1// SPDX-License-Identifier: GPL-2.0-only
2/* tnum: tracked (or tristate) numbers
3 *
4 * A tnum tracks knowledge about the bits of a value.  Each bit can be either
5 * known (0 or 1), or unknown (x).  Arithmetic operations on tnums will
6 * propagate the unknown bits such that the tnum result represents all the
7 * possible results for possible values of the operands.
8 */
9#include <linux/kernel.h>
10#include <linux/tnum.h>
11
12#define TNUM(_v, _m)	(struct tnum){.value = _v, .mask = _m}
13/* A completely unknown value */
14const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
15
16struct tnum tnum_const(u64 value)
17{
18	return TNUM(value, 0);
19}
20
21struct tnum tnum_range(u64 min, u64 max)
22{
23	u64 chi = min ^ max, delta;
24	u8 bits = fls64(chi);
25
26	/* special case, needed because 1ULL << 64 is undefined */
27	if (bits > 63)
28		return tnum_unknown;
29	/* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
30	 * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
31	 *  constant min (since min == max).
32	 */
33	delta = (1ULL << bits) - 1;
34	return TNUM(min & ~delta, delta);
35}
36
37struct tnum tnum_lshift(struct tnum a, u8 shift)
38{
39	return TNUM(a.value << shift, a.mask << shift);
40}
41
42struct tnum tnum_rshift(struct tnum a, u8 shift)
43{
44	return TNUM(a.value >> shift, a.mask >> shift);
45}
46
47struct tnum tnum_arshift(struct tnum a, u8 min_shift, u8 insn_bitness)
48{
49	/* if a.value is negative, arithmetic shifting by minimum shift
50	 * will have larger negative offset compared to more shifting.
51	 * If a.value is nonnegative, arithmetic shifting by minimum shift
52	 * will have larger positive offset compare to more shifting.
53	 */
54	if (insn_bitness == 32)
55		return TNUM((u32)(((s32)a.value) >> min_shift),
56			    (u32)(((s32)a.mask)  >> min_shift));
57	else
58		return TNUM((s64)a.value >> min_shift,
59			    (s64)a.mask  >> min_shift);
60}
61
62struct tnum tnum_add(struct tnum a, struct tnum b)
63{
64	u64 sm, sv, sigma, chi, mu;
65
66	sm = a.mask + b.mask;
67	sv = a.value + b.value;
68	sigma = sm + sv;
69	chi = sigma ^ sv;
70	mu = chi | a.mask | b.mask;
71	return TNUM(sv & ~mu, mu);
72}
73
74struct tnum tnum_sub(struct tnum a, struct tnum b)
75{
76	u64 dv, alpha, beta, chi, mu;
77
78	dv = a.value - b.value;
79	alpha = dv + a.mask;
80	beta = dv - b.mask;
81	chi = alpha ^ beta;
82	mu = chi | a.mask | b.mask;
83	return TNUM(dv & ~mu, mu);
84}
85
86struct tnum tnum_and(struct tnum a, struct tnum b)
87{
88	u64 alpha, beta, v;
89
90	alpha = a.value | a.mask;
91	beta = b.value | b.mask;
92	v = a.value & b.value;
93	return TNUM(v, alpha & beta & ~v);
94}
95
96struct tnum tnum_or(struct tnum a, struct tnum b)
97{
98	u64 v, mu;
99
100	v = a.value | b.value;
101	mu = a.mask | b.mask;
102	return TNUM(v, mu & ~v);
103}
104
105struct tnum tnum_xor(struct tnum a, struct tnum b)
106{
107	u64 v, mu;
108
109	v = a.value ^ b.value;
110	mu = a.mask | b.mask;
111	return TNUM(v & ~mu, mu);
112}
113
114/* Generate partial products by multiplying each bit in the multiplier (tnum a)
115 * with the multiplicand (tnum b), and add the partial products after
116 * appropriately bit-shifting them. Instead of directly performing tnum addition
117 * on the generated partial products, equivalenty, decompose each partial
118 * product into two tnums, consisting of the value-sum (acc_v) and the
119 * mask-sum (acc_m) and then perform tnum addition on them. The following paper
120 * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398.
121 */
122struct tnum tnum_mul(struct tnum a, struct tnum b)
123{
124	u64 acc_v = a.value * b.value;
125	struct tnum acc_m = TNUM(0, 0);
126
127	while (a.value || a.mask) {
128		/* LSB of tnum a is a certain 1 */
129		if (a.value & 1)
130			acc_m = tnum_add(acc_m, TNUM(0, b.mask));
131		/* LSB of tnum a is uncertain */
132		else if (a.mask & 1)
133			acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask));
134		/* Note: no case for LSB is certain 0 */
135		a = tnum_rshift(a, 1);
136		b = tnum_lshift(b, 1);
137	}
138	return tnum_add(TNUM(acc_v, 0), acc_m);
139}
140
141/* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
142 * a 'known 0' - this will return a 'known 1' for that bit.
143 */
144struct tnum tnum_intersect(struct tnum a, struct tnum b)
145{
146	u64 v, mu;
147
148	v = a.value | b.value;
149	mu = a.mask & b.mask;
150	return TNUM(v & ~mu, mu);
151}
152
153struct tnum tnum_cast(struct tnum a, u8 size)
154{
155	a.value &= (1ULL << (size * 8)) - 1;
156	a.mask &= (1ULL << (size * 8)) - 1;
157	return a;
158}
159
160bool tnum_is_aligned(struct tnum a, u64 size)
161{
162	if (!size)
163		return true;
164	return !((a.value | a.mask) & (size - 1));
165}
166
167bool tnum_in(struct tnum a, struct tnum b)
168{
169	if (b.mask & ~a.mask)
170		return false;
171	b.value &= ~a.mask;
172	return a.value == b.value;
173}
174
175int tnum_sbin(char *str, size_t size, struct tnum a)
176{
177	size_t n;
178
179	for (n = 64; n; n--) {
180		if (n < size) {
181			if (a.mask & 1)
182				str[n - 1] = 'x';
183			else if (a.value & 1)
184				str[n - 1] = '1';
185			else
186				str[n - 1] = '0';
187		}
188		a.mask >>= 1;
189		a.value >>= 1;
190	}
191	str[min(size - 1, (size_t)64)] = 0;
192	return 64;
193}
194
195struct tnum tnum_subreg(struct tnum a)
196{
197	return tnum_cast(a, 4);
198}
199
200struct tnum tnum_clear_subreg(struct tnum a)
201{
202	return tnum_lshift(tnum_rshift(a, 32), 32);
203}
204
205struct tnum tnum_with_subreg(struct tnum reg, struct tnum subreg)
206{
207	return tnum_or(tnum_clear_subreg(reg), tnum_subreg(subreg));
208}
209
210struct tnum tnum_const_subreg(struct tnum a, u32 value)
211{
212	return tnum_with_subreg(a, tnum_const(value));
213}
214