1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3#include <linux/mm.h>
4#include <linux/llist.h>
5#include <linux/bpf.h>
6#include <linux/irq_work.h>
7#include <linux/bpf_mem_alloc.h>
8#include <linux/memcontrol.h>
9#include <asm/local.h>
10
11/* Any context (including NMI) BPF specific memory allocator.
12 *
13 * Tracing BPF programs can attach to kprobe and fentry. Hence they
14 * run in unknown context where calling plain kmalloc() might not be safe.
15 *
16 * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17 * Refill this cache asynchronously from irq_work.
18 *
19 * CPU_0 buckets
20 * 16 32 64 96 128 196 256 512 1024 2048 4096
21 * ...
22 * CPU_N buckets
23 * 16 32 64 96 128 196 256 512 1024 2048 4096
24 *
25 * The buckets are prefilled at the start.
26 * BPF programs always run with migration disabled.
27 * It's safe to allocate from cache of the current cpu with irqs disabled.
28 * Free-ing is always done into bucket of the current cpu as well.
29 * irq_work trims extra free elements from buckets with kfree
30 * and refills them with kmalloc, so global kmalloc logic takes care
31 * of freeing objects allocated by one cpu and freed on another.
32 *
33 * Every allocated objected is padded with extra 8 bytes that contains
34 * struct llist_node.
35 */
36#define LLIST_NODE_SZ sizeof(struct llist_node)
37
38/* similar to kmalloc, but sizeof == 8 bucket is gone */
39static u8 size_index[24] __ro_after_init = {
40	3,	/* 8 */
41	3,	/* 16 */
42	4,	/* 24 */
43	4,	/* 32 */
44	5,	/* 40 */
45	5,	/* 48 */
46	5,	/* 56 */
47	5,	/* 64 */
48	1,	/* 72 */
49	1,	/* 80 */
50	1,	/* 88 */
51	1,	/* 96 */
52	6,	/* 104 */
53	6,	/* 112 */
54	6,	/* 120 */
55	6,	/* 128 */
56	2,	/* 136 */
57	2,	/* 144 */
58	2,	/* 152 */
59	2,	/* 160 */
60	2,	/* 168 */
61	2,	/* 176 */
62	2,	/* 184 */
63	2	/* 192 */
64};
65
66static int bpf_mem_cache_idx(size_t size)
67{
68	if (!size || size > 4096)
69		return -1;
70
71	if (size <= 192)
72		return size_index[(size - 1) / 8] - 1;
73
74	return fls(size - 1) - 2;
75}
76
77#define NUM_CACHES 11
78
79struct bpf_mem_cache {
80	/* per-cpu list of free objects of size 'unit_size'.
81	 * All accesses are done with interrupts disabled and 'active' counter
82	 * protection with __llist_add() and __llist_del_first().
83	 */
84	struct llist_head free_llist;
85	local_t active;
86
87	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89	 * fail. When 'active' is busy the unit_free() will add an object to
90	 * free_llist_extra.
91	 */
92	struct llist_head free_llist_extra;
93
94	struct irq_work refill_work;
95	struct obj_cgroup *objcg;
96	int unit_size;
97	/* count of objects in free_llist */
98	int free_cnt;
99	int low_watermark, high_watermark, batch;
100	int percpu_size;
101	bool draining;
102	struct bpf_mem_cache *tgt;
103
104	/* list of objects to be freed after RCU GP */
105	struct llist_head free_by_rcu;
106	struct llist_node *free_by_rcu_tail;
107	struct llist_head waiting_for_gp;
108	struct llist_node *waiting_for_gp_tail;
109	struct rcu_head rcu;
110	atomic_t call_rcu_in_progress;
111	struct llist_head free_llist_extra_rcu;
112
113	/* list of objects to be freed after RCU tasks trace GP */
114	struct llist_head free_by_rcu_ttrace;
115	struct llist_head waiting_for_gp_ttrace;
116	struct rcu_head rcu_ttrace;
117	atomic_t call_rcu_ttrace_in_progress;
118};
119
120struct bpf_mem_caches {
121	struct bpf_mem_cache cache[NUM_CACHES];
122};
123
124static const u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
125
126static struct llist_node notrace *__llist_del_first(struct llist_head *head)
127{
128	struct llist_node *entry, *next;
129
130	entry = head->first;
131	if (!entry)
132		return NULL;
133	next = entry->next;
134	head->first = next;
135	return entry;
136}
137
138static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
139{
140	if (c->percpu_size) {
141		void **obj = kmalloc_node(c->percpu_size, flags, node);
142		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
143
144		if (!obj || !pptr) {
145			free_percpu(pptr);
146			kfree(obj);
147			return NULL;
148		}
149		obj[1] = pptr;
150		return obj;
151	}
152
153	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
154}
155
156static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
157{
158#ifdef CONFIG_MEMCG_KMEM
159	if (c->objcg)
160		return get_mem_cgroup_from_objcg(c->objcg);
161#endif
162
163#ifdef CONFIG_MEMCG
164	return root_mem_cgroup;
165#else
166	return NULL;
167#endif
168}
169
170static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
171{
172	if (IS_ENABLED(CONFIG_PREEMPT_RT))
173		/* In RT irq_work runs in per-cpu kthread, so disable
174		 * interrupts to avoid preemption and interrupts and
175		 * reduce the chance of bpf prog executing on this cpu
176		 * when active counter is busy.
177		 */
178		local_irq_save(*flags);
179	/* alloc_bulk runs from irq_work which will not preempt a bpf
180	 * program that does unit_alloc/unit_free since IRQs are
181	 * disabled there. There is no race to increment 'active'
182	 * counter. It protects free_llist from corruption in case NMI
183	 * bpf prog preempted this loop.
184	 */
185	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
186}
187
188static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
189{
190	local_dec(&c->active);
191	if (IS_ENABLED(CONFIG_PREEMPT_RT))
192		local_irq_restore(*flags);
193}
194
195static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
196{
197	unsigned long flags;
198
199	inc_active(c, &flags);
200	__llist_add(obj, &c->free_llist);
201	c->free_cnt++;
202	dec_active(c, &flags);
203}
204
205/* Mostly runs from irq_work except __init phase. */
206static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
207{
208	struct mem_cgroup *memcg = NULL, *old_memcg;
209	gfp_t gfp;
210	void *obj;
211	int i;
212
213	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
214	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
215
216	for (i = 0; i < cnt; i++) {
217		/*
218		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
219		 * done only by one CPU == current CPU. Other CPUs might
220		 * llist_add() and llist_del_all() in parallel.
221		 */
222		obj = llist_del_first(&c->free_by_rcu_ttrace);
223		if (!obj)
224			break;
225		add_obj_to_free_list(c, obj);
226	}
227	if (i >= cnt)
228		return;
229
230	for (; i < cnt; i++) {
231		obj = llist_del_first(&c->waiting_for_gp_ttrace);
232		if (!obj)
233			break;
234		add_obj_to_free_list(c, obj);
235	}
236	if (i >= cnt)
237		return;
238
239	memcg = get_memcg(c);
240	old_memcg = set_active_memcg(memcg);
241	for (; i < cnt; i++) {
242		/* Allocate, but don't deplete atomic reserves that typical
243		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
244		 * will allocate from the current numa node which is what we
245		 * want here.
246		 */
247		obj = __alloc(c, node, gfp);
248		if (!obj)
249			break;
250		add_obj_to_free_list(c, obj);
251	}
252	set_active_memcg(old_memcg);
253	mem_cgroup_put(memcg);
254}
255
256static void free_one(void *obj, bool percpu)
257{
258	if (percpu) {
259		free_percpu(((void **)obj)[1]);
260		kfree(obj);
261		return;
262	}
263
264	kfree(obj);
265}
266
267static int free_all(struct llist_node *llnode, bool percpu)
268{
269	struct llist_node *pos, *t;
270	int cnt = 0;
271
272	llist_for_each_safe(pos, t, llnode) {
273		free_one(pos, percpu);
274		cnt++;
275	}
276	return cnt;
277}
278
279static void __free_rcu(struct rcu_head *head)
280{
281	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
282
283	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
284	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
285}
286
287static void __free_rcu_tasks_trace(struct rcu_head *head)
288{
289	/* If RCU Tasks Trace grace period implies RCU grace period,
290	 * there is no need to invoke call_rcu().
291	 */
292	if (rcu_trace_implies_rcu_gp())
293		__free_rcu(head);
294	else
295		call_rcu(head, __free_rcu);
296}
297
298static void enque_to_free(struct bpf_mem_cache *c, void *obj)
299{
300	struct llist_node *llnode = obj;
301
302	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
303	 * Nothing races to add to free_by_rcu_ttrace list.
304	 */
305	llist_add(llnode, &c->free_by_rcu_ttrace);
306}
307
308static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
309{
310	struct llist_node *llnode, *t;
311
312	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
313		if (unlikely(READ_ONCE(c->draining))) {
314			llnode = llist_del_all(&c->free_by_rcu_ttrace);
315			free_all(llnode, !!c->percpu_size);
316		}
317		return;
318	}
319
320	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
321	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
322		llist_add(llnode, &c->waiting_for_gp_ttrace);
323
324	if (unlikely(READ_ONCE(c->draining))) {
325		__free_rcu(&c->rcu_ttrace);
326		return;
327	}
328
329	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
330	 * If RCU Tasks Trace grace period implies RCU grace period, free
331	 * these elements directly, else use call_rcu() to wait for normal
332	 * progs to finish and finally do free_one() on each element.
333	 */
334	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
335}
336
337static void free_bulk(struct bpf_mem_cache *c)
338{
339	struct bpf_mem_cache *tgt = c->tgt;
340	struct llist_node *llnode, *t;
341	unsigned long flags;
342	int cnt;
343
344	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
345	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
346
347	do {
348		inc_active(c, &flags);
349		llnode = __llist_del_first(&c->free_llist);
350		if (llnode)
351			cnt = --c->free_cnt;
352		else
353			cnt = 0;
354		dec_active(c, &flags);
355		if (llnode)
356			enque_to_free(tgt, llnode);
357	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
358
359	/* and drain free_llist_extra */
360	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
361		enque_to_free(tgt, llnode);
362	do_call_rcu_ttrace(tgt);
363}
364
365static void __free_by_rcu(struct rcu_head *head)
366{
367	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
368	struct bpf_mem_cache *tgt = c->tgt;
369	struct llist_node *llnode;
370
371	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
372	WARN_ON_ONCE(tgt->percpu_size != c->percpu_size);
373
374	llnode = llist_del_all(&c->waiting_for_gp);
375	if (!llnode)
376		goto out;
377
378	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
379
380	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
381	do_call_rcu_ttrace(tgt);
382out:
383	atomic_set(&c->call_rcu_in_progress, 0);
384}
385
386static void check_free_by_rcu(struct bpf_mem_cache *c)
387{
388	struct llist_node *llnode, *t;
389	unsigned long flags;
390
391	/* drain free_llist_extra_rcu */
392	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
393		inc_active(c, &flags);
394		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
395			if (__llist_add(llnode, &c->free_by_rcu))
396				c->free_by_rcu_tail = llnode;
397		dec_active(c, &flags);
398	}
399
400	if (llist_empty(&c->free_by_rcu))
401		return;
402
403	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
404		/*
405		 * Instead of kmalloc-ing new rcu_head and triggering 10k
406		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
407		 * the overload just ask RCU to hurry up. There could be many
408		 * objects in free_by_rcu list.
409		 * This hint reduces memory consumption for an artificial
410		 * benchmark from 2 Gbyte to 150 Mbyte.
411		 */
412		rcu_request_urgent_qs_task(current);
413		return;
414	}
415
416	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
417
418	inc_active(c, &flags);
419	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
420	c->waiting_for_gp_tail = c->free_by_rcu_tail;
421	dec_active(c, &flags);
422
423	if (unlikely(READ_ONCE(c->draining))) {
424		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
425		atomic_set(&c->call_rcu_in_progress, 0);
426	} else {
427		call_rcu_hurry(&c->rcu, __free_by_rcu);
428	}
429}
430
431static void bpf_mem_refill(struct irq_work *work)
432{
433	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
434	int cnt;
435
436	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
437	cnt = c->free_cnt;
438	if (cnt < c->low_watermark)
439		/* irq_work runs on this cpu and kmalloc will allocate
440		 * from the current numa node which is what we want here.
441		 */
442		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
443	else if (cnt > c->high_watermark)
444		free_bulk(c);
445
446	check_free_by_rcu(c);
447}
448
449static void notrace irq_work_raise(struct bpf_mem_cache *c)
450{
451	irq_work_queue(&c->refill_work);
452}
453
454/* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
455 * the freelist cache will be elem_size * 64 (or less) on each cpu.
456 *
457 * For bpf programs that don't have statically known allocation sizes and
458 * assuming (low_mark + high_mark) / 2 as an average number of elements per
459 * bucket and all buckets are used the total amount of memory in freelists
460 * on each cpu will be:
461 * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
462 * == ~ 116 Kbyte using below heuristic.
463 * Initialized, but unused bpf allocator (not bpf map specific one) will
464 * consume ~ 11 Kbyte per cpu.
465 * Typical case will be between 11K and 116K closer to 11K.
466 * bpf progs can and should share bpf_mem_cache when possible.
467 *
468 * Percpu allocation is typically rare. To avoid potential unnecessary large
469 * memory consumption, set low_mark = 1 and high_mark = 3, resulting in c->batch = 1.
470 */
471static void init_refill_work(struct bpf_mem_cache *c)
472{
473	init_irq_work(&c->refill_work, bpf_mem_refill);
474	if (c->percpu_size) {
475		c->low_watermark = 1;
476		c->high_watermark = 3;
477	} else if (c->unit_size <= 256) {
478		c->low_watermark = 32;
479		c->high_watermark = 96;
480	} else {
481		/* When page_size == 4k, order-0 cache will have low_mark == 2
482		 * and high_mark == 6 with batch alloc of 3 individual pages at
483		 * a time.
484		 * 8k allocs and above low == 1, high == 3, batch == 1.
485		 */
486		c->low_watermark = max(32 * 256 / c->unit_size, 1);
487		c->high_watermark = max(96 * 256 / c->unit_size, 3);
488	}
489	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
490}
491
492static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
493{
494	int cnt = 1;
495
496	/* To avoid consuming memory, for non-percpu allocation, assume that
497	 * 1st run of bpf prog won't be doing more than 4 map_update_elem from
498	 * irq disabled region if unit size is less than or equal to 256.
499	 * For all other cases, let us just do one allocation.
500	 */
501	if (!c->percpu_size && c->unit_size <= 256)
502		cnt = 4;
503	alloc_bulk(c, cnt, cpu_to_node(cpu), false);
504}
505
506/* When size != 0 bpf_mem_cache for each cpu.
507 * This is typical bpf hash map use case when all elements have equal size.
508 *
509 * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
510 * kmalloc/kfree. Max allocation size is 4096 in this case.
511 * This is bpf_dynptr and bpf_kptr use case.
512 */
513int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
514{
515	struct bpf_mem_caches *cc, __percpu *pcc;
516	struct bpf_mem_cache *c, __percpu *pc;
517	struct obj_cgroup *objcg = NULL;
518	int cpu, i, unit_size, percpu_size = 0;
519
520	if (percpu && size == 0)
521		return -EINVAL;
522
523	/* room for llist_node and per-cpu pointer */
524	if (percpu)
525		percpu_size = LLIST_NODE_SZ + sizeof(void *);
526	ma->percpu = percpu;
527
528	if (size) {
529		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
530		if (!pc)
531			return -ENOMEM;
532
533		if (!percpu)
534			size += LLIST_NODE_SZ; /* room for llist_node */
535		unit_size = size;
536
537#ifdef CONFIG_MEMCG_KMEM
538		if (memcg_bpf_enabled())
539			objcg = get_obj_cgroup_from_current();
540#endif
541		ma->objcg = objcg;
542
543		for_each_possible_cpu(cpu) {
544			c = per_cpu_ptr(pc, cpu);
545			c->unit_size = unit_size;
546			c->objcg = objcg;
547			c->percpu_size = percpu_size;
548			c->tgt = c;
549			init_refill_work(c);
550			prefill_mem_cache(c, cpu);
551		}
552		ma->cache = pc;
553		return 0;
554	}
555
556	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
557	if (!pcc)
558		return -ENOMEM;
559#ifdef CONFIG_MEMCG_KMEM
560	objcg = get_obj_cgroup_from_current();
561#endif
562	ma->objcg = objcg;
563	for_each_possible_cpu(cpu) {
564		cc = per_cpu_ptr(pcc, cpu);
565		for (i = 0; i < NUM_CACHES; i++) {
566			c = &cc->cache[i];
567			c->unit_size = sizes[i];
568			c->objcg = objcg;
569			c->percpu_size = percpu_size;
570			c->tgt = c;
571
572			init_refill_work(c);
573			prefill_mem_cache(c, cpu);
574		}
575	}
576
577	ma->caches = pcc;
578	return 0;
579}
580
581int bpf_mem_alloc_percpu_init(struct bpf_mem_alloc *ma, struct obj_cgroup *objcg)
582{
583	struct bpf_mem_caches __percpu *pcc;
584
585	pcc = __alloc_percpu_gfp(sizeof(struct bpf_mem_caches), 8, GFP_KERNEL);
586	if (!pcc)
587		return -ENOMEM;
588
589	ma->caches = pcc;
590	ma->objcg = objcg;
591	ma->percpu = true;
592	return 0;
593}
594
595int bpf_mem_alloc_percpu_unit_init(struct bpf_mem_alloc *ma, int size)
596{
597	struct bpf_mem_caches *cc, __percpu *pcc;
598	int cpu, i, unit_size, percpu_size;
599	struct obj_cgroup *objcg;
600	struct bpf_mem_cache *c;
601
602	i = bpf_mem_cache_idx(size);
603	if (i < 0)
604		return -EINVAL;
605
606	/* room for llist_node and per-cpu pointer */
607	percpu_size = LLIST_NODE_SZ + sizeof(void *);
608
609	unit_size = sizes[i];
610	objcg = ma->objcg;
611	pcc = ma->caches;
612
613	for_each_possible_cpu(cpu) {
614		cc = per_cpu_ptr(pcc, cpu);
615		c = &cc->cache[i];
616		if (c->unit_size)
617			break;
618
619		c->unit_size = unit_size;
620		c->objcg = objcg;
621		c->percpu_size = percpu_size;
622		c->tgt = c;
623
624		init_refill_work(c);
625		prefill_mem_cache(c, cpu);
626	}
627
628	return 0;
629}
630
631static void drain_mem_cache(struct bpf_mem_cache *c)
632{
633	bool percpu = !!c->percpu_size;
634
635	/* No progs are using this bpf_mem_cache, but htab_map_free() called
636	 * bpf_mem_cache_free() for all remaining elements and they can be in
637	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
638	 *
639	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
640	 * on these lists, so it is safe to use __llist_del_all().
641	 */
642	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
643	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
644	free_all(__llist_del_all(&c->free_llist), percpu);
645	free_all(__llist_del_all(&c->free_llist_extra), percpu);
646	free_all(__llist_del_all(&c->free_by_rcu), percpu);
647	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
648	free_all(llist_del_all(&c->waiting_for_gp), percpu);
649}
650
651static void check_mem_cache(struct bpf_mem_cache *c)
652{
653	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
654	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
655	WARN_ON_ONCE(!llist_empty(&c->free_llist));
656	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
657	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
658	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
659	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
660}
661
662static void check_leaked_objs(struct bpf_mem_alloc *ma)
663{
664	struct bpf_mem_caches *cc;
665	struct bpf_mem_cache *c;
666	int cpu, i;
667
668	if (ma->cache) {
669		for_each_possible_cpu(cpu) {
670			c = per_cpu_ptr(ma->cache, cpu);
671			check_mem_cache(c);
672		}
673	}
674	if (ma->caches) {
675		for_each_possible_cpu(cpu) {
676			cc = per_cpu_ptr(ma->caches, cpu);
677			for (i = 0; i < NUM_CACHES; i++) {
678				c = &cc->cache[i];
679				check_mem_cache(c);
680			}
681		}
682	}
683}
684
685static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
686{
687	check_leaked_objs(ma);
688	free_percpu(ma->cache);
689	free_percpu(ma->caches);
690	ma->cache = NULL;
691	ma->caches = NULL;
692}
693
694static void free_mem_alloc(struct bpf_mem_alloc *ma)
695{
696	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
697	 * might still execute. Wait for them.
698	 *
699	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
700	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
701	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
702	 * so if call_rcu(head, __free_rcu) is skipped due to
703	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
704	 * using rcu_trace_implies_rcu_gp() as well.
705	 */
706	rcu_barrier(); /* wait for __free_by_rcu */
707	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
708	if (!rcu_trace_implies_rcu_gp())
709		rcu_barrier();
710	free_mem_alloc_no_barrier(ma);
711}
712
713static void free_mem_alloc_deferred(struct work_struct *work)
714{
715	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
716
717	free_mem_alloc(ma);
718	kfree(ma);
719}
720
721static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
722{
723	struct bpf_mem_alloc *copy;
724
725	if (!rcu_in_progress) {
726		/* Fast path. No callbacks are pending, hence no need to do
727		 * rcu_barrier-s.
728		 */
729		free_mem_alloc_no_barrier(ma);
730		return;
731	}
732
733	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
734	if (!copy) {
735		/* Slow path with inline barrier-s */
736		free_mem_alloc(ma);
737		return;
738	}
739
740	/* Defer barriers into worker to let the rest of map memory to be freed */
741	memset(ma, 0, sizeof(*ma));
742	INIT_WORK(&copy->work, free_mem_alloc_deferred);
743	queue_work(system_unbound_wq, &copy->work);
744}
745
746void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
747{
748	struct bpf_mem_caches *cc;
749	struct bpf_mem_cache *c;
750	int cpu, i, rcu_in_progress;
751
752	if (ma->cache) {
753		rcu_in_progress = 0;
754		for_each_possible_cpu(cpu) {
755			c = per_cpu_ptr(ma->cache, cpu);
756			WRITE_ONCE(c->draining, true);
757			irq_work_sync(&c->refill_work);
758			drain_mem_cache(c);
759			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
760			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
761		}
762		if (ma->objcg)
763			obj_cgroup_put(ma->objcg);
764		destroy_mem_alloc(ma, rcu_in_progress);
765	}
766	if (ma->caches) {
767		rcu_in_progress = 0;
768		for_each_possible_cpu(cpu) {
769			cc = per_cpu_ptr(ma->caches, cpu);
770			for (i = 0; i < NUM_CACHES; i++) {
771				c = &cc->cache[i];
772				WRITE_ONCE(c->draining, true);
773				irq_work_sync(&c->refill_work);
774				drain_mem_cache(c);
775				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
776				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
777			}
778		}
779		if (ma->objcg)
780			obj_cgroup_put(ma->objcg);
781		destroy_mem_alloc(ma, rcu_in_progress);
782	}
783}
784
785/* notrace is necessary here and in other functions to make sure
786 * bpf programs cannot attach to them and cause llist corruptions.
787 */
788static void notrace *unit_alloc(struct bpf_mem_cache *c)
789{
790	struct llist_node *llnode = NULL;
791	unsigned long flags;
792	int cnt = 0;
793
794	/* Disable irqs to prevent the following race for majority of prog types:
795	 * prog_A
796	 *   bpf_mem_alloc
797	 *      preemption or irq -> prog_B
798	 *        bpf_mem_alloc
799	 *
800	 * but prog_B could be a perf_event NMI prog.
801	 * Use per-cpu 'active' counter to order free_list access between
802	 * unit_alloc/unit_free/bpf_mem_refill.
803	 */
804	local_irq_save(flags);
805	if (local_inc_return(&c->active) == 1) {
806		llnode = __llist_del_first(&c->free_llist);
807		if (llnode) {
808			cnt = --c->free_cnt;
809			*(struct bpf_mem_cache **)llnode = c;
810		}
811	}
812	local_dec(&c->active);
813
814	WARN_ON(cnt < 0);
815
816	if (cnt < c->low_watermark)
817		irq_work_raise(c);
818	/* Enable IRQ after the enqueue of irq work completes, so irq work
819	 * will run after IRQ is enabled and free_llist may be refilled by
820	 * irq work before other task preempts current task.
821	 */
822	local_irq_restore(flags);
823
824	return llnode;
825}
826
827/* Though 'ptr' object could have been allocated on a different cpu
828 * add it to the free_llist of the current cpu.
829 * Let kfree() logic deal with it when it's later called from irq_work.
830 */
831static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
832{
833	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
834	unsigned long flags;
835	int cnt = 0;
836
837	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
838
839	/*
840	 * Remember bpf_mem_cache that allocated this object.
841	 * The hint is not accurate.
842	 */
843	c->tgt = *(struct bpf_mem_cache **)llnode;
844
845	local_irq_save(flags);
846	if (local_inc_return(&c->active) == 1) {
847		__llist_add(llnode, &c->free_llist);
848		cnt = ++c->free_cnt;
849	} else {
850		/* unit_free() cannot fail. Therefore add an object to atomic
851		 * llist. free_bulk() will drain it. Though free_llist_extra is
852		 * a per-cpu list we have to use atomic llist_add here, since
853		 * it also can be interrupted by bpf nmi prog that does another
854		 * unit_free() into the same free_llist_extra.
855		 */
856		llist_add(llnode, &c->free_llist_extra);
857	}
858	local_dec(&c->active);
859
860	if (cnt > c->high_watermark)
861		/* free few objects from current cpu into global kmalloc pool */
862		irq_work_raise(c);
863	/* Enable IRQ after irq_work_raise() completes, otherwise when current
864	 * task is preempted by task which does unit_alloc(), unit_alloc() may
865	 * return NULL unexpectedly because irq work is already pending but can
866	 * not been triggered and free_llist can not be refilled timely.
867	 */
868	local_irq_restore(flags);
869}
870
871static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
872{
873	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
874	unsigned long flags;
875
876	c->tgt = *(struct bpf_mem_cache **)llnode;
877
878	local_irq_save(flags);
879	if (local_inc_return(&c->active) == 1) {
880		if (__llist_add(llnode, &c->free_by_rcu))
881			c->free_by_rcu_tail = llnode;
882	} else {
883		llist_add(llnode, &c->free_llist_extra_rcu);
884	}
885	local_dec(&c->active);
886
887	if (!atomic_read(&c->call_rcu_in_progress))
888		irq_work_raise(c);
889	local_irq_restore(flags);
890}
891
892/* Called from BPF program or from sys_bpf syscall.
893 * In both cases migration is disabled.
894 */
895void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
896{
897	int idx;
898	void *ret;
899
900	if (!size)
901		return NULL;
902
903	if (!ma->percpu)
904		size += LLIST_NODE_SZ;
905	idx = bpf_mem_cache_idx(size);
906	if (idx < 0)
907		return NULL;
908
909	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
910	return !ret ? NULL : ret + LLIST_NODE_SZ;
911}
912
913void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
914{
915	struct bpf_mem_cache *c;
916	int idx;
917
918	if (!ptr)
919		return;
920
921	c = *(void **)(ptr - LLIST_NODE_SZ);
922	idx = bpf_mem_cache_idx(c->unit_size);
923	if (WARN_ON_ONCE(idx < 0))
924		return;
925
926	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
927}
928
929void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
930{
931	struct bpf_mem_cache *c;
932	int idx;
933
934	if (!ptr)
935		return;
936
937	c = *(void **)(ptr - LLIST_NODE_SZ);
938	idx = bpf_mem_cache_idx(c->unit_size);
939	if (WARN_ON_ONCE(idx < 0))
940		return;
941
942	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
943}
944
945void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
946{
947	void *ret;
948
949	ret = unit_alloc(this_cpu_ptr(ma->cache));
950	return !ret ? NULL : ret + LLIST_NODE_SZ;
951}
952
953void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
954{
955	if (!ptr)
956		return;
957
958	unit_free(this_cpu_ptr(ma->cache), ptr);
959}
960
961void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
962{
963	if (!ptr)
964		return;
965
966	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
967}
968
969/* Directly does a kfree() without putting 'ptr' back to the free_llist
970 * for reuse and without waiting for a rcu_tasks_trace gp.
971 * The caller must first go through the rcu_tasks_trace gp for 'ptr'
972 * before calling bpf_mem_cache_raw_free().
973 * It could be used when the rcu_tasks_trace callback does not have
974 * a hold on the original bpf_mem_alloc object that allocated the
975 * 'ptr'. This should only be used in the uncommon code path.
976 * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
977 * and may affect performance.
978 */
979void bpf_mem_cache_raw_free(void *ptr)
980{
981	if (!ptr)
982		return;
983
984	kfree(ptr - LLIST_NODE_SZ);
985}
986
987/* When flags == GFP_KERNEL, it signals that the caller will not cause
988 * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
989 * kmalloc if the free_llist is empty.
990 */
991void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
992{
993	struct bpf_mem_cache *c;
994	void *ret;
995
996	c = this_cpu_ptr(ma->cache);
997
998	ret = unit_alloc(c);
999	if (!ret && flags == GFP_KERNEL) {
1000		struct mem_cgroup *memcg, *old_memcg;
1001
1002		memcg = get_memcg(c);
1003		old_memcg = set_active_memcg(memcg);
1004		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
1005		if (ret)
1006			*(struct bpf_mem_cache **)ret = c;
1007		set_active_memcg(old_memcg);
1008		mem_cgroup_put(memcg);
1009	}
1010
1011	return !ret ? NULL : ret + LLIST_NODE_SZ;
1012}
1013