1// SPDX-License-Identifier: GPL-2.0
2#include "audit.h"
3#include <linux/fsnotify_backend.h>
4#include <linux/namei.h>
5#include <linux/mount.h>
6#include <linux/kthread.h>
7#include <linux/refcount.h>
8#include <linux/slab.h>
9
10struct audit_tree;
11struct audit_chunk;
12
13struct audit_tree {
14	refcount_t count;
15	int goner;
16	struct audit_chunk *root;
17	struct list_head chunks;
18	struct list_head rules;
19	struct list_head list;
20	struct list_head same_root;
21	struct rcu_head head;
22	char pathname[];
23};
24
25struct audit_chunk {
26	struct list_head hash;
27	unsigned long key;
28	struct fsnotify_mark *mark;
29	struct list_head trees;		/* with root here */
30	int count;
31	atomic_long_t refs;
32	struct rcu_head head;
33	struct audit_node {
34		struct list_head list;
35		struct audit_tree *owner;
36		unsigned index;		/* index; upper bit indicates 'will prune' */
37	} owners[] __counted_by(count);
38};
39
40struct audit_tree_mark {
41	struct fsnotify_mark mark;
42	struct audit_chunk *chunk;
43};
44
45static LIST_HEAD(tree_list);
46static LIST_HEAD(prune_list);
47static struct task_struct *prune_thread;
48
49/*
50 * One struct chunk is attached to each inode of interest through
51 * audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52 * untagging, the mark is stable as long as there is chunk attached. The
53 * association between mark and chunk is protected by hash_lock and
54 * audit_tree_group->mark_mutex. Thus as long as we hold
55 * audit_tree_group->mark_mutex and check that the mark is alive by
56 * FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
57 * the current chunk.
58 *
59 * Rules have pointer to struct audit_tree.
60 * Rules have struct list_head rlist forming a list of rules over
61 * the same tree.
62 * References to struct chunk are collected at audit_inode{,_child}()
63 * time and used in AUDIT_TREE rule matching.
64 * These references are dropped at the same time we are calling
65 * audit_free_names(), etc.
66 *
67 * Cyclic lists galore:
68 * tree.chunks anchors chunk.owners[].list			hash_lock
69 * tree.rules anchors rule.rlist				audit_filter_mutex
70 * chunk.trees anchors tree.same_root				hash_lock
71 * chunk.hash is a hash with middle bits of watch.inode as
72 * a hash function.						RCU, hash_lock
73 *
74 * tree is refcounted; one reference for "some rules on rules_list refer to
75 * it", one for each chunk with pointer to it.
76 *
77 * chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78 * one chunk reference. This reference is dropped either when a mark is going
79 * to be freed (corresponding inode goes away) or when chunk attached to the
80 * mark gets replaced. This reference must be dropped using
81 * audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82 * grace period as it protects RCU readers of the hash table.
83 *
84 * node.index allows to get from node.list to containing chunk.
85 * MSB of that sucker is stolen to mark taggings that we might have to
86 * revert - several operations have very unpleasant cleanup logics and
87 * that makes a difference.  Some.
88 */
89
90static struct fsnotify_group *audit_tree_group __ro_after_init;
91static struct kmem_cache *audit_tree_mark_cachep __ro_after_init;
92
93static struct audit_tree *alloc_tree(const char *s)
94{
95	struct audit_tree *tree;
96
97	tree = kmalloc(struct_size(tree, pathname, strlen(s) + 1), GFP_KERNEL);
98	if (tree) {
99		refcount_set(&tree->count, 1);
100		tree->goner = 0;
101		INIT_LIST_HEAD(&tree->chunks);
102		INIT_LIST_HEAD(&tree->rules);
103		INIT_LIST_HEAD(&tree->list);
104		INIT_LIST_HEAD(&tree->same_root);
105		tree->root = NULL;
106		strcpy(tree->pathname, s);
107	}
108	return tree;
109}
110
111static inline void get_tree(struct audit_tree *tree)
112{
113	refcount_inc(&tree->count);
114}
115
116static inline void put_tree(struct audit_tree *tree)
117{
118	if (refcount_dec_and_test(&tree->count))
119		kfree_rcu(tree, head);
120}
121
122/* to avoid bringing the entire thing in audit.h */
123const char *audit_tree_path(struct audit_tree *tree)
124{
125	return tree->pathname;
126}
127
128static void free_chunk(struct audit_chunk *chunk)
129{
130	int i;
131
132	for (i = 0; i < chunk->count; i++) {
133		if (chunk->owners[i].owner)
134			put_tree(chunk->owners[i].owner);
135	}
136	kfree(chunk);
137}
138
139void audit_put_chunk(struct audit_chunk *chunk)
140{
141	if (atomic_long_dec_and_test(&chunk->refs))
142		free_chunk(chunk);
143}
144
145static void __put_chunk(struct rcu_head *rcu)
146{
147	struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
148	audit_put_chunk(chunk);
149}
150
151/*
152 * Drop reference to the chunk that was held by the mark. This is the reference
153 * that gets dropped after we've removed the chunk from the hash table and we
154 * use it to make sure chunk cannot be freed before RCU grace period expires.
155 */
156static void audit_mark_put_chunk(struct audit_chunk *chunk)
157{
158	call_rcu(&chunk->head, __put_chunk);
159}
160
161static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
162{
163	return container_of(mark, struct audit_tree_mark, mark);
164}
165
166static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
167{
168	return audit_mark(mark)->chunk;
169}
170
171static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
172{
173	kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
174}
175
176static struct fsnotify_mark *alloc_mark(void)
177{
178	struct audit_tree_mark *amark;
179
180	amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
181	if (!amark)
182		return NULL;
183	fsnotify_init_mark(&amark->mark, audit_tree_group);
184	amark->mark.mask = FS_IN_IGNORED;
185	return &amark->mark;
186}
187
188static struct audit_chunk *alloc_chunk(int count)
189{
190	struct audit_chunk *chunk;
191	int i;
192
193	chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
194	if (!chunk)
195		return NULL;
196
197	INIT_LIST_HEAD(&chunk->hash);
198	INIT_LIST_HEAD(&chunk->trees);
199	chunk->count = count;
200	atomic_long_set(&chunk->refs, 1);
201	for (i = 0; i < count; i++) {
202		INIT_LIST_HEAD(&chunk->owners[i].list);
203		chunk->owners[i].index = i;
204	}
205	return chunk;
206}
207
208enum {HASH_SIZE = 128};
209static struct list_head chunk_hash_heads[HASH_SIZE];
210static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
211
212/* Function to return search key in our hash from inode. */
213static unsigned long inode_to_key(const struct inode *inode)
214{
215	/* Use address pointed to by connector->obj as the key */
216	return (unsigned long)&inode->i_fsnotify_marks;
217}
218
219static inline struct list_head *chunk_hash(unsigned long key)
220{
221	unsigned long n = key / L1_CACHE_BYTES;
222	return chunk_hash_heads + n % HASH_SIZE;
223}
224
225/* hash_lock & mark->group->mark_mutex is held by caller */
226static void insert_hash(struct audit_chunk *chunk)
227{
228	struct list_head *list;
229
230	/*
231	 * Make sure chunk is fully initialized before making it visible in the
232	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
233	 * audit_tree_lookup().
234	 */
235	smp_wmb();
236	WARN_ON_ONCE(!chunk->key);
237	list = chunk_hash(chunk->key);
238	list_add_rcu(&chunk->hash, list);
239}
240
241/* called under rcu_read_lock */
242struct audit_chunk *audit_tree_lookup(const struct inode *inode)
243{
244	unsigned long key = inode_to_key(inode);
245	struct list_head *list = chunk_hash(key);
246	struct audit_chunk *p;
247
248	list_for_each_entry_rcu(p, list, hash) {
249		/*
250		 * We use a data dependency barrier in READ_ONCE() to make sure
251		 * the chunk we see is fully initialized.
252		 */
253		if (READ_ONCE(p->key) == key) {
254			atomic_long_inc(&p->refs);
255			return p;
256		}
257	}
258	return NULL;
259}
260
261bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
262{
263	int n;
264	for (n = 0; n < chunk->count; n++)
265		if (chunk->owners[n].owner == tree)
266			return true;
267	return false;
268}
269
270/* tagging and untagging inodes with trees */
271
272static struct audit_chunk *find_chunk(struct audit_node *p)
273{
274	int index = p->index & ~(1U<<31);
275	p -= index;
276	return container_of(p, struct audit_chunk, owners[0]);
277}
278
279static void replace_mark_chunk(struct fsnotify_mark *mark,
280			       struct audit_chunk *chunk)
281{
282	struct audit_chunk *old;
283
284	assert_spin_locked(&hash_lock);
285	old = mark_chunk(mark);
286	audit_mark(mark)->chunk = chunk;
287	if (chunk)
288		chunk->mark = mark;
289	if (old)
290		old->mark = NULL;
291}
292
293static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
294{
295	struct audit_tree *owner;
296	int i, j;
297
298	new->key = old->key;
299	list_splice_init(&old->trees, &new->trees);
300	list_for_each_entry(owner, &new->trees, same_root)
301		owner->root = new;
302	for (i = j = 0; j < old->count; i++, j++) {
303		if (!old->owners[j].owner) {
304			i--;
305			continue;
306		}
307		owner = old->owners[j].owner;
308		new->owners[i].owner = owner;
309		new->owners[i].index = old->owners[j].index - j + i;
310		if (!owner) /* result of earlier fallback */
311			continue;
312		get_tree(owner);
313		list_replace_init(&old->owners[j].list, &new->owners[i].list);
314	}
315	replace_mark_chunk(old->mark, new);
316	/*
317	 * Make sure chunk is fully initialized before making it visible in the
318	 * hash. Pairs with a data dependency barrier in READ_ONCE() in
319	 * audit_tree_lookup().
320	 */
321	smp_wmb();
322	list_replace_rcu(&old->hash, &new->hash);
323}
324
325static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p)
326{
327	struct audit_tree *owner = p->owner;
328
329	if (owner->root == chunk) {
330		list_del_init(&owner->same_root);
331		owner->root = NULL;
332	}
333	list_del_init(&p->list);
334	p->owner = NULL;
335	put_tree(owner);
336}
337
338static int chunk_count_trees(struct audit_chunk *chunk)
339{
340	int i;
341	int ret = 0;
342
343	for (i = 0; i < chunk->count; i++)
344		if (chunk->owners[i].owner)
345			ret++;
346	return ret;
347}
348
349static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
350{
351	struct audit_chunk *new;
352	int size;
353
354	fsnotify_group_lock(audit_tree_group);
355	/*
356	 * mark_mutex stabilizes chunk attached to the mark so we can check
357	 * whether it didn't change while we've dropped hash_lock.
358	 */
359	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
360	    mark_chunk(mark) != chunk)
361		goto out_mutex;
362
363	size = chunk_count_trees(chunk);
364	if (!size) {
365		spin_lock(&hash_lock);
366		list_del_init(&chunk->trees);
367		list_del_rcu(&chunk->hash);
368		replace_mark_chunk(mark, NULL);
369		spin_unlock(&hash_lock);
370		fsnotify_detach_mark(mark);
371		fsnotify_group_unlock(audit_tree_group);
372		audit_mark_put_chunk(chunk);
373		fsnotify_free_mark(mark);
374		return;
375	}
376
377	new = alloc_chunk(size);
378	if (!new)
379		goto out_mutex;
380
381	spin_lock(&hash_lock);
382	/*
383	 * This has to go last when updating chunk as once replace_chunk() is
384	 * called, new RCU readers can see the new chunk.
385	 */
386	replace_chunk(new, chunk);
387	spin_unlock(&hash_lock);
388	fsnotify_group_unlock(audit_tree_group);
389	audit_mark_put_chunk(chunk);
390	return;
391
392out_mutex:
393	fsnotify_group_unlock(audit_tree_group);
394}
395
396/* Call with group->mark_mutex held, releases it */
397static int create_chunk(struct inode *inode, struct audit_tree *tree)
398{
399	struct fsnotify_mark *mark;
400	struct audit_chunk *chunk = alloc_chunk(1);
401
402	if (!chunk) {
403		fsnotify_group_unlock(audit_tree_group);
404		return -ENOMEM;
405	}
406
407	mark = alloc_mark();
408	if (!mark) {
409		fsnotify_group_unlock(audit_tree_group);
410		kfree(chunk);
411		return -ENOMEM;
412	}
413
414	if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
415		fsnotify_group_unlock(audit_tree_group);
416		fsnotify_put_mark(mark);
417		kfree(chunk);
418		return -ENOSPC;
419	}
420
421	spin_lock(&hash_lock);
422	if (tree->goner) {
423		spin_unlock(&hash_lock);
424		fsnotify_detach_mark(mark);
425		fsnotify_group_unlock(audit_tree_group);
426		fsnotify_free_mark(mark);
427		fsnotify_put_mark(mark);
428		kfree(chunk);
429		return 0;
430	}
431	replace_mark_chunk(mark, chunk);
432	chunk->owners[0].index = (1U << 31);
433	chunk->owners[0].owner = tree;
434	get_tree(tree);
435	list_add(&chunk->owners[0].list, &tree->chunks);
436	if (!tree->root) {
437		tree->root = chunk;
438		list_add(&tree->same_root, &chunk->trees);
439	}
440	chunk->key = inode_to_key(inode);
441	/*
442	 * Inserting into the hash table has to go last as once we do that RCU
443	 * readers can see the chunk.
444	 */
445	insert_hash(chunk);
446	spin_unlock(&hash_lock);
447	fsnotify_group_unlock(audit_tree_group);
448	/*
449	 * Drop our initial reference. When mark we point to is getting freed,
450	 * we get notification through ->freeing_mark callback and cleanup
451	 * chunk pointing to this mark.
452	 */
453	fsnotify_put_mark(mark);
454	return 0;
455}
456
457/* the first tagged inode becomes root of tree */
458static int tag_chunk(struct inode *inode, struct audit_tree *tree)
459{
460	struct fsnotify_mark *mark;
461	struct audit_chunk *chunk, *old;
462	struct audit_node *p;
463	int n;
464
465	fsnotify_group_lock(audit_tree_group);
466	mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
467	if (!mark)
468		return create_chunk(inode, tree);
469
470	/*
471	 * Found mark is guaranteed to be attached and mark_mutex protects mark
472	 * from getting detached and thus it makes sure there is chunk attached
473	 * to the mark.
474	 */
475	/* are we already there? */
476	spin_lock(&hash_lock);
477	old = mark_chunk(mark);
478	for (n = 0; n < old->count; n++) {
479		if (old->owners[n].owner == tree) {
480			spin_unlock(&hash_lock);
481			fsnotify_group_unlock(audit_tree_group);
482			fsnotify_put_mark(mark);
483			return 0;
484		}
485	}
486	spin_unlock(&hash_lock);
487
488	chunk = alloc_chunk(old->count + 1);
489	if (!chunk) {
490		fsnotify_group_unlock(audit_tree_group);
491		fsnotify_put_mark(mark);
492		return -ENOMEM;
493	}
494
495	spin_lock(&hash_lock);
496	if (tree->goner) {
497		spin_unlock(&hash_lock);
498		fsnotify_group_unlock(audit_tree_group);
499		fsnotify_put_mark(mark);
500		kfree(chunk);
501		return 0;
502	}
503	p = &chunk->owners[chunk->count - 1];
504	p->index = (chunk->count - 1) | (1U<<31);
505	p->owner = tree;
506	get_tree(tree);
507	list_add(&p->list, &tree->chunks);
508	if (!tree->root) {
509		tree->root = chunk;
510		list_add(&tree->same_root, &chunk->trees);
511	}
512	/*
513	 * This has to go last when updating chunk as once replace_chunk() is
514	 * called, new RCU readers can see the new chunk.
515	 */
516	replace_chunk(chunk, old);
517	spin_unlock(&hash_lock);
518	fsnotify_group_unlock(audit_tree_group);
519	fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
520	audit_mark_put_chunk(old);
521
522	return 0;
523}
524
525static void audit_tree_log_remove_rule(struct audit_context *context,
526				       struct audit_krule *rule)
527{
528	struct audit_buffer *ab;
529
530	if (!audit_enabled)
531		return;
532	ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
533	if (unlikely(!ab))
534		return;
535	audit_log_format(ab, "op=remove_rule dir=");
536	audit_log_untrustedstring(ab, rule->tree->pathname);
537	audit_log_key(ab, rule->filterkey);
538	audit_log_format(ab, " list=%d res=1", rule->listnr);
539	audit_log_end(ab);
540}
541
542static void kill_rules(struct audit_context *context, struct audit_tree *tree)
543{
544	struct audit_krule *rule, *next;
545	struct audit_entry *entry;
546
547	list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
548		entry = container_of(rule, struct audit_entry, rule);
549
550		list_del_init(&rule->rlist);
551		if (rule->tree) {
552			/* not a half-baked one */
553			audit_tree_log_remove_rule(context, rule);
554			if (entry->rule.exe)
555				audit_remove_mark(entry->rule.exe);
556			rule->tree = NULL;
557			list_del_rcu(&entry->list);
558			list_del(&entry->rule.list);
559			call_rcu(&entry->rcu, audit_free_rule_rcu);
560		}
561	}
562}
563
564/*
565 * Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
566 * chunks. The function expects tagged chunks are all at the beginning of the
567 * chunks list.
568 */
569static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
570{
571	spin_lock(&hash_lock);
572	while (!list_empty(&victim->chunks)) {
573		struct audit_node *p;
574		struct audit_chunk *chunk;
575		struct fsnotify_mark *mark;
576
577		p = list_first_entry(&victim->chunks, struct audit_node, list);
578		/* have we run out of marked? */
579		if (tagged && !(p->index & (1U<<31)))
580			break;
581		chunk = find_chunk(p);
582		mark = chunk->mark;
583		remove_chunk_node(chunk, p);
584		/* Racing with audit_tree_freeing_mark()? */
585		if (!mark)
586			continue;
587		fsnotify_get_mark(mark);
588		spin_unlock(&hash_lock);
589
590		untag_chunk(chunk, mark);
591		fsnotify_put_mark(mark);
592
593		spin_lock(&hash_lock);
594	}
595	spin_unlock(&hash_lock);
596}
597
598/*
599 * finish killing struct audit_tree
600 */
601static void prune_one(struct audit_tree *victim)
602{
603	prune_tree_chunks(victim, false);
604	put_tree(victim);
605}
606
607/* trim the uncommitted chunks from tree */
608
609static void trim_marked(struct audit_tree *tree)
610{
611	struct list_head *p, *q;
612	spin_lock(&hash_lock);
613	if (tree->goner) {
614		spin_unlock(&hash_lock);
615		return;
616	}
617	/* reorder */
618	for (p = tree->chunks.next; p != &tree->chunks; p = q) {
619		struct audit_node *node = list_entry(p, struct audit_node, list);
620		q = p->next;
621		if (node->index & (1U<<31)) {
622			list_del_init(p);
623			list_add(p, &tree->chunks);
624		}
625	}
626	spin_unlock(&hash_lock);
627
628	prune_tree_chunks(tree, true);
629
630	spin_lock(&hash_lock);
631	if (!tree->root && !tree->goner) {
632		tree->goner = 1;
633		spin_unlock(&hash_lock);
634		mutex_lock(&audit_filter_mutex);
635		kill_rules(audit_context(), tree);
636		list_del_init(&tree->list);
637		mutex_unlock(&audit_filter_mutex);
638		prune_one(tree);
639	} else {
640		spin_unlock(&hash_lock);
641	}
642}
643
644static void audit_schedule_prune(void);
645
646/* called with audit_filter_mutex */
647int audit_remove_tree_rule(struct audit_krule *rule)
648{
649	struct audit_tree *tree;
650	tree = rule->tree;
651	if (tree) {
652		spin_lock(&hash_lock);
653		list_del_init(&rule->rlist);
654		if (list_empty(&tree->rules) && !tree->goner) {
655			tree->root = NULL;
656			list_del_init(&tree->same_root);
657			tree->goner = 1;
658			list_move(&tree->list, &prune_list);
659			rule->tree = NULL;
660			spin_unlock(&hash_lock);
661			audit_schedule_prune();
662			return 1;
663		}
664		rule->tree = NULL;
665		spin_unlock(&hash_lock);
666		return 1;
667	}
668	return 0;
669}
670
671static int compare_root(struct vfsmount *mnt, void *arg)
672{
673	return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
674	       (unsigned long)arg;
675}
676
677void audit_trim_trees(void)
678{
679	struct list_head cursor;
680
681	mutex_lock(&audit_filter_mutex);
682	list_add(&cursor, &tree_list);
683	while (cursor.next != &tree_list) {
684		struct audit_tree *tree;
685		struct path path;
686		struct vfsmount *root_mnt;
687		struct audit_node *node;
688		int err;
689
690		tree = container_of(cursor.next, struct audit_tree, list);
691		get_tree(tree);
692		list_move(&cursor, &tree->list);
693		mutex_unlock(&audit_filter_mutex);
694
695		err = kern_path(tree->pathname, 0, &path);
696		if (err)
697			goto skip_it;
698
699		root_mnt = collect_mounts(&path);
700		path_put(&path);
701		if (IS_ERR(root_mnt))
702			goto skip_it;
703
704		spin_lock(&hash_lock);
705		list_for_each_entry(node, &tree->chunks, list) {
706			struct audit_chunk *chunk = find_chunk(node);
707			/* this could be NULL if the watch is dying else where... */
708			node->index |= 1U<<31;
709			if (iterate_mounts(compare_root,
710					   (void *)(chunk->key),
711					   root_mnt))
712				node->index &= ~(1U<<31);
713		}
714		spin_unlock(&hash_lock);
715		trim_marked(tree);
716		drop_collected_mounts(root_mnt);
717skip_it:
718		put_tree(tree);
719		mutex_lock(&audit_filter_mutex);
720	}
721	list_del(&cursor);
722	mutex_unlock(&audit_filter_mutex);
723}
724
725int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
726{
727
728	if (pathname[0] != '/' ||
729	    (rule->listnr != AUDIT_FILTER_EXIT &&
730	     rule->listnr != AUDIT_FILTER_URING_EXIT) ||
731	    op != Audit_equal ||
732	    rule->inode_f || rule->watch || rule->tree)
733		return -EINVAL;
734	rule->tree = alloc_tree(pathname);
735	if (!rule->tree)
736		return -ENOMEM;
737	return 0;
738}
739
740void audit_put_tree(struct audit_tree *tree)
741{
742	put_tree(tree);
743}
744
745static int tag_mount(struct vfsmount *mnt, void *arg)
746{
747	return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
748}
749
750/*
751 * That gets run when evict_chunk() ends up needing to kill audit_tree.
752 * Runs from a separate thread.
753 */
754static int prune_tree_thread(void *unused)
755{
756	for (;;) {
757		if (list_empty(&prune_list)) {
758			set_current_state(TASK_INTERRUPTIBLE);
759			schedule();
760		}
761
762		audit_ctl_lock();
763		mutex_lock(&audit_filter_mutex);
764
765		while (!list_empty(&prune_list)) {
766			struct audit_tree *victim;
767
768			victim = list_entry(prune_list.next,
769					struct audit_tree, list);
770			list_del_init(&victim->list);
771
772			mutex_unlock(&audit_filter_mutex);
773
774			prune_one(victim);
775
776			mutex_lock(&audit_filter_mutex);
777		}
778
779		mutex_unlock(&audit_filter_mutex);
780		audit_ctl_unlock();
781	}
782	return 0;
783}
784
785static int audit_launch_prune(void)
786{
787	if (prune_thread)
788		return 0;
789	prune_thread = kthread_run(prune_tree_thread, NULL,
790				"audit_prune_tree");
791	if (IS_ERR(prune_thread)) {
792		pr_err("cannot start thread audit_prune_tree");
793		prune_thread = NULL;
794		return -ENOMEM;
795	}
796	return 0;
797}
798
799/* called with audit_filter_mutex */
800int audit_add_tree_rule(struct audit_krule *rule)
801{
802	struct audit_tree *seed = rule->tree, *tree;
803	struct path path;
804	struct vfsmount *mnt;
805	int err;
806
807	rule->tree = NULL;
808	list_for_each_entry(tree, &tree_list, list) {
809		if (!strcmp(seed->pathname, tree->pathname)) {
810			put_tree(seed);
811			rule->tree = tree;
812			list_add(&rule->rlist, &tree->rules);
813			return 0;
814		}
815	}
816	tree = seed;
817	list_add(&tree->list, &tree_list);
818	list_add(&rule->rlist, &tree->rules);
819	/* do not set rule->tree yet */
820	mutex_unlock(&audit_filter_mutex);
821
822	if (unlikely(!prune_thread)) {
823		err = audit_launch_prune();
824		if (err)
825			goto Err;
826	}
827
828	err = kern_path(tree->pathname, 0, &path);
829	if (err)
830		goto Err;
831	mnt = collect_mounts(&path);
832	path_put(&path);
833	if (IS_ERR(mnt)) {
834		err = PTR_ERR(mnt);
835		goto Err;
836	}
837
838	get_tree(tree);
839	err = iterate_mounts(tag_mount, tree, mnt);
840	drop_collected_mounts(mnt);
841
842	if (!err) {
843		struct audit_node *node;
844		spin_lock(&hash_lock);
845		list_for_each_entry(node, &tree->chunks, list)
846			node->index &= ~(1U<<31);
847		spin_unlock(&hash_lock);
848	} else {
849		trim_marked(tree);
850		goto Err;
851	}
852
853	mutex_lock(&audit_filter_mutex);
854	if (list_empty(&rule->rlist)) {
855		put_tree(tree);
856		return -ENOENT;
857	}
858	rule->tree = tree;
859	put_tree(tree);
860
861	return 0;
862Err:
863	mutex_lock(&audit_filter_mutex);
864	list_del_init(&tree->list);
865	list_del_init(&tree->rules);
866	put_tree(tree);
867	return err;
868}
869
870int audit_tag_tree(char *old, char *new)
871{
872	struct list_head cursor, barrier;
873	int failed = 0;
874	struct path path1, path2;
875	struct vfsmount *tagged;
876	int err;
877
878	err = kern_path(new, 0, &path2);
879	if (err)
880		return err;
881	tagged = collect_mounts(&path2);
882	path_put(&path2);
883	if (IS_ERR(tagged))
884		return PTR_ERR(tagged);
885
886	err = kern_path(old, 0, &path1);
887	if (err) {
888		drop_collected_mounts(tagged);
889		return err;
890	}
891
892	mutex_lock(&audit_filter_mutex);
893	list_add(&barrier, &tree_list);
894	list_add(&cursor, &barrier);
895
896	while (cursor.next != &tree_list) {
897		struct audit_tree *tree;
898		int good_one = 0;
899
900		tree = container_of(cursor.next, struct audit_tree, list);
901		get_tree(tree);
902		list_move(&cursor, &tree->list);
903		mutex_unlock(&audit_filter_mutex);
904
905		err = kern_path(tree->pathname, 0, &path2);
906		if (!err) {
907			good_one = path_is_under(&path1, &path2);
908			path_put(&path2);
909		}
910
911		if (!good_one) {
912			put_tree(tree);
913			mutex_lock(&audit_filter_mutex);
914			continue;
915		}
916
917		failed = iterate_mounts(tag_mount, tree, tagged);
918		if (failed) {
919			put_tree(tree);
920			mutex_lock(&audit_filter_mutex);
921			break;
922		}
923
924		mutex_lock(&audit_filter_mutex);
925		spin_lock(&hash_lock);
926		if (!tree->goner) {
927			list_move(&tree->list, &tree_list);
928		}
929		spin_unlock(&hash_lock);
930		put_tree(tree);
931	}
932
933	while (barrier.prev != &tree_list) {
934		struct audit_tree *tree;
935
936		tree = container_of(barrier.prev, struct audit_tree, list);
937		get_tree(tree);
938		list_move(&tree->list, &barrier);
939		mutex_unlock(&audit_filter_mutex);
940
941		if (!failed) {
942			struct audit_node *node;
943			spin_lock(&hash_lock);
944			list_for_each_entry(node, &tree->chunks, list)
945				node->index &= ~(1U<<31);
946			spin_unlock(&hash_lock);
947		} else {
948			trim_marked(tree);
949		}
950
951		put_tree(tree);
952		mutex_lock(&audit_filter_mutex);
953	}
954	list_del(&barrier);
955	list_del(&cursor);
956	mutex_unlock(&audit_filter_mutex);
957	path_put(&path1);
958	drop_collected_mounts(tagged);
959	return failed;
960}
961
962
963static void audit_schedule_prune(void)
964{
965	wake_up_process(prune_thread);
966}
967
968/*
969 * ... and that one is done if evict_chunk() decides to delay until the end
970 * of syscall.  Runs synchronously.
971 */
972void audit_kill_trees(struct audit_context *context)
973{
974	struct list_head *list = &context->killed_trees;
975
976	audit_ctl_lock();
977	mutex_lock(&audit_filter_mutex);
978
979	while (!list_empty(list)) {
980		struct audit_tree *victim;
981
982		victim = list_entry(list->next, struct audit_tree, list);
983		kill_rules(context, victim);
984		list_del_init(&victim->list);
985
986		mutex_unlock(&audit_filter_mutex);
987
988		prune_one(victim);
989
990		mutex_lock(&audit_filter_mutex);
991	}
992
993	mutex_unlock(&audit_filter_mutex);
994	audit_ctl_unlock();
995}
996
997/*
998 *  Here comes the stuff asynchronous to auditctl operations
999 */
1000
1001static void evict_chunk(struct audit_chunk *chunk)
1002{
1003	struct audit_tree *owner;
1004	struct list_head *postponed = audit_killed_trees();
1005	int need_prune = 0;
1006	int n;
1007
1008	mutex_lock(&audit_filter_mutex);
1009	spin_lock(&hash_lock);
1010	while (!list_empty(&chunk->trees)) {
1011		owner = list_entry(chunk->trees.next,
1012				   struct audit_tree, same_root);
1013		owner->goner = 1;
1014		owner->root = NULL;
1015		list_del_init(&owner->same_root);
1016		spin_unlock(&hash_lock);
1017		if (!postponed) {
1018			kill_rules(audit_context(), owner);
1019			list_move(&owner->list, &prune_list);
1020			need_prune = 1;
1021		} else {
1022			list_move(&owner->list, postponed);
1023		}
1024		spin_lock(&hash_lock);
1025	}
1026	list_del_rcu(&chunk->hash);
1027	for (n = 0; n < chunk->count; n++)
1028		list_del_init(&chunk->owners[n].list);
1029	spin_unlock(&hash_lock);
1030	mutex_unlock(&audit_filter_mutex);
1031	if (need_prune)
1032		audit_schedule_prune();
1033}
1034
1035static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
1036				   struct inode *inode, struct inode *dir,
1037				   const struct qstr *file_name, u32 cookie)
1038{
1039	return 0;
1040}
1041
1042static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1043				    struct fsnotify_group *group)
1044{
1045	struct audit_chunk *chunk;
1046
1047	fsnotify_group_lock(mark->group);
1048	spin_lock(&hash_lock);
1049	chunk = mark_chunk(mark);
1050	replace_mark_chunk(mark, NULL);
1051	spin_unlock(&hash_lock);
1052	fsnotify_group_unlock(mark->group);
1053	if (chunk) {
1054		evict_chunk(chunk);
1055		audit_mark_put_chunk(chunk);
1056	}
1057
1058	/*
1059	 * We are guaranteed to have at least one reference to the mark from
1060	 * either the inode or the caller of fsnotify_destroy_mark().
1061	 */
1062	BUG_ON(refcount_read(&mark->refcnt) < 1);
1063}
1064
1065static const struct fsnotify_ops audit_tree_ops = {
1066	.handle_inode_event = audit_tree_handle_event,
1067	.freeing_mark = audit_tree_freeing_mark,
1068	.free_mark = audit_tree_destroy_watch,
1069};
1070
1071static int __init audit_tree_init(void)
1072{
1073	int i;
1074
1075	audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1076
1077	audit_tree_group = fsnotify_alloc_group(&audit_tree_ops, 0);
1078	if (IS_ERR(audit_tree_group))
1079		audit_panic("cannot initialize fsnotify group for rectree watches");
1080
1081	for (i = 0; i < HASH_SIZE; i++)
1082		INIT_LIST_HEAD(&chunk_hash_heads[i]);
1083
1084	return 0;
1085}
1086__initcall(audit_tree_init);
1087