1// SPDX-License-Identifier: GPL-2.0-or-later
2/* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 *	  2) Minimal run-time overhead:
13 *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
14 *	     b) Small when syscall auditing is enabled and no audit record
15 *		is generated (defer as much work as possible to record
16 *		generation time):
17 *		i) context is allocated,
18 *		ii) names from getname are stored without a copy, and
19 *		iii) inode information stored from path_lookup.
20 *	  3) Ability to disable syscall auditing at boot time (audit=0).
21 *	  4) Usable by other parts of the kernel (if audit_log* is called,
22 *	     then a syscall record will be generated automatically for the
23 *	     current syscall).
24 *	  5) Netlink interface to user-space.
25 *	  6) Support low-overhead kernel-based filtering to minimize the
26 *	     information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * 	https://github.com/linux-audit
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/file.h>
35#include <linux/init.h>
36#include <linux/types.h>
37#include <linux/atomic.h>
38#include <linux/mm.h>
39#include <linux/export.h>
40#include <linux/slab.h>
41#include <linux/err.h>
42#include <linux/kthread.h>
43#include <linux/kernel.h>
44#include <linux/syscalls.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/mutex.h>
48#include <linux/gfp.h>
49#include <linux/pid.h>
50
51#include <linux/audit.h>
52
53#include <net/sock.h>
54#include <net/netlink.h>
55#include <linux/skbuff.h>
56#include <linux/security.h>
57#include <linux/freezer.h>
58#include <linux/pid_namespace.h>
59#include <net/netns/generic.h>
60
61#include "audit.h"
62
63/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64 * (Initialization happens after skb_init is called.) */
65#define AUDIT_DISABLED		-1
66#define AUDIT_UNINITIALIZED	0
67#define AUDIT_INITIALIZED	1
68static int	audit_initialized = AUDIT_UNINITIALIZED;
69
70u32		audit_enabled = AUDIT_OFF;
71bool		audit_ever_enabled = !!AUDIT_OFF;
72
73EXPORT_SYMBOL_GPL(audit_enabled);
74
75/* Default state when kernel boots without any parameters. */
76static u32	audit_default = AUDIT_OFF;
77
78/* If auditing cannot proceed, audit_failure selects what happens. */
79static u32	audit_failure = AUDIT_FAIL_PRINTK;
80
81/* private audit network namespace index */
82static unsigned int audit_net_id;
83
84/**
85 * struct audit_net - audit private network namespace data
86 * @sk: communication socket
87 */
88struct audit_net {
89	struct sock *sk;
90};
91
92/**
93 * struct auditd_connection - kernel/auditd connection state
94 * @pid: auditd PID
95 * @portid: netlink portid
96 * @net: the associated network namespace
97 * @rcu: RCU head
98 *
99 * Description:
100 * This struct is RCU protected; you must either hold the RCU lock for reading
101 * or the associated spinlock for writing.
102 */
103struct auditd_connection {
104	struct pid *pid;
105	u32 portid;
106	struct net *net;
107	struct rcu_head rcu;
108};
109static struct auditd_connection __rcu *auditd_conn;
110static DEFINE_SPINLOCK(auditd_conn_lock);
111
112/* If audit_rate_limit is non-zero, limit the rate of sending audit records
113 * to that number per second.  This prevents DoS attacks, but results in
114 * audit records being dropped. */
115static u32	audit_rate_limit;
116
117/* Number of outstanding audit_buffers allowed.
118 * When set to zero, this means unlimited. */
119static u32	audit_backlog_limit = 64;
120#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122
123/* The identity of the user shutting down the audit system. */
124static kuid_t		audit_sig_uid = INVALID_UID;
125static pid_t		audit_sig_pid = -1;
126static u32		audit_sig_sid;
127
128/* Records can be lost in several ways:
129   0) [suppressed in audit_alloc]
130   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131   2) out of memory in audit_log_move [alloc_skb]
132   3) suppressed due to audit_rate_limit
133   4) suppressed due to audit_backlog_limit
134*/
135static atomic_t	audit_lost = ATOMIC_INIT(0);
136
137/* Monotonically increasing sum of time the kernel has spent
138 * waiting while the backlog limit is exceeded.
139 */
140static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141
142/* Hash for inode-based rules */
143struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144
145static struct kmem_cache *audit_buffer_cache;
146
147/* queue msgs to send via kauditd_task */
148static struct sk_buff_head audit_queue;
149/* queue msgs due to temporary unicast send problems */
150static struct sk_buff_head audit_retry_queue;
151/* queue msgs waiting for new auditd connection */
152static struct sk_buff_head audit_hold_queue;
153
154/* queue servicing thread */
155static struct task_struct *kauditd_task;
156static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157
158/* waitqueue for callers who are blocked on the audit backlog */
159static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160
161static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162				   .mask = -1,
163				   .features = 0,
164				   .lock = 0,};
165
166static char *audit_feature_names[2] = {
167	"only_unset_loginuid",
168	"loginuid_immutable",
169};
170
171/**
172 * struct audit_ctl_mutex - serialize requests from userspace
173 * @lock: the mutex used for locking
174 * @owner: the task which owns the lock
175 *
176 * Description:
177 * This is the lock struct used to ensure we only process userspace requests
178 * in an orderly fashion.  We can't simply use a mutex/lock here because we
179 * need to track lock ownership so we don't end up blocking the lock owner in
180 * audit_log_start() or similar.
181 */
182static struct audit_ctl_mutex {
183	struct mutex lock;
184	void *owner;
185} audit_cmd_mutex;
186
187/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records.  Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190#define AUDIT_BUFSIZ 1024
191
192/* The audit_buffer is used when formatting an audit record.  The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue.  Multiple audit_buffers can be in
196 * use simultaneously. */
197struct audit_buffer {
198	struct sk_buff       *skb;	/* formatted skb ready to send */
199	struct audit_context *ctx;	/* NULL or associated context */
200	gfp_t		     gfp_mask;
201};
202
203struct audit_reply {
204	__u32 portid;
205	struct net *net;
206	struct sk_buff *skb;
207};
208
209/**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216int auditd_test_task(struct task_struct *task)
217{
218	int rc;
219	struct auditd_connection *ac;
220
221	rcu_read_lock();
222	ac = rcu_dereference(auditd_conn);
223	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224	rcu_read_unlock();
225
226	return rc;
227}
228
229/**
230 * audit_ctl_lock - Take the audit control lock
231 */
232void audit_ctl_lock(void)
233{
234	mutex_lock(&audit_cmd_mutex.lock);
235	audit_cmd_mutex.owner = current;
236}
237
238/**
239 * audit_ctl_unlock - Drop the audit control lock
240 */
241void audit_ctl_unlock(void)
242{
243	audit_cmd_mutex.owner = NULL;
244	mutex_unlock(&audit_cmd_mutex.lock);
245}
246
247/**
248 * audit_ctl_owner_current - Test to see if the current task owns the lock
249 *
250 * Description:
251 * Return true if the current task owns the audit control lock, false if it
252 * doesn't own the lock.
253 */
254static bool audit_ctl_owner_current(void)
255{
256	return (current == audit_cmd_mutex.owner);
257}
258
259/**
260 * auditd_pid_vnr - Return the auditd PID relative to the namespace
261 *
262 * Description:
263 * Returns the PID in relation to the namespace, 0 on failure.
264 */
265static pid_t auditd_pid_vnr(void)
266{
267	pid_t pid;
268	const struct auditd_connection *ac;
269
270	rcu_read_lock();
271	ac = rcu_dereference(auditd_conn);
272	if (!ac || !ac->pid)
273		pid = 0;
274	else
275		pid = pid_vnr(ac->pid);
276	rcu_read_unlock();
277
278	return pid;
279}
280
281/**
282 * audit_get_sk - Return the audit socket for the given network namespace
283 * @net: the destination network namespace
284 *
285 * Description:
286 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
287 * that a reference is held for the network namespace while the sock is in use.
288 */
289static struct sock *audit_get_sk(const struct net *net)
290{
291	struct audit_net *aunet;
292
293	if (!net)
294		return NULL;
295
296	aunet = net_generic(net, audit_net_id);
297	return aunet->sk;
298}
299
300void audit_panic(const char *message)
301{
302	switch (audit_failure) {
303	case AUDIT_FAIL_SILENT:
304		break;
305	case AUDIT_FAIL_PRINTK:
306		if (printk_ratelimit())
307			pr_err("%s\n", message);
308		break;
309	case AUDIT_FAIL_PANIC:
310		panic("audit: %s\n", message);
311		break;
312	}
313}
314
315static inline int audit_rate_check(void)
316{
317	static unsigned long	last_check = 0;
318	static int		messages   = 0;
319	static DEFINE_SPINLOCK(lock);
320	unsigned long		flags;
321	unsigned long		now;
322	int			retval	   = 0;
323
324	if (!audit_rate_limit)
325		return 1;
326
327	spin_lock_irqsave(&lock, flags);
328	if (++messages < audit_rate_limit) {
329		retval = 1;
330	} else {
331		now = jiffies;
332		if (time_after(now, last_check + HZ)) {
333			last_check = now;
334			messages   = 0;
335			retval     = 1;
336		}
337	}
338	spin_unlock_irqrestore(&lock, flags);
339
340	return retval;
341}
342
343/**
344 * audit_log_lost - conditionally log lost audit message event
345 * @message: the message stating reason for lost audit message
346 *
347 * Emit at least 1 message per second, even if audit_rate_check is
348 * throttling.
349 * Always increment the lost messages counter.
350*/
351void audit_log_lost(const char *message)
352{
353	static unsigned long	last_msg = 0;
354	static DEFINE_SPINLOCK(lock);
355	unsigned long		flags;
356	unsigned long		now;
357	int			print;
358
359	atomic_inc(&audit_lost);
360
361	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362
363	if (!print) {
364		spin_lock_irqsave(&lock, flags);
365		now = jiffies;
366		if (time_after(now, last_msg + HZ)) {
367			print = 1;
368			last_msg = now;
369		}
370		spin_unlock_irqrestore(&lock, flags);
371	}
372
373	if (print) {
374		if (printk_ratelimit())
375			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376				atomic_read(&audit_lost),
377				audit_rate_limit,
378				audit_backlog_limit);
379		audit_panic(message);
380	}
381}
382
383static int audit_log_config_change(char *function_name, u32 new, u32 old,
384				   int allow_changes)
385{
386	struct audit_buffer *ab;
387	int rc = 0;
388
389	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390	if (unlikely(!ab))
391		return rc;
392	audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393	audit_log_session_info(ab);
394	rc = audit_log_task_context(ab);
395	if (rc)
396		allow_changes = 0; /* Something weird, deny request */
397	audit_log_format(ab, " res=%d", allow_changes);
398	audit_log_end(ab);
399	return rc;
400}
401
402static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403{
404	int allow_changes, rc = 0;
405	u32 old = *to_change;
406
407	/* check if we are locked */
408	if (audit_enabled == AUDIT_LOCKED)
409		allow_changes = 0;
410	else
411		allow_changes = 1;
412
413	if (audit_enabled != AUDIT_OFF) {
414		rc = audit_log_config_change(function_name, new, old, allow_changes);
415		if (rc)
416			allow_changes = 0;
417	}
418
419	/* If we are allowed, make the change */
420	if (allow_changes == 1)
421		*to_change = new;
422	/* Not allowed, update reason */
423	else if (rc == 0)
424		rc = -EPERM;
425	return rc;
426}
427
428static int audit_set_rate_limit(u32 limit)
429{
430	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431}
432
433static int audit_set_backlog_limit(u32 limit)
434{
435	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436}
437
438static int audit_set_backlog_wait_time(u32 timeout)
439{
440	return audit_do_config_change("audit_backlog_wait_time",
441				      &audit_backlog_wait_time, timeout);
442}
443
444static int audit_set_enabled(u32 state)
445{
446	int rc;
447	if (state > AUDIT_LOCKED)
448		return -EINVAL;
449
450	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
451	if (!rc)
452		audit_ever_enabled |= !!state;
453
454	return rc;
455}
456
457static int audit_set_failure(u32 state)
458{
459	if (state != AUDIT_FAIL_SILENT
460	    && state != AUDIT_FAIL_PRINTK
461	    && state != AUDIT_FAIL_PANIC)
462		return -EINVAL;
463
464	return audit_do_config_change("audit_failure", &audit_failure, state);
465}
466
467/**
468 * auditd_conn_free - RCU helper to release an auditd connection struct
469 * @rcu: RCU head
470 *
471 * Description:
472 * Drop any references inside the auditd connection tracking struct and free
473 * the memory.
474 */
475static void auditd_conn_free(struct rcu_head *rcu)
476{
477	struct auditd_connection *ac;
478
479	ac = container_of(rcu, struct auditd_connection, rcu);
480	put_pid(ac->pid);
481	put_net(ac->net);
482	kfree(ac);
483}
484
485/**
486 * auditd_set - Set/Reset the auditd connection state
487 * @pid: auditd PID
488 * @portid: auditd netlink portid
489 * @net: auditd network namespace pointer
490 * @skb: the netlink command from the audit daemon
491 * @ack: netlink ack flag, cleared if ack'd here
492 *
493 * Description:
494 * This function will obtain and drop network namespace references as
495 * necessary.  Returns zero on success, negative values on failure.
496 */
497static int auditd_set(struct pid *pid, u32 portid, struct net *net,
498		      struct sk_buff *skb, bool *ack)
499{
500	unsigned long flags;
501	struct auditd_connection *ac_old, *ac_new;
502	struct nlmsghdr *nlh;
503
504	if (!pid || !net)
505		return -EINVAL;
506
507	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508	if (!ac_new)
509		return -ENOMEM;
510	ac_new->pid = get_pid(pid);
511	ac_new->portid = portid;
512	ac_new->net = get_net(net);
513
514	/* send the ack now to avoid a race with the queue backlog */
515	if (*ack) {
516		nlh = nlmsg_hdr(skb);
517		netlink_ack(skb, nlh, 0, NULL);
518		*ack = false;
519	}
520
521	spin_lock_irqsave(&auditd_conn_lock, flags);
522	ac_old = rcu_dereference_protected(auditd_conn,
523					   lockdep_is_held(&auditd_conn_lock));
524	rcu_assign_pointer(auditd_conn, ac_new);
525	spin_unlock_irqrestore(&auditd_conn_lock, flags);
526
527	if (ac_old)
528		call_rcu(&ac_old->rcu, auditd_conn_free);
529
530	return 0;
531}
532
533/**
534 * kauditd_printk_skb - Print the audit record to the ring buffer
535 * @skb: audit record
536 *
537 * Whatever the reason, this packet may not make it to the auditd connection
538 * so write it via printk so the information isn't completely lost.
539 */
540static void kauditd_printk_skb(struct sk_buff *skb)
541{
542	struct nlmsghdr *nlh = nlmsg_hdr(skb);
543	char *data = nlmsg_data(nlh);
544
545	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547}
548
549/**
550 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551 * @skb: audit record
552 * @error: error code (unused)
553 *
554 * Description:
555 * This should only be used by the kauditd_thread when it fails to flush the
556 * hold queue.
557 */
558static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
559{
560	/* put the record back in the queue */
561	skb_queue_tail(&audit_hold_queue, skb);
562}
563
564/**
565 * kauditd_hold_skb - Queue an audit record, waiting for auditd
566 * @skb: audit record
567 * @error: error code
568 *
569 * Description:
570 * Queue the audit record, waiting for an instance of auditd.  When this
571 * function is called we haven't given up yet on sending the record, but things
572 * are not looking good.  The first thing we want to do is try to write the
573 * record via printk and then see if we want to try and hold on to the record
574 * and queue it, if we have room.  If we want to hold on to the record, but we
575 * don't have room, record a record lost message.
576 */
577static void kauditd_hold_skb(struct sk_buff *skb, int error)
578{
579	/* at this point it is uncertain if we will ever send this to auditd so
580	 * try to send the message via printk before we go any further */
581	kauditd_printk_skb(skb);
582
583	/* can we just silently drop the message? */
584	if (!audit_default)
585		goto drop;
586
587	/* the hold queue is only for when the daemon goes away completely,
588	 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
589	 * record on the retry queue unless it's full, in which case drop it
590	 */
591	if (error == -EAGAIN) {
592		if (!audit_backlog_limit ||
593		    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
594			skb_queue_tail(&audit_retry_queue, skb);
595			return;
596		}
597		audit_log_lost("kauditd retry queue overflow");
598		goto drop;
599	}
600
601	/* if we have room in the hold queue, queue the message */
602	if (!audit_backlog_limit ||
603	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
604		skb_queue_tail(&audit_hold_queue, skb);
605		return;
606	}
607
608	/* we have no other options - drop the message */
609	audit_log_lost("kauditd hold queue overflow");
610drop:
611	kfree_skb(skb);
612}
613
614/**
615 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
616 * @skb: audit record
617 * @error: error code (unused)
618 *
619 * Description:
620 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
621 * but for some reason we are having problems sending it audit records so
622 * queue the given record and attempt to resend.
623 */
624static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
625{
626	if (!audit_backlog_limit ||
627	    skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
628		skb_queue_tail(&audit_retry_queue, skb);
629		return;
630	}
631
632	/* we have to drop the record, send it via printk as a last effort */
633	kauditd_printk_skb(skb);
634	audit_log_lost("kauditd retry queue overflow");
635	kfree_skb(skb);
636}
637
638/**
639 * auditd_reset - Disconnect the auditd connection
640 * @ac: auditd connection state
641 *
642 * Description:
643 * Break the auditd/kauditd connection and move all the queued records into the
644 * hold queue in case auditd reconnects.  It is important to note that the @ac
645 * pointer should never be dereferenced inside this function as it may be NULL
646 * or invalid, you can only compare the memory address!  If @ac is NULL then
647 * the connection will always be reset.
648 */
649static void auditd_reset(const struct auditd_connection *ac)
650{
651	unsigned long flags;
652	struct sk_buff *skb;
653	struct auditd_connection *ac_old;
654
655	/* if it isn't already broken, break the connection */
656	spin_lock_irqsave(&auditd_conn_lock, flags);
657	ac_old = rcu_dereference_protected(auditd_conn,
658					   lockdep_is_held(&auditd_conn_lock));
659	if (ac && ac != ac_old) {
660		/* someone already registered a new auditd connection */
661		spin_unlock_irqrestore(&auditd_conn_lock, flags);
662		return;
663	}
664	rcu_assign_pointer(auditd_conn, NULL);
665	spin_unlock_irqrestore(&auditd_conn_lock, flags);
666
667	if (ac_old)
668		call_rcu(&ac_old->rcu, auditd_conn_free);
669
670	/* flush the retry queue to the hold queue, but don't touch the main
671	 * queue since we need to process that normally for multicast */
672	while ((skb = skb_dequeue(&audit_retry_queue)))
673		kauditd_hold_skb(skb, -ECONNREFUSED);
674}
675
676/**
677 * auditd_send_unicast_skb - Send a record via unicast to auditd
678 * @skb: audit record
679 *
680 * Description:
681 * Send a skb to the audit daemon, returns positive/zero values on success and
682 * negative values on failure; in all cases the skb will be consumed by this
683 * function.  If the send results in -ECONNREFUSED the connection with auditd
684 * will be reset.  This function may sleep so callers should not hold any locks
685 * where this would cause a problem.
686 */
687static int auditd_send_unicast_skb(struct sk_buff *skb)
688{
689	int rc;
690	u32 portid;
691	struct net *net;
692	struct sock *sk;
693	struct auditd_connection *ac;
694
695	/* NOTE: we can't call netlink_unicast while in the RCU section so
696	 *       take a reference to the network namespace and grab local
697	 *       copies of the namespace, the sock, and the portid; the
698	 *       namespace and sock aren't going to go away while we hold a
699	 *       reference and if the portid does become invalid after the RCU
700	 *       section netlink_unicast() should safely return an error */
701
702	rcu_read_lock();
703	ac = rcu_dereference(auditd_conn);
704	if (!ac) {
705		rcu_read_unlock();
706		kfree_skb(skb);
707		rc = -ECONNREFUSED;
708		goto err;
709	}
710	net = get_net(ac->net);
711	sk = audit_get_sk(net);
712	portid = ac->portid;
713	rcu_read_unlock();
714
715	rc = netlink_unicast(sk, skb, portid, 0);
716	put_net(net);
717	if (rc < 0)
718		goto err;
719
720	return rc;
721
722err:
723	if (ac && rc == -ECONNREFUSED)
724		auditd_reset(ac);
725	return rc;
726}
727
728/**
729 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
730 * @sk: the sending sock
731 * @portid: the netlink destination
732 * @queue: the skb queue to process
733 * @retry_limit: limit on number of netlink unicast failures
734 * @skb_hook: per-skb hook for additional processing
735 * @err_hook: hook called if the skb fails the netlink unicast send
736 *
737 * Description:
738 * Run through the given queue and attempt to send the audit records to auditd,
739 * returns zero on success, negative values on failure.  It is up to the caller
740 * to ensure that the @sk is valid for the duration of this function.
741 *
742 */
743static int kauditd_send_queue(struct sock *sk, u32 portid,
744			      struct sk_buff_head *queue,
745			      unsigned int retry_limit,
746			      void (*skb_hook)(struct sk_buff *skb),
747			      void (*err_hook)(struct sk_buff *skb, int error))
748{
749	int rc = 0;
750	struct sk_buff *skb = NULL;
751	struct sk_buff *skb_tail;
752	unsigned int failed = 0;
753
754	/* NOTE: kauditd_thread takes care of all our locking, we just use
755	 *       the netlink info passed to us (e.g. sk and portid) */
756
757	skb_tail = skb_peek_tail(queue);
758	while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
759		/* call the skb_hook for each skb we touch */
760		if (skb_hook)
761			(*skb_hook)(skb);
762
763		/* can we send to anyone via unicast? */
764		if (!sk) {
765			if (err_hook)
766				(*err_hook)(skb, -ECONNREFUSED);
767			continue;
768		}
769
770retry:
771		/* grab an extra skb reference in case of error */
772		skb_get(skb);
773		rc = netlink_unicast(sk, skb, portid, 0);
774		if (rc < 0) {
775			/* send failed - try a few times unless fatal error */
776			if (++failed >= retry_limit ||
777			    rc == -ECONNREFUSED || rc == -EPERM) {
778				sk = NULL;
779				if (err_hook)
780					(*err_hook)(skb, rc);
781				if (rc == -EAGAIN)
782					rc = 0;
783				/* continue to drain the queue */
784				continue;
785			} else
786				goto retry;
787		} else {
788			/* skb sent - drop the extra reference and continue */
789			consume_skb(skb);
790			failed = 0;
791		}
792	}
793
794	return (rc >= 0 ? 0 : rc);
795}
796
797/*
798 * kauditd_send_multicast_skb - Send a record to any multicast listeners
799 * @skb: audit record
800 *
801 * Description:
802 * Write a multicast message to anyone listening in the initial network
803 * namespace.  This function doesn't consume an skb as might be expected since
804 * it has to copy it anyways.
805 */
806static void kauditd_send_multicast_skb(struct sk_buff *skb)
807{
808	struct sk_buff *copy;
809	struct sock *sock = audit_get_sk(&init_net);
810	struct nlmsghdr *nlh;
811
812	/* NOTE: we are not taking an additional reference for init_net since
813	 *       we don't have to worry about it going away */
814
815	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
816		return;
817
818	/*
819	 * The seemingly wasteful skb_copy() rather than bumping the refcount
820	 * using skb_get() is necessary because non-standard mods are made to
821	 * the skb by the original kaudit unicast socket send routine.  The
822	 * existing auditd daemon assumes this breakage.  Fixing this would
823	 * require co-ordinating a change in the established protocol between
824	 * the kaudit kernel subsystem and the auditd userspace code.  There is
825	 * no reason for new multicast clients to continue with this
826	 * non-compliance.
827	 */
828	copy = skb_copy(skb, GFP_KERNEL);
829	if (!copy)
830		return;
831	nlh = nlmsg_hdr(copy);
832	nlh->nlmsg_len = skb->len;
833
834	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
835}
836
837/**
838 * kauditd_thread - Worker thread to send audit records to userspace
839 * @dummy: unused
840 */
841static int kauditd_thread(void *dummy)
842{
843	int rc;
844	u32 portid = 0;
845	struct net *net = NULL;
846	struct sock *sk = NULL;
847	struct auditd_connection *ac;
848
849#define UNICAST_RETRIES 5
850
851	set_freezable();
852	while (!kthread_should_stop()) {
853		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
854		rcu_read_lock();
855		ac = rcu_dereference(auditd_conn);
856		if (!ac) {
857			rcu_read_unlock();
858			goto main_queue;
859		}
860		net = get_net(ac->net);
861		sk = audit_get_sk(net);
862		portid = ac->portid;
863		rcu_read_unlock();
864
865		/* attempt to flush the hold queue */
866		rc = kauditd_send_queue(sk, portid,
867					&audit_hold_queue, UNICAST_RETRIES,
868					NULL, kauditd_rehold_skb);
869		if (rc < 0) {
870			sk = NULL;
871			auditd_reset(ac);
872			goto main_queue;
873		}
874
875		/* attempt to flush the retry queue */
876		rc = kauditd_send_queue(sk, portid,
877					&audit_retry_queue, UNICAST_RETRIES,
878					NULL, kauditd_hold_skb);
879		if (rc < 0) {
880			sk = NULL;
881			auditd_reset(ac);
882			goto main_queue;
883		}
884
885main_queue:
886		/* process the main queue - do the multicast send and attempt
887		 * unicast, dump failed record sends to the retry queue; if
888		 * sk == NULL due to previous failures we will just do the
889		 * multicast send and move the record to the hold queue */
890		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
891					kauditd_send_multicast_skb,
892					(sk ?
893					 kauditd_retry_skb : kauditd_hold_skb));
894		if (ac && rc < 0)
895			auditd_reset(ac);
896		sk = NULL;
897
898		/* drop our netns reference, no auditd sends past this line */
899		if (net) {
900			put_net(net);
901			net = NULL;
902		}
903
904		/* we have processed all the queues so wake everyone */
905		wake_up(&audit_backlog_wait);
906
907		/* NOTE: we want to wake up if there is anything on the queue,
908		 *       regardless of if an auditd is connected, as we need to
909		 *       do the multicast send and rotate records from the
910		 *       main queue to the retry/hold queues */
911		wait_event_freezable(kauditd_wait,
912				     (skb_queue_len(&audit_queue) ? 1 : 0));
913	}
914
915	return 0;
916}
917
918int audit_send_list_thread(void *_dest)
919{
920	struct audit_netlink_list *dest = _dest;
921	struct sk_buff *skb;
922	struct sock *sk = audit_get_sk(dest->net);
923
924	/* wait for parent to finish and send an ACK */
925	audit_ctl_lock();
926	audit_ctl_unlock();
927
928	while ((skb = __skb_dequeue(&dest->q)) != NULL)
929		netlink_unicast(sk, skb, dest->portid, 0);
930
931	put_net(dest->net);
932	kfree(dest);
933
934	return 0;
935}
936
937struct sk_buff *audit_make_reply(int seq, int type, int done,
938				 int multi, const void *payload, int size)
939{
940	struct sk_buff	*skb;
941	struct nlmsghdr	*nlh;
942	void		*data;
943	int		flags = multi ? NLM_F_MULTI : 0;
944	int		t     = done  ? NLMSG_DONE  : type;
945
946	skb = nlmsg_new(size, GFP_KERNEL);
947	if (!skb)
948		return NULL;
949
950	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
951	if (!nlh)
952		goto out_kfree_skb;
953	data = nlmsg_data(nlh);
954	memcpy(data, payload, size);
955	return skb;
956
957out_kfree_skb:
958	kfree_skb(skb);
959	return NULL;
960}
961
962static void audit_free_reply(struct audit_reply *reply)
963{
964	if (!reply)
965		return;
966
967	kfree_skb(reply->skb);
968	if (reply->net)
969		put_net(reply->net);
970	kfree(reply);
971}
972
973static int audit_send_reply_thread(void *arg)
974{
975	struct audit_reply *reply = (struct audit_reply *)arg;
976
977	audit_ctl_lock();
978	audit_ctl_unlock();
979
980	/* Ignore failure. It'll only happen if the sender goes away,
981	   because our timeout is set to infinite. */
982	netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
983	reply->skb = NULL;
984	audit_free_reply(reply);
985	return 0;
986}
987
988/**
989 * audit_send_reply - send an audit reply message via netlink
990 * @request_skb: skb of request we are replying to (used to target the reply)
991 * @seq: sequence number
992 * @type: audit message type
993 * @done: done (last) flag
994 * @multi: multi-part message flag
995 * @payload: payload data
996 * @size: payload size
997 *
998 * Allocates a skb, builds the netlink message, and sends it to the port id.
999 */
1000static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001			     int multi, const void *payload, int size)
1002{
1003	struct task_struct *tsk;
1004	struct audit_reply *reply;
1005
1006	reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007	if (!reply)
1008		return;
1009
1010	reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011	if (!reply->skb)
1012		goto err;
1013	reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014	reply->portid = NETLINK_CB(request_skb).portid;
1015
1016	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017	if (IS_ERR(tsk))
1018		goto err;
1019
1020	return;
1021
1022err:
1023	audit_free_reply(reply);
1024}
1025
1026/*
1027 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028 * control messages.
1029 */
1030static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031{
1032	int err = 0;
1033
1034	/* Only support initial user namespace for now. */
1035	/*
1036	 * We return ECONNREFUSED because it tricks userspace into thinking
1037	 * that audit was not configured into the kernel.  Lots of users
1038	 * configure their PAM stack (because that's what the distro does)
1039	 * to reject login if unable to send messages to audit.  If we return
1040	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041	 * configured in and will let login proceed.  If we return EPERM
1042	 * userspace will reject all logins.  This should be removed when we
1043	 * support non init namespaces!!
1044	 */
1045	if (current_user_ns() != &init_user_ns)
1046		return -ECONNREFUSED;
1047
1048	switch (msg_type) {
1049	case AUDIT_LIST:
1050	case AUDIT_ADD:
1051	case AUDIT_DEL:
1052		return -EOPNOTSUPP;
1053	case AUDIT_GET:
1054	case AUDIT_SET:
1055	case AUDIT_GET_FEATURE:
1056	case AUDIT_SET_FEATURE:
1057	case AUDIT_LIST_RULES:
1058	case AUDIT_ADD_RULE:
1059	case AUDIT_DEL_RULE:
1060	case AUDIT_SIGNAL_INFO:
1061	case AUDIT_TTY_GET:
1062	case AUDIT_TTY_SET:
1063	case AUDIT_TRIM:
1064	case AUDIT_MAKE_EQUIV:
1065		/* Only support auditd and auditctl in initial pid namespace
1066		 * for now. */
1067		if (task_active_pid_ns(current) != &init_pid_ns)
1068			return -EPERM;
1069
1070		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071			err = -EPERM;
1072		break;
1073	case AUDIT_USER:
1074	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077			err = -EPERM;
1078		break;
1079	default:  /* bad msg */
1080		err = -EINVAL;
1081	}
1082
1083	return err;
1084}
1085
1086static void audit_log_common_recv_msg(struct audit_context *context,
1087					struct audit_buffer **ab, u16 msg_type)
1088{
1089	uid_t uid = from_kuid(&init_user_ns, current_uid());
1090	pid_t pid = task_tgid_nr(current);
1091
1092	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093		*ab = NULL;
1094		return;
1095	}
1096
1097	*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098	if (unlikely(!*ab))
1099		return;
1100	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101	audit_log_session_info(*ab);
1102	audit_log_task_context(*ab);
1103}
1104
1105static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106					   u16 msg_type)
1107{
1108	audit_log_common_recv_msg(NULL, ab, msg_type);
1109}
1110
1111static int is_audit_feature_set(int i)
1112{
1113	return af.features & AUDIT_FEATURE_TO_MASK(i);
1114}
1115
1116
1117static int audit_get_feature(struct sk_buff *skb)
1118{
1119	u32 seq;
1120
1121	seq = nlmsg_hdr(skb)->nlmsg_seq;
1122
1123	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124
1125	return 0;
1126}
1127
1128static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129				     u32 old_lock, u32 new_lock, int res)
1130{
1131	struct audit_buffer *ab;
1132
1133	if (audit_enabled == AUDIT_OFF)
1134		return;
1135
1136	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137	if (!ab)
1138		return;
1139	audit_log_task_info(ab);
1140	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141			 audit_feature_names[which], !!old_feature, !!new_feature,
1142			 !!old_lock, !!new_lock, res);
1143	audit_log_end(ab);
1144}
1145
1146static int audit_set_feature(struct audit_features *uaf)
1147{
1148	int i;
1149
1150	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1151
1152	/* if there is ever a version 2 we should handle that here */
1153
1154	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156		u32 old_feature, new_feature, old_lock, new_lock;
1157
1158		/* if we are not changing this feature, move along */
1159		if (!(feature & uaf->mask))
1160			continue;
1161
1162		old_feature = af.features & feature;
1163		new_feature = uaf->features & feature;
1164		new_lock = (uaf->lock | af.lock) & feature;
1165		old_lock = af.lock & feature;
1166
1167		/* are we changing a locked feature? */
1168		if (old_lock && (new_feature != old_feature)) {
1169			audit_log_feature_change(i, old_feature, new_feature,
1170						 old_lock, new_lock, 0);
1171			return -EPERM;
1172		}
1173	}
1174	/* nothing invalid, do the changes */
1175	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176		u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177		u32 old_feature, new_feature, old_lock, new_lock;
1178
1179		/* if we are not changing this feature, move along */
1180		if (!(feature & uaf->mask))
1181			continue;
1182
1183		old_feature = af.features & feature;
1184		new_feature = uaf->features & feature;
1185		old_lock = af.lock & feature;
1186		new_lock = (uaf->lock | af.lock) & feature;
1187
1188		if (new_feature != old_feature)
1189			audit_log_feature_change(i, old_feature, new_feature,
1190						 old_lock, new_lock, 1);
1191
1192		if (new_feature)
1193			af.features |= feature;
1194		else
1195			af.features &= ~feature;
1196		af.lock |= new_lock;
1197	}
1198
1199	return 0;
1200}
1201
1202static int audit_replace(struct pid *pid)
1203{
1204	pid_t pvnr;
1205	struct sk_buff *skb;
1206
1207	pvnr = pid_vnr(pid);
1208	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209	if (!skb)
1210		return -ENOMEM;
1211	return auditd_send_unicast_skb(skb);
1212}
1213
1214static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215			     bool *ack)
1216{
1217	u32			seq;
1218	void			*data;
1219	int			data_len;
1220	int			err;
1221	struct audit_buffer	*ab;
1222	u16			msg_type = nlh->nlmsg_type;
1223	struct audit_sig_info   *sig_data;
1224	char			*ctx = NULL;
1225	u32			len;
1226
1227	err = audit_netlink_ok(skb, msg_type);
1228	if (err)
1229		return err;
1230
1231	seq  = nlh->nlmsg_seq;
1232	data = nlmsg_data(nlh);
1233	data_len = nlmsg_len(nlh);
1234
1235	switch (msg_type) {
1236	case AUDIT_GET: {
1237		struct audit_status	s;
1238		memset(&s, 0, sizeof(s));
1239		s.enabled		   = audit_enabled;
1240		s.failure		   = audit_failure;
1241		/* NOTE: use pid_vnr() so the PID is relative to the current
1242		 *       namespace */
1243		s.pid			   = auditd_pid_vnr();
1244		s.rate_limit		   = audit_rate_limit;
1245		s.backlog_limit		   = audit_backlog_limit;
1246		s.lost			   = atomic_read(&audit_lost);
1247		s.backlog		   = skb_queue_len(&audit_queue);
1248		s.feature_bitmap	   = AUDIT_FEATURE_BITMAP_ALL;
1249		s.backlog_wait_time	   = audit_backlog_wait_time;
1250		s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1251		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1252		break;
1253	}
1254	case AUDIT_SET: {
1255		struct audit_status	s;
1256		memset(&s, 0, sizeof(s));
1257		/* guard against past and future API changes */
1258		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1259		if (s.mask & AUDIT_STATUS_ENABLED) {
1260			err = audit_set_enabled(s.enabled);
1261			if (err < 0)
1262				return err;
1263		}
1264		if (s.mask & AUDIT_STATUS_FAILURE) {
1265			err = audit_set_failure(s.failure);
1266			if (err < 0)
1267				return err;
1268		}
1269		if (s.mask & AUDIT_STATUS_PID) {
1270			/* NOTE: we are using the vnr PID functions below
1271			 *       because the s.pid value is relative to the
1272			 *       namespace of the caller; at present this
1273			 *       doesn't matter much since you can really only
1274			 *       run auditd from the initial pid namespace, but
1275			 *       something to keep in mind if this changes */
1276			pid_t new_pid = s.pid;
1277			pid_t auditd_pid;
1278			struct pid *req_pid = task_tgid(current);
1279
1280			/* Sanity check - PID values must match. Setting
1281			 * pid to 0 is how auditd ends auditing. */
1282			if (new_pid && (new_pid != pid_vnr(req_pid)))
1283				return -EINVAL;
1284
1285			/* test the auditd connection */
1286			audit_replace(req_pid);
1287
1288			auditd_pid = auditd_pid_vnr();
1289			if (auditd_pid) {
1290				/* replacing a healthy auditd is not allowed */
1291				if (new_pid) {
1292					audit_log_config_change("audit_pid",
1293							new_pid, auditd_pid, 0);
1294					return -EEXIST;
1295				}
1296				/* only current auditd can unregister itself */
1297				if (pid_vnr(req_pid) != auditd_pid) {
1298					audit_log_config_change("audit_pid",
1299							new_pid, auditd_pid, 0);
1300					return -EACCES;
1301				}
1302			}
1303
1304			if (new_pid) {
1305				/* register a new auditd connection */
1306				err = auditd_set(req_pid,
1307						 NETLINK_CB(skb).portid,
1308						 sock_net(NETLINK_CB(skb).sk),
1309						 skb, ack);
1310				if (audit_enabled != AUDIT_OFF)
1311					audit_log_config_change("audit_pid",
1312								new_pid,
1313								auditd_pid,
1314								err ? 0 : 1);
1315				if (err)
1316					return err;
1317
1318				/* try to process any backlog */
1319				wake_up_interruptible(&kauditd_wait);
1320			} else {
1321				if (audit_enabled != AUDIT_OFF)
1322					audit_log_config_change("audit_pid",
1323								new_pid,
1324								auditd_pid, 1);
1325
1326				/* unregister the auditd connection */
1327				auditd_reset(NULL);
1328			}
1329		}
1330		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1331			err = audit_set_rate_limit(s.rate_limit);
1332			if (err < 0)
1333				return err;
1334		}
1335		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1336			err = audit_set_backlog_limit(s.backlog_limit);
1337			if (err < 0)
1338				return err;
1339		}
1340		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1341			if (sizeof(s) > (size_t)nlh->nlmsg_len)
1342				return -EINVAL;
1343			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1344				return -EINVAL;
1345			err = audit_set_backlog_wait_time(s.backlog_wait_time);
1346			if (err < 0)
1347				return err;
1348		}
1349		if (s.mask == AUDIT_STATUS_LOST) {
1350			u32 lost = atomic_xchg(&audit_lost, 0);
1351
1352			audit_log_config_change("lost", 0, lost, 1);
1353			return lost;
1354		}
1355		if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1356			u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1357
1358			audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1359			return actual;
1360		}
1361		break;
1362	}
1363	case AUDIT_GET_FEATURE:
1364		err = audit_get_feature(skb);
1365		if (err)
1366			return err;
1367		break;
1368	case AUDIT_SET_FEATURE:
1369		if (data_len < sizeof(struct audit_features))
1370			return -EINVAL;
1371		err = audit_set_feature(data);
1372		if (err)
1373			return err;
1374		break;
1375	case AUDIT_USER:
1376	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1377	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1378		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1379			return 0;
1380		/* exit early if there isn't at least one character to print */
1381		if (data_len < 2)
1382			return -EINVAL;
1383
1384		err = audit_filter(msg_type, AUDIT_FILTER_USER);
1385		if (err == 1) { /* match or error */
1386			char *str = data;
1387
1388			err = 0;
1389			if (msg_type == AUDIT_USER_TTY) {
1390				err = tty_audit_push();
1391				if (err)
1392					break;
1393			}
1394			audit_log_user_recv_msg(&ab, msg_type);
1395			if (msg_type != AUDIT_USER_TTY) {
1396				/* ensure NULL termination */
1397				str[data_len - 1] = '\0';
1398				audit_log_format(ab, " msg='%.*s'",
1399						 AUDIT_MESSAGE_TEXT_MAX,
1400						 str);
1401			} else {
1402				audit_log_format(ab, " data=");
1403				if (str[data_len - 1] == '\0')
1404					data_len--;
1405				audit_log_n_untrustedstring(ab, str, data_len);
1406			}
1407			audit_log_end(ab);
1408		}
1409		break;
1410	case AUDIT_ADD_RULE:
1411	case AUDIT_DEL_RULE:
1412		if (data_len < sizeof(struct audit_rule_data))
1413			return -EINVAL;
1414		if (audit_enabled == AUDIT_LOCKED) {
1415			audit_log_common_recv_msg(audit_context(), &ab,
1416						  AUDIT_CONFIG_CHANGE);
1417			audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1418					 msg_type == AUDIT_ADD_RULE ?
1419						"add_rule" : "remove_rule",
1420					 audit_enabled);
1421			audit_log_end(ab);
1422			return -EPERM;
1423		}
1424		err = audit_rule_change(msg_type, seq, data, data_len);
1425		break;
1426	case AUDIT_LIST_RULES:
1427		err = audit_list_rules_send(skb, seq);
1428		break;
1429	case AUDIT_TRIM:
1430		audit_trim_trees();
1431		audit_log_common_recv_msg(audit_context(), &ab,
1432					  AUDIT_CONFIG_CHANGE);
1433		audit_log_format(ab, " op=trim res=1");
1434		audit_log_end(ab);
1435		break;
1436	case AUDIT_MAKE_EQUIV: {
1437		void *bufp = data;
1438		u32 sizes[2];
1439		size_t msglen = data_len;
1440		char *old, *new;
1441
1442		err = -EINVAL;
1443		if (msglen < 2 * sizeof(u32))
1444			break;
1445		memcpy(sizes, bufp, 2 * sizeof(u32));
1446		bufp += 2 * sizeof(u32);
1447		msglen -= 2 * sizeof(u32);
1448		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1449		if (IS_ERR(old)) {
1450			err = PTR_ERR(old);
1451			break;
1452		}
1453		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1454		if (IS_ERR(new)) {
1455			err = PTR_ERR(new);
1456			kfree(old);
1457			break;
1458		}
1459		/* OK, here comes... */
1460		err = audit_tag_tree(old, new);
1461
1462		audit_log_common_recv_msg(audit_context(), &ab,
1463					  AUDIT_CONFIG_CHANGE);
1464		audit_log_format(ab, " op=make_equiv old=");
1465		audit_log_untrustedstring(ab, old);
1466		audit_log_format(ab, " new=");
1467		audit_log_untrustedstring(ab, new);
1468		audit_log_format(ab, " res=%d", !err);
1469		audit_log_end(ab);
1470		kfree(old);
1471		kfree(new);
1472		break;
1473	}
1474	case AUDIT_SIGNAL_INFO:
1475		len = 0;
1476		if (audit_sig_sid) {
1477			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1478			if (err)
1479				return err;
1480		}
1481		sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1482		if (!sig_data) {
1483			if (audit_sig_sid)
1484				security_release_secctx(ctx, len);
1485			return -ENOMEM;
1486		}
1487		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1488		sig_data->pid = audit_sig_pid;
1489		if (audit_sig_sid) {
1490			memcpy(sig_data->ctx, ctx, len);
1491			security_release_secctx(ctx, len);
1492		}
1493		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1494				 sig_data, struct_size(sig_data, ctx, len));
1495		kfree(sig_data);
1496		break;
1497	case AUDIT_TTY_GET: {
1498		struct audit_tty_status s;
1499		unsigned int t;
1500
1501		t = READ_ONCE(current->signal->audit_tty);
1502		s.enabled = t & AUDIT_TTY_ENABLE;
1503		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1504
1505		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1506		break;
1507	}
1508	case AUDIT_TTY_SET: {
1509		struct audit_tty_status s, old;
1510		struct audit_buffer	*ab;
1511		unsigned int t;
1512
1513		memset(&s, 0, sizeof(s));
1514		/* guard against past and future API changes */
1515		memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1516		/* check if new data is valid */
1517		if ((s.enabled != 0 && s.enabled != 1) ||
1518		    (s.log_passwd != 0 && s.log_passwd != 1))
1519			err = -EINVAL;
1520
1521		if (err)
1522			t = READ_ONCE(current->signal->audit_tty);
1523		else {
1524			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1525			t = xchg(&current->signal->audit_tty, t);
1526		}
1527		old.enabled = t & AUDIT_TTY_ENABLE;
1528		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1529
1530		audit_log_common_recv_msg(audit_context(), &ab,
1531					  AUDIT_CONFIG_CHANGE);
1532		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1533				 " old-log_passwd=%d new-log_passwd=%d res=%d",
1534				 old.enabled, s.enabled, old.log_passwd,
1535				 s.log_passwd, !err);
1536		audit_log_end(ab);
1537		break;
1538	}
1539	default:
1540		err = -EINVAL;
1541		break;
1542	}
1543
1544	return err < 0 ? err : 0;
1545}
1546
1547/**
1548 * audit_receive - receive messages from a netlink control socket
1549 * @skb: the message buffer
1550 *
1551 * Parse the provided skb and deal with any messages that may be present,
1552 * malformed skbs are discarded.
1553 */
1554static void audit_receive(struct sk_buff *skb)
1555{
1556	struct nlmsghdr *nlh;
1557	bool ack;
1558	/*
1559	 * len MUST be signed for nlmsg_next to be able to dec it below 0
1560	 * if the nlmsg_len was not aligned
1561	 */
1562	int len;
1563	int err;
1564
1565	nlh = nlmsg_hdr(skb);
1566	len = skb->len;
1567
1568	audit_ctl_lock();
1569	while (nlmsg_ok(nlh, len)) {
1570		ack = nlh->nlmsg_flags & NLM_F_ACK;
1571		err = audit_receive_msg(skb, nlh, &ack);
1572
1573		/* send an ack if the user asked for one and audit_receive_msg
1574		 * didn't already do it, or if there was an error. */
1575		if (ack || err)
1576			netlink_ack(skb, nlh, err, NULL);
1577
1578		nlh = nlmsg_next(nlh, &len);
1579	}
1580	audit_ctl_unlock();
1581
1582	/* can't block with the ctrl lock, so penalize the sender now */
1583	if (audit_backlog_limit &&
1584	    (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1585		DECLARE_WAITQUEUE(wait, current);
1586
1587		/* wake kauditd to try and flush the queue */
1588		wake_up_interruptible(&kauditd_wait);
1589
1590		add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1591		set_current_state(TASK_UNINTERRUPTIBLE);
1592		schedule_timeout(audit_backlog_wait_time);
1593		remove_wait_queue(&audit_backlog_wait, &wait);
1594	}
1595}
1596
1597/* Log information about who is connecting to the audit multicast socket */
1598static void audit_log_multicast(int group, const char *op, int err)
1599{
1600	const struct cred *cred;
1601	struct tty_struct *tty;
1602	char comm[sizeof(current->comm)];
1603	struct audit_buffer *ab;
1604
1605	if (!audit_enabled)
1606		return;
1607
1608	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1609	if (!ab)
1610		return;
1611
1612	cred = current_cred();
1613	tty = audit_get_tty();
1614	audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1615			 task_pid_nr(current),
1616			 from_kuid(&init_user_ns, cred->uid),
1617			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1618			 tty ? tty_name(tty) : "(none)",
1619			 audit_get_sessionid(current));
1620	audit_put_tty(tty);
1621	audit_log_task_context(ab); /* subj= */
1622	audit_log_format(ab, " comm=");
1623	audit_log_untrustedstring(ab, get_task_comm(comm, current));
1624	audit_log_d_path_exe(ab, current->mm); /* exe= */
1625	audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1626	audit_log_end(ab);
1627}
1628
1629/* Run custom bind function on netlink socket group connect or bind requests. */
1630static int audit_multicast_bind(struct net *net, int group)
1631{
1632	int err = 0;
1633
1634	if (!capable(CAP_AUDIT_READ))
1635		err = -EPERM;
1636	audit_log_multicast(group, "connect", err);
1637	return err;
1638}
1639
1640static void audit_multicast_unbind(struct net *net, int group)
1641{
1642	audit_log_multicast(group, "disconnect", 0);
1643}
1644
1645static int __net_init audit_net_init(struct net *net)
1646{
1647	struct netlink_kernel_cfg cfg = {
1648		.input	= audit_receive,
1649		.bind	= audit_multicast_bind,
1650		.unbind	= audit_multicast_unbind,
1651		.flags	= NL_CFG_F_NONROOT_RECV,
1652		.groups	= AUDIT_NLGRP_MAX,
1653	};
1654
1655	struct audit_net *aunet = net_generic(net, audit_net_id);
1656
1657	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1658	if (aunet->sk == NULL) {
1659		audit_panic("cannot initialize netlink socket in namespace");
1660		return -ENOMEM;
1661	}
1662	/* limit the timeout in case auditd is blocked/stopped */
1663	aunet->sk->sk_sndtimeo = HZ / 10;
1664
1665	return 0;
1666}
1667
1668static void __net_exit audit_net_exit(struct net *net)
1669{
1670	struct audit_net *aunet = net_generic(net, audit_net_id);
1671
1672	/* NOTE: you would think that we would want to check the auditd
1673	 * connection and potentially reset it here if it lives in this
1674	 * namespace, but since the auditd connection tracking struct holds a
1675	 * reference to this namespace (see auditd_set()) we are only ever
1676	 * going to get here after that connection has been released */
1677
1678	netlink_kernel_release(aunet->sk);
1679}
1680
1681static struct pernet_operations audit_net_ops __net_initdata = {
1682	.init = audit_net_init,
1683	.exit = audit_net_exit,
1684	.id = &audit_net_id,
1685	.size = sizeof(struct audit_net),
1686};
1687
1688/* Initialize audit support at boot time. */
1689static int __init audit_init(void)
1690{
1691	int i;
1692
1693	if (audit_initialized == AUDIT_DISABLED)
1694		return 0;
1695
1696	audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1697
1698	skb_queue_head_init(&audit_queue);
1699	skb_queue_head_init(&audit_retry_queue);
1700	skb_queue_head_init(&audit_hold_queue);
1701
1702	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1703		INIT_LIST_HEAD(&audit_inode_hash[i]);
1704
1705	mutex_init(&audit_cmd_mutex.lock);
1706	audit_cmd_mutex.owner = NULL;
1707
1708	pr_info("initializing netlink subsys (%s)\n",
1709		audit_default ? "enabled" : "disabled");
1710	register_pernet_subsys(&audit_net_ops);
1711
1712	audit_initialized = AUDIT_INITIALIZED;
1713
1714	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1715	if (IS_ERR(kauditd_task)) {
1716		int err = PTR_ERR(kauditd_task);
1717		panic("audit: failed to start the kauditd thread (%d)\n", err);
1718	}
1719
1720	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1721		"state=initialized audit_enabled=%u res=1",
1722		 audit_enabled);
1723
1724	return 0;
1725}
1726postcore_initcall(audit_init);
1727
1728/*
1729 * Process kernel command-line parameter at boot time.
1730 * audit={0|off} or audit={1|on}.
1731 */
1732static int __init audit_enable(char *str)
1733{
1734	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1735		audit_default = AUDIT_OFF;
1736	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1737		audit_default = AUDIT_ON;
1738	else {
1739		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1740		audit_default = AUDIT_ON;
1741	}
1742
1743	if (audit_default == AUDIT_OFF)
1744		audit_initialized = AUDIT_DISABLED;
1745	if (audit_set_enabled(audit_default))
1746		pr_err("audit: error setting audit state (%d)\n",
1747		       audit_default);
1748
1749	pr_info("%s\n", audit_default ?
1750		"enabled (after initialization)" : "disabled (until reboot)");
1751
1752	return 1;
1753}
1754__setup("audit=", audit_enable);
1755
1756/* Process kernel command-line parameter at boot time.
1757 * audit_backlog_limit=<n> */
1758static int __init audit_backlog_limit_set(char *str)
1759{
1760	u32 audit_backlog_limit_arg;
1761
1762	pr_info("audit_backlog_limit: ");
1763	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1764		pr_cont("using default of %u, unable to parse %s\n",
1765			audit_backlog_limit, str);
1766		return 1;
1767	}
1768
1769	audit_backlog_limit = audit_backlog_limit_arg;
1770	pr_cont("%d\n", audit_backlog_limit);
1771
1772	return 1;
1773}
1774__setup("audit_backlog_limit=", audit_backlog_limit_set);
1775
1776static void audit_buffer_free(struct audit_buffer *ab)
1777{
1778	if (!ab)
1779		return;
1780
1781	kfree_skb(ab->skb);
1782	kmem_cache_free(audit_buffer_cache, ab);
1783}
1784
1785static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1786					       gfp_t gfp_mask, int type)
1787{
1788	struct audit_buffer *ab;
1789
1790	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1791	if (!ab)
1792		return NULL;
1793
1794	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1795	if (!ab->skb)
1796		goto err;
1797	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1798		goto err;
1799
1800	ab->ctx = ctx;
1801	ab->gfp_mask = gfp_mask;
1802
1803	return ab;
1804
1805err:
1806	audit_buffer_free(ab);
1807	return NULL;
1808}
1809
1810/**
1811 * audit_serial - compute a serial number for the audit record
1812 *
1813 * Compute a serial number for the audit record.  Audit records are
1814 * written to user-space as soon as they are generated, so a complete
1815 * audit record may be written in several pieces.  The timestamp of the
1816 * record and this serial number are used by the user-space tools to
1817 * determine which pieces belong to the same audit record.  The
1818 * (timestamp,serial) tuple is unique for each syscall and is live from
1819 * syscall entry to syscall exit.
1820 *
1821 * NOTE: Another possibility is to store the formatted records off the
1822 * audit context (for those records that have a context), and emit them
1823 * all at syscall exit.  However, this could delay the reporting of
1824 * significant errors until syscall exit (or never, if the system
1825 * halts).
1826 */
1827unsigned int audit_serial(void)
1828{
1829	static atomic_t serial = ATOMIC_INIT(0);
1830
1831	return atomic_inc_return(&serial);
1832}
1833
1834static inline void audit_get_stamp(struct audit_context *ctx,
1835				   struct timespec64 *t, unsigned int *serial)
1836{
1837	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1838		ktime_get_coarse_real_ts64(t);
1839		*serial = audit_serial();
1840	}
1841}
1842
1843/**
1844 * audit_log_start - obtain an audit buffer
1845 * @ctx: audit_context (may be NULL)
1846 * @gfp_mask: type of allocation
1847 * @type: audit message type
1848 *
1849 * Returns audit_buffer pointer on success or NULL on error.
1850 *
1851 * Obtain an audit buffer.  This routine does locking to obtain the
1852 * audit buffer, but then no locking is required for calls to
1853 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1854 * syscall, then the syscall is marked as auditable and an audit record
1855 * will be written at syscall exit.  If there is no associated task, then
1856 * task context (ctx) should be NULL.
1857 */
1858struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1859				     int type)
1860{
1861	struct audit_buffer *ab;
1862	struct timespec64 t;
1863	unsigned int serial;
1864
1865	if (audit_initialized != AUDIT_INITIALIZED)
1866		return NULL;
1867
1868	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1869		return NULL;
1870
1871	/* NOTE: don't ever fail/sleep on these two conditions:
1872	 * 1. auditd generated record - since we need auditd to drain the
1873	 *    queue; also, when we are checking for auditd, compare PIDs using
1874	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1875	 *    using a PID anchored in the caller's namespace
1876	 * 2. generator holding the audit_cmd_mutex - we don't want to block
1877	 *    while holding the mutex, although we do penalize the sender
1878	 *    later in audit_receive() when it is safe to block
1879	 */
1880	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1881		long stime = audit_backlog_wait_time;
1882
1883		while (audit_backlog_limit &&
1884		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1885			/* wake kauditd to try and flush the queue */
1886			wake_up_interruptible(&kauditd_wait);
1887
1888			/* sleep if we are allowed and we haven't exhausted our
1889			 * backlog wait limit */
1890			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1891				long rtime = stime;
1892
1893				DECLARE_WAITQUEUE(wait, current);
1894
1895				add_wait_queue_exclusive(&audit_backlog_wait,
1896							 &wait);
1897				set_current_state(TASK_UNINTERRUPTIBLE);
1898				stime = schedule_timeout(rtime);
1899				atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1900				remove_wait_queue(&audit_backlog_wait, &wait);
1901			} else {
1902				if (audit_rate_check() && printk_ratelimit())
1903					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1904						skb_queue_len(&audit_queue),
1905						audit_backlog_limit);
1906				audit_log_lost("backlog limit exceeded");
1907				return NULL;
1908			}
1909		}
1910	}
1911
1912	ab = audit_buffer_alloc(ctx, gfp_mask, type);
1913	if (!ab) {
1914		audit_log_lost("out of memory in audit_log_start");
1915		return NULL;
1916	}
1917
1918	audit_get_stamp(ab->ctx, &t, &serial);
1919	/* cancel dummy context to enable supporting records */
1920	if (ctx)
1921		ctx->dummy = 0;
1922	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1923			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1924
1925	return ab;
1926}
1927
1928/**
1929 * audit_expand - expand skb in the audit buffer
1930 * @ab: audit_buffer
1931 * @extra: space to add at tail of the skb
1932 *
1933 * Returns 0 (no space) on failed expansion, or available space if
1934 * successful.
1935 */
1936static inline int audit_expand(struct audit_buffer *ab, int extra)
1937{
1938	struct sk_buff *skb = ab->skb;
1939	int oldtail = skb_tailroom(skb);
1940	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1941	int newtail = skb_tailroom(skb);
1942
1943	if (ret < 0) {
1944		audit_log_lost("out of memory in audit_expand");
1945		return 0;
1946	}
1947
1948	skb->truesize += newtail - oldtail;
1949	return newtail;
1950}
1951
1952/*
1953 * Format an audit message into the audit buffer.  If there isn't enough
1954 * room in the audit buffer, more room will be allocated and vsnprint
1955 * will be called a second time.  Currently, we assume that a printk
1956 * can't format message larger than 1024 bytes, so we don't either.
1957 */
1958static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1959			      va_list args)
1960{
1961	int len, avail;
1962	struct sk_buff *skb;
1963	va_list args2;
1964
1965	if (!ab)
1966		return;
1967
1968	BUG_ON(!ab->skb);
1969	skb = ab->skb;
1970	avail = skb_tailroom(skb);
1971	if (avail == 0) {
1972		avail = audit_expand(ab, AUDIT_BUFSIZ);
1973		if (!avail)
1974			goto out;
1975	}
1976	va_copy(args2, args);
1977	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1978	if (len >= avail) {
1979		/* The printk buffer is 1024 bytes long, so if we get
1980		 * here and AUDIT_BUFSIZ is at least 1024, then we can
1981		 * log everything that printk could have logged. */
1982		avail = audit_expand(ab,
1983			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1984		if (!avail)
1985			goto out_va_end;
1986		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1987	}
1988	if (len > 0)
1989		skb_put(skb, len);
1990out_va_end:
1991	va_end(args2);
1992out:
1993	return;
1994}
1995
1996/**
1997 * audit_log_format - format a message into the audit buffer.
1998 * @ab: audit_buffer
1999 * @fmt: format string
2000 * @...: optional parameters matching @fmt string
2001 *
2002 * All the work is done in audit_log_vformat.
2003 */
2004void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2005{
2006	va_list args;
2007
2008	if (!ab)
2009		return;
2010	va_start(args, fmt);
2011	audit_log_vformat(ab, fmt, args);
2012	va_end(args);
2013}
2014
2015/**
2016 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2017 * @ab: the audit_buffer
2018 * @buf: buffer to convert to hex
2019 * @len: length of @buf to be converted
2020 *
2021 * No return value; failure to expand is silently ignored.
2022 *
2023 * This function will take the passed buf and convert it into a string of
2024 * ascii hex digits. The new string is placed onto the skb.
2025 */
2026void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2027		size_t len)
2028{
2029	int i, avail, new_len;
2030	unsigned char *ptr;
2031	struct sk_buff *skb;
2032
2033	if (!ab)
2034		return;
2035
2036	BUG_ON(!ab->skb);
2037	skb = ab->skb;
2038	avail = skb_tailroom(skb);
2039	new_len = len<<1;
2040	if (new_len >= avail) {
2041		/* Round the buffer request up to the next multiple */
2042		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2043		avail = audit_expand(ab, new_len);
2044		if (!avail)
2045			return;
2046	}
2047
2048	ptr = skb_tail_pointer(skb);
2049	for (i = 0; i < len; i++)
2050		ptr = hex_byte_pack_upper(ptr, buf[i]);
2051	*ptr = 0;
2052	skb_put(skb, len << 1); /* new string is twice the old string */
2053}
2054
2055/*
2056 * Format a string of no more than slen characters into the audit buffer,
2057 * enclosed in quote marks.
2058 */
2059void audit_log_n_string(struct audit_buffer *ab, const char *string,
2060			size_t slen)
2061{
2062	int avail, new_len;
2063	unsigned char *ptr;
2064	struct sk_buff *skb;
2065
2066	if (!ab)
2067		return;
2068
2069	BUG_ON(!ab->skb);
2070	skb = ab->skb;
2071	avail = skb_tailroom(skb);
2072	new_len = slen + 3;	/* enclosing quotes + null terminator */
2073	if (new_len > avail) {
2074		avail = audit_expand(ab, new_len);
2075		if (!avail)
2076			return;
2077	}
2078	ptr = skb_tail_pointer(skb);
2079	*ptr++ = '"';
2080	memcpy(ptr, string, slen);
2081	ptr += slen;
2082	*ptr++ = '"';
2083	*ptr = 0;
2084	skb_put(skb, slen + 2);	/* don't include null terminator */
2085}
2086
2087/**
2088 * audit_string_contains_control - does a string need to be logged in hex
2089 * @string: string to be checked
2090 * @len: max length of the string to check
2091 */
2092bool audit_string_contains_control(const char *string, size_t len)
2093{
2094	const unsigned char *p;
2095	for (p = string; p < (const unsigned char *)string + len; p++) {
2096		if (*p == '"' || *p < 0x21 || *p > 0x7e)
2097			return true;
2098	}
2099	return false;
2100}
2101
2102/**
2103 * audit_log_n_untrustedstring - log a string that may contain random characters
2104 * @ab: audit_buffer
2105 * @len: length of string (not including trailing null)
2106 * @string: string to be logged
2107 *
2108 * This code will escape a string that is passed to it if the string
2109 * contains a control character, unprintable character, double quote mark,
2110 * or a space. Unescaped strings will start and end with a double quote mark.
2111 * Strings that are escaped are printed in hex (2 digits per char).
2112 *
2113 * The caller specifies the number of characters in the string to log, which may
2114 * or may not be the entire string.
2115 */
2116void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2117				 size_t len)
2118{
2119	if (audit_string_contains_control(string, len))
2120		audit_log_n_hex(ab, string, len);
2121	else
2122		audit_log_n_string(ab, string, len);
2123}
2124
2125/**
2126 * audit_log_untrustedstring - log a string that may contain random characters
2127 * @ab: audit_buffer
2128 * @string: string to be logged
2129 *
2130 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2131 * determine string length.
2132 */
2133void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2134{
2135	audit_log_n_untrustedstring(ab, string, strlen(string));
2136}
2137
2138/* This is a helper-function to print the escaped d_path */
2139void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2140		      const struct path *path)
2141{
2142	char *p, *pathname;
2143
2144	if (prefix)
2145		audit_log_format(ab, "%s", prefix);
2146
2147	/* We will allow 11 spaces for ' (deleted)' to be appended */
2148	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2149	if (!pathname) {
2150		audit_log_format(ab, "\"<no_memory>\"");
2151		return;
2152	}
2153	p = d_path(path, pathname, PATH_MAX+11);
2154	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2155		/* FIXME: can we save some information here? */
2156		audit_log_format(ab, "\"<too_long>\"");
2157	} else
2158		audit_log_untrustedstring(ab, p);
2159	kfree(pathname);
2160}
2161
2162void audit_log_session_info(struct audit_buffer *ab)
2163{
2164	unsigned int sessionid = audit_get_sessionid(current);
2165	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2166
2167	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2168}
2169
2170void audit_log_key(struct audit_buffer *ab, char *key)
2171{
2172	audit_log_format(ab, " key=");
2173	if (key)
2174		audit_log_untrustedstring(ab, key);
2175	else
2176		audit_log_format(ab, "(null)");
2177}
2178
2179int audit_log_task_context(struct audit_buffer *ab)
2180{
2181	char *ctx = NULL;
2182	unsigned len;
2183	int error;
2184	u32 sid;
2185
2186	security_current_getsecid_subj(&sid);
2187	if (!sid)
2188		return 0;
2189
2190	error = security_secid_to_secctx(sid, &ctx, &len);
2191	if (error) {
2192		if (error != -EINVAL)
2193			goto error_path;
2194		return 0;
2195	}
2196
2197	audit_log_format(ab, " subj=%s", ctx);
2198	security_release_secctx(ctx, len);
2199	return 0;
2200
2201error_path:
2202	audit_panic("error in audit_log_task_context");
2203	return error;
2204}
2205EXPORT_SYMBOL(audit_log_task_context);
2206
2207void audit_log_d_path_exe(struct audit_buffer *ab,
2208			  struct mm_struct *mm)
2209{
2210	struct file *exe_file;
2211
2212	if (!mm)
2213		goto out_null;
2214
2215	exe_file = get_mm_exe_file(mm);
2216	if (!exe_file)
2217		goto out_null;
2218
2219	audit_log_d_path(ab, " exe=", &exe_file->f_path);
2220	fput(exe_file);
2221	return;
2222out_null:
2223	audit_log_format(ab, " exe=(null)");
2224}
2225
2226struct tty_struct *audit_get_tty(void)
2227{
2228	struct tty_struct *tty = NULL;
2229	unsigned long flags;
2230
2231	spin_lock_irqsave(&current->sighand->siglock, flags);
2232	if (current->signal)
2233		tty = tty_kref_get(current->signal->tty);
2234	spin_unlock_irqrestore(&current->sighand->siglock, flags);
2235	return tty;
2236}
2237
2238void audit_put_tty(struct tty_struct *tty)
2239{
2240	tty_kref_put(tty);
2241}
2242
2243void audit_log_task_info(struct audit_buffer *ab)
2244{
2245	const struct cred *cred;
2246	char comm[sizeof(current->comm)];
2247	struct tty_struct *tty;
2248
2249	if (!ab)
2250		return;
2251
2252	cred = current_cred();
2253	tty = audit_get_tty();
2254	audit_log_format(ab,
2255			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2256			 " euid=%u suid=%u fsuid=%u"
2257			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2258			 task_ppid_nr(current),
2259			 task_tgid_nr(current),
2260			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2261			 from_kuid(&init_user_ns, cred->uid),
2262			 from_kgid(&init_user_ns, cred->gid),
2263			 from_kuid(&init_user_ns, cred->euid),
2264			 from_kuid(&init_user_ns, cred->suid),
2265			 from_kuid(&init_user_ns, cred->fsuid),
2266			 from_kgid(&init_user_ns, cred->egid),
2267			 from_kgid(&init_user_ns, cred->sgid),
2268			 from_kgid(&init_user_ns, cred->fsgid),
2269			 tty ? tty_name(tty) : "(none)",
2270			 audit_get_sessionid(current));
2271	audit_put_tty(tty);
2272	audit_log_format(ab, " comm=");
2273	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2274	audit_log_d_path_exe(ab, current->mm);
2275	audit_log_task_context(ab);
2276}
2277EXPORT_SYMBOL(audit_log_task_info);
2278
2279/**
2280 * audit_log_path_denied - report a path restriction denial
2281 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2282 * @operation: specific operation name
2283 */
2284void audit_log_path_denied(int type, const char *operation)
2285{
2286	struct audit_buffer *ab;
2287
2288	if (!audit_enabled || audit_dummy_context())
2289		return;
2290
2291	/* Generate log with subject, operation, outcome. */
2292	ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2293	if (!ab)
2294		return;
2295	audit_log_format(ab, "op=%s", operation);
2296	audit_log_task_info(ab);
2297	audit_log_format(ab, " res=0");
2298	audit_log_end(ab);
2299}
2300
2301/* global counter which is incremented every time something logs in */
2302static atomic_t session_id = ATOMIC_INIT(0);
2303
2304static int audit_set_loginuid_perm(kuid_t loginuid)
2305{
2306	/* if we are unset, we don't need privs */
2307	if (!audit_loginuid_set(current))
2308		return 0;
2309	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2310	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2311		return -EPERM;
2312	/* it is set, you need permission */
2313	if (!capable(CAP_AUDIT_CONTROL))
2314		return -EPERM;
2315	/* reject if this is not an unset and we don't allow that */
2316	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2317				 && uid_valid(loginuid))
2318		return -EPERM;
2319	return 0;
2320}
2321
2322static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2323				   unsigned int oldsessionid,
2324				   unsigned int sessionid, int rc)
2325{
2326	struct audit_buffer *ab;
2327	uid_t uid, oldloginuid, loginuid;
2328	struct tty_struct *tty;
2329
2330	if (!audit_enabled)
2331		return;
2332
2333	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2334	if (!ab)
2335		return;
2336
2337	uid = from_kuid(&init_user_ns, task_uid(current));
2338	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2339	loginuid = from_kuid(&init_user_ns, kloginuid);
2340	tty = audit_get_tty();
2341
2342	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2343	audit_log_task_context(ab);
2344	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2345			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2346			 oldsessionid, sessionid, !rc);
2347	audit_put_tty(tty);
2348	audit_log_end(ab);
2349}
2350
2351/**
2352 * audit_set_loginuid - set current task's loginuid
2353 * @loginuid: loginuid value
2354 *
2355 * Returns 0.
2356 *
2357 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2358 */
2359int audit_set_loginuid(kuid_t loginuid)
2360{
2361	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2362	kuid_t oldloginuid;
2363	int rc;
2364
2365	oldloginuid = audit_get_loginuid(current);
2366	oldsessionid = audit_get_sessionid(current);
2367
2368	rc = audit_set_loginuid_perm(loginuid);
2369	if (rc)
2370		goto out;
2371
2372	/* are we setting or clearing? */
2373	if (uid_valid(loginuid)) {
2374		sessionid = (unsigned int)atomic_inc_return(&session_id);
2375		if (unlikely(sessionid == AUDIT_SID_UNSET))
2376			sessionid = (unsigned int)atomic_inc_return(&session_id);
2377	}
2378
2379	current->sessionid = sessionid;
2380	current->loginuid = loginuid;
2381out:
2382	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2383	return rc;
2384}
2385
2386/**
2387 * audit_signal_info - record signal info for shutting down audit subsystem
2388 * @sig: signal value
2389 * @t: task being signaled
2390 *
2391 * If the audit subsystem is being terminated, record the task (pid)
2392 * and uid that is doing that.
2393 */
2394int audit_signal_info(int sig, struct task_struct *t)
2395{
2396	kuid_t uid = current_uid(), auid;
2397
2398	if (auditd_test_task(t) &&
2399	    (sig == SIGTERM || sig == SIGHUP ||
2400	     sig == SIGUSR1 || sig == SIGUSR2)) {
2401		audit_sig_pid = task_tgid_nr(current);
2402		auid = audit_get_loginuid(current);
2403		if (uid_valid(auid))
2404			audit_sig_uid = auid;
2405		else
2406			audit_sig_uid = uid;
2407		security_current_getsecid_subj(&audit_sig_sid);
2408	}
2409
2410	return audit_signal_info_syscall(t);
2411}
2412
2413/**
2414 * audit_log_end - end one audit record
2415 * @ab: the audit_buffer
2416 *
2417 * We can not do a netlink send inside an irq context because it blocks (last
2418 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2419 * queue and a kthread is scheduled to remove them from the queue outside the
2420 * irq context.  May be called in any context.
2421 */
2422void audit_log_end(struct audit_buffer *ab)
2423{
2424	struct sk_buff *skb;
2425	struct nlmsghdr *nlh;
2426
2427	if (!ab)
2428		return;
2429
2430	if (audit_rate_check()) {
2431		skb = ab->skb;
2432		ab->skb = NULL;
2433
2434		/* setup the netlink header, see the comments in
2435		 * kauditd_send_multicast_skb() for length quirks */
2436		nlh = nlmsg_hdr(skb);
2437		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2438
2439		/* queue the netlink packet and poke the kauditd thread */
2440		skb_queue_tail(&audit_queue, skb);
2441		wake_up_interruptible(&kauditd_wait);
2442	} else
2443		audit_log_lost("rate limit exceeded");
2444
2445	audit_buffer_free(ab);
2446}
2447
2448/**
2449 * audit_log - Log an audit record
2450 * @ctx: audit context
2451 * @gfp_mask: type of allocation
2452 * @type: audit message type
2453 * @fmt: format string to use
2454 * @...: variable parameters matching the format string
2455 *
2456 * This is a convenience function that calls audit_log_start,
2457 * audit_log_vformat, and audit_log_end.  It may be called
2458 * in any context.
2459 */
2460void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2461	       const char *fmt, ...)
2462{
2463	struct audit_buffer *ab;
2464	va_list args;
2465
2466	ab = audit_log_start(ctx, gfp_mask, type);
2467	if (ab) {
2468		va_start(args, fmt);
2469		audit_log_vformat(ab, fmt, args);
2470		va_end(args);
2471		audit_log_end(ab);
2472	}
2473}
2474
2475EXPORT_SYMBOL(audit_log_start);
2476EXPORT_SYMBOL(audit_log_end);
2477EXPORT_SYMBOL(audit_log_format);
2478EXPORT_SYMBOL(audit_log);
2479