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
420		if (ret)
421			return ERR_PTR(ret);
422	}
423	l = ctx->procs1.pidlist;
424
425	if (pid) {
426		int end = l->length;
427
428		while (index < end) {
429			int mid = (index + end) / 2;
430			if (l->list[mid] == pid) {
431				index = mid;
432				break;
433			} else if (l->list[mid] < pid)
434				index = mid + 1;
435			else
436				end = mid;
437		}
438	}
439	/* If we're off the end of the array, we're done */
440	if (index >= l->length)
441		return NULL;
442	/* Update the abstract position to be the actual pid that we found */
443	iter = l->list + index;
444	*pos = *iter;
445	return iter;
446}
447
448static void cgroup_pidlist_stop(struct seq_file *s, void *v)
449{
450	struct kernfs_open_file *of = s->private;
451	struct cgroup_file_ctx *ctx = of->priv;
452	struct cgroup_pidlist *l = ctx->procs1.pidlist;
453
454	if (l)
455		mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
456				 CGROUP_PIDLIST_DESTROY_DELAY);
457	mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
458}
459
460static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
461{
462	struct kernfs_open_file *of = s->private;
463	struct cgroup_file_ctx *ctx = of->priv;
464	struct cgroup_pidlist *l = ctx->procs1.pidlist;
465	pid_t *p = v;
466	pid_t *end = l->list + l->length;
467	/*
468	 * Advance to the next pid in the array. If this goes off the
469	 * end, we're done
470	 */
471	p++;
472	if (p >= end) {
473		(*pos)++;
474		return NULL;
475	} else {
476		*pos = *p;
477		return p;
478	}
479}
480
481static int cgroup_pidlist_show(struct seq_file *s, void *v)
482{
483	seq_printf(s, "%d\n", *(int *)v);
484
485	return 0;
486}
487
488static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
489				     char *buf, size_t nbytes, loff_t off,
490				     bool threadgroup)
491{
492	struct cgroup *cgrp;
493	struct task_struct *task;
494	const struct cred *cred, *tcred;
495	ssize_t ret;
496	bool locked;
497
498	cgrp = cgroup_kn_lock_live(of->kn, false);
499	if (!cgrp)
500		return -ENODEV;
501
502	task = cgroup_procs_write_start(buf, threadgroup, &locked);
503	ret = PTR_ERR_OR_ZERO(task);
504	if (ret)
505		goto out_unlock;
506
507	/*
508	 * Even if we're attaching all tasks in the thread group, we only need
509	 * to check permissions on one of them. Check permissions using the
510	 * credentials from file open to protect against inherited fd attacks.
511	 */
512	cred = of->file->f_cred;
513	tcred = get_task_cred(task);
514	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
515	    !uid_eq(cred->euid, tcred->uid) &&
516	    !uid_eq(cred->euid, tcred->suid))
517		ret = -EACCES;
518	put_cred(tcred);
519	if (ret)
520		goto out_finish;
521
522	ret = cgroup_attach_task(cgrp, task, threadgroup);
523
524out_finish:
525	cgroup_procs_write_finish(task, locked);
526out_unlock:
527	cgroup_kn_unlock(of->kn);
528
529	return ret ?: nbytes;
530}
531
532static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
533				   char *buf, size_t nbytes, loff_t off)
534{
535	return __cgroup1_procs_write(of, buf, nbytes, off, true);
536}
537
538static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
539				   char *buf, size_t nbytes, loff_t off)
540{
541	return __cgroup1_procs_write(of, buf, nbytes, off, false);
542}
543
544static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
545					  char *buf, size_t nbytes, loff_t off)
546{
547	struct cgroup *cgrp;
548	struct cgroup_file_ctx *ctx;
549
550	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
551
552	/*
553	 * Release agent gets called with all capabilities,
554	 * require capabilities to set release agent.
555	 */
556	ctx = of->priv;
557	if ((ctx->ns->user_ns != &init_user_ns) ||
558	    !file_ns_capable(of->file, &init_user_ns, CAP_SYS_ADMIN))
559		return -EPERM;
560
561	cgrp = cgroup_kn_lock_live(of->kn, false);
562	if (!cgrp)
563		return -ENODEV;
564	spin_lock(&release_agent_path_lock);
565	strscpy(cgrp->root->release_agent_path, strstrip(buf),
566		sizeof(cgrp->root->release_agent_path));
567	spin_unlock(&release_agent_path_lock);
568	cgroup_kn_unlock(of->kn);
569	return nbytes;
570}
571
572static int cgroup_release_agent_show(struct seq_file *seq, void *v)
573{
574	struct cgroup *cgrp = seq_css(seq)->cgroup;
575
576	spin_lock(&release_agent_path_lock);
577	seq_puts(seq, cgrp->root->release_agent_path);
578	spin_unlock(&release_agent_path_lock);
579	seq_putc(seq, '\n');
580	return 0;
581}
582
583static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
584{
585	seq_puts(seq, "0\n");
586	return 0;
587}
588
589static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
590					 struct cftype *cft)
591{
592	return notify_on_release(css->cgroup);
593}
594
595static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
596					  struct cftype *cft, u64 val)
597{
598	if (val)
599		set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
600	else
601		clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
602	return 0;
603}
604
605static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
606				      struct cftype *cft)
607{
608	return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
609}
610
611static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
612				       struct cftype *cft, u64 val)
613{
614	if (val)
615		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
616	else
617		clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
618	return 0;
619}
620
621/* cgroup core interface files for the legacy hierarchies */
622struct cftype cgroup1_base_files[] = {
623	{
624		.name = "cgroup.procs",
625		.seq_start = cgroup_pidlist_start,
626		.seq_next = cgroup_pidlist_next,
627		.seq_stop = cgroup_pidlist_stop,
628		.seq_show = cgroup_pidlist_show,
629		.private = CGROUP_FILE_PROCS,
630		.write = cgroup1_procs_write,
631	},
632	{
633		.name = "cgroup.clone_children",
634		.read_u64 = cgroup_clone_children_read,
635		.write_u64 = cgroup_clone_children_write,
636	},
637	{
638		.name = "cgroup.sane_behavior",
639		.flags = CFTYPE_ONLY_ON_ROOT,
640		.seq_show = cgroup_sane_behavior_show,
641	},
642	{
643		.name = "tasks",
644		.seq_start = cgroup_pidlist_start,
645		.seq_next = cgroup_pidlist_next,
646		.seq_stop = cgroup_pidlist_stop,
647		.seq_show = cgroup_pidlist_show,
648		.private = CGROUP_FILE_TASKS,
649		.write = cgroup1_tasks_write,
650	},
651	{
652		.name = "notify_on_release",
653		.read_u64 = cgroup_read_notify_on_release,
654		.write_u64 = cgroup_write_notify_on_release,
655	},
656	{
657		.name = "release_agent",
658		.flags = CFTYPE_ONLY_ON_ROOT,
659		.seq_show = cgroup_release_agent_show,
660		.write = cgroup_release_agent_write,
661		.max_write_len = PATH_MAX - 1,
662	},
663	{ }	/* terminate */
664};
665
666/* Display information about each subsystem and each hierarchy */
667int proc_cgroupstats_show(struct seq_file *m, void *v)
668{
669	struct cgroup_subsys *ss;
670	int i;
671
672	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
673	/*
674	 * Grab the subsystems state racily. No need to add avenue to
675	 * cgroup_mutex contention.
676	 */
677
678	for_each_subsys(ss, i)
679		seq_printf(m, "%s\t%d\t%d\t%d\n",
680			   ss->legacy_name, ss->root->hierarchy_id,
681			   atomic_read(&ss->root->nr_cgrps),
682			   cgroup_ssid_enabled(i));
683
684	return 0;
685}
686
687/**
688 * cgroupstats_build - build and fill cgroupstats
689 * @stats: cgroupstats to fill information into
690 * @dentry: A dentry entry belonging to the cgroup for which stats have
691 * been requested.
692 *
693 * Build and fill cgroupstats so that taskstats can export it to user
694 * space.
695 *
696 * Return: %0 on success or a negative errno code on failure
697 */
698int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
699{
700	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
701	struct cgroup *cgrp;
702	struct css_task_iter it;
703	struct task_struct *tsk;
704
705	/* it should be kernfs_node belonging to cgroupfs and is a directory */
706	if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
707	    kernfs_type(kn) != KERNFS_DIR)
708		return -EINVAL;
709
710	/*
711	 * We aren't being called from kernfs and there's no guarantee on
712	 * @kn->priv's validity.  For this and css_tryget_online_from_dir(),
713	 * @kn->priv is RCU safe.  Let's do the RCU dancing.
714	 */
715	rcu_read_lock();
716	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
717	if (!cgrp || !cgroup_tryget(cgrp)) {
718		rcu_read_unlock();
719		return -ENOENT;
720	}
721	rcu_read_unlock();
722
723	css_task_iter_start(&cgrp->self, 0, &it);
724	while ((tsk = css_task_iter_next(&it))) {
725		switch (READ_ONCE(tsk->__state)) {
726		case TASK_RUNNING:
727			stats->nr_running++;
728			break;
729		case TASK_INTERRUPTIBLE:
730			stats->nr_sleeping++;
731			break;
732		case TASK_UNINTERRUPTIBLE:
733			stats->nr_uninterruptible++;
734			break;
735		case TASK_STOPPED:
736			stats->nr_stopped++;
737			break;
738		default:
739			if (tsk->in_iowait)
740				stats->nr_io_wait++;
741			break;
742		}
743	}
744	css_task_iter_end(&it);
745
746	cgroup_put(cgrp);
747	return 0;
748}
749
750void cgroup1_check_for_release(struct cgroup *cgrp)
751{
752	if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
753	    !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
754		schedule_work(&cgrp->release_agent_work);
755}
756
757/*
758 * Notify userspace when a cgroup is released, by running the
759 * configured release agent with the name of the cgroup (path
760 * relative to the root of cgroup file system) as the argument.
761 *
762 * Most likely, this user command will try to rmdir this cgroup.
763 *
764 * This races with the possibility that some other task will be
765 * attached to this cgroup before it is removed, or that some other
766 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
767 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
768 * unused, and this cgroup will be reprieved from its death sentence,
769 * to continue to serve a useful existence.  Next time it's released,
770 * we will get notified again, if it still has 'notify_on_release' set.
771 *
772 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
773 * means only wait until the task is successfully execve()'d.  The
774 * separate release agent task is forked by call_usermodehelper(),
775 * then control in this thread returns here, without waiting for the
776 * release agent task.  We don't bother to wait because the caller of
777 * this routine has no use for the exit status of the release agent
778 * task, so no sense holding our caller up for that.
779 */
780void cgroup1_release_agent(struct work_struct *work)
781{
782	struct cgroup *cgrp =
783		container_of(work, struct cgroup, release_agent_work);
784	char *pathbuf, *agentbuf;
785	char *argv[3], *envp[3];
786	int ret;
787
788	/* snoop agent path and exit early if empty */
789	if (!cgrp->root->release_agent_path[0])
790		return;
791
792	/* prepare argument buffers */
793	pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
794	agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
795	if (!pathbuf || !agentbuf)
796		goto out_free;
797
798	spin_lock(&release_agent_path_lock);
799	strscpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
800	spin_unlock(&release_agent_path_lock);
801	if (!agentbuf[0])
802		goto out_free;
803
804	ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
805	if (ret < 0)
806		goto out_free;
807
808	argv[0] = agentbuf;
809	argv[1] = pathbuf;
810	argv[2] = NULL;
811
812	/* minimal command environment */
813	envp[0] = "HOME=/";
814	envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
815	envp[2] = NULL;
816
817	call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
818out_free:
819	kfree(agentbuf);
820	kfree(pathbuf);
821}
822
823/*
824 * cgroup_rename - Only allow simple rename of directories in place.
825 */
826static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
827			  const char *new_name_str)
828{
829	struct cgroup *cgrp = kn->priv;
830	int ret;
831
832	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
833	if (strchr(new_name_str, '\n'))
834		return -EINVAL;
835
836	if (kernfs_type(kn) != KERNFS_DIR)
837		return -ENOTDIR;
838	if (kn->parent != new_parent)
839		return -EIO;
840
841	/*
842	 * We're gonna grab cgroup_mutex which nests outside kernfs
843	 * active_ref.  kernfs_rename() doesn't require active_ref
844	 * protection.  Break them before grabbing cgroup_mutex.
845	 */
846	kernfs_break_active_protection(new_parent);
847	kernfs_break_active_protection(kn);
848
849	cgroup_lock();
850
851	ret = kernfs_rename(kn, new_parent, new_name_str);
852	if (!ret)
853		TRACE_CGROUP_PATH(rename, cgrp);
854
855	cgroup_unlock();
856
857	kernfs_unbreak_active_protection(kn);
858	kernfs_unbreak_active_protection(new_parent);
859	return ret;
860}
861
862static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
863{
864	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
865	struct cgroup_subsys *ss;
866	int ssid;
867
868	for_each_subsys(ss, ssid)
869		if (root->subsys_mask & (1 << ssid))
870			seq_show_option(seq, ss->legacy_name, NULL);
871	if (root->flags & CGRP_ROOT_NOPREFIX)
872		seq_puts(seq, ",noprefix");
873	if (root->flags & CGRP_ROOT_XATTR)
874		seq_puts(seq, ",xattr");
875	if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
876		seq_puts(seq, ",cpuset_v2_mode");
877	if (root->flags & CGRP_ROOT_FAVOR_DYNMODS)
878		seq_puts(seq, ",favordynmods");
879
880	spin_lock(&release_agent_path_lock);
881	if (strlen(root->release_agent_path))
882		seq_show_option(seq, "release_agent",
883				root->release_agent_path);
884	spin_unlock(&release_agent_path_lock);
885
886	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
887		seq_puts(seq, ",clone_children");
888	if (strlen(root->name))
889		seq_show_option(seq, "name", root->name);
890	return 0;
891}
892
893enum cgroup1_param {
894	Opt_all,
895	Opt_clone_children,
896	Opt_cpuset_v2_mode,
897	Opt_name,
898	Opt_none,
899	Opt_noprefix,
900	Opt_release_agent,
901	Opt_xattr,
902	Opt_favordynmods,
903	Opt_nofavordynmods,
904};
905
906const struct fs_parameter_spec cgroup1_fs_parameters[] = {
907	fsparam_flag  ("all",		Opt_all),
908	fsparam_flag  ("clone_children", Opt_clone_children),
909	fsparam_flag  ("cpuset_v2_mode", Opt_cpuset_v2_mode),
910	fsparam_string("name",		Opt_name),
911	fsparam_flag  ("none",		Opt_none),
912	fsparam_flag  ("noprefix",	Opt_noprefix),
913	fsparam_string("release_agent",	Opt_release_agent),
914	fsparam_flag  ("xattr",		Opt_xattr),
915	fsparam_flag  ("favordynmods",	Opt_favordynmods),
916	fsparam_flag  ("nofavordynmods", Opt_nofavordynmods),
917	{}
918};
919
920int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
921{
922	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
923	struct cgroup_subsys *ss;
924	struct fs_parse_result result;
925	int opt, i;
926
927	opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
928	if (opt == -ENOPARAM) {
929		int ret;
930
931		ret = vfs_parse_fs_param_source(fc, param);
932		if (ret != -ENOPARAM)
933			return ret;
934		for_each_subsys(ss, i) {
935			if (strcmp(param->key, ss->legacy_name))
936				continue;
937			if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
938				return invalfc(fc, "Disabled controller '%s'",
939					       param->key);
940			ctx->subsys_mask |= (1 << i);
941			return 0;
942		}
943		return invalfc(fc, "Unknown subsys name '%s'", param->key);
944	}
945	if (opt < 0)
946		return opt;
947
948	switch (opt) {
949	case Opt_none:
950		/* Explicitly have no subsystems */
951		ctx->none = true;
952		break;
953	case Opt_all:
954		ctx->all_ss = true;
955		break;
956	case Opt_noprefix:
957		ctx->flags |= CGRP_ROOT_NOPREFIX;
958		break;
959	case Opt_clone_children:
960		ctx->cpuset_clone_children = true;
961		break;
962	case Opt_cpuset_v2_mode:
963		ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
964		break;
965	case Opt_xattr:
966		ctx->flags |= CGRP_ROOT_XATTR;
967		break;
968	case Opt_favordynmods:
969		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
970		break;
971	case Opt_nofavordynmods:
972		ctx->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
973		break;
974	case Opt_release_agent:
975		/* Specifying two release agents is forbidden */
976		if (ctx->release_agent)
977			return invalfc(fc, "release_agent respecified");
978		/*
979		 * Release agent gets called with all capabilities,
980		 * require capabilities to set release agent.
981		 */
982		if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN))
983			return invalfc(fc, "Setting release_agent not allowed");
984		ctx->release_agent = param->string;
985		param->string = NULL;
986		break;
987	case Opt_name:
988		/* blocked by boot param? */
989		if (cgroup_no_v1_named)
990			return -ENOENT;
991		/* Can't specify an empty name */
992		if (!param->size)
993			return invalfc(fc, "Empty name");
994		if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
995			return invalfc(fc, "Name too long");
996		/* Must match [\w.-]+ */
997		for (i = 0; i < param->size; i++) {
998			char c = param->string[i];
999			if (isalnum(c))
1000				continue;
1001			if ((c == '.') || (c == '-') || (c == '_'))
1002				continue;
1003			return invalfc(fc, "Invalid name");
1004		}
1005		/* Specifying two names is forbidden */
1006		if (ctx->name)
1007			return invalfc(fc, "name respecified");
1008		ctx->name = param->string;
1009		param->string = NULL;
1010		break;
1011	}
1012	return 0;
1013}
1014
1015static int check_cgroupfs_options(struct fs_context *fc)
1016{
1017	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1018	u16 mask = U16_MAX;
1019	u16 enabled = 0;
1020	struct cgroup_subsys *ss;
1021	int i;
1022
1023#ifdef CONFIG_CPUSETS
1024	mask = ~((u16)1 << cpuset_cgrp_id);
1025#endif
1026	for_each_subsys(ss, i)
1027		if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1028			enabled |= 1 << i;
1029
1030	ctx->subsys_mask &= enabled;
1031
1032	/*
1033	 * In absence of 'none', 'name=' and subsystem name options,
1034	 * let's default to 'all'.
1035	 */
1036	if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1037		ctx->all_ss = true;
1038
1039	if (ctx->all_ss) {
1040		/* Mutually exclusive option 'all' + subsystem name */
1041		if (ctx->subsys_mask)
1042			return invalfc(fc, "subsys name conflicts with all");
1043		/* 'all' => select all the subsystems */
1044		ctx->subsys_mask = enabled;
1045	}
1046
1047	/*
1048	 * We either have to specify by name or by subsystems. (So all
1049	 * empty hierarchies must have a name).
1050	 */
1051	if (!ctx->subsys_mask && !ctx->name)
1052		return invalfc(fc, "Need name or subsystem set");
1053
1054	/*
1055	 * Option noprefix was introduced just for backward compatibility
1056	 * with the old cpuset, so we allow noprefix only if mounting just
1057	 * the cpuset subsystem.
1058	 */
1059	if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1060		return invalfc(fc, "noprefix used incorrectly");
1061
1062	/* Can't specify "none" and some subsystems */
1063	if (ctx->subsys_mask && ctx->none)
1064		return invalfc(fc, "none used incorrectly");
1065
1066	return 0;
1067}
1068
1069int cgroup1_reconfigure(struct fs_context *fc)
1070{
1071	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1072	struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1073	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1074	int ret = 0;
1075	u16 added_mask, removed_mask;
1076
1077	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1078
1079	/* See what subsystems are wanted */
1080	ret = check_cgroupfs_options(fc);
1081	if (ret)
1082		goto out_unlock;
1083
1084	if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1085		pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1086			task_tgid_nr(current), current->comm);
1087
1088	added_mask = ctx->subsys_mask & ~root->subsys_mask;
1089	removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1090
1091	/* Don't allow flags or name to change at remount */
1092	if ((ctx->flags ^ root->flags) ||
1093	    (ctx->name && strcmp(ctx->name, root->name))) {
1094		errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1095		       ctx->flags, ctx->name ?: "", root->flags, root->name);
1096		ret = -EINVAL;
1097		goto out_unlock;
1098	}
1099
1100	/* remounting is not allowed for populated hierarchies */
1101	if (!list_empty(&root->cgrp.self.children)) {
1102		ret = -EBUSY;
1103		goto out_unlock;
1104	}
1105
1106	ret = rebind_subsystems(root, added_mask);
1107	if (ret)
1108		goto out_unlock;
1109
1110	WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1111
1112	if (ctx->release_agent) {
1113		spin_lock(&release_agent_path_lock);
1114		strcpy(root->release_agent_path, ctx->release_agent);
1115		spin_unlock(&release_agent_path_lock);
1116	}
1117
1118	trace_cgroup_remount(root);
1119
1120 out_unlock:
1121	cgroup_unlock();
1122	return ret;
1123}
1124
1125struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1126	.rename			= cgroup1_rename,
1127	.show_options		= cgroup1_show_options,
1128	.mkdir			= cgroup_mkdir,
1129	.rmdir			= cgroup_rmdir,
1130	.show_path		= cgroup_show_path,
1131};
1132
1133/*
1134 * The guts of cgroup1 mount - find or create cgroup_root to use.
1135 * Called with cgroup_mutex held; returns 0 on success, -E... on
1136 * error and positive - in case when the candidate is busy dying.
1137 * On success it stashes a reference to cgroup_root into given
1138 * cgroup_fs_context; that reference is *NOT* counting towards the
1139 * cgroup_root refcount.
1140 */
1141static int cgroup1_root_to_use(struct fs_context *fc)
1142{
1143	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1144	struct cgroup_root *root;
1145	struct cgroup_subsys *ss;
1146	int i, ret;
1147
1148	/* First find the desired set of subsystems */
1149	ret = check_cgroupfs_options(fc);
1150	if (ret)
1151		return ret;
1152
1153	/*
1154	 * Destruction of cgroup root is asynchronous, so subsystems may
1155	 * still be dying after the previous unmount.  Let's drain the
1156	 * dying subsystems.  We just need to ensure that the ones
1157	 * unmounted previously finish dying and don't care about new ones
1158	 * starting.  Testing ref liveliness is good enough.
1159	 */
1160	for_each_subsys(ss, i) {
1161		if (!(ctx->subsys_mask & (1 << i)) ||
1162		    ss->root == &cgrp_dfl_root)
1163			continue;
1164
1165		if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1166			return 1;	/* restart */
1167		cgroup_put(&ss->root->cgrp);
1168	}
1169
1170	for_each_root(root) {
1171		bool name_match = false;
1172
1173		if (root == &cgrp_dfl_root)
1174			continue;
1175
1176		/*
1177		 * If we asked for a name then it must match.  Also, if
1178		 * name matches but sybsys_mask doesn't, we should fail.
1179		 * Remember whether name matched.
1180		 */
1181		if (ctx->name) {
1182			if (strcmp(ctx->name, root->name))
1183				continue;
1184			name_match = true;
1185		}
1186
1187		/*
1188		 * If we asked for subsystems (or explicitly for no
1189		 * subsystems) then they must match.
1190		 */
1191		if ((ctx->subsys_mask || ctx->none) &&
1192		    (ctx->subsys_mask != root->subsys_mask)) {
1193			if (!name_match)
1194				continue;
1195			return -EBUSY;
1196		}
1197
1198		if (root->flags ^ ctx->flags)
1199			pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1200
1201		ctx->root = root;
1202		return 0;
1203	}
1204
1205	/*
1206	 * No such thing, create a new one.  name= matching without subsys
1207	 * specification is allowed for already existing hierarchies but we
1208	 * can't create new one without subsys specification.
1209	 */
1210	if (!ctx->subsys_mask && !ctx->none)
1211		return invalfc(fc, "No subsys list or none specified");
1212
1213	/* Hierarchies may only be created in the initial cgroup namespace. */
1214	if (ctx->ns != &init_cgroup_ns)
1215		return -EPERM;
1216
1217	root = kzalloc(sizeof(*root), GFP_KERNEL);
1218	if (!root)
1219		return -ENOMEM;
1220
1221	ctx->root = root;
1222	init_cgroup_root(ctx);
1223
1224	ret = cgroup_setup_root(root, ctx->subsys_mask);
1225	if (!ret)
1226		cgroup_favor_dynmods(root, ctx->flags & CGRP_ROOT_FAVOR_DYNMODS);
1227	else
1228		cgroup_free_root(root);
1229
1230	return ret;
1231}
1232
1233int cgroup1_get_tree(struct fs_context *fc)
1234{
1235	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1236	int ret;
1237
1238	/* Check if the caller has permission to mount. */
1239	if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1240		return -EPERM;
1241
1242	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1243
1244	ret = cgroup1_root_to_use(fc);
1245	if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1246		ret = 1;	/* restart */
1247
1248	cgroup_unlock();
1249
1250	if (!ret)
1251		ret = cgroup_do_get_tree(fc);
1252
1253	if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1254		fc_drop_locked(fc);
1255		ret = 1;
1256	}
1257
1258	if (unlikely(ret > 0)) {
1259		msleep(10);
1260		return restart_syscall();
1261	}
1262	return ret;
1263}
1264
1265/**
1266 * task_get_cgroup1 - Acquires the associated cgroup of a task within a
1267 * specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
1268 * hierarchy ID.
1269 * @tsk: The target task
1270 * @hierarchy_id: The ID of a cgroup1 hierarchy
1271 *
1272 * On success, the cgroup is returned. On failure, ERR_PTR is returned.
1273 * We limit it to cgroup1 only.
1274 */
1275struct cgroup *task_get_cgroup1(struct task_struct *tsk, int hierarchy_id)
1276{
1277	struct cgroup *cgrp = ERR_PTR(-ENOENT);
1278	struct cgroup_root *root;
1279	unsigned long flags;
1280
1281	rcu_read_lock();
1282	for_each_root(root) {
1283		/* cgroup1 only*/
1284		if (root == &cgrp_dfl_root)
1285			continue;
1286		if (root->hierarchy_id != hierarchy_id)
1287			continue;
1288		spin_lock_irqsave(&css_set_lock, flags);
1289		cgrp = task_cgroup_from_root(tsk, root);
1290		if (!cgrp || !cgroup_tryget(cgrp))
1291			cgrp = ERR_PTR(-ENOENT);
1292		spin_unlock_irqrestore(&css_set_lock, flags);
1293		break;
1294	}
1295	rcu_read_unlock();
1296	return cgrp;
1297}
1298
1299static int __init cgroup1_wq_init(void)
1300{
1301	/*
1302	 * Used to destroy pidlists and separate to serve as flush domain.
1303	 * Cap @max_active to 1 too.
1304	 */
1305	cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1306						    0, 1);
1307	BUG_ON(!cgroup_pidlist_destroy_wq);
1308	return 0;
1309}
1310core_initcall(cgroup1_wq_init);
1311
1312static int __init cgroup_no_v1(char *str)
1313{
1314	struct cgroup_subsys *ss;
1315	char *token;
1316	int i;
1317
1318	while ((token = strsep(&str, ",")) != NULL) {
1319		if (!*token)
1320			continue;
1321
1322		if (!strcmp(token, "all")) {
1323			cgroup_no_v1_mask = U16_MAX;
1324			continue;
1325		}
1326
1327		if (!strcmp(token, "named")) {
1328			cgroup_no_v1_named = true;
1329			continue;
1330		}
1331
1332		for_each_subsys(ss, i) {
1333			if (strcmp(token, ss->name) &&
1334			    strcmp(token, ss->legacy_name))
1335				continue;
1336
1337			cgroup_no_v1_mask |= 1 << i;
1338		}
1339	}
1340	return 1;
1341}
1342__setup("cgroup_no_v1=", cgroup_no_v1);
1343