1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 *   protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 *   one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 *   SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
40 *   to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 *   - all global variables are read-mostly.
46 *   - semop() calls and semctl(RMID) are synchronized by RCU.
47 *   - most operations do write operations (actually: spin_lock calls) to
48 *     the per-semaphore array structure.
49 *   Thus: Perfect SMP scaling between independent semaphore arrays.
50 *         If multiple semaphores in one array are used, then cache line
51 *         trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 *   sleeping tasks and completes any pending operations that can be fulfilled.
55 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56 *   (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 *   dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 *   anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 *   have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 *   semaphore array, lazily allocated). For backwards compatibility, multiple
65 *   modes for the UNDO variables are supported (per process, per thread)
66 *   (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69 *   ordering without always scanning all pending operations.
70 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73#include <linux/compat.h>
74#include <linux/slab.h>
75#include <linux/spinlock.h>
76#include <linux/init.h>
77#include <linux/proc_fs.h>
78#include <linux/time.h>
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/audit.h>
82#include <linux/capability.h>
83#include <linux/seq_file.h>
84#include <linux/rwsem.h>
85#include <linux/nsproxy.h>
86#include <linux/ipc_namespace.h>
87#include <linux/sched/wake_q.h>
88#include <linux/nospec.h>
89#include <linux/rhashtable.h>
90
91#include <linux/uaccess.h>
92#include "util.h"
93
94/* One semaphore structure for each semaphore in the system. */
95struct sem {
96	int	semval;		/* current value */
97	/*
98	 * PID of the process that last modified the semaphore. For
99	 * Linux, specifically these are:
100	 *  - semop
101	 *  - semctl, via SETVAL and SETALL.
102	 *  - at task exit when performing undo adjustments (see exit_sem).
103	 */
104	struct pid *sempid;
105	spinlock_t	lock;	/* spinlock for fine-grained semtimedop */
106	struct list_head pending_alter; /* pending single-sop operations */
107					/* that alter the semaphore */
108	struct list_head pending_const; /* pending single-sop operations */
109					/* that do not alter the semaphore*/
110	time64_t	 sem_otime;	/* candidate for sem_otime */
111} ____cacheline_aligned_in_smp;
112
113/* One sem_array data structure for each set of semaphores in the system. */
114struct sem_array {
115	struct kern_ipc_perm	sem_perm;	/* permissions .. see ipc.h */
116	time64_t		sem_ctime;	/* create/last semctl() time */
117	struct list_head	pending_alter;	/* pending operations */
118						/* that alter the array */
119	struct list_head	pending_const;	/* pending complex operations */
120						/* that do not alter semvals */
121	struct list_head	list_id;	/* undo requests on this array */
122	int			sem_nsems;	/* no. of semaphores in array */
123	int			complex_count;	/* pending complex operations */
124	unsigned int		use_global_lock;/* >0: global lock required */
125
126	struct sem		sems[];
127} __randomize_layout;
128
129/* One queue for each sleeping process in the system. */
130struct sem_queue {
131	struct list_head	list;	 /* queue of pending operations */
132	struct task_struct	*sleeper; /* this process */
133	struct sem_undo		*undo;	 /* undo structure */
134	struct pid		*pid;	 /* process id of requesting process */
135	int			status;	 /* completion status of operation */
136	struct sembuf		*sops;	 /* array of pending operations */
137	struct sembuf		*blocking; /* the operation that blocked */
138	int			nsops;	 /* number of operations */
139	bool			alter;	 /* does *sops alter the array? */
140	bool                    dupsop;	 /* sops on more than one sem_num */
141};
142
143/* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146struct sem_undo {
147	struct list_head	list_proc;	/* per-process list: *
148						 * all undos from one process
149						 * rcu protected */
150	struct rcu_head		rcu;		/* rcu struct for sem_undo */
151	struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */
152	struct list_head	list_id;	/* per semaphore array list:
153						 * all undos for one array */
154	int			semid;		/* semaphore set identifier */
155	short			semadj[];	/* array of adjustments */
156						/* one per semaphore */
157};
158
159/* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162struct sem_undo_list {
163	refcount_t		refcnt;
164	spinlock_t		lock;
165	struct list_head	list_proc;
166};
167
168
169#define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS])
170
171static int newary(struct ipc_namespace *, struct ipc_params *);
172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173#ifdef CONFIG_PROC_FS
174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175#endif
176
177#define SEMMSL_FAST	256 /* 512 bytes on stack */
178#define SEMOPM_FAST	64  /* ~ 372 bytes on stack */
179
180/*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185#define USE_GLOBAL_LOCK_HYSTERESIS	10
186
187/*
188 * Locking:
189 * a) global sem_lock() for read/write
190 *	sem_undo.id_next,
191 *	sem_array.complex_count,
192 *	sem_array.pending{_alter,_const},
193 *	sem_array.sem_undo
194 *
195 * b) global or semaphore sem_lock() for read/write:
196 *	sem_array.sems[i].pending_{const,alter}:
197 *
198 * c) special:
199 *	sem_undo_list.list_proc:
200 *	* undo_list->lock for write
201 *	* rcu for read
202 *	use_global_lock:
203 *	* global sem_lock() for write
204 *	* either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
220 * To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
221 * READ_ONCE()/WRITE_ONCE() is used.
222 *
223 * 2) queue.status: (SEM_BARRIER_2)
224 * Initialization is done while holding sem_lock(), so no further barrier is
225 * required.
226 * Setting it to a result code is a RELEASE, this is ensured by both a
227 * smp_store_release() (for case a) and while holding sem_lock()
228 * (for case b).
229 * The ACQUIRE when reading the result code without holding sem_lock() is
230 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
231 * (case a above).
232 * Reading the result code while holding sem_lock() needs no further barriers,
233 * the locks inside sem_lock() enforce ordering (case b above)
234 *
235 * 3) current->state:
236 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
237 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
238 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
239 * when holding sem_lock(), no further barriers are required.
240 *
241 * See also ipc/mqueue.c for more details on the covered races.
242 */
243
244#define sc_semmsl	sem_ctls[0]
245#define sc_semmns	sem_ctls[1]
246#define sc_semopm	sem_ctls[2]
247#define sc_semmni	sem_ctls[3]
248
249void sem_init_ns(struct ipc_namespace *ns)
250{
251	ns->sc_semmsl = SEMMSL;
252	ns->sc_semmns = SEMMNS;
253	ns->sc_semopm = SEMOPM;
254	ns->sc_semmni = SEMMNI;
255	ns->used_sems = 0;
256	ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
257}
258
259#ifdef CONFIG_IPC_NS
260void sem_exit_ns(struct ipc_namespace *ns)
261{
262	free_ipcs(ns, &sem_ids(ns), freeary);
263	idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
264	rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
265}
266#endif
267
268void __init sem_init(void)
269{
270	sem_init_ns(&init_ipc_ns);
271	ipc_init_proc_interface("sysvipc/sem",
272				"       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
273				IPC_SEM_IDS, sysvipc_sem_proc_show);
274}
275
276/**
277 * unmerge_queues - unmerge queues, if possible.
278 * @sma: semaphore array
279 *
280 * The function unmerges the wait queues if complex_count is 0.
281 * It must be called prior to dropping the global semaphore array lock.
282 */
283static void unmerge_queues(struct sem_array *sma)
284{
285	struct sem_queue *q, *tq;
286
287	/* complex operations still around? */
288	if (sma->complex_count)
289		return;
290	/*
291	 * We will switch back to simple mode.
292	 * Move all pending operation back into the per-semaphore
293	 * queues.
294	 */
295	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
296		struct sem *curr;
297		curr = &sma->sems[q->sops[0].sem_num];
298
299		list_add_tail(&q->list, &curr->pending_alter);
300	}
301	INIT_LIST_HEAD(&sma->pending_alter);
302}
303
304/**
305 * merge_queues - merge single semop queues into global queue
306 * @sma: semaphore array
307 *
308 * This function merges all per-semaphore queues into the global queue.
309 * It is necessary to achieve FIFO ordering for the pending single-sop
310 * operations when a multi-semop operation must sleep.
311 * Only the alter operations must be moved, the const operations can stay.
312 */
313static void merge_queues(struct sem_array *sma)
314{
315	int i;
316	for (i = 0; i < sma->sem_nsems; i++) {
317		struct sem *sem = &sma->sems[i];
318
319		list_splice_init(&sem->pending_alter, &sma->pending_alter);
320	}
321}
322
323static void sem_rcu_free(struct rcu_head *head)
324{
325	struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
326	struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
327
328	security_sem_free(&sma->sem_perm);
329	kvfree(sma);
330}
331
332/*
333 * Enter the mode suitable for non-simple operations:
334 * Caller must own sem_perm.lock.
335 */
336static void complexmode_enter(struct sem_array *sma)
337{
338	int i;
339	struct sem *sem;
340
341	if (sma->use_global_lock > 0)  {
342		/*
343		 * We are already in global lock mode.
344		 * Nothing to do, just reset the
345		 * counter until we return to simple mode.
346		 */
347		WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
348		return;
349	}
350	WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
351
352	for (i = 0; i < sma->sem_nsems; i++) {
353		sem = &sma->sems[i];
354		spin_lock(&sem->lock);
355		spin_unlock(&sem->lock);
356	}
357}
358
359/*
360 * Try to leave the mode that disallows simple operations:
361 * Caller must own sem_perm.lock.
362 */
363static void complexmode_tryleave(struct sem_array *sma)
364{
365	if (sma->complex_count)  {
366		/* Complex ops are sleeping.
367		 * We must stay in complex mode
368		 */
369		return;
370	}
371	if (sma->use_global_lock == 1) {
372
373		/* See SEM_BARRIER_1 for purpose/pairing */
374		smp_store_release(&sma->use_global_lock, 0);
375	} else {
376		WRITE_ONCE(sma->use_global_lock,
377				sma->use_global_lock-1);
378	}
379}
380
381#define SEM_GLOBAL_LOCK	(-1)
382/*
383 * If the request contains only one semaphore operation, and there are
384 * no complex transactions pending, lock only the semaphore involved.
385 * Otherwise, lock the entire semaphore array, since we either have
386 * multiple semaphores in our own semops, or we need to look at
387 * semaphores from other pending complex operations.
388 */
389static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
390			      int nsops)
391{
392	struct sem *sem;
393	int idx;
394
395	if (nsops != 1) {
396		/* Complex operation - acquire a full lock */
397		ipc_lock_object(&sma->sem_perm);
398
399		/* Prevent parallel simple ops */
400		complexmode_enter(sma);
401		return SEM_GLOBAL_LOCK;
402	}
403
404	/*
405	 * Only one semaphore affected - try to optimize locking.
406	 * Optimized locking is possible if no complex operation
407	 * is either enqueued or processed right now.
408	 *
409	 * Both facts are tracked by use_global_mode.
410	 */
411	idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
412	sem = &sma->sems[idx];
413
414	/*
415	 * Initial check for use_global_lock. Just an optimization,
416	 * no locking, no memory barrier.
417	 */
418	if (!READ_ONCE(sma->use_global_lock)) {
419		/*
420		 * It appears that no complex operation is around.
421		 * Acquire the per-semaphore lock.
422		 */
423		spin_lock(&sem->lock);
424
425		/* see SEM_BARRIER_1 for purpose/pairing */
426		if (!smp_load_acquire(&sma->use_global_lock)) {
427			/* fast path successful! */
428			return sops->sem_num;
429		}
430		spin_unlock(&sem->lock);
431	}
432
433	/* slow path: acquire the full lock */
434	ipc_lock_object(&sma->sem_perm);
435
436	if (sma->use_global_lock == 0) {
437		/*
438		 * The use_global_lock mode ended while we waited for
439		 * sma->sem_perm.lock. Thus we must switch to locking
440		 * with sem->lock.
441		 * Unlike in the fast path, there is no need to recheck
442		 * sma->use_global_lock after we have acquired sem->lock:
443		 * We own sma->sem_perm.lock, thus use_global_lock cannot
444		 * change.
445		 */
446		spin_lock(&sem->lock);
447
448		ipc_unlock_object(&sma->sem_perm);
449		return sops->sem_num;
450	} else {
451		/*
452		 * Not a false alarm, thus continue to use the global lock
453		 * mode. No need for complexmode_enter(), this was done by
454		 * the caller that has set use_global_mode to non-zero.
455		 */
456		return SEM_GLOBAL_LOCK;
457	}
458}
459
460static inline void sem_unlock(struct sem_array *sma, int locknum)
461{
462	if (locknum == SEM_GLOBAL_LOCK) {
463		unmerge_queues(sma);
464		complexmode_tryleave(sma);
465		ipc_unlock_object(&sma->sem_perm);
466	} else {
467		struct sem *sem = &sma->sems[locknum];
468		spin_unlock(&sem->lock);
469	}
470}
471
472/*
473 * sem_lock_(check_) routines are called in the paths where the rwsem
474 * is not held.
475 *
476 * The caller holds the RCU read lock.
477 */
478static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
479{
480	struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
481
482	if (IS_ERR(ipcp))
483		return ERR_CAST(ipcp);
484
485	return container_of(ipcp, struct sem_array, sem_perm);
486}
487
488static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
489							int id)
490{
491	struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
492
493	if (IS_ERR(ipcp))
494		return ERR_CAST(ipcp);
495
496	return container_of(ipcp, struct sem_array, sem_perm);
497}
498
499static inline void sem_lock_and_putref(struct sem_array *sma)
500{
501	sem_lock(sma, NULL, -1);
502	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
503}
504
505static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
506{
507	ipc_rmid(&sem_ids(ns), &s->sem_perm);
508}
509
510static struct sem_array *sem_alloc(size_t nsems)
511{
512	struct sem_array *sma;
513
514	if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
515		return NULL;
516
517	sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
518	if (unlikely(!sma))
519		return NULL;
520
521	return sma;
522}
523
524/**
525 * newary - Create a new semaphore set
526 * @ns: namespace
527 * @params: ptr to the structure that contains key, semflg and nsems
528 *
529 * Called with sem_ids.rwsem held (as a writer)
530 */
531static int newary(struct ipc_namespace *ns, struct ipc_params *params)
532{
533	int retval;
534	struct sem_array *sma;
535	key_t key = params->key;
536	int nsems = params->u.nsems;
537	int semflg = params->flg;
538	int i;
539
540	if (!nsems)
541		return -EINVAL;
542	if (ns->used_sems + nsems > ns->sc_semmns)
543		return -ENOSPC;
544
545	sma = sem_alloc(nsems);
546	if (!sma)
547		return -ENOMEM;
548
549	sma->sem_perm.mode = (semflg & S_IRWXUGO);
550	sma->sem_perm.key = key;
551
552	sma->sem_perm.security = NULL;
553	retval = security_sem_alloc(&sma->sem_perm);
554	if (retval) {
555		kvfree(sma);
556		return retval;
557	}
558
559	for (i = 0; i < nsems; i++) {
560		INIT_LIST_HEAD(&sma->sems[i].pending_alter);
561		INIT_LIST_HEAD(&sma->sems[i].pending_const);
562		spin_lock_init(&sma->sems[i].lock);
563	}
564
565	sma->complex_count = 0;
566	sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
567	INIT_LIST_HEAD(&sma->pending_alter);
568	INIT_LIST_HEAD(&sma->pending_const);
569	INIT_LIST_HEAD(&sma->list_id);
570	sma->sem_nsems = nsems;
571	sma->sem_ctime = ktime_get_real_seconds();
572
573	/* ipc_addid() locks sma upon success. */
574	retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
575	if (retval < 0) {
576		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
577		return retval;
578	}
579	ns->used_sems += nsems;
580
581	sem_unlock(sma, -1);
582	rcu_read_unlock();
583
584	return sma->sem_perm.id;
585}
586
587
588/*
589 * Called with sem_ids.rwsem and ipcp locked.
590 */
591static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
592{
593	struct sem_array *sma;
594
595	sma = container_of(ipcp, struct sem_array, sem_perm);
596	if (params->u.nsems > sma->sem_nsems)
597		return -EINVAL;
598
599	return 0;
600}
601
602long ksys_semget(key_t key, int nsems, int semflg)
603{
604	struct ipc_namespace *ns;
605	static const struct ipc_ops sem_ops = {
606		.getnew = newary,
607		.associate = security_sem_associate,
608		.more_checks = sem_more_checks,
609	};
610	struct ipc_params sem_params;
611
612	ns = current->nsproxy->ipc_ns;
613
614	if (nsems < 0 || nsems > ns->sc_semmsl)
615		return -EINVAL;
616
617	sem_params.key = key;
618	sem_params.flg = semflg;
619	sem_params.u.nsems = nsems;
620
621	return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
622}
623
624SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
625{
626	return ksys_semget(key, nsems, semflg);
627}
628
629/**
630 * perform_atomic_semop[_slow] - Attempt to perform semaphore
631 *                               operations on a given array.
632 * @sma: semaphore array
633 * @q: struct sem_queue that describes the operation
634 *
635 * Caller blocking are as follows, based the value
636 * indicated by the semaphore operation (sem_op):
637 *
638 *  (1) >0 never blocks.
639 *  (2)  0 (wait-for-zero operation): semval is non-zero.
640 *  (3) <0 attempting to decrement semval to a value smaller than zero.
641 *
642 * Returns 0 if the operation was possible.
643 * Returns 1 if the operation is impossible, the caller must sleep.
644 * Returns <0 for error codes.
645 */
646static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
647{
648	int result, sem_op, nsops;
649	struct pid *pid;
650	struct sembuf *sop;
651	struct sem *curr;
652	struct sembuf *sops;
653	struct sem_undo *un;
654
655	sops = q->sops;
656	nsops = q->nsops;
657	un = q->undo;
658
659	for (sop = sops; sop < sops + nsops; sop++) {
660		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
661		curr = &sma->sems[idx];
662		sem_op = sop->sem_op;
663		result = curr->semval;
664
665		if (!sem_op && result)
666			goto would_block;
667
668		result += sem_op;
669		if (result < 0)
670			goto would_block;
671		if (result > SEMVMX)
672			goto out_of_range;
673
674		if (sop->sem_flg & SEM_UNDO) {
675			int undo = un->semadj[sop->sem_num] - sem_op;
676			/* Exceeding the undo range is an error. */
677			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
678				goto out_of_range;
679			un->semadj[sop->sem_num] = undo;
680		}
681
682		curr->semval = result;
683	}
684
685	sop--;
686	pid = q->pid;
687	while (sop >= sops) {
688		ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
689		sop--;
690	}
691
692	return 0;
693
694out_of_range:
695	result = -ERANGE;
696	goto undo;
697
698would_block:
699	q->blocking = sop;
700
701	if (sop->sem_flg & IPC_NOWAIT)
702		result = -EAGAIN;
703	else
704		result = 1;
705
706undo:
707	sop--;
708	while (sop >= sops) {
709		sem_op = sop->sem_op;
710		sma->sems[sop->sem_num].semval -= sem_op;
711		if (sop->sem_flg & SEM_UNDO)
712			un->semadj[sop->sem_num] += sem_op;
713		sop--;
714	}
715
716	return result;
717}
718
719static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
720{
721	int result, sem_op, nsops;
722	struct sembuf *sop;
723	struct sem *curr;
724	struct sembuf *sops;
725	struct sem_undo *un;
726
727	sops = q->sops;
728	nsops = q->nsops;
729	un = q->undo;
730
731	if (unlikely(q->dupsop))
732		return perform_atomic_semop_slow(sma, q);
733
734	/*
735	 * We scan the semaphore set twice, first to ensure that the entire
736	 * operation can succeed, therefore avoiding any pointless writes
737	 * to shared memory and having to undo such changes in order to block
738	 * until the operations can go through.
739	 */
740	for (sop = sops; sop < sops + nsops; sop++) {
741		int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
742
743		curr = &sma->sems[idx];
744		sem_op = sop->sem_op;
745		result = curr->semval;
746
747		if (!sem_op && result)
748			goto would_block; /* wait-for-zero */
749
750		result += sem_op;
751		if (result < 0)
752			goto would_block;
753
754		if (result > SEMVMX)
755			return -ERANGE;
756
757		if (sop->sem_flg & SEM_UNDO) {
758			int undo = un->semadj[sop->sem_num] - sem_op;
759
760			/* Exceeding the undo range is an error. */
761			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
762				return -ERANGE;
763		}
764	}
765
766	for (sop = sops; sop < sops + nsops; sop++) {
767		curr = &sma->sems[sop->sem_num];
768		sem_op = sop->sem_op;
769
770		if (sop->sem_flg & SEM_UNDO) {
771			int undo = un->semadj[sop->sem_num] - sem_op;
772
773			un->semadj[sop->sem_num] = undo;
774		}
775		curr->semval += sem_op;
776		ipc_update_pid(&curr->sempid, q->pid);
777	}
778
779	return 0;
780
781would_block:
782	q->blocking = sop;
783	return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
784}
785
786static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
787					     struct wake_q_head *wake_q)
788{
789	struct task_struct *sleeper;
790
791	sleeper = get_task_struct(q->sleeper);
792
793	/* see SEM_BARRIER_2 for purpose/pairing */
794	smp_store_release(&q->status, error);
795
796	wake_q_add_safe(wake_q, sleeper);
797}
798
799static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
800{
801	list_del(&q->list);
802	if (q->nsops > 1)
803		sma->complex_count--;
804}
805
806/** check_restart(sma, q)
807 * @sma: semaphore array
808 * @q: the operation that just completed
809 *
810 * update_queue is O(N^2) when it restarts scanning the whole queue of
811 * waiting operations. Therefore this function checks if the restart is
812 * really necessary. It is called after a previously waiting operation
813 * modified the array.
814 * Note that wait-for-zero operations are handled without restart.
815 */
816static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
817{
818	/* pending complex alter operations are too difficult to analyse */
819	if (!list_empty(&sma->pending_alter))
820		return 1;
821
822	/* we were a sleeping complex operation. Too difficult */
823	if (q->nsops > 1)
824		return 1;
825
826	/* It is impossible that someone waits for the new value:
827	 * - complex operations always restart.
828	 * - wait-for-zero are handled separately.
829	 * - q is a previously sleeping simple operation that
830	 *   altered the array. It must be a decrement, because
831	 *   simple increments never sleep.
832	 * - If there are older (higher priority) decrements
833	 *   in the queue, then they have observed the original
834	 *   semval value and couldn't proceed. The operation
835	 *   decremented to value - thus they won't proceed either.
836	 */
837	return 0;
838}
839
840/**
841 * wake_const_ops - wake up non-alter tasks
842 * @sma: semaphore array.
843 * @semnum: semaphore that was modified.
844 * @wake_q: lockless wake-queue head.
845 *
846 * wake_const_ops must be called after a semaphore in a semaphore array
847 * was set to 0. If complex const operations are pending, wake_const_ops must
848 * be called with semnum = -1, as well as with the number of each modified
849 * semaphore.
850 * The tasks that must be woken up are added to @wake_q. The return code
851 * is stored in q->pid.
852 * The function returns 1 if at least one operation was completed successfully.
853 */
854static int wake_const_ops(struct sem_array *sma, int semnum,
855			  struct wake_q_head *wake_q)
856{
857	struct sem_queue *q, *tmp;
858	struct list_head *pending_list;
859	int semop_completed = 0;
860
861	if (semnum == -1)
862		pending_list = &sma->pending_const;
863	else
864		pending_list = &sma->sems[semnum].pending_const;
865
866	list_for_each_entry_safe(q, tmp, pending_list, list) {
867		int error = perform_atomic_semop(sma, q);
868
869		if (error > 0)
870			continue;
871		/* operation completed, remove from queue & wakeup */
872		unlink_queue(sma, q);
873
874		wake_up_sem_queue_prepare(q, error, wake_q);
875		if (error == 0)
876			semop_completed = 1;
877	}
878
879	return semop_completed;
880}
881
882/**
883 * do_smart_wakeup_zero - wakeup all wait for zero tasks
884 * @sma: semaphore array
885 * @sops: operations that were performed
886 * @nsops: number of operations
887 * @wake_q: lockless wake-queue head
888 *
889 * Checks all required queue for wait-for-zero operations, based
890 * on the actual changes that were performed on the semaphore array.
891 * The function returns 1 if at least one operation was completed successfully.
892 */
893static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
894				int nsops, struct wake_q_head *wake_q)
895{
896	int i;
897	int semop_completed = 0;
898	int got_zero = 0;
899
900	/* first: the per-semaphore queues, if known */
901	if (sops) {
902		for (i = 0; i < nsops; i++) {
903			int num = sops[i].sem_num;
904
905			if (sma->sems[num].semval == 0) {
906				got_zero = 1;
907				semop_completed |= wake_const_ops(sma, num, wake_q);
908			}
909		}
910	} else {
911		/*
912		 * No sops means modified semaphores not known.
913		 * Assume all were changed.
914		 */
915		for (i = 0; i < sma->sem_nsems; i++) {
916			if (sma->sems[i].semval == 0) {
917				got_zero = 1;
918				semop_completed |= wake_const_ops(sma, i, wake_q);
919			}
920		}
921	}
922	/*
923	 * If one of the modified semaphores got 0,
924	 * then check the global queue, too.
925	 */
926	if (got_zero)
927		semop_completed |= wake_const_ops(sma, -1, wake_q);
928
929	return semop_completed;
930}
931
932
933/**
934 * update_queue - look for tasks that can be completed.
935 * @sma: semaphore array.
936 * @semnum: semaphore that was modified.
937 * @wake_q: lockless wake-queue head.
938 *
939 * update_queue must be called after a semaphore in a semaphore array
940 * was modified. If multiple semaphores were modified, update_queue must
941 * be called with semnum = -1, as well as with the number of each modified
942 * semaphore.
943 * The tasks that must be woken up are added to @wake_q. The return code
944 * is stored in q->pid.
945 * The function internally checks if const operations can now succeed.
946 *
947 * The function return 1 if at least one semop was completed successfully.
948 */
949static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
950{
951	struct sem_queue *q, *tmp;
952	struct list_head *pending_list;
953	int semop_completed = 0;
954
955	if (semnum == -1)
956		pending_list = &sma->pending_alter;
957	else
958		pending_list = &sma->sems[semnum].pending_alter;
959
960again:
961	list_for_each_entry_safe(q, tmp, pending_list, list) {
962		int error, restart;
963
964		/* If we are scanning the single sop, per-semaphore list of
965		 * one semaphore and that semaphore is 0, then it is not
966		 * necessary to scan further: simple increments
967		 * that affect only one entry succeed immediately and cannot
968		 * be in the  per semaphore pending queue, and decrements
969		 * cannot be successful if the value is already 0.
970		 */
971		if (semnum != -1 && sma->sems[semnum].semval == 0)
972			break;
973
974		error = perform_atomic_semop(sma, q);
975
976		/* Does q->sleeper still need to sleep? */
977		if (error > 0)
978			continue;
979
980		unlink_queue(sma, q);
981
982		if (error) {
983			restart = 0;
984		} else {
985			semop_completed = 1;
986			do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
987			restart = check_restart(sma, q);
988		}
989
990		wake_up_sem_queue_prepare(q, error, wake_q);
991		if (restart)
992			goto again;
993	}
994	return semop_completed;
995}
996
997/**
998 * set_semotime - set sem_otime
999 * @sma: semaphore array
1000 * @sops: operations that modified the array, may be NULL
1001 *
1002 * sem_otime is replicated to avoid cache line trashing.
1003 * This function sets one instance to the current time.
1004 */
1005static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1006{
1007	if (sops == NULL) {
1008		sma->sems[0].sem_otime = ktime_get_real_seconds();
1009	} else {
1010		sma->sems[sops[0].sem_num].sem_otime =
1011						ktime_get_real_seconds();
1012	}
1013}
1014
1015/**
1016 * do_smart_update - optimized update_queue
1017 * @sma: semaphore array
1018 * @sops: operations that were performed
1019 * @nsops: number of operations
1020 * @otime: force setting otime
1021 * @wake_q: lockless wake-queue head
1022 *
1023 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1024 * based on the actual changes that were performed on the semaphore array.
1025 * Note that the function does not do the actual wake-up: the caller is
1026 * responsible for calling wake_up_q().
1027 * It is safe to perform this call after dropping all locks.
1028 */
1029static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1030			    int otime, struct wake_q_head *wake_q)
1031{
1032	int i;
1033
1034	otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1035
1036	if (!list_empty(&sma->pending_alter)) {
1037		/* semaphore array uses the global queue - just process it. */
1038		otime |= update_queue(sma, -1, wake_q);
1039	} else {
1040		if (!sops) {
1041			/*
1042			 * No sops, thus the modified semaphores are not
1043			 * known. Check all.
1044			 */
1045			for (i = 0; i < sma->sem_nsems; i++)
1046				otime |= update_queue(sma, i, wake_q);
1047		} else {
1048			/*
1049			 * Check the semaphores that were increased:
1050			 * - No complex ops, thus all sleeping ops are
1051			 *   decrease.
1052			 * - if we decreased the value, then any sleeping
1053			 *   semaphore ops won't be able to run: If the
1054			 *   previous value was too small, then the new
1055			 *   value will be too small, too.
1056			 */
1057			for (i = 0; i < nsops; i++) {
1058				if (sops[i].sem_op > 0) {
1059					otime |= update_queue(sma,
1060							      sops[i].sem_num, wake_q);
1061				}
1062			}
1063		}
1064	}
1065	if (otime)
1066		set_semotime(sma, sops);
1067}
1068
1069/*
1070 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1071 */
1072static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1073			bool count_zero)
1074{
1075	struct sembuf *sop = q->blocking;
1076
1077	/*
1078	 * Linux always (since 0.99.10) reported a task as sleeping on all
1079	 * semaphores. This violates SUS, therefore it was changed to the
1080	 * standard compliant behavior.
1081	 * Give the administrators a chance to notice that an application
1082	 * might misbehave because it relies on the Linux behavior.
1083	 */
1084	pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1085			"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1086			current->comm, task_pid_nr(current));
1087
1088	if (sop->sem_num != semnum)
1089		return 0;
1090
1091	if (count_zero && sop->sem_op == 0)
1092		return 1;
1093	if (!count_zero && sop->sem_op < 0)
1094		return 1;
1095
1096	return 0;
1097}
1098
1099/* The following counts are associated to each semaphore:
1100 *   semncnt        number of tasks waiting on semval being nonzero
1101 *   semzcnt        number of tasks waiting on semval being zero
1102 *
1103 * Per definition, a task waits only on the semaphore of the first semop
1104 * that cannot proceed, even if additional operation would block, too.
1105 */
1106static int count_semcnt(struct sem_array *sma, ushort semnum,
1107			bool count_zero)
1108{
1109	struct list_head *l;
1110	struct sem_queue *q;
1111	int semcnt;
1112
1113	semcnt = 0;
1114	/* First: check the simple operations. They are easy to evaluate */
1115	if (count_zero)
1116		l = &sma->sems[semnum].pending_const;
1117	else
1118		l = &sma->sems[semnum].pending_alter;
1119
1120	list_for_each_entry(q, l, list) {
1121		/* all task on a per-semaphore list sleep on exactly
1122		 * that semaphore
1123		 */
1124		semcnt++;
1125	}
1126
1127	/* Then: check the complex operations. */
1128	list_for_each_entry(q, &sma->pending_alter, list) {
1129		semcnt += check_qop(sma, semnum, q, count_zero);
1130	}
1131	if (count_zero) {
1132		list_for_each_entry(q, &sma->pending_const, list) {
1133			semcnt += check_qop(sma, semnum, q, count_zero);
1134		}
1135	}
1136	return semcnt;
1137}
1138
1139/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1140 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1141 * remains locked on exit.
1142 */
1143static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1144{
1145	struct sem_undo *un, *tu;
1146	struct sem_queue *q, *tq;
1147	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1148	int i;
1149	DEFINE_WAKE_Q(wake_q);
1150
1151	/* Free the existing undo structures for this semaphore set.  */
1152	ipc_assert_locked_object(&sma->sem_perm);
1153	list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1154		list_del(&un->list_id);
1155		spin_lock(&un->ulp->lock);
1156		un->semid = -1;
1157		list_del_rcu(&un->list_proc);
1158		spin_unlock(&un->ulp->lock);
1159		kvfree_rcu(un, rcu);
1160	}
1161
1162	/* Wake up all pending processes and let them fail with EIDRM. */
1163	list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1164		unlink_queue(sma, q);
1165		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1166	}
1167
1168	list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1169		unlink_queue(sma, q);
1170		wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1171	}
1172	for (i = 0; i < sma->sem_nsems; i++) {
1173		struct sem *sem = &sma->sems[i];
1174		list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1175			unlink_queue(sma, q);
1176			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1177		}
1178		list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1179			unlink_queue(sma, q);
1180			wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1181		}
1182		ipc_update_pid(&sem->sempid, NULL);
1183	}
1184
1185	/* Remove the semaphore set from the IDR */
1186	sem_rmid(ns, sma);
1187	sem_unlock(sma, -1);
1188	rcu_read_unlock();
1189
1190	wake_up_q(&wake_q);
1191	ns->used_sems -= sma->sem_nsems;
1192	ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1193}
1194
1195static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1196{
1197	switch (version) {
1198	case IPC_64:
1199		return copy_to_user(buf, in, sizeof(*in));
1200	case IPC_OLD:
1201	    {
1202		struct semid_ds out;
1203
1204		memset(&out, 0, sizeof(out));
1205
1206		ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1207
1208		out.sem_otime	= in->sem_otime;
1209		out.sem_ctime	= in->sem_ctime;
1210		out.sem_nsems	= in->sem_nsems;
1211
1212		return copy_to_user(buf, &out, sizeof(out));
1213	    }
1214	default:
1215		return -EINVAL;
1216	}
1217}
1218
1219static time64_t get_semotime(struct sem_array *sma)
1220{
1221	int i;
1222	time64_t res;
1223
1224	res = sma->sems[0].sem_otime;
1225	for (i = 1; i < sma->sem_nsems; i++) {
1226		time64_t to = sma->sems[i].sem_otime;
1227
1228		if (to > res)
1229			res = to;
1230	}
1231	return res;
1232}
1233
1234static int semctl_stat(struct ipc_namespace *ns, int semid,
1235			 int cmd, struct semid64_ds *semid64)
1236{
1237	struct sem_array *sma;
1238	time64_t semotime;
1239	int err;
1240
1241	memset(semid64, 0, sizeof(*semid64));
1242
1243	rcu_read_lock();
1244	if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1245		sma = sem_obtain_object(ns, semid);
1246		if (IS_ERR(sma)) {
1247			err = PTR_ERR(sma);
1248			goto out_unlock;
1249		}
1250	} else { /* IPC_STAT */
1251		sma = sem_obtain_object_check(ns, semid);
1252		if (IS_ERR(sma)) {
1253			err = PTR_ERR(sma);
1254			goto out_unlock;
1255		}
1256	}
1257
1258	/* see comment for SHM_STAT_ANY */
1259	if (cmd == SEM_STAT_ANY)
1260		audit_ipc_obj(&sma->sem_perm);
1261	else {
1262		err = -EACCES;
1263		if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1264			goto out_unlock;
1265	}
1266
1267	err = security_sem_semctl(&sma->sem_perm, cmd);
1268	if (err)
1269		goto out_unlock;
1270
1271	ipc_lock_object(&sma->sem_perm);
1272
1273	if (!ipc_valid_object(&sma->sem_perm)) {
1274		ipc_unlock_object(&sma->sem_perm);
1275		err = -EIDRM;
1276		goto out_unlock;
1277	}
1278
1279	kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1280	semotime = get_semotime(sma);
1281	semid64->sem_otime = semotime;
1282	semid64->sem_ctime = sma->sem_ctime;
1283#ifndef CONFIG_64BIT
1284	semid64->sem_otime_high = semotime >> 32;
1285	semid64->sem_ctime_high = sma->sem_ctime >> 32;
1286#endif
1287	semid64->sem_nsems = sma->sem_nsems;
1288
1289	if (cmd == IPC_STAT) {
1290		/*
1291		 * As defined in SUS:
1292		 * Return 0 on success
1293		 */
1294		err = 0;
1295	} else {
1296		/*
1297		 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1298		 * Return the full id, including the sequence number
1299		 */
1300		err = sma->sem_perm.id;
1301	}
1302	ipc_unlock_object(&sma->sem_perm);
1303out_unlock:
1304	rcu_read_unlock();
1305	return err;
1306}
1307
1308static int semctl_info(struct ipc_namespace *ns, int semid,
1309			 int cmd, void __user *p)
1310{
1311	struct seminfo seminfo;
1312	int max_idx;
1313	int err;
1314
1315	err = security_sem_semctl(NULL, cmd);
1316	if (err)
1317		return err;
1318
1319	memset(&seminfo, 0, sizeof(seminfo));
1320	seminfo.semmni = ns->sc_semmni;
1321	seminfo.semmns = ns->sc_semmns;
1322	seminfo.semmsl = ns->sc_semmsl;
1323	seminfo.semopm = ns->sc_semopm;
1324	seminfo.semvmx = SEMVMX;
1325	seminfo.semmnu = SEMMNU;
1326	seminfo.semmap = SEMMAP;
1327	seminfo.semume = SEMUME;
1328	down_read(&sem_ids(ns).rwsem);
1329	if (cmd == SEM_INFO) {
1330		seminfo.semusz = sem_ids(ns).in_use;
1331		seminfo.semaem = ns->used_sems;
1332	} else {
1333		seminfo.semusz = SEMUSZ;
1334		seminfo.semaem = SEMAEM;
1335	}
1336	max_idx = ipc_get_maxidx(&sem_ids(ns));
1337	up_read(&sem_ids(ns).rwsem);
1338	if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1339		return -EFAULT;
1340	return (max_idx < 0) ? 0 : max_idx;
1341}
1342
1343static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1344		int val)
1345{
1346	struct sem_undo *un;
1347	struct sem_array *sma;
1348	struct sem *curr;
1349	int err;
1350	DEFINE_WAKE_Q(wake_q);
1351
1352	if (val > SEMVMX || val < 0)
1353		return -ERANGE;
1354
1355	rcu_read_lock();
1356	sma = sem_obtain_object_check(ns, semid);
1357	if (IS_ERR(sma)) {
1358		rcu_read_unlock();
1359		return PTR_ERR(sma);
1360	}
1361
1362	if (semnum < 0 || semnum >= sma->sem_nsems) {
1363		rcu_read_unlock();
1364		return -EINVAL;
1365	}
1366
1367
1368	if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1369		rcu_read_unlock();
1370		return -EACCES;
1371	}
1372
1373	err = security_sem_semctl(&sma->sem_perm, SETVAL);
1374	if (err) {
1375		rcu_read_unlock();
1376		return -EACCES;
1377	}
1378
1379	sem_lock(sma, NULL, -1);
1380
1381	if (!ipc_valid_object(&sma->sem_perm)) {
1382		sem_unlock(sma, -1);
1383		rcu_read_unlock();
1384		return -EIDRM;
1385	}
1386
1387	semnum = array_index_nospec(semnum, sma->sem_nsems);
1388	curr = &sma->sems[semnum];
1389
1390	ipc_assert_locked_object(&sma->sem_perm);
1391	list_for_each_entry(un, &sma->list_id, list_id)
1392		un->semadj[semnum] = 0;
1393
1394	curr->semval = val;
1395	ipc_update_pid(&curr->sempid, task_tgid(current));
1396	sma->sem_ctime = ktime_get_real_seconds();
1397	/* maybe some queued-up processes were waiting for this */
1398	do_smart_update(sma, NULL, 0, 0, &wake_q);
1399	sem_unlock(sma, -1);
1400	rcu_read_unlock();
1401	wake_up_q(&wake_q);
1402	return 0;
1403}
1404
1405static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1406		int cmd, void __user *p)
1407{
1408	struct sem_array *sma;
1409	struct sem *curr;
1410	int err, nsems;
1411	ushort fast_sem_io[SEMMSL_FAST];
1412	ushort *sem_io = fast_sem_io;
1413	DEFINE_WAKE_Q(wake_q);
1414
1415	rcu_read_lock();
1416	sma = sem_obtain_object_check(ns, semid);
1417	if (IS_ERR(sma)) {
1418		rcu_read_unlock();
1419		return PTR_ERR(sma);
1420	}
1421
1422	nsems = sma->sem_nsems;
1423
1424	err = -EACCES;
1425	if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1426		goto out_rcu_wakeup;
1427
1428	err = security_sem_semctl(&sma->sem_perm, cmd);
1429	if (err)
1430		goto out_rcu_wakeup;
1431
1432	switch (cmd) {
1433	case GETALL:
1434	{
1435		ushort __user *array = p;
1436		int i;
1437
1438		sem_lock(sma, NULL, -1);
1439		if (!ipc_valid_object(&sma->sem_perm)) {
1440			err = -EIDRM;
1441			goto out_unlock;
1442		}
1443		if (nsems > SEMMSL_FAST) {
1444			if (!ipc_rcu_getref(&sma->sem_perm)) {
1445				err = -EIDRM;
1446				goto out_unlock;
1447			}
1448			sem_unlock(sma, -1);
1449			rcu_read_unlock();
1450			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1451						GFP_KERNEL);
1452			if (sem_io == NULL) {
1453				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1454				return -ENOMEM;
1455			}
1456
1457			rcu_read_lock();
1458			sem_lock_and_putref(sma);
1459			if (!ipc_valid_object(&sma->sem_perm)) {
1460				err = -EIDRM;
1461				goto out_unlock;
1462			}
1463		}
1464		for (i = 0; i < sma->sem_nsems; i++)
1465			sem_io[i] = sma->sems[i].semval;
1466		sem_unlock(sma, -1);
1467		rcu_read_unlock();
1468		err = 0;
1469		if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1470			err = -EFAULT;
1471		goto out_free;
1472	}
1473	case SETALL:
1474	{
1475		int i;
1476		struct sem_undo *un;
1477
1478		if (!ipc_rcu_getref(&sma->sem_perm)) {
1479			err = -EIDRM;
1480			goto out_rcu_wakeup;
1481		}
1482		rcu_read_unlock();
1483
1484		if (nsems > SEMMSL_FAST) {
1485			sem_io = kvmalloc_array(nsems, sizeof(ushort),
1486						GFP_KERNEL);
1487			if (sem_io == NULL) {
1488				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1489				return -ENOMEM;
1490			}
1491		}
1492
1493		if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1494			ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1495			err = -EFAULT;
1496			goto out_free;
1497		}
1498
1499		for (i = 0; i < nsems; i++) {
1500			if (sem_io[i] > SEMVMX) {
1501				ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1502				err = -ERANGE;
1503				goto out_free;
1504			}
1505		}
1506		rcu_read_lock();
1507		sem_lock_and_putref(sma);
1508		if (!ipc_valid_object(&sma->sem_perm)) {
1509			err = -EIDRM;
1510			goto out_unlock;
1511		}
1512
1513		for (i = 0; i < nsems; i++) {
1514			sma->sems[i].semval = sem_io[i];
1515			ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1516		}
1517
1518		ipc_assert_locked_object(&sma->sem_perm);
1519		list_for_each_entry(un, &sma->list_id, list_id) {
1520			for (i = 0; i < nsems; i++)
1521				un->semadj[i] = 0;
1522		}
1523		sma->sem_ctime = ktime_get_real_seconds();
1524		/* maybe some queued-up processes were waiting for this */
1525		do_smart_update(sma, NULL, 0, 0, &wake_q);
1526		err = 0;
1527		goto out_unlock;
1528	}
1529	/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1530	}
1531	err = -EINVAL;
1532	if (semnum < 0 || semnum >= nsems)
1533		goto out_rcu_wakeup;
1534
1535	sem_lock(sma, NULL, -1);
1536	if (!ipc_valid_object(&sma->sem_perm)) {
1537		err = -EIDRM;
1538		goto out_unlock;
1539	}
1540
1541	semnum = array_index_nospec(semnum, nsems);
1542	curr = &sma->sems[semnum];
1543
1544	switch (cmd) {
1545	case GETVAL:
1546		err = curr->semval;
1547		goto out_unlock;
1548	case GETPID:
1549		err = pid_vnr(curr->sempid);
1550		goto out_unlock;
1551	case GETNCNT:
1552		err = count_semcnt(sma, semnum, 0);
1553		goto out_unlock;
1554	case GETZCNT:
1555		err = count_semcnt(sma, semnum, 1);
1556		goto out_unlock;
1557	}
1558
1559out_unlock:
1560	sem_unlock(sma, -1);
1561out_rcu_wakeup:
1562	rcu_read_unlock();
1563	wake_up_q(&wake_q);
1564out_free:
1565	if (sem_io != fast_sem_io)
1566		kvfree(sem_io);
1567	return err;
1568}
1569
1570static inline unsigned long
1571copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1572{
1573	switch (version) {
1574	case IPC_64:
1575		if (copy_from_user(out, buf, sizeof(*out)))
1576			return -EFAULT;
1577		return 0;
1578	case IPC_OLD:
1579	    {
1580		struct semid_ds tbuf_old;
1581
1582		if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1583			return -EFAULT;
1584
1585		out->sem_perm.uid	= tbuf_old.sem_perm.uid;
1586		out->sem_perm.gid	= tbuf_old.sem_perm.gid;
1587		out->sem_perm.mode	= tbuf_old.sem_perm.mode;
1588
1589		return 0;
1590	    }
1591	default:
1592		return -EINVAL;
1593	}
1594}
1595
1596/*
1597 * This function handles some semctl commands which require the rwsem
1598 * to be held in write mode.
1599 * NOTE: no locks must be held, the rwsem is taken inside this function.
1600 */
1601static int semctl_down(struct ipc_namespace *ns, int semid,
1602		       int cmd, struct semid64_ds *semid64)
1603{
1604	struct sem_array *sma;
1605	int err;
1606	struct kern_ipc_perm *ipcp;
1607
1608	down_write(&sem_ids(ns).rwsem);
1609	rcu_read_lock();
1610
1611	ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1612				      &semid64->sem_perm, 0);
1613	if (IS_ERR(ipcp)) {
1614		err = PTR_ERR(ipcp);
1615		goto out_unlock1;
1616	}
1617
1618	sma = container_of(ipcp, struct sem_array, sem_perm);
1619
1620	err = security_sem_semctl(&sma->sem_perm, cmd);
1621	if (err)
1622		goto out_unlock1;
1623
1624	switch (cmd) {
1625	case IPC_RMID:
1626		sem_lock(sma, NULL, -1);
1627		/* freeary unlocks the ipc object and rcu */
1628		freeary(ns, ipcp);
1629		goto out_up;
1630	case IPC_SET:
1631		sem_lock(sma, NULL, -1);
1632		err = ipc_update_perm(&semid64->sem_perm, ipcp);
1633		if (err)
1634			goto out_unlock0;
1635		sma->sem_ctime = ktime_get_real_seconds();
1636		break;
1637	default:
1638		err = -EINVAL;
1639		goto out_unlock1;
1640	}
1641
1642out_unlock0:
1643	sem_unlock(sma, -1);
1644out_unlock1:
1645	rcu_read_unlock();
1646out_up:
1647	up_write(&sem_ids(ns).rwsem);
1648	return err;
1649}
1650
1651static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1652{
1653	struct ipc_namespace *ns;
1654	void __user *p = (void __user *)arg;
1655	struct semid64_ds semid64;
1656	int err;
1657
1658	if (semid < 0)
1659		return -EINVAL;
1660
1661	ns = current->nsproxy->ipc_ns;
1662
1663	switch (cmd) {
1664	case IPC_INFO:
1665	case SEM_INFO:
1666		return semctl_info(ns, semid, cmd, p);
1667	case IPC_STAT:
1668	case SEM_STAT:
1669	case SEM_STAT_ANY:
1670		err = semctl_stat(ns, semid, cmd, &semid64);
1671		if (err < 0)
1672			return err;
1673		if (copy_semid_to_user(p, &semid64, version))
1674			err = -EFAULT;
1675		return err;
1676	case GETALL:
1677	case GETVAL:
1678	case GETPID:
1679	case GETNCNT:
1680	case GETZCNT:
1681	case SETALL:
1682		return semctl_main(ns, semid, semnum, cmd, p);
1683	case SETVAL: {
1684		int val;
1685#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1686		/* big-endian 64bit */
1687		val = arg >> 32;
1688#else
1689		/* 32bit or little-endian 64bit */
1690		val = arg;
1691#endif
1692		return semctl_setval(ns, semid, semnum, val);
1693	}
1694	case IPC_SET:
1695		if (copy_semid_from_user(&semid64, p, version))
1696			return -EFAULT;
1697		fallthrough;
1698	case IPC_RMID:
1699		return semctl_down(ns, semid, cmd, &semid64);
1700	default:
1701		return -EINVAL;
1702	}
1703}
1704
1705SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1706{
1707	return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1708}
1709
1710#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1711long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1712{
1713	int version = ipc_parse_version(&cmd);
1714
1715	return ksys_semctl(semid, semnum, cmd, arg, version);
1716}
1717
1718SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1719{
1720	return ksys_old_semctl(semid, semnum, cmd, arg);
1721}
1722#endif
1723
1724#ifdef CONFIG_COMPAT
1725
1726struct compat_semid_ds {
1727	struct compat_ipc_perm sem_perm;
1728	old_time32_t sem_otime;
1729	old_time32_t sem_ctime;
1730	compat_uptr_t sem_base;
1731	compat_uptr_t sem_pending;
1732	compat_uptr_t sem_pending_last;
1733	compat_uptr_t undo;
1734	unsigned short sem_nsems;
1735};
1736
1737static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1738					int version)
1739{
1740	memset(out, 0, sizeof(*out));
1741	if (version == IPC_64) {
1742		struct compat_semid64_ds __user *p = buf;
1743		return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1744	} else {
1745		struct compat_semid_ds __user *p = buf;
1746		return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1747	}
1748}
1749
1750static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1751					int version)
1752{
1753	if (version == IPC_64) {
1754		struct compat_semid64_ds v;
1755		memset(&v, 0, sizeof(v));
1756		to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1757		v.sem_otime	 = lower_32_bits(in->sem_otime);
1758		v.sem_otime_high = upper_32_bits(in->sem_otime);
1759		v.sem_ctime	 = lower_32_bits(in->sem_ctime);
1760		v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1761		v.sem_nsems = in->sem_nsems;
1762		return copy_to_user(buf, &v, sizeof(v));
1763	} else {
1764		struct compat_semid_ds v;
1765		memset(&v, 0, sizeof(v));
1766		to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1767		v.sem_otime = in->sem_otime;
1768		v.sem_ctime = in->sem_ctime;
1769		v.sem_nsems = in->sem_nsems;
1770		return copy_to_user(buf, &v, sizeof(v));
1771	}
1772}
1773
1774static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1775{
1776	void __user *p = compat_ptr(arg);
1777	struct ipc_namespace *ns;
1778	struct semid64_ds semid64;
1779	int err;
1780
1781	ns = current->nsproxy->ipc_ns;
1782
1783	if (semid < 0)
1784		return -EINVAL;
1785
1786	switch (cmd & (~IPC_64)) {
1787	case IPC_INFO:
1788	case SEM_INFO:
1789		return semctl_info(ns, semid, cmd, p);
1790	case IPC_STAT:
1791	case SEM_STAT:
1792	case SEM_STAT_ANY:
1793		err = semctl_stat(ns, semid, cmd, &semid64);
1794		if (err < 0)
1795			return err;
1796		if (copy_compat_semid_to_user(p, &semid64, version))
1797			err = -EFAULT;
1798		return err;
1799	case GETVAL:
1800	case GETPID:
1801	case GETNCNT:
1802	case GETZCNT:
1803	case GETALL:
1804	case SETALL:
1805		return semctl_main(ns, semid, semnum, cmd, p);
1806	case SETVAL:
1807		return semctl_setval(ns, semid, semnum, arg);
1808	case IPC_SET:
1809		if (copy_compat_semid_from_user(&semid64, p, version))
1810			return -EFAULT;
1811		fallthrough;
1812	case IPC_RMID:
1813		return semctl_down(ns, semid, cmd, &semid64);
1814	default:
1815		return -EINVAL;
1816	}
1817}
1818
1819COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1820{
1821	return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1822}
1823
1824#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1825long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1826{
1827	int version = compat_ipc_parse_version(&cmd);
1828
1829	return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1830}
1831
1832COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1833{
1834	return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1835}
1836#endif
1837#endif
1838
1839/* If the task doesn't already have a undo_list, then allocate one
1840 * here.  We guarantee there is only one thread using this undo list,
1841 * and current is THE ONE
1842 *
1843 * If this allocation and assignment succeeds, but later
1844 * portions of this code fail, there is no need to free the sem_undo_list.
1845 * Just let it stay associated with the task, and it'll be freed later
1846 * at exit time.
1847 *
1848 * This can block, so callers must hold no locks.
1849 */
1850static inline int get_undo_list(struct sem_undo_list **undo_listp)
1851{
1852	struct sem_undo_list *undo_list;
1853
1854	undo_list = current->sysvsem.undo_list;
1855	if (!undo_list) {
1856		undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1857		if (undo_list == NULL)
1858			return -ENOMEM;
1859		spin_lock_init(&undo_list->lock);
1860		refcount_set(&undo_list->refcnt, 1);
1861		INIT_LIST_HEAD(&undo_list->list_proc);
1862
1863		current->sysvsem.undo_list = undo_list;
1864	}
1865	*undo_listp = undo_list;
1866	return 0;
1867}
1868
1869static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1870{
1871	struct sem_undo *un;
1872
1873	list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1874				spin_is_locked(&ulp->lock)) {
1875		if (un->semid == semid)
1876			return un;
1877	}
1878	return NULL;
1879}
1880
1881static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1882{
1883	struct sem_undo *un;
1884
1885	assert_spin_locked(&ulp->lock);
1886
1887	un = __lookup_undo(ulp, semid);
1888	if (un) {
1889		list_del_rcu(&un->list_proc);
1890		list_add_rcu(&un->list_proc, &ulp->list_proc);
1891	}
1892	return un;
1893}
1894
1895/**
1896 * find_alloc_undo - lookup (and if not present create) undo array
1897 * @ns: namespace
1898 * @semid: semaphore array id
1899 *
1900 * The function looks up (and if not present creates) the undo structure.
1901 * The size of the undo structure depends on the size of the semaphore
1902 * array, thus the alloc path is not that straightforward.
1903 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1904 * performs a rcu_read_lock().
1905 */
1906static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1907{
1908	struct sem_array *sma;
1909	struct sem_undo_list *ulp;
1910	struct sem_undo *un, *new;
1911	int nsems, error;
1912
1913	error = get_undo_list(&ulp);
1914	if (error)
1915		return ERR_PTR(error);
1916
1917	rcu_read_lock();
1918	spin_lock(&ulp->lock);
1919	un = lookup_undo(ulp, semid);
1920	spin_unlock(&ulp->lock);
1921	if (likely(un != NULL))
1922		goto out;
1923
1924	/* no undo structure around - allocate one. */
1925	/* step 1: figure out the size of the semaphore array */
1926	sma = sem_obtain_object_check(ns, semid);
1927	if (IS_ERR(sma)) {
1928		rcu_read_unlock();
1929		return ERR_CAST(sma);
1930	}
1931
1932	nsems = sma->sem_nsems;
1933	if (!ipc_rcu_getref(&sma->sem_perm)) {
1934		rcu_read_unlock();
1935		un = ERR_PTR(-EIDRM);
1936		goto out;
1937	}
1938	rcu_read_unlock();
1939
1940	/* step 2: allocate new undo structure */
1941	new = kvzalloc(struct_size(new, semadj, nsems), GFP_KERNEL_ACCOUNT);
1942	if (!new) {
1943		ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1944		return ERR_PTR(-ENOMEM);
1945	}
1946
1947	/* step 3: Acquire the lock on semaphore array */
1948	rcu_read_lock();
1949	sem_lock_and_putref(sma);
1950	if (!ipc_valid_object(&sma->sem_perm)) {
1951		sem_unlock(sma, -1);
1952		rcu_read_unlock();
1953		kvfree(new);
1954		un = ERR_PTR(-EIDRM);
1955		goto out;
1956	}
1957	spin_lock(&ulp->lock);
1958
1959	/*
1960	 * step 4: check for races: did someone else allocate the undo struct?
1961	 */
1962	un = lookup_undo(ulp, semid);
1963	if (un) {
1964		spin_unlock(&ulp->lock);
1965		kvfree(new);
1966		goto success;
1967	}
1968	/* step 5: initialize & link new undo structure */
1969	new->ulp = ulp;
1970	new->semid = semid;
1971	assert_spin_locked(&ulp->lock);
1972	list_add_rcu(&new->list_proc, &ulp->list_proc);
1973	ipc_assert_locked_object(&sma->sem_perm);
1974	list_add(&new->list_id, &sma->list_id);
1975	un = new;
1976	spin_unlock(&ulp->lock);
1977success:
1978	sem_unlock(sma, -1);
1979out:
1980	return un;
1981}
1982
1983long __do_semtimedop(int semid, struct sembuf *sops,
1984		unsigned nsops, const struct timespec64 *timeout,
1985		struct ipc_namespace *ns)
1986{
1987	int error = -EINVAL;
1988	struct sem_array *sma;
1989	struct sembuf *sop;
1990	struct sem_undo *un;
1991	int max, locknum;
1992	bool undos = false, alter = false, dupsop = false;
1993	struct sem_queue queue;
1994	unsigned long dup = 0;
1995	ktime_t expires, *exp = NULL;
1996	bool timed_out = false;
1997
1998	if (nsops < 1 || semid < 0)
1999		return -EINVAL;
2000	if (nsops > ns->sc_semopm)
2001		return -E2BIG;
2002
2003	if (timeout) {
2004		if (!timespec64_valid(timeout))
2005			return -EINVAL;
2006		expires = ktime_add_safe(ktime_get(),
2007				timespec64_to_ktime(*timeout));
2008		exp = &expires;
2009	}
2010
2011
2012	max = 0;
2013	for (sop = sops; sop < sops + nsops; sop++) {
2014		unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2015
2016		if (sop->sem_num >= max)
2017			max = sop->sem_num;
2018		if (sop->sem_flg & SEM_UNDO)
2019			undos = true;
2020		if (dup & mask) {
2021			/*
2022			 * There was a previous alter access that appears
2023			 * to have accessed the same semaphore, thus use
2024			 * the dupsop logic. "appears", because the detection
2025			 * can only check % BITS_PER_LONG.
2026			 */
2027			dupsop = true;
2028		}
2029		if (sop->sem_op != 0) {
2030			alter = true;
2031			dup |= mask;
2032		}
2033	}
2034
2035	if (undos) {
2036		/* On success, find_alloc_undo takes the rcu_read_lock */
2037		un = find_alloc_undo(ns, semid);
2038		if (IS_ERR(un)) {
2039			error = PTR_ERR(un);
2040			goto out;
2041		}
2042	} else {
2043		un = NULL;
2044		rcu_read_lock();
2045	}
2046
2047	sma = sem_obtain_object_check(ns, semid);
2048	if (IS_ERR(sma)) {
2049		rcu_read_unlock();
2050		error = PTR_ERR(sma);
2051		goto out;
2052	}
2053
2054	error = -EFBIG;
2055	if (max >= sma->sem_nsems) {
2056		rcu_read_unlock();
2057		goto out;
2058	}
2059
2060	error = -EACCES;
2061	if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2062		rcu_read_unlock();
2063		goto out;
2064	}
2065
2066	error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2067	if (error) {
2068		rcu_read_unlock();
2069		goto out;
2070	}
2071
2072	error = -EIDRM;
2073	locknum = sem_lock(sma, sops, nsops);
2074	/*
2075	 * We eventually might perform the following check in a lockless
2076	 * fashion, considering ipc_valid_object() locking constraints.
2077	 * If nsops == 1 and there is no contention for sem_perm.lock, then
2078	 * only a per-semaphore lock is held and it's OK to proceed with the
2079	 * check below. More details on the fine grained locking scheme
2080	 * entangled here and why it's RMID race safe on comments at sem_lock()
2081	 */
2082	if (!ipc_valid_object(&sma->sem_perm))
2083		goto out_unlock;
2084	/*
2085	 * semid identifiers are not unique - find_alloc_undo may have
2086	 * allocated an undo structure, it was invalidated by an RMID
2087	 * and now a new array with received the same id. Check and fail.
2088	 * This case can be detected checking un->semid. The existence of
2089	 * "un" itself is guaranteed by rcu.
2090	 */
2091	if (un && un->semid == -1)
2092		goto out_unlock;
2093
2094	queue.sops = sops;
2095	queue.nsops = nsops;
2096	queue.undo = un;
2097	queue.pid = task_tgid(current);
2098	queue.alter = alter;
2099	queue.dupsop = dupsop;
2100
2101	error = perform_atomic_semop(sma, &queue);
2102	if (error == 0) { /* non-blocking successful path */
2103		DEFINE_WAKE_Q(wake_q);
2104
2105		/*
2106		 * If the operation was successful, then do
2107		 * the required updates.
2108		 */
2109		if (alter)
2110			do_smart_update(sma, sops, nsops, 1, &wake_q);
2111		else
2112			set_semotime(sma, sops);
2113
2114		sem_unlock(sma, locknum);
2115		rcu_read_unlock();
2116		wake_up_q(&wake_q);
2117
2118		goto out;
2119	}
2120	if (error < 0) /* non-blocking error path */
2121		goto out_unlock;
2122
2123	/*
2124	 * We need to sleep on this operation, so we put the current
2125	 * task into the pending queue and go to sleep.
2126	 */
2127	if (nsops == 1) {
2128		struct sem *curr;
2129		int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2130		curr = &sma->sems[idx];
2131
2132		if (alter) {
2133			if (sma->complex_count) {
2134				list_add_tail(&queue.list,
2135						&sma->pending_alter);
2136			} else {
2137
2138				list_add_tail(&queue.list,
2139						&curr->pending_alter);
2140			}
2141		} else {
2142			list_add_tail(&queue.list, &curr->pending_const);
2143		}
2144	} else {
2145		if (!sma->complex_count)
2146			merge_queues(sma);
2147
2148		if (alter)
2149			list_add_tail(&queue.list, &sma->pending_alter);
2150		else
2151			list_add_tail(&queue.list, &sma->pending_const);
2152
2153		sma->complex_count++;
2154	}
2155
2156	do {
2157		/* memory ordering ensured by the lock in sem_lock() */
2158		WRITE_ONCE(queue.status, -EINTR);
2159		queue.sleeper = current;
2160
2161		/* memory ordering is ensured by the lock in sem_lock() */
2162		__set_current_state(TASK_INTERRUPTIBLE);
2163		sem_unlock(sma, locknum);
2164		rcu_read_unlock();
2165
2166		timed_out = !schedule_hrtimeout_range(exp,
2167				current->timer_slack_ns, HRTIMER_MODE_ABS);
2168
2169		/*
2170		 * fastpath: the semop has completed, either successfully or
2171		 * not, from the syscall pov, is quite irrelevant to us at this
2172		 * point; we're done.
2173		 *
2174		 * We _do_ care, nonetheless, about being awoken by a signal or
2175		 * spuriously.  The queue.status is checked again in the
2176		 * slowpath (aka after taking sem_lock), such that we can detect
2177		 * scenarios where we were awakened externally, during the
2178		 * window between wake_q_add() and wake_up_q().
2179		 */
2180		rcu_read_lock();
2181		error = READ_ONCE(queue.status);
2182		if (error != -EINTR) {
2183			/* see SEM_BARRIER_2 for purpose/pairing */
2184			smp_acquire__after_ctrl_dep();
2185			rcu_read_unlock();
2186			goto out;
2187		}
2188
2189		locknum = sem_lock(sma, sops, nsops);
2190
2191		if (!ipc_valid_object(&sma->sem_perm))
2192			goto out_unlock;
2193
2194		/*
2195		 * No necessity for any barrier: We are protect by sem_lock()
2196		 */
2197		error = READ_ONCE(queue.status);
2198
2199		/*
2200		 * If queue.status != -EINTR we are woken up by another process.
2201		 * Leave without unlink_queue(), but with sem_unlock().
2202		 */
2203		if (error != -EINTR)
2204			goto out_unlock;
2205
2206		/*
2207		 * If an interrupt occurred we have to clean up the queue.
2208		 */
2209		if (timed_out)
2210			error = -EAGAIN;
2211	} while (error == -EINTR && !signal_pending(current)); /* spurious */
2212
2213	unlink_queue(sma, &queue);
2214
2215out_unlock:
2216	sem_unlock(sma, locknum);
2217	rcu_read_unlock();
2218out:
2219	return error;
2220}
2221
2222static long do_semtimedop(int semid, struct sembuf __user *tsops,
2223		unsigned nsops, const struct timespec64 *timeout)
2224{
2225	struct sembuf fast_sops[SEMOPM_FAST];
2226	struct sembuf *sops = fast_sops;
2227	struct ipc_namespace *ns;
2228	int ret;
2229
2230	ns = current->nsproxy->ipc_ns;
2231	if (nsops > ns->sc_semopm)
2232		return -E2BIG;
2233	if (nsops < 1)
2234		return -EINVAL;
2235
2236	if (nsops > SEMOPM_FAST) {
2237		sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2238		if (sops == NULL)
2239			return -ENOMEM;
2240	}
2241
2242	if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2243		ret =  -EFAULT;
2244		goto out_free;
2245	}
2246
2247	ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
2248
2249out_free:
2250	if (sops != fast_sops)
2251		kvfree(sops);
2252
2253	return ret;
2254}
2255
2256long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2257		     unsigned int nsops, const struct __kernel_timespec __user *timeout)
2258{
2259	if (timeout) {
2260		struct timespec64 ts;
2261		if (get_timespec64(&ts, timeout))
2262			return -EFAULT;
2263		return do_semtimedop(semid, tsops, nsops, &ts);
2264	}
2265	return do_semtimedop(semid, tsops, nsops, NULL);
2266}
2267
2268SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2269		unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2270{
2271	return ksys_semtimedop(semid, tsops, nsops, timeout);
2272}
2273
2274#ifdef CONFIG_COMPAT_32BIT_TIME
2275long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2276			    unsigned int nsops,
2277			    const struct old_timespec32 __user *timeout)
2278{
2279	if (timeout) {
2280		struct timespec64 ts;
2281		if (get_old_timespec32(&ts, timeout))
2282			return -EFAULT;
2283		return do_semtimedop(semid, tsems, nsops, &ts);
2284	}
2285	return do_semtimedop(semid, tsems, nsops, NULL);
2286}
2287
2288SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2289		       unsigned int, nsops,
2290		       const struct old_timespec32 __user *, timeout)
2291{
2292	return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2293}
2294#endif
2295
2296SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2297		unsigned, nsops)
2298{
2299	return do_semtimedop(semid, tsops, nsops, NULL);
2300}
2301
2302/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2303 * parent and child tasks.
2304 */
2305
2306int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2307{
2308	struct sem_undo_list *undo_list;
2309	int error;
2310
2311	if (clone_flags & CLONE_SYSVSEM) {
2312		error = get_undo_list(&undo_list);
2313		if (error)
2314			return error;
2315		refcount_inc(&undo_list->refcnt);
2316		tsk->sysvsem.undo_list = undo_list;
2317	} else
2318		tsk->sysvsem.undo_list = NULL;
2319
2320	return 0;
2321}
2322
2323/*
2324 * add semadj values to semaphores, free undo structures.
2325 * undo structures are not freed when semaphore arrays are destroyed
2326 * so some of them may be out of date.
2327 * IMPLEMENTATION NOTE: There is some confusion over whether the
2328 * set of adjustments that needs to be done should be done in an atomic
2329 * manner or not. That is, if we are attempting to decrement the semval
2330 * should we queue up and wait until we can do so legally?
2331 * The original implementation attempted to do this (queue and wait).
2332 * The current implementation does not do so. The POSIX standard
2333 * and SVID should be consulted to determine what behavior is mandated.
2334 */
2335void exit_sem(struct task_struct *tsk)
2336{
2337	struct sem_undo_list *ulp;
2338
2339	ulp = tsk->sysvsem.undo_list;
2340	if (!ulp)
2341		return;
2342	tsk->sysvsem.undo_list = NULL;
2343
2344	if (!refcount_dec_and_test(&ulp->refcnt))
2345		return;
2346
2347	for (;;) {
2348		struct sem_array *sma;
2349		struct sem_undo *un;
2350		int semid, i;
2351		DEFINE_WAKE_Q(wake_q);
2352
2353		cond_resched();
2354
2355		rcu_read_lock();
2356		un = list_entry_rcu(ulp->list_proc.next,
2357				    struct sem_undo, list_proc);
2358		if (&un->list_proc == &ulp->list_proc) {
2359			/*
2360			 * We must wait for freeary() before freeing this ulp,
2361			 * in case we raced with last sem_undo. There is a small
2362			 * possibility where we exit while freeary() didn't
2363			 * finish unlocking sem_undo_list.
2364			 */
2365			spin_lock(&ulp->lock);
2366			spin_unlock(&ulp->lock);
2367			rcu_read_unlock();
2368			break;
2369		}
2370		spin_lock(&ulp->lock);
2371		semid = un->semid;
2372		spin_unlock(&ulp->lock);
2373
2374		/* exit_sem raced with IPC_RMID, nothing to do */
2375		if (semid == -1) {
2376			rcu_read_unlock();
2377			continue;
2378		}
2379
2380		sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2381		/* exit_sem raced with IPC_RMID, nothing to do */
2382		if (IS_ERR(sma)) {
2383			rcu_read_unlock();
2384			continue;
2385		}
2386
2387		sem_lock(sma, NULL, -1);
2388		/* exit_sem raced with IPC_RMID, nothing to do */
2389		if (!ipc_valid_object(&sma->sem_perm)) {
2390			sem_unlock(sma, -1);
2391			rcu_read_unlock();
2392			continue;
2393		}
2394		un = __lookup_undo(ulp, semid);
2395		if (un == NULL) {
2396			/* exit_sem raced with IPC_RMID+semget() that created
2397			 * exactly the same semid. Nothing to do.
2398			 */
2399			sem_unlock(sma, -1);
2400			rcu_read_unlock();
2401			continue;
2402		}
2403
2404		/* remove un from the linked lists */
2405		ipc_assert_locked_object(&sma->sem_perm);
2406		list_del(&un->list_id);
2407
2408		spin_lock(&ulp->lock);
2409		list_del_rcu(&un->list_proc);
2410		spin_unlock(&ulp->lock);
2411
2412		/* perform adjustments registered in un */
2413		for (i = 0; i < sma->sem_nsems; i++) {
2414			struct sem *semaphore = &sma->sems[i];
2415			if (un->semadj[i]) {
2416				semaphore->semval += un->semadj[i];
2417				/*
2418				 * Range checks of the new semaphore value,
2419				 * not defined by sus:
2420				 * - Some unices ignore the undo entirely
2421				 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2422				 * - some cap the value (e.g. FreeBSD caps
2423				 *   at 0, but doesn't enforce SEMVMX)
2424				 *
2425				 * Linux caps the semaphore value, both at 0
2426				 * and at SEMVMX.
2427				 *
2428				 *	Manfred <manfred@colorfullife.com>
2429				 */
2430				if (semaphore->semval < 0)
2431					semaphore->semval = 0;
2432				if (semaphore->semval > SEMVMX)
2433					semaphore->semval = SEMVMX;
2434				ipc_update_pid(&semaphore->sempid, task_tgid(current));
2435			}
2436		}
2437		/* maybe some queued-up processes were waiting for this */
2438		do_smart_update(sma, NULL, 0, 1, &wake_q);
2439		sem_unlock(sma, -1);
2440		rcu_read_unlock();
2441		wake_up_q(&wake_q);
2442
2443		kvfree_rcu(un, rcu);
2444	}
2445	kfree(ulp);
2446}
2447
2448#ifdef CONFIG_PROC_FS
2449static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2450{
2451	struct user_namespace *user_ns = seq_user_ns(s);
2452	struct kern_ipc_perm *ipcp = it;
2453	struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2454	time64_t sem_otime;
2455
2456	/*
2457	 * The proc interface isn't aware of sem_lock(), it calls
2458	 * ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2459	 * (in sysvipc_find_ipc)
2460	 * In order to stay compatible with sem_lock(), we must
2461	 * enter / leave complex_mode.
2462	 */
2463	complexmode_enter(sma);
2464
2465	sem_otime = get_semotime(sma);
2466
2467	seq_printf(s,
2468		   "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2469		   sma->sem_perm.key,
2470		   sma->sem_perm.id,
2471		   sma->sem_perm.mode,
2472		   sma->sem_nsems,
2473		   from_kuid_munged(user_ns, sma->sem_perm.uid),
2474		   from_kgid_munged(user_ns, sma->sem_perm.gid),
2475		   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2476		   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2477		   sem_otime,
2478		   sma->sem_ctime);
2479
2480	complexmode_tryleave(sma);
2481
2482	return 0;
2483}
2484#endif
2485