1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 *	git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <net/compat.h>
47#include <linux/refcount.h>
48#include <linux/uio.h>
49#include <linux/bits.h>
50
51#include <linux/sched/signal.h>
52#include <linux/fs.h>
53#include <linux/file.h>
54#include <linux/fdtable.h>
55#include <linux/mm.h>
56#include <linux/mman.h>
57#include <linux/percpu.h>
58#include <linux/slab.h>
59#include <linux/bvec.h>
60#include <linux/net.h>
61#include <net/sock.h>
62#include <linux/anon_inodes.h>
63#include <linux/sched/mm.h>
64#include <linux/uaccess.h>
65#include <linux/nospec.h>
66#include <linux/highmem.h>
67#include <linux/fsnotify.h>
68#include <linux/fadvise.h>
69#include <linux/task_work.h>
70#include <linux/io_uring.h>
71#include <linux/io_uring/cmd.h>
72#include <linux/audit.h>
73#include <linux/security.h>
74#include <asm/shmparam.h>
75
76#define CREATE_TRACE_POINTS
77#include <trace/events/io_uring.h>
78
79#include <uapi/linux/io_uring.h>
80
81#include "io-wq.h"
82
83#include "io_uring.h"
84#include "opdef.h"
85#include "refs.h"
86#include "tctx.h"
87#include "register.h"
88#include "sqpoll.h"
89#include "fdinfo.h"
90#include "kbuf.h"
91#include "rsrc.h"
92#include "cancel.h"
93#include "net.h"
94#include "notif.h"
95#include "waitid.h"
96#include "futex.h"
97#include "napi.h"
98
99#include "timeout.h"
100#include "poll.h"
101#include "rw.h"
102#include "alloc_cache.h"
103
104#define IORING_MAX_ENTRIES	32768
105#define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
106
107#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108			  IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109
110#define SQE_VALID_FLAGS	(SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111			IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112
113#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115				REQ_F_ASYNC_DATA)
116
117#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118				 IO_REQ_CLEAN_FLAGS)
119
120#define IO_TCTX_REFS_CACHE_NR	(1U << 10)
121
122#define IO_COMPL_BATCH			32
123#define IO_REQ_ALLOC_BATCH		8
124
125struct io_defer_entry {
126	struct list_head	list;
127	struct io_kiocb		*req;
128	u32			seq;
129};
130
131/* requests with any of those set should undergo io_disarm_next() */
132#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
133#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
134
135/*
136 * No waiters. It's larger than any valid value of the tw counter
137 * so that tests against ->cq_wait_nr would fail and skip wake_up().
138 */
139#define IO_CQ_WAKE_INIT		(-1U)
140/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
141#define IO_CQ_WAKE_FORCE	(IO_CQ_WAKE_INIT >> 1)
142
143static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144					 struct task_struct *task,
145					 bool cancel_all);
146
147static void io_queue_sqe(struct io_kiocb *req);
148
149struct kmem_cache *req_cachep;
150static struct workqueue_struct *iou_wq __ro_after_init;
151
152static int __read_mostly sysctl_io_uring_disabled;
153static int __read_mostly sysctl_io_uring_group = -1;
154
155#ifdef CONFIG_SYSCTL
156static struct ctl_table kernel_io_uring_disabled_table[] = {
157	{
158		.procname	= "io_uring_disabled",
159		.data		= &sysctl_io_uring_disabled,
160		.maxlen		= sizeof(sysctl_io_uring_disabled),
161		.mode		= 0644,
162		.proc_handler	= proc_dointvec_minmax,
163		.extra1		= SYSCTL_ZERO,
164		.extra2		= SYSCTL_TWO,
165	},
166	{
167		.procname	= "io_uring_group",
168		.data		= &sysctl_io_uring_group,
169		.maxlen		= sizeof(gid_t),
170		.mode		= 0644,
171		.proc_handler	= proc_dointvec,
172	},
173	{},
174};
175#endif
176
177static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
178{
179	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
180	    ctx->submit_state.cqes_count)
181		__io_submit_flush_completions(ctx);
182}
183
184static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
185{
186	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
187}
188
189static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
190{
191	return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
192}
193
194static bool io_match_linked(struct io_kiocb *head)
195{
196	struct io_kiocb *req;
197
198	io_for_each_link(req, head) {
199		if (req->flags & REQ_F_INFLIGHT)
200			return true;
201	}
202	return false;
203}
204
205/*
206 * As io_match_task() but protected against racing with linked timeouts.
207 * User must not hold timeout_lock.
208 */
209bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
210			bool cancel_all)
211{
212	bool matched;
213
214	if (task && head->task != task)
215		return false;
216	if (cancel_all)
217		return true;
218
219	if (head->flags & REQ_F_LINK_TIMEOUT) {
220		struct io_ring_ctx *ctx = head->ctx;
221
222		/* protect against races with linked timeouts */
223		spin_lock_irq(&ctx->timeout_lock);
224		matched = io_match_linked(head);
225		spin_unlock_irq(&ctx->timeout_lock);
226	} else {
227		matched = io_match_linked(head);
228	}
229	return matched;
230}
231
232static inline void req_fail_link_node(struct io_kiocb *req, int res)
233{
234	req_set_fail(req);
235	io_req_set_res(req, res, 0);
236}
237
238static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
239{
240	wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
241}
242
243static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
244{
245	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
246
247	complete(&ctx->ref_comp);
248}
249
250static __cold void io_fallback_req_func(struct work_struct *work)
251{
252	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
253						fallback_work.work);
254	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
255	struct io_kiocb *req, *tmp;
256	struct io_tw_state ts = { .locked = true, };
257
258	percpu_ref_get(&ctx->refs);
259	mutex_lock(&ctx->uring_lock);
260	llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
261		req->io_task_work.func(req, &ts);
262	if (WARN_ON_ONCE(!ts.locked))
263		return;
264	io_submit_flush_completions(ctx);
265	mutex_unlock(&ctx->uring_lock);
266	percpu_ref_put(&ctx->refs);
267}
268
269static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
270{
271	unsigned hash_buckets = 1U << bits;
272	size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
273
274	table->hbs = kmalloc(hash_size, GFP_KERNEL);
275	if (!table->hbs)
276		return -ENOMEM;
277
278	table->hash_bits = bits;
279	init_hash_table(table, hash_buckets);
280	return 0;
281}
282
283static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
284{
285	struct io_ring_ctx *ctx;
286	int hash_bits;
287
288	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
289	if (!ctx)
290		return NULL;
291
292	xa_init(&ctx->io_bl_xa);
293
294	/*
295	 * Use 5 bits less than the max cq entries, that should give us around
296	 * 32 entries per hash list if totally full and uniformly spread, but
297	 * don't keep too many buckets to not overconsume memory.
298	 */
299	hash_bits = ilog2(p->cq_entries) - 5;
300	hash_bits = clamp(hash_bits, 1, 8);
301	if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
302		goto err;
303	if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
304		goto err;
305	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
306			    0, GFP_KERNEL))
307		goto err;
308
309	ctx->flags = p->flags;
310	atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
311	init_waitqueue_head(&ctx->sqo_sq_wait);
312	INIT_LIST_HEAD(&ctx->sqd_list);
313	INIT_LIST_HEAD(&ctx->cq_overflow_list);
314	INIT_LIST_HEAD(&ctx->io_buffers_cache);
315	INIT_HLIST_HEAD(&ctx->io_buf_list);
316	io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
317			    sizeof(struct io_rsrc_node));
318	io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
319			    sizeof(struct async_poll));
320	io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
321			    sizeof(struct io_async_msghdr));
322	io_futex_cache_init(ctx);
323	init_completion(&ctx->ref_comp);
324	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
325	mutex_init(&ctx->uring_lock);
326	init_waitqueue_head(&ctx->cq_wait);
327	init_waitqueue_head(&ctx->poll_wq);
328	init_waitqueue_head(&ctx->rsrc_quiesce_wq);
329	spin_lock_init(&ctx->completion_lock);
330	spin_lock_init(&ctx->timeout_lock);
331	INIT_WQ_LIST(&ctx->iopoll_list);
332	INIT_LIST_HEAD(&ctx->io_buffers_comp);
333	INIT_LIST_HEAD(&ctx->defer_list);
334	INIT_LIST_HEAD(&ctx->timeout_list);
335	INIT_LIST_HEAD(&ctx->ltimeout_list);
336	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
337	init_llist_head(&ctx->work_llist);
338	INIT_LIST_HEAD(&ctx->tctx_list);
339	ctx->submit_state.free_list.next = NULL;
340	INIT_WQ_LIST(&ctx->locked_free_list);
341	INIT_HLIST_HEAD(&ctx->waitid_list);
342#ifdef CONFIG_FUTEX
343	INIT_HLIST_HEAD(&ctx->futex_list);
344#endif
345	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
346	INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
347	INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
348	io_napi_init(ctx);
349
350	return ctx;
351err:
352	kfree(ctx->cancel_table.hbs);
353	kfree(ctx->cancel_table_locked.hbs);
354	xa_destroy(&ctx->io_bl_xa);
355	kfree(ctx);
356	return NULL;
357}
358
359static void io_account_cq_overflow(struct io_ring_ctx *ctx)
360{
361	struct io_rings *r = ctx->rings;
362
363	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
364	ctx->cq_extra--;
365}
366
367static bool req_need_defer(struct io_kiocb *req, u32 seq)
368{
369	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
370		struct io_ring_ctx *ctx = req->ctx;
371
372		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
373	}
374
375	return false;
376}
377
378static void io_clean_op(struct io_kiocb *req)
379{
380	if (req->flags & REQ_F_BUFFER_SELECTED) {
381		spin_lock(&req->ctx->completion_lock);
382		io_put_kbuf_comp(req);
383		spin_unlock(&req->ctx->completion_lock);
384	}
385
386	if (req->flags & REQ_F_NEED_CLEANUP) {
387		const struct io_cold_def *def = &io_cold_defs[req->opcode];
388
389		if (def->cleanup)
390			def->cleanup(req);
391	}
392	if ((req->flags & REQ_F_POLLED) && req->apoll) {
393		kfree(req->apoll->double_poll);
394		kfree(req->apoll);
395		req->apoll = NULL;
396	}
397	if (req->flags & REQ_F_INFLIGHT) {
398		struct io_uring_task *tctx = req->task->io_uring;
399
400		atomic_dec(&tctx->inflight_tracked);
401	}
402	if (req->flags & REQ_F_CREDS)
403		put_cred(req->creds);
404	if (req->flags & REQ_F_ASYNC_DATA) {
405		kfree(req->async_data);
406		req->async_data = NULL;
407	}
408	req->flags &= ~IO_REQ_CLEAN_FLAGS;
409}
410
411static inline void io_req_track_inflight(struct io_kiocb *req)
412{
413	if (!(req->flags & REQ_F_INFLIGHT)) {
414		req->flags |= REQ_F_INFLIGHT;
415		atomic_inc(&req->task->io_uring->inflight_tracked);
416	}
417}
418
419static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
420{
421	if (WARN_ON_ONCE(!req->link))
422		return NULL;
423
424	req->flags &= ~REQ_F_ARM_LTIMEOUT;
425	req->flags |= REQ_F_LINK_TIMEOUT;
426
427	/* linked timeouts should have two refs once prep'ed */
428	io_req_set_refcount(req);
429	__io_req_set_refcount(req->link, 2);
430	return req->link;
431}
432
433static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
434{
435	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
436		return NULL;
437	return __io_prep_linked_timeout(req);
438}
439
440static noinline void __io_arm_ltimeout(struct io_kiocb *req)
441{
442	io_queue_linked_timeout(__io_prep_linked_timeout(req));
443}
444
445static inline void io_arm_ltimeout(struct io_kiocb *req)
446{
447	if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
448		__io_arm_ltimeout(req);
449}
450
451static void io_prep_async_work(struct io_kiocb *req)
452{
453	const struct io_issue_def *def = &io_issue_defs[req->opcode];
454	struct io_ring_ctx *ctx = req->ctx;
455
456	if (!(req->flags & REQ_F_CREDS)) {
457		req->flags |= REQ_F_CREDS;
458		req->creds = get_current_cred();
459	}
460
461	req->work.list.next = NULL;
462	req->work.flags = 0;
463	if (req->flags & REQ_F_FORCE_ASYNC)
464		req->work.flags |= IO_WQ_WORK_CONCURRENT;
465
466	if (req->file && !(req->flags & REQ_F_FIXED_FILE))
467		req->flags |= io_file_get_flags(req->file);
468
469	if (req->file && (req->flags & REQ_F_ISREG)) {
470		bool should_hash = def->hash_reg_file;
471
472		/* don't serialize this request if the fs doesn't need it */
473		if (should_hash && (req->file->f_flags & O_DIRECT) &&
474		    (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
475			should_hash = false;
476		if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
477			io_wq_hash_work(&req->work, file_inode(req->file));
478	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
479		if (def->unbound_nonreg_file)
480			req->work.flags |= IO_WQ_WORK_UNBOUND;
481	}
482}
483
484static void io_prep_async_link(struct io_kiocb *req)
485{
486	struct io_kiocb *cur;
487
488	if (req->flags & REQ_F_LINK_TIMEOUT) {
489		struct io_ring_ctx *ctx = req->ctx;
490
491		spin_lock_irq(&ctx->timeout_lock);
492		io_for_each_link(cur, req)
493			io_prep_async_work(cur);
494		spin_unlock_irq(&ctx->timeout_lock);
495	} else {
496		io_for_each_link(cur, req)
497			io_prep_async_work(cur);
498	}
499}
500
501void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
502{
503	struct io_kiocb *link = io_prep_linked_timeout(req);
504	struct io_uring_task *tctx = req->task->io_uring;
505
506	BUG_ON(!tctx);
507	BUG_ON(!tctx->io_wq);
508
509	/* init ->work of the whole link before punting */
510	io_prep_async_link(req);
511
512	/*
513	 * Not expected to happen, but if we do have a bug where this _can_
514	 * happen, catch it here and ensure the request is marked as
515	 * canceled. That will make io-wq go through the usual work cancel
516	 * procedure rather than attempt to run this request (or create a new
517	 * worker for it).
518	 */
519	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
520		req->work.flags |= IO_WQ_WORK_CANCEL;
521
522	trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
523	io_wq_enqueue(tctx->io_wq, &req->work);
524	if (link)
525		io_queue_linked_timeout(link);
526}
527
528static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
529{
530	while (!list_empty(&ctx->defer_list)) {
531		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
532						struct io_defer_entry, list);
533
534		if (req_need_defer(de->req, de->seq))
535			break;
536		list_del_init(&de->list);
537		io_req_task_queue(de->req);
538		kfree(de);
539	}
540}
541
542void io_eventfd_ops(struct rcu_head *rcu)
543{
544	struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
545	int ops = atomic_xchg(&ev_fd->ops, 0);
546
547	if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
548		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
549
550	/* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
551	 * ordering in a race but if references are 0 we know we have to free
552	 * it regardless.
553	 */
554	if (atomic_dec_and_test(&ev_fd->refs)) {
555		eventfd_ctx_put(ev_fd->cq_ev_fd);
556		kfree(ev_fd);
557	}
558}
559
560static void io_eventfd_signal(struct io_ring_ctx *ctx)
561{
562	struct io_ev_fd *ev_fd = NULL;
563
564	rcu_read_lock();
565	/*
566	 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
567	 * and eventfd_signal
568	 */
569	ev_fd = rcu_dereference(ctx->io_ev_fd);
570
571	/*
572	 * Check again if ev_fd exists incase an io_eventfd_unregister call
573	 * completed between the NULL check of ctx->io_ev_fd at the start of
574	 * the function and rcu_read_lock.
575	 */
576	if (unlikely(!ev_fd))
577		goto out;
578	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
579		goto out;
580	if (ev_fd->eventfd_async && !io_wq_current_is_worker())
581		goto out;
582
583	if (likely(eventfd_signal_allowed())) {
584		eventfd_signal_mask(ev_fd->cq_ev_fd, EPOLL_URING_WAKE);
585	} else {
586		atomic_inc(&ev_fd->refs);
587		if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
588			call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
589		else
590			atomic_dec(&ev_fd->refs);
591	}
592
593out:
594	rcu_read_unlock();
595}
596
597static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
598{
599	bool skip;
600
601	spin_lock(&ctx->completion_lock);
602
603	/*
604	 * Eventfd should only get triggered when at least one event has been
605	 * posted. Some applications rely on the eventfd notification count
606	 * only changing IFF a new CQE has been added to the CQ ring. There's
607	 * no depedency on 1:1 relationship between how many times this
608	 * function is called (and hence the eventfd count) and number of CQEs
609	 * posted to the CQ ring.
610	 */
611	skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
612	ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
613	spin_unlock(&ctx->completion_lock);
614	if (skip)
615		return;
616
617	io_eventfd_signal(ctx);
618}
619
620void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
621{
622	if (ctx->poll_activated)
623		io_poll_wq_wake(ctx);
624	if (ctx->off_timeout_used)
625		io_flush_timeouts(ctx);
626	if (ctx->drain_active) {
627		spin_lock(&ctx->completion_lock);
628		io_queue_deferred(ctx);
629		spin_unlock(&ctx->completion_lock);
630	}
631	if (ctx->has_evfd)
632		io_eventfd_flush_signal(ctx);
633}
634
635static inline void __io_cq_lock(struct io_ring_ctx *ctx)
636{
637	if (!ctx->lockless_cq)
638		spin_lock(&ctx->completion_lock);
639}
640
641static inline void io_cq_lock(struct io_ring_ctx *ctx)
642	__acquires(ctx->completion_lock)
643{
644	spin_lock(&ctx->completion_lock);
645}
646
647static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
648{
649	io_commit_cqring(ctx);
650	if (!ctx->task_complete) {
651		if (!ctx->lockless_cq)
652			spin_unlock(&ctx->completion_lock);
653		/* IOPOLL rings only need to wake up if it's also SQPOLL */
654		if (!ctx->syscall_iopoll)
655			io_cqring_wake(ctx);
656	}
657	io_commit_cqring_flush(ctx);
658}
659
660static void io_cq_unlock_post(struct io_ring_ctx *ctx)
661	__releases(ctx->completion_lock)
662{
663	io_commit_cqring(ctx);
664	spin_unlock(&ctx->completion_lock);
665	io_cqring_wake(ctx);
666	io_commit_cqring_flush(ctx);
667}
668
669static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
670{
671	struct io_overflow_cqe *ocqe;
672	LIST_HEAD(list);
673
674	spin_lock(&ctx->completion_lock);
675	list_splice_init(&ctx->cq_overflow_list, &list);
676	clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
677	spin_unlock(&ctx->completion_lock);
678
679	while (!list_empty(&list)) {
680		ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
681		list_del(&ocqe->list);
682		kfree(ocqe);
683	}
684}
685
686static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
687{
688	size_t cqe_size = sizeof(struct io_uring_cqe);
689
690	if (__io_cqring_events(ctx) == ctx->cq_entries)
691		return;
692
693	if (ctx->flags & IORING_SETUP_CQE32)
694		cqe_size <<= 1;
695
696	io_cq_lock(ctx);
697	while (!list_empty(&ctx->cq_overflow_list)) {
698		struct io_uring_cqe *cqe;
699		struct io_overflow_cqe *ocqe;
700
701		if (!io_get_cqe_overflow(ctx, &cqe, true))
702			break;
703		ocqe = list_first_entry(&ctx->cq_overflow_list,
704					struct io_overflow_cqe, list);
705		memcpy(cqe, &ocqe->cqe, cqe_size);
706		list_del(&ocqe->list);
707		kfree(ocqe);
708	}
709
710	if (list_empty(&ctx->cq_overflow_list)) {
711		clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
712		atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
713	}
714	io_cq_unlock_post(ctx);
715}
716
717static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
718{
719	/* iopoll syncs against uring_lock, not completion_lock */
720	if (ctx->flags & IORING_SETUP_IOPOLL)
721		mutex_lock(&ctx->uring_lock);
722	__io_cqring_overflow_flush(ctx);
723	if (ctx->flags & IORING_SETUP_IOPOLL)
724		mutex_unlock(&ctx->uring_lock);
725}
726
727static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
728{
729	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
730		io_cqring_do_overflow_flush(ctx);
731}
732
733/* can be called by any task */
734static void io_put_task_remote(struct task_struct *task)
735{
736	struct io_uring_task *tctx = task->io_uring;
737
738	percpu_counter_sub(&tctx->inflight, 1);
739	if (unlikely(atomic_read(&tctx->in_cancel)))
740		wake_up(&tctx->wait);
741	put_task_struct(task);
742}
743
744/* used by a task to put its own references */
745static void io_put_task_local(struct task_struct *task)
746{
747	task->io_uring->cached_refs++;
748}
749
750/* must to be called somewhat shortly after putting a request */
751static inline void io_put_task(struct task_struct *task)
752{
753	if (likely(task == current))
754		io_put_task_local(task);
755	else
756		io_put_task_remote(task);
757}
758
759void io_task_refs_refill(struct io_uring_task *tctx)
760{
761	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
762
763	percpu_counter_add(&tctx->inflight, refill);
764	refcount_add(refill, &current->usage);
765	tctx->cached_refs += refill;
766}
767
768static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
769{
770	struct io_uring_task *tctx = task->io_uring;
771	unsigned int refs = tctx->cached_refs;
772
773	if (refs) {
774		tctx->cached_refs = 0;
775		percpu_counter_sub(&tctx->inflight, refs);
776		put_task_struct_many(task, refs);
777	}
778}
779
780static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
781				     s32 res, u32 cflags, u64 extra1, u64 extra2)
782{
783	struct io_overflow_cqe *ocqe;
784	size_t ocq_size = sizeof(struct io_overflow_cqe);
785	bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
786
787	lockdep_assert_held(&ctx->completion_lock);
788
789	if (is_cqe32)
790		ocq_size += sizeof(struct io_uring_cqe);
791
792	ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
793	trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
794	if (!ocqe) {
795		/*
796		 * If we're in ring overflow flush mode, or in task cancel mode,
797		 * or cannot allocate an overflow entry, then we need to drop it
798		 * on the floor.
799		 */
800		io_account_cq_overflow(ctx);
801		set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
802		return false;
803	}
804	if (list_empty(&ctx->cq_overflow_list)) {
805		set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
806		atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
807
808	}
809	ocqe->cqe.user_data = user_data;
810	ocqe->cqe.res = res;
811	ocqe->cqe.flags = cflags;
812	if (is_cqe32) {
813		ocqe->cqe.big_cqe[0] = extra1;
814		ocqe->cqe.big_cqe[1] = extra2;
815	}
816	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
817	return true;
818}
819
820void io_req_cqe_overflow(struct io_kiocb *req)
821{
822	io_cqring_event_overflow(req->ctx, req->cqe.user_data,
823				req->cqe.res, req->cqe.flags,
824				req->big_cqe.extra1, req->big_cqe.extra2);
825	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
826}
827
828/*
829 * writes to the cq entry need to come after reading head; the
830 * control dependency is enough as we're using WRITE_ONCE to
831 * fill the cq entry
832 */
833bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
834{
835	struct io_rings *rings = ctx->rings;
836	unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
837	unsigned int free, queued, len;
838
839	/*
840	 * Posting into the CQ when there are pending overflowed CQEs may break
841	 * ordering guarantees, which will affect links, F_MORE users and more.
842	 * Force overflow the completion.
843	 */
844	if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
845		return false;
846
847	/* userspace may cheat modifying the tail, be safe and do min */
848	queued = min(__io_cqring_events(ctx), ctx->cq_entries);
849	free = ctx->cq_entries - queued;
850	/* we need a contiguous range, limit based on the current array offset */
851	len = min(free, ctx->cq_entries - off);
852	if (!len)
853		return false;
854
855	if (ctx->flags & IORING_SETUP_CQE32) {
856		off <<= 1;
857		len <<= 1;
858	}
859
860	ctx->cqe_cached = &rings->cqes[off];
861	ctx->cqe_sentinel = ctx->cqe_cached + len;
862	return true;
863}
864
865static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
866			      u32 cflags)
867{
868	struct io_uring_cqe *cqe;
869
870	ctx->cq_extra++;
871
872	/*
873	 * If we can't get a cq entry, userspace overflowed the
874	 * submission (by quite a lot). Increment the overflow count in
875	 * the ring.
876	 */
877	if (likely(io_get_cqe(ctx, &cqe))) {
878		trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
879
880		WRITE_ONCE(cqe->user_data, user_data);
881		WRITE_ONCE(cqe->res, res);
882		WRITE_ONCE(cqe->flags, cflags);
883
884		if (ctx->flags & IORING_SETUP_CQE32) {
885			WRITE_ONCE(cqe->big_cqe[0], 0);
886			WRITE_ONCE(cqe->big_cqe[1], 0);
887		}
888		return true;
889	}
890	return false;
891}
892
893static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
894	__must_hold(&ctx->uring_lock)
895{
896	struct io_submit_state *state = &ctx->submit_state;
897	unsigned int i;
898
899	lockdep_assert_held(&ctx->uring_lock);
900	for (i = 0; i < state->cqes_count; i++) {
901		struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
902
903		if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
904			if (ctx->lockless_cq) {
905				spin_lock(&ctx->completion_lock);
906				io_cqring_event_overflow(ctx, cqe->user_data,
907							cqe->res, cqe->flags, 0, 0);
908				spin_unlock(&ctx->completion_lock);
909			} else {
910				io_cqring_event_overflow(ctx, cqe->user_data,
911							cqe->res, cqe->flags, 0, 0);
912			}
913		}
914	}
915	state->cqes_count = 0;
916}
917
918static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
919			      bool allow_overflow)
920{
921	bool filled;
922
923	io_cq_lock(ctx);
924	filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
925	if (!filled && allow_overflow)
926		filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
927
928	io_cq_unlock_post(ctx);
929	return filled;
930}
931
932bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
933{
934	return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
935}
936
937/*
938 * A helper for multishot requests posting additional CQEs.
939 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
940 */
941bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
942{
943	struct io_ring_ctx *ctx = req->ctx;
944	u64 user_data = req->cqe.user_data;
945	struct io_uring_cqe *cqe;
946
947	lockdep_assert(!io_wq_current_is_worker());
948
949	if (!defer)
950		return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
951
952	lockdep_assert_held(&ctx->uring_lock);
953
954	if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
955		__io_cq_lock(ctx);
956		__io_flush_post_cqes(ctx);
957		/* no need to flush - flush is deferred */
958		__io_cq_unlock_post(ctx);
959	}
960
961	/* For defered completions this is not as strict as it is otherwise,
962	 * however it's main job is to prevent unbounded posted completions,
963	 * and in that it works just as well.
964	 */
965	if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
966		return false;
967
968	cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
969	cqe->user_data = user_data;
970	cqe->res = res;
971	cqe->flags = cflags;
972	return true;
973}
974
975static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
976{
977	struct io_ring_ctx *ctx = req->ctx;
978	struct io_rsrc_node *rsrc_node = NULL;
979
980	io_cq_lock(ctx);
981	if (!(req->flags & REQ_F_CQE_SKIP)) {
982		if (!io_fill_cqe_req(ctx, req))
983			io_req_cqe_overflow(req);
984	}
985
986	/*
987	 * If we're the last reference to this request, add to our locked
988	 * free_list cache.
989	 */
990	if (req_ref_put_and_test(req)) {
991		if (req->flags & IO_REQ_LINK_FLAGS) {
992			if (req->flags & IO_DISARM_MASK)
993				io_disarm_next(req);
994			if (req->link) {
995				io_req_task_queue(req->link);
996				req->link = NULL;
997			}
998		}
999		io_put_kbuf_comp(req);
1000		if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1001			io_clean_op(req);
1002		io_put_file(req);
1003
1004		rsrc_node = req->rsrc_node;
1005		/*
1006		 * Selected buffer deallocation in io_clean_op() assumes that
1007		 * we don't hold ->completion_lock. Clean them here to avoid
1008		 * deadlocks.
1009		 */
1010		io_put_task_remote(req->task);
1011		wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1012		ctx->locked_free_nr++;
1013	}
1014	io_cq_unlock_post(ctx);
1015
1016	if (rsrc_node) {
1017		io_ring_submit_lock(ctx, issue_flags);
1018		io_put_rsrc_node(ctx, rsrc_node);
1019		io_ring_submit_unlock(ctx, issue_flags);
1020	}
1021}
1022
1023void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1024{
1025	struct io_ring_ctx *ctx = req->ctx;
1026
1027	if (ctx->task_complete && ctx->submitter_task != current) {
1028		req->io_task_work.func = io_req_task_complete;
1029		io_req_task_work_add(req);
1030	} else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1031		   !(ctx->flags & IORING_SETUP_IOPOLL)) {
1032		__io_req_complete_post(req, issue_flags);
1033	} else {
1034		mutex_lock(&ctx->uring_lock);
1035		__io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1036		mutex_unlock(&ctx->uring_lock);
1037	}
1038}
1039
1040void io_req_defer_failed(struct io_kiocb *req, s32 res)
1041	__must_hold(&ctx->uring_lock)
1042{
1043	const struct io_cold_def *def = &io_cold_defs[req->opcode];
1044
1045	lockdep_assert_held(&req->ctx->uring_lock);
1046
1047	req_set_fail(req);
1048	io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1049	if (def->fail)
1050		def->fail(req);
1051	io_req_complete_defer(req);
1052}
1053
1054/*
1055 * Don't initialise the fields below on every allocation, but do that in
1056 * advance and keep them valid across allocations.
1057 */
1058static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1059{
1060	req->ctx = ctx;
1061	req->link = NULL;
1062	req->async_data = NULL;
1063	/* not necessary, but safer to zero */
1064	memset(&req->cqe, 0, sizeof(req->cqe));
1065	memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1066}
1067
1068static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1069					struct io_submit_state *state)
1070{
1071	spin_lock(&ctx->completion_lock);
1072	wq_list_splice(&ctx->locked_free_list, &state->free_list);
1073	ctx->locked_free_nr = 0;
1074	spin_unlock(&ctx->completion_lock);
1075}
1076
1077/*
1078 * A request might get retired back into the request caches even before opcode
1079 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1080 * Because of that, io_alloc_req() should be called only under ->uring_lock
1081 * and with extra caution to not get a request that is still worked on.
1082 */
1083__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1084	__must_hold(&ctx->uring_lock)
1085{
1086	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1087	void *reqs[IO_REQ_ALLOC_BATCH];
1088	int ret, i;
1089
1090	/*
1091	 * If we have more than a batch's worth of requests in our IRQ side
1092	 * locked cache, grab the lock and move them over to our submission
1093	 * side cache.
1094	 */
1095	if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1096		io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1097		if (!io_req_cache_empty(ctx))
1098			return true;
1099	}
1100
1101	ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1102
1103	/*
1104	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1105	 * retry single alloc to be on the safe side.
1106	 */
1107	if (unlikely(ret <= 0)) {
1108		reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1109		if (!reqs[0])
1110			return false;
1111		ret = 1;
1112	}
1113
1114	percpu_ref_get_many(&ctx->refs, ret);
1115	for (i = 0; i < ret; i++) {
1116		struct io_kiocb *req = reqs[i];
1117
1118		io_preinit_req(req, ctx);
1119		io_req_add_to_cache(req, ctx);
1120	}
1121	return true;
1122}
1123
1124__cold void io_free_req(struct io_kiocb *req)
1125{
1126	/* refs were already put, restore them for io_req_task_complete() */
1127	req->flags &= ~REQ_F_REFCOUNT;
1128	/* we only want to free it, don't post CQEs */
1129	req->flags |= REQ_F_CQE_SKIP;
1130	req->io_task_work.func = io_req_task_complete;
1131	io_req_task_work_add(req);
1132}
1133
1134static void __io_req_find_next_prep(struct io_kiocb *req)
1135{
1136	struct io_ring_ctx *ctx = req->ctx;
1137
1138	spin_lock(&ctx->completion_lock);
1139	io_disarm_next(req);
1140	spin_unlock(&ctx->completion_lock);
1141}
1142
1143static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1144{
1145	struct io_kiocb *nxt;
1146
1147	/*
1148	 * If LINK is set, we have dependent requests in this chain. If we
1149	 * didn't fail this request, queue the first one up, moving any other
1150	 * dependencies to the next request. In case of failure, fail the rest
1151	 * of the chain.
1152	 */
1153	if (unlikely(req->flags & IO_DISARM_MASK))
1154		__io_req_find_next_prep(req);
1155	nxt = req->link;
1156	req->link = NULL;
1157	return nxt;
1158}
1159
1160static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1161{
1162	if (!ctx)
1163		return;
1164	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1165		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1166	if (ts->locked) {
1167		io_submit_flush_completions(ctx);
1168		mutex_unlock(&ctx->uring_lock);
1169		ts->locked = false;
1170	}
1171	percpu_ref_put(&ctx->refs);
1172}
1173
1174/*
1175 * Run queued task_work, returning the number of entries processed in *count.
1176 * If more entries than max_entries are available, stop processing once this
1177 * is reached and return the rest of the list.
1178 */
1179struct llist_node *io_handle_tw_list(struct llist_node *node,
1180				     unsigned int *count,
1181				     unsigned int max_entries)
1182{
1183	struct io_ring_ctx *ctx = NULL;
1184	struct io_tw_state ts = { };
1185
1186	do {
1187		struct llist_node *next = node->next;
1188		struct io_kiocb *req = container_of(node, struct io_kiocb,
1189						    io_task_work.node);
1190
1191		if (req->ctx != ctx) {
1192			ctx_flush_and_put(ctx, &ts);
1193			ctx = req->ctx;
1194			/* if not contended, grab and improve batching */
1195			ts.locked = mutex_trylock(&ctx->uring_lock);
1196			percpu_ref_get(&ctx->refs);
1197		}
1198		INDIRECT_CALL_2(req->io_task_work.func,
1199				io_poll_task_func, io_req_rw_complete,
1200				req, &ts);
1201		node = next;
1202		(*count)++;
1203		if (unlikely(need_resched())) {
1204			ctx_flush_and_put(ctx, &ts);
1205			ctx = NULL;
1206			cond_resched();
1207		}
1208	} while (node && *count < max_entries);
1209
1210	ctx_flush_and_put(ctx, &ts);
1211	return node;
1212}
1213
1214/**
1215 * io_llist_xchg - swap all entries in a lock-less list
1216 * @head:	the head of lock-less list to delete all entries
1217 * @new:	new entry as the head of the list
1218 *
1219 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1220 * The order of entries returned is from the newest to the oldest added one.
1221 */
1222static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1223					       struct llist_node *new)
1224{
1225	return xchg(&head->first, new);
1226}
1227
1228static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1229{
1230	struct llist_node *node = llist_del_all(&tctx->task_list);
1231	struct io_ring_ctx *last_ctx = NULL;
1232	struct io_kiocb *req;
1233
1234	while (node) {
1235		req = container_of(node, struct io_kiocb, io_task_work.node);
1236		node = node->next;
1237		if (sync && last_ctx != req->ctx) {
1238			if (last_ctx) {
1239				flush_delayed_work(&last_ctx->fallback_work);
1240				percpu_ref_put(&last_ctx->refs);
1241			}
1242			last_ctx = req->ctx;
1243			percpu_ref_get(&last_ctx->refs);
1244		}
1245		if (llist_add(&req->io_task_work.node,
1246			      &req->ctx->fallback_llist))
1247			schedule_delayed_work(&req->ctx->fallback_work, 1);
1248	}
1249
1250	if (last_ctx) {
1251		flush_delayed_work(&last_ctx->fallback_work);
1252		percpu_ref_put(&last_ctx->refs);
1253	}
1254}
1255
1256struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1257				      unsigned int max_entries,
1258				      unsigned int *count)
1259{
1260	struct llist_node *node;
1261
1262	if (unlikely(current->flags & PF_EXITING)) {
1263		io_fallback_tw(tctx, true);
1264		return NULL;
1265	}
1266
1267	node = llist_del_all(&tctx->task_list);
1268	if (node) {
1269		node = llist_reverse_order(node);
1270		node = io_handle_tw_list(node, count, max_entries);
1271	}
1272
1273	/* relaxed read is enough as only the task itself sets ->in_cancel */
1274	if (unlikely(atomic_read(&tctx->in_cancel)))
1275		io_uring_drop_tctx_refs(current);
1276
1277	trace_io_uring_task_work_run(tctx, *count);
1278	return node;
1279}
1280
1281void tctx_task_work(struct callback_head *cb)
1282{
1283	struct io_uring_task *tctx;
1284	struct llist_node *ret;
1285	unsigned int count = 0;
1286
1287	tctx = container_of(cb, struct io_uring_task, task_work);
1288	ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1289	/* can't happen */
1290	WARN_ON_ONCE(ret);
1291}
1292
1293static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1294{
1295	struct io_ring_ctx *ctx = req->ctx;
1296	unsigned nr_wait, nr_tw, nr_tw_prev;
1297	struct llist_node *head;
1298
1299	/* See comment above IO_CQ_WAKE_INIT */
1300	BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1301
1302	/*
1303	 * We don't know how many reuqests is there in the link and whether
1304	 * they can even be queued lazily, fall back to non-lazy.
1305	 */
1306	if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1307		flags &= ~IOU_F_TWQ_LAZY_WAKE;
1308
1309	head = READ_ONCE(ctx->work_llist.first);
1310	do {
1311		nr_tw_prev = 0;
1312		if (head) {
1313			struct io_kiocb *first_req = container_of(head,
1314							struct io_kiocb,
1315							io_task_work.node);
1316			/*
1317			 * Might be executed at any moment, rely on
1318			 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1319			 */
1320			nr_tw_prev = READ_ONCE(first_req->nr_tw);
1321		}
1322
1323		/*
1324		 * Theoretically, it can overflow, but that's fine as one of
1325		 * previous adds should've tried to wake the task.
1326		 */
1327		nr_tw = nr_tw_prev + 1;
1328		if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1329			nr_tw = IO_CQ_WAKE_FORCE;
1330
1331		req->nr_tw = nr_tw;
1332		req->io_task_work.node.next = head;
1333	} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1334			      &req->io_task_work.node));
1335
1336	/*
1337	 * cmpxchg implies a full barrier, which pairs with the barrier
1338	 * in set_current_state() on the io_cqring_wait() side. It's used
1339	 * to ensure that either we see updated ->cq_wait_nr, or waiters
1340	 * going to sleep will observe the work added to the list, which
1341	 * is similar to the wait/wawke task state sync.
1342	 */
1343
1344	if (!head) {
1345		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1346			atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1347		if (ctx->has_evfd)
1348			io_eventfd_signal(ctx);
1349	}
1350
1351	nr_wait = atomic_read(&ctx->cq_wait_nr);
1352	/* not enough or no one is waiting */
1353	if (nr_tw < nr_wait)
1354		return;
1355	/* the previous add has already woken it up */
1356	if (nr_tw_prev >= nr_wait)
1357		return;
1358	wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1359}
1360
1361static void io_req_normal_work_add(struct io_kiocb *req)
1362{
1363	struct io_uring_task *tctx = req->task->io_uring;
1364	struct io_ring_ctx *ctx = req->ctx;
1365
1366	/* task_work already pending, we're done */
1367	if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1368		return;
1369
1370	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1371		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1372
1373	/* SQPOLL doesn't need the task_work added, it'll run it itself */
1374	if (ctx->flags & IORING_SETUP_SQPOLL) {
1375		struct io_sq_data *sqd = ctx->sq_data;
1376
1377		if (wq_has_sleeper(&sqd->wait))
1378			wake_up(&sqd->wait);
1379		return;
1380	}
1381
1382	if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1383		return;
1384
1385	io_fallback_tw(tctx, false);
1386}
1387
1388void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1389{
1390	if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1391		rcu_read_lock();
1392		io_req_local_work_add(req, flags);
1393		rcu_read_unlock();
1394	} else {
1395		io_req_normal_work_add(req);
1396	}
1397}
1398
1399static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1400{
1401	struct llist_node *node;
1402
1403	node = llist_del_all(&ctx->work_llist);
1404	while (node) {
1405		struct io_kiocb *req = container_of(node, struct io_kiocb,
1406						    io_task_work.node);
1407
1408		node = node->next;
1409		io_req_normal_work_add(req);
1410	}
1411}
1412
1413static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1414				       int min_events)
1415{
1416	if (llist_empty(&ctx->work_llist))
1417		return false;
1418	if (events < min_events)
1419		return true;
1420	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1421		atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1422	return false;
1423}
1424
1425static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts,
1426			       int min_events)
1427{
1428	struct llist_node *node;
1429	unsigned int loops = 0;
1430	int ret = 0;
1431
1432	if (WARN_ON_ONCE(ctx->submitter_task != current))
1433		return -EEXIST;
1434	if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1435		atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1436again:
1437	/*
1438	 * llists are in reverse order, flip it back the right way before
1439	 * running the pending items.
1440	 */
1441	node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1442	while (node) {
1443		struct llist_node *next = node->next;
1444		struct io_kiocb *req = container_of(node, struct io_kiocb,
1445						    io_task_work.node);
1446		INDIRECT_CALL_2(req->io_task_work.func,
1447				io_poll_task_func, io_req_rw_complete,
1448				req, ts);
1449		ret++;
1450		node = next;
1451	}
1452	loops++;
1453
1454	if (io_run_local_work_continue(ctx, ret, min_events))
1455		goto again;
1456	if (ts->locked) {
1457		io_submit_flush_completions(ctx);
1458		if (io_run_local_work_continue(ctx, ret, min_events))
1459			goto again;
1460	}
1461
1462	trace_io_uring_local_work_run(ctx, ret, loops);
1463	return ret;
1464}
1465
1466static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1467					   int min_events)
1468{
1469	struct io_tw_state ts = { .locked = true, };
1470	int ret;
1471
1472	if (llist_empty(&ctx->work_llist))
1473		return 0;
1474
1475	ret = __io_run_local_work(ctx, &ts, min_events);
1476	/* shouldn't happen! */
1477	if (WARN_ON_ONCE(!ts.locked))
1478		mutex_lock(&ctx->uring_lock);
1479	return ret;
1480}
1481
1482static int io_run_local_work(struct io_ring_ctx *ctx, int min_events)
1483{
1484	struct io_tw_state ts = {};
1485	int ret;
1486
1487	ts.locked = mutex_trylock(&ctx->uring_lock);
1488	ret = __io_run_local_work(ctx, &ts, min_events);
1489	if (ts.locked)
1490		mutex_unlock(&ctx->uring_lock);
1491
1492	return ret;
1493}
1494
1495static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1496{
1497	io_tw_lock(req->ctx, ts);
1498	io_req_defer_failed(req, req->cqe.res);
1499}
1500
1501void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1502{
1503	io_tw_lock(req->ctx, ts);
1504	/* req->task == current here, checking PF_EXITING is safe */
1505	if (unlikely(req->task->flags & PF_EXITING))
1506		io_req_defer_failed(req, -EFAULT);
1507	else if (req->flags & REQ_F_FORCE_ASYNC)
1508		io_queue_iowq(req, ts);
1509	else
1510		io_queue_sqe(req);
1511}
1512
1513void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1514{
1515	io_req_set_res(req, ret, 0);
1516	req->io_task_work.func = io_req_task_cancel;
1517	io_req_task_work_add(req);
1518}
1519
1520void io_req_task_queue(struct io_kiocb *req)
1521{
1522	req->io_task_work.func = io_req_task_submit;
1523	io_req_task_work_add(req);
1524}
1525
1526void io_queue_next(struct io_kiocb *req)
1527{
1528	struct io_kiocb *nxt = io_req_find_next(req);
1529
1530	if (nxt)
1531		io_req_task_queue(nxt);
1532}
1533
1534static void io_free_batch_list(struct io_ring_ctx *ctx,
1535			       struct io_wq_work_node *node)
1536	__must_hold(&ctx->uring_lock)
1537{
1538	do {
1539		struct io_kiocb *req = container_of(node, struct io_kiocb,
1540						    comp_list);
1541
1542		if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1543			if (req->flags & REQ_F_REFCOUNT) {
1544				node = req->comp_list.next;
1545				if (!req_ref_put_and_test(req))
1546					continue;
1547			}
1548			if ((req->flags & REQ_F_POLLED) && req->apoll) {
1549				struct async_poll *apoll = req->apoll;
1550
1551				if (apoll->double_poll)
1552					kfree(apoll->double_poll);
1553				if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1554					kfree(apoll);
1555				req->flags &= ~REQ_F_POLLED;
1556			}
1557			if (req->flags & IO_REQ_LINK_FLAGS)
1558				io_queue_next(req);
1559			if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1560				io_clean_op(req);
1561		}
1562		io_put_file(req);
1563
1564		io_req_put_rsrc_locked(req, ctx);
1565
1566		io_put_task(req->task);
1567		node = req->comp_list.next;
1568		io_req_add_to_cache(req, ctx);
1569	} while (node);
1570}
1571
1572void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1573	__must_hold(&ctx->uring_lock)
1574{
1575	struct io_submit_state *state = &ctx->submit_state;
1576	struct io_wq_work_node *node;
1577
1578	__io_cq_lock(ctx);
1579	/* must come first to preserve CQE ordering in failure cases */
1580	if (state->cqes_count)
1581		__io_flush_post_cqes(ctx);
1582	__wq_list_for_each(node, &state->compl_reqs) {
1583		struct io_kiocb *req = container_of(node, struct io_kiocb,
1584					    comp_list);
1585
1586		if (!(req->flags & REQ_F_CQE_SKIP) &&
1587		    unlikely(!io_fill_cqe_req(ctx, req))) {
1588			if (ctx->lockless_cq) {
1589				spin_lock(&ctx->completion_lock);
1590				io_req_cqe_overflow(req);
1591				spin_unlock(&ctx->completion_lock);
1592			} else {
1593				io_req_cqe_overflow(req);
1594			}
1595		}
1596	}
1597	__io_cq_unlock_post(ctx);
1598
1599	if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1600		io_free_batch_list(ctx, state->compl_reqs.first);
1601		INIT_WQ_LIST(&state->compl_reqs);
1602	}
1603}
1604
1605static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1606{
1607	/* See comment at the top of this file */
1608	smp_rmb();
1609	return __io_cqring_events(ctx);
1610}
1611
1612/*
1613 * We can't just wait for polled events to come to us, we have to actively
1614 * find and complete them.
1615 */
1616static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1617{
1618	if (!(ctx->flags & IORING_SETUP_IOPOLL))
1619		return;
1620
1621	mutex_lock(&ctx->uring_lock);
1622	while (!wq_list_empty(&ctx->iopoll_list)) {
1623		/* let it sleep and repeat later if can't complete a request */
1624		if (io_do_iopoll(ctx, true) == 0)
1625			break;
1626		/*
1627		 * Ensure we allow local-to-the-cpu processing to take place,
1628		 * in this case we need to ensure that we reap all events.
1629		 * Also let task_work, etc. to progress by releasing the mutex
1630		 */
1631		if (need_resched()) {
1632			mutex_unlock(&ctx->uring_lock);
1633			cond_resched();
1634			mutex_lock(&ctx->uring_lock);
1635		}
1636	}
1637	mutex_unlock(&ctx->uring_lock);
1638}
1639
1640static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1641{
1642	unsigned int nr_events = 0;
1643	unsigned long check_cq;
1644
1645	if (!io_allowed_run_tw(ctx))
1646		return -EEXIST;
1647
1648	check_cq = READ_ONCE(ctx->check_cq);
1649	if (unlikely(check_cq)) {
1650		if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1651			__io_cqring_overflow_flush(ctx);
1652		/*
1653		 * Similarly do not spin if we have not informed the user of any
1654		 * dropped CQE.
1655		 */
1656		if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1657			return -EBADR;
1658	}
1659	/*
1660	 * Don't enter poll loop if we already have events pending.
1661	 * If we do, we can potentially be spinning for commands that
1662	 * already triggered a CQE (eg in error).
1663	 */
1664	if (io_cqring_events(ctx))
1665		return 0;
1666
1667	do {
1668		int ret = 0;
1669
1670		/*
1671		 * If a submit got punted to a workqueue, we can have the
1672		 * application entering polling for a command before it gets
1673		 * issued. That app will hold the uring_lock for the duration
1674		 * of the poll right here, so we need to take a breather every
1675		 * now and then to ensure that the issue has a chance to add
1676		 * the poll to the issued list. Otherwise we can spin here
1677		 * forever, while the workqueue is stuck trying to acquire the
1678		 * very same mutex.
1679		 */
1680		if (wq_list_empty(&ctx->iopoll_list) ||
1681		    io_task_work_pending(ctx)) {
1682			u32 tail = ctx->cached_cq_tail;
1683
1684			(void) io_run_local_work_locked(ctx, min);
1685
1686			if (task_work_pending(current) ||
1687			    wq_list_empty(&ctx->iopoll_list)) {
1688				mutex_unlock(&ctx->uring_lock);
1689				io_run_task_work();
1690				mutex_lock(&ctx->uring_lock);
1691			}
1692			/* some requests don't go through iopoll_list */
1693			if (tail != ctx->cached_cq_tail ||
1694			    wq_list_empty(&ctx->iopoll_list))
1695				break;
1696		}
1697		ret = io_do_iopoll(ctx, !min);
1698		if (unlikely(ret < 0))
1699			return ret;
1700
1701		if (task_sigpending(current))
1702			return -EINTR;
1703		if (need_resched())
1704			break;
1705
1706		nr_events += ret;
1707	} while (nr_events < min);
1708
1709	return 0;
1710}
1711
1712void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1713{
1714	if (ts->locked)
1715		io_req_complete_defer(req);
1716	else
1717		io_req_complete_post(req, IO_URING_F_UNLOCKED);
1718}
1719
1720/*
1721 * After the iocb has been issued, it's safe to be found on the poll list.
1722 * Adding the kiocb to the list AFTER submission ensures that we don't
1723 * find it from a io_do_iopoll() thread before the issuer is done
1724 * accessing the kiocb cookie.
1725 */
1726static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1727{
1728	struct io_ring_ctx *ctx = req->ctx;
1729	const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1730
1731	/* workqueue context doesn't hold uring_lock, grab it now */
1732	if (unlikely(needs_lock))
1733		mutex_lock(&ctx->uring_lock);
1734
1735	/*
1736	 * Track whether we have multiple files in our lists. This will impact
1737	 * how we do polling eventually, not spinning if we're on potentially
1738	 * different devices.
1739	 */
1740	if (wq_list_empty(&ctx->iopoll_list)) {
1741		ctx->poll_multi_queue = false;
1742	} else if (!ctx->poll_multi_queue) {
1743		struct io_kiocb *list_req;
1744
1745		list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1746					comp_list);
1747		if (list_req->file != req->file)
1748			ctx->poll_multi_queue = true;
1749	}
1750
1751	/*
1752	 * For fast devices, IO may have already completed. If it has, add
1753	 * it to the front so we find it first.
1754	 */
1755	if (READ_ONCE(req->iopoll_completed))
1756		wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1757	else
1758		wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1759
1760	if (unlikely(needs_lock)) {
1761		/*
1762		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1763		 * in sq thread task context or in io worker task context. If
1764		 * current task context is sq thread, we don't need to check
1765		 * whether should wake up sq thread.
1766		 */
1767		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1768		    wq_has_sleeper(&ctx->sq_data->wait))
1769			wake_up(&ctx->sq_data->wait);
1770
1771		mutex_unlock(&ctx->uring_lock);
1772	}
1773}
1774
1775io_req_flags_t io_file_get_flags(struct file *file)
1776{
1777	io_req_flags_t res = 0;
1778
1779	if (S_ISREG(file_inode(file)->i_mode))
1780		res |= REQ_F_ISREG;
1781	if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1782		res |= REQ_F_SUPPORT_NOWAIT;
1783	return res;
1784}
1785
1786bool io_alloc_async_data(struct io_kiocb *req)
1787{
1788	WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1789	req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1790	if (req->async_data) {
1791		req->flags |= REQ_F_ASYNC_DATA;
1792		return false;
1793	}
1794	return true;
1795}
1796
1797int io_req_prep_async(struct io_kiocb *req)
1798{
1799	const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1800	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1801
1802	/* assign early for deferred execution for non-fixed file */
1803	if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1804		req->file = io_file_get_normal(req, req->cqe.fd);
1805	if (!cdef->prep_async)
1806		return 0;
1807	if (WARN_ON_ONCE(req_has_async_data(req)))
1808		return -EFAULT;
1809	if (!def->manual_alloc) {
1810		if (io_alloc_async_data(req))
1811			return -EAGAIN;
1812	}
1813	return cdef->prep_async(req);
1814}
1815
1816static u32 io_get_sequence(struct io_kiocb *req)
1817{
1818	u32 seq = req->ctx->cached_sq_head;
1819	struct io_kiocb *cur;
1820
1821	/* need original cached_sq_head, but it was increased for each req */
1822	io_for_each_link(cur, req)
1823		seq--;
1824	return seq;
1825}
1826
1827static __cold void io_drain_req(struct io_kiocb *req)
1828	__must_hold(&ctx->uring_lock)
1829{
1830	struct io_ring_ctx *ctx = req->ctx;
1831	struct io_defer_entry *de;
1832	int ret;
1833	u32 seq = io_get_sequence(req);
1834
1835	/* Still need defer if there is pending req in defer list. */
1836	spin_lock(&ctx->completion_lock);
1837	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1838		spin_unlock(&ctx->completion_lock);
1839queue:
1840		ctx->drain_active = false;
1841		io_req_task_queue(req);
1842		return;
1843	}
1844	spin_unlock(&ctx->completion_lock);
1845
1846	io_prep_async_link(req);
1847	de = kmalloc(sizeof(*de), GFP_KERNEL);
1848	if (!de) {
1849		ret = -ENOMEM;
1850		io_req_defer_failed(req, ret);
1851		return;
1852	}
1853
1854	spin_lock(&ctx->completion_lock);
1855	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1856		spin_unlock(&ctx->completion_lock);
1857		kfree(de);
1858		goto queue;
1859	}
1860
1861	trace_io_uring_defer(req);
1862	de->req = req;
1863	de->seq = seq;
1864	list_add_tail(&de->list, &ctx->defer_list);
1865	spin_unlock(&ctx->completion_lock);
1866}
1867
1868static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1869			   unsigned int issue_flags)
1870{
1871	if (req->file || !def->needs_file)
1872		return true;
1873
1874	if (req->flags & REQ_F_FIXED_FILE)
1875		req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1876	else
1877		req->file = io_file_get_normal(req, req->cqe.fd);
1878
1879	return !!req->file;
1880}
1881
1882static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1883{
1884	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1885	const struct cred *creds = NULL;
1886	int ret;
1887
1888	if (unlikely(!io_assign_file(req, def, issue_flags)))
1889		return -EBADF;
1890
1891	if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1892		creds = override_creds(req->creds);
1893
1894	if (!def->audit_skip)
1895		audit_uring_entry(req->opcode);
1896
1897	ret = def->issue(req, issue_flags);
1898
1899	if (!def->audit_skip)
1900		audit_uring_exit(!ret, ret);
1901
1902	if (creds)
1903		revert_creds(creds);
1904
1905	if (ret == IOU_OK) {
1906		if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1907			io_req_complete_defer(req);
1908		else
1909			io_req_complete_post(req, issue_flags);
1910
1911		return 0;
1912	}
1913
1914	if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1915		ret = 0;
1916		io_arm_ltimeout(req);
1917
1918		/* If the op doesn't have a file, we're not polling for it */
1919		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1920			io_iopoll_req_issued(req, issue_flags);
1921	}
1922	return ret;
1923}
1924
1925int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1926{
1927	io_tw_lock(req->ctx, ts);
1928	return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1929				 IO_URING_F_COMPLETE_DEFER);
1930}
1931
1932struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1933{
1934	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1935	struct io_kiocb *nxt = NULL;
1936
1937	if (req_ref_put_and_test(req)) {
1938		if (req->flags & IO_REQ_LINK_FLAGS)
1939			nxt = io_req_find_next(req);
1940		io_free_req(req);
1941	}
1942	return nxt ? &nxt->work : NULL;
1943}
1944
1945void io_wq_submit_work(struct io_wq_work *work)
1946{
1947	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1948	const struct io_issue_def *def = &io_issue_defs[req->opcode];
1949	unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1950	bool needs_poll = false;
1951	int ret = 0, err = -ECANCELED;
1952
1953	/* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1954	if (!(req->flags & REQ_F_REFCOUNT))
1955		__io_req_set_refcount(req, 2);
1956	else
1957		req_ref_get(req);
1958
1959	io_arm_ltimeout(req);
1960
1961	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1962	if (work->flags & IO_WQ_WORK_CANCEL) {
1963fail:
1964		io_req_task_queue_fail(req, err);
1965		return;
1966	}
1967	if (!io_assign_file(req, def, issue_flags)) {
1968		err = -EBADF;
1969		work->flags |= IO_WQ_WORK_CANCEL;
1970		goto fail;
1971	}
1972
1973	/*
1974	 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1975	 * submitter task context. Final request completions are handed to the
1976	 * right context, however this is not the case of auxiliary CQEs,
1977	 * which is the main mean of operation for multishot requests.
1978	 * Don't allow any multishot execution from io-wq. It's more restrictive
1979	 * than necessary and also cleaner.
1980	 */
1981	if (req->flags & REQ_F_APOLL_MULTISHOT) {
1982		err = -EBADFD;
1983		if (!io_file_can_poll(req))
1984			goto fail;
1985		if (req->file->f_flags & O_NONBLOCK ||
1986		    req->file->f_mode & FMODE_NOWAIT) {
1987			err = -ECANCELED;
1988			if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1989				goto fail;
1990			return;
1991		} else {
1992			req->flags &= ~REQ_F_APOLL_MULTISHOT;
1993		}
1994	}
1995
1996	if (req->flags & REQ_F_FORCE_ASYNC) {
1997		bool opcode_poll = def->pollin || def->pollout;
1998
1999		if (opcode_poll && io_file_can_poll(req)) {
2000			needs_poll = true;
2001			issue_flags |= IO_URING_F_NONBLOCK;
2002		}
2003	}
2004
2005	do {
2006		ret = io_issue_sqe(req, issue_flags);
2007		if (ret != -EAGAIN)
2008			break;
2009
2010		/*
2011		 * If REQ_F_NOWAIT is set, then don't wait or retry with
2012		 * poll. -EAGAIN is final for that case.
2013		 */
2014		if (req->flags & REQ_F_NOWAIT)
2015			break;
2016
2017		/*
2018		 * We can get EAGAIN for iopolled IO even though we're
2019		 * forcing a sync submission from here, since we can't
2020		 * wait for request slots on the block side.
2021		 */
2022		if (!needs_poll) {
2023			if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
2024				break;
2025			if (io_wq_worker_stopped())
2026				break;
2027			cond_resched();
2028			continue;
2029		}
2030
2031		if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2032			return;
2033		/* aborted or ready, in either case retry blocking */
2034		needs_poll = false;
2035		issue_flags &= ~IO_URING_F_NONBLOCK;
2036	} while (1);
2037
2038	/* avoid locking problems by failing it from a clean context */
2039	if (ret < 0)
2040		io_req_task_queue_fail(req, ret);
2041}
2042
2043inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2044				      unsigned int issue_flags)
2045{
2046	struct io_ring_ctx *ctx = req->ctx;
2047	struct io_fixed_file *slot;
2048	struct file *file = NULL;
2049
2050	io_ring_submit_lock(ctx, issue_flags);
2051
2052	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2053		goto out;
2054	fd = array_index_nospec(fd, ctx->nr_user_files);
2055	slot = io_fixed_file_slot(&ctx->file_table, fd);
2056	if (!req->rsrc_node)
2057		__io_req_set_rsrc_node(req, ctx);
2058	req->flags |= io_slot_flags(slot);
2059	file = io_slot_file(slot);
2060out:
2061	io_ring_submit_unlock(ctx, issue_flags);
2062	return file;
2063}
2064
2065struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2066{
2067	struct file *file = fget(fd);
2068
2069	trace_io_uring_file_get(req, fd);
2070
2071	/* we don't allow fixed io_uring files */
2072	if (file && io_is_uring_fops(file))
2073		io_req_track_inflight(req);
2074	return file;
2075}
2076
2077static void io_queue_async(struct io_kiocb *req, int ret)
2078	__must_hold(&req->ctx->uring_lock)
2079{
2080	struct io_kiocb *linked_timeout;
2081
2082	if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2083		io_req_defer_failed(req, ret);
2084		return;
2085	}
2086
2087	linked_timeout = io_prep_linked_timeout(req);
2088
2089	switch (io_arm_poll_handler(req, 0)) {
2090	case IO_APOLL_READY:
2091		io_kbuf_recycle(req, 0);
2092		io_req_task_queue(req);
2093		break;
2094	case IO_APOLL_ABORTED:
2095		io_kbuf_recycle(req, 0);
2096		io_queue_iowq(req, NULL);
2097		break;
2098	case IO_APOLL_OK:
2099		break;
2100	}
2101
2102	if (linked_timeout)
2103		io_queue_linked_timeout(linked_timeout);
2104}
2105
2106static inline void io_queue_sqe(struct io_kiocb *req)
2107	__must_hold(&req->ctx->uring_lock)
2108{
2109	int ret;
2110
2111	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2112
2113	/*
2114	 * We async punt it if the file wasn't marked NOWAIT, or if the file
2115	 * doesn't support non-blocking read/write attempts
2116	 */
2117	if (unlikely(ret))
2118		io_queue_async(req, ret);
2119}
2120
2121static void io_queue_sqe_fallback(struct io_kiocb *req)
2122	__must_hold(&req->ctx->uring_lock)
2123{
2124	if (unlikely(req->flags & REQ_F_FAIL)) {
2125		/*
2126		 * We don't submit, fail them all, for that replace hardlinks
2127		 * with normal links. Extra REQ_F_LINK is tolerated.
2128		 */
2129		req->flags &= ~REQ_F_HARDLINK;
2130		req->flags |= REQ_F_LINK;
2131		io_req_defer_failed(req, req->cqe.res);
2132	} else {
2133		int ret = io_req_prep_async(req);
2134
2135		if (unlikely(ret)) {
2136			io_req_defer_failed(req, ret);
2137			return;
2138		}
2139
2140		if (unlikely(req->ctx->drain_active))
2141			io_drain_req(req);
2142		else
2143			io_queue_iowq(req, NULL);
2144	}
2145}
2146
2147/*
2148 * Check SQE restrictions (opcode and flags).
2149 *
2150 * Returns 'true' if SQE is allowed, 'false' otherwise.
2151 */
2152static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2153					struct io_kiocb *req,
2154					unsigned int sqe_flags)
2155{
2156	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2157		return false;
2158
2159	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2160	    ctx->restrictions.sqe_flags_required)
2161		return false;
2162
2163	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2164			  ctx->restrictions.sqe_flags_required))
2165		return false;
2166
2167	return true;
2168}
2169
2170static void io_init_req_drain(struct io_kiocb *req)
2171{
2172	struct io_ring_ctx *ctx = req->ctx;
2173	struct io_kiocb *head = ctx->submit_state.link.head;
2174
2175	ctx->drain_active = true;
2176	if (head) {
2177		/*
2178		 * If we need to drain a request in the middle of a link, drain
2179		 * the head request and the next request/link after the current
2180		 * link. Considering sequential execution of links,
2181		 * REQ_F_IO_DRAIN will be maintained for every request of our
2182		 * link.
2183		 */
2184		head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2185		ctx->drain_next = true;
2186	}
2187}
2188
2189static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2190{
2191	/* ensure per-opcode data is cleared if we fail before prep */
2192	memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2193	return err;
2194}
2195
2196static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2197		       const struct io_uring_sqe *sqe)
2198	__must_hold(&ctx->uring_lock)
2199{
2200	const struct io_issue_def *def;
2201	unsigned int sqe_flags;
2202	int personality;
2203	u8 opcode;
2204
2205	/* req is partially pre-initialised, see io_preinit_req() */
2206	req->opcode = opcode = READ_ONCE(sqe->opcode);
2207	/* same numerical values with corresponding REQ_F_*, safe to copy */
2208	sqe_flags = READ_ONCE(sqe->flags);
2209	req->flags = (io_req_flags_t) sqe_flags;
2210	req->cqe.user_data = READ_ONCE(sqe->user_data);
2211	req->file = NULL;
2212	req->rsrc_node = NULL;
2213	req->task = current;
2214
2215	if (unlikely(opcode >= IORING_OP_LAST)) {
2216		req->opcode = 0;
2217		return io_init_fail_req(req, -EINVAL);
2218	}
2219	def = &io_issue_defs[opcode];
2220	if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2221		/* enforce forwards compatibility on users */
2222		if (sqe_flags & ~SQE_VALID_FLAGS)
2223			return io_init_fail_req(req, -EINVAL);
2224		if (sqe_flags & IOSQE_BUFFER_SELECT) {
2225			if (!def->buffer_select)
2226				return io_init_fail_req(req, -EOPNOTSUPP);
2227			req->buf_index = READ_ONCE(sqe->buf_group);
2228		}
2229		if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2230			ctx->drain_disabled = true;
2231		if (sqe_flags & IOSQE_IO_DRAIN) {
2232			if (ctx->drain_disabled)
2233				return io_init_fail_req(req, -EOPNOTSUPP);
2234			io_init_req_drain(req);
2235		}
2236	}
2237	if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2238		if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2239			return io_init_fail_req(req, -EACCES);
2240		/* knock it to the slow queue path, will be drained there */
2241		if (ctx->drain_active)
2242			req->flags |= REQ_F_FORCE_ASYNC;
2243		/* if there is no link, we're at "next" request and need to drain */
2244		if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2245			ctx->drain_next = false;
2246			ctx->drain_active = true;
2247			req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2248		}
2249	}
2250
2251	if (!def->ioprio && sqe->ioprio)
2252		return io_init_fail_req(req, -EINVAL);
2253	if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2254		return io_init_fail_req(req, -EINVAL);
2255
2256	if (def->needs_file) {
2257		struct io_submit_state *state = &ctx->submit_state;
2258
2259		req->cqe.fd = READ_ONCE(sqe->fd);
2260
2261		/*
2262		 * Plug now if we have more than 2 IO left after this, and the
2263		 * target is potentially a read/write to block based storage.
2264		 */
2265		if (state->need_plug && def->plug) {
2266			state->plug_started = true;
2267			state->need_plug = false;
2268			blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2269		}
2270	}
2271
2272	personality = READ_ONCE(sqe->personality);
2273	if (personality) {
2274		int ret;
2275
2276		req->creds = xa_load(&ctx->personalities, personality);
2277		if (!req->creds)
2278			return io_init_fail_req(req, -EINVAL);
2279		get_cred(req->creds);
2280		ret = security_uring_override_creds(req->creds);
2281		if (ret) {
2282			put_cred(req->creds);
2283			return io_init_fail_req(req, ret);
2284		}
2285		req->flags |= REQ_F_CREDS;
2286	}
2287
2288	return def->prep(req, sqe);
2289}
2290
2291static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2292				      struct io_kiocb *req, int ret)
2293{
2294	struct io_ring_ctx *ctx = req->ctx;
2295	struct io_submit_link *link = &ctx->submit_state.link;
2296	struct io_kiocb *head = link->head;
2297
2298	trace_io_uring_req_failed(sqe, req, ret);
2299
2300	/*
2301	 * Avoid breaking links in the middle as it renders links with SQPOLL
2302	 * unusable. Instead of failing eagerly, continue assembling the link if
2303	 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2304	 * should find the flag and handle the rest.
2305	 */
2306	req_fail_link_node(req, ret);
2307	if (head && !(head->flags & REQ_F_FAIL))
2308		req_fail_link_node(head, -ECANCELED);
2309
2310	if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2311		if (head) {
2312			link->last->link = req;
2313			link->head = NULL;
2314			req = head;
2315		}
2316		io_queue_sqe_fallback(req);
2317		return ret;
2318	}
2319
2320	if (head)
2321		link->last->link = req;
2322	else
2323		link->head = req;
2324	link->last = req;
2325	return 0;
2326}
2327
2328static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2329			 const struct io_uring_sqe *sqe)
2330	__must_hold(&ctx->uring_lock)
2331{
2332	struct io_submit_link *link = &ctx->submit_state.link;
2333	int ret;
2334
2335	ret = io_init_req(ctx, req, sqe);
2336	if (unlikely(ret))
2337		return io_submit_fail_init(sqe, req, ret);
2338
2339	trace_io_uring_submit_req(req);
2340
2341	/*
2342	 * If we already have a head request, queue this one for async
2343	 * submittal once the head completes. If we don't have a head but
2344	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2345	 * submitted sync once the chain is complete. If none of those
2346	 * conditions are true (normal request), then just queue it.
2347	 */
2348	if (unlikely(link->head)) {
2349		ret = io_req_prep_async(req);
2350		if (unlikely(ret))
2351			return io_submit_fail_init(sqe, req, ret);
2352
2353		trace_io_uring_link(req, link->head);
2354		link->last->link = req;
2355		link->last = req;
2356
2357		if (req->flags & IO_REQ_LINK_FLAGS)
2358			return 0;
2359		/* last request of the link, flush it */
2360		req = link->head;
2361		link->head = NULL;
2362		if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2363			goto fallback;
2364
2365	} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2366					  REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2367		if (req->flags & IO_REQ_LINK_FLAGS) {
2368			link->head = req;
2369			link->last = req;
2370		} else {
2371fallback:
2372			io_queue_sqe_fallback(req);
2373		}
2374		return 0;
2375	}
2376
2377	io_queue_sqe(req);
2378	return 0;
2379}
2380
2381/*
2382 * Batched submission is done, ensure local IO is flushed out.
2383 */
2384static void io_submit_state_end(struct io_ring_ctx *ctx)
2385{
2386	struct io_submit_state *state = &ctx->submit_state;
2387
2388	if (unlikely(state->link.head))
2389		io_queue_sqe_fallback(state->link.head);
2390	/* flush only after queuing links as they can generate completions */
2391	io_submit_flush_completions(ctx);
2392	if (state->plug_started)
2393		blk_finish_plug(&state->plug);
2394}
2395
2396/*
2397 * Start submission side cache.
2398 */
2399static void io_submit_state_start(struct io_submit_state *state,
2400				  unsigned int max_ios)
2401{
2402	state->plug_started = false;
2403	state->need_plug = max_ios > 2;
2404	state->submit_nr = max_ios;
2405	/* set only head, no need to init link_last in advance */
2406	state->link.head = NULL;
2407}
2408
2409static void io_commit_sqring(struct io_ring_ctx *ctx)
2410{
2411	struct io_rings *rings = ctx->rings;
2412
2413	/*
2414	 * Ensure any loads from the SQEs are done at this point,
2415	 * since once we write the new head, the application could
2416	 * write new data to them.
2417	 */
2418	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2419}
2420
2421/*
2422 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2423 * that is mapped by userspace. This means that care needs to be taken to
2424 * ensure that reads are stable, as we cannot rely on userspace always
2425 * being a good citizen. If members of the sqe are validated and then later
2426 * used, it's important that those reads are done through READ_ONCE() to
2427 * prevent a re-load down the line.
2428 */
2429static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2430{
2431	unsigned mask = ctx->sq_entries - 1;
2432	unsigned head = ctx->cached_sq_head++ & mask;
2433
2434	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2435		head = READ_ONCE(ctx->sq_array[head]);
2436		if (unlikely(head >= ctx->sq_entries)) {
2437			/* drop invalid entries */
2438			spin_lock(&ctx->completion_lock);
2439			ctx->cq_extra--;
2440			spin_unlock(&ctx->completion_lock);
2441			WRITE_ONCE(ctx->rings->sq_dropped,
2442				   READ_ONCE(ctx->rings->sq_dropped) + 1);
2443			return false;
2444		}
2445	}
2446
2447	/*
2448	 * The cached sq head (or cq tail) serves two purposes:
2449	 *
2450	 * 1) allows us to batch the cost of updating the user visible
2451	 *    head updates.
2452	 * 2) allows the kernel side to track the head on its own, even
2453	 *    though the application is the one updating it.
2454	 */
2455
2456	/* double index for 128-byte SQEs, twice as long */
2457	if (ctx->flags & IORING_SETUP_SQE128)
2458		head <<= 1;
2459	*sqe = &ctx->sq_sqes[head];
2460	return true;
2461}
2462
2463int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2464	__must_hold(&ctx->uring_lock)
2465{
2466	unsigned int entries = io_sqring_entries(ctx);
2467	unsigned int left;
2468	int ret;
2469
2470	if (unlikely(!entries))
2471		return 0;
2472	/* make sure SQ entry isn't read before tail */
2473	ret = left = min(nr, entries);
2474	io_get_task_refs(left);
2475	io_submit_state_start(&ctx->submit_state, left);
2476
2477	do {
2478		const struct io_uring_sqe *sqe;
2479		struct io_kiocb *req;
2480
2481		if (unlikely(!io_alloc_req(ctx, &req)))
2482			break;
2483		if (unlikely(!io_get_sqe(ctx, &sqe))) {
2484			io_req_add_to_cache(req, ctx);
2485			break;
2486		}
2487
2488		/*
2489		 * Continue submitting even for sqe failure if the
2490		 * ring was setup with IORING_SETUP_SUBMIT_ALL
2491		 */
2492		if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2493		    !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2494			left--;
2495			break;
2496		}
2497	} while (--left);
2498
2499	if (unlikely(left)) {
2500		ret -= left;
2501		/* try again if it submitted nothing and can't allocate a req */
2502		if (!ret && io_req_cache_empty(ctx))
2503			ret = -EAGAIN;
2504		current->io_uring->cached_refs += left;
2505	}
2506
2507	io_submit_state_end(ctx);
2508	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2509	io_commit_sqring(ctx);
2510	return ret;
2511}
2512
2513static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2514			    int wake_flags, void *key)
2515{
2516	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2517
2518	/*
2519	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2520	 * the task, and the next invocation will do it.
2521	 */
2522	if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2523		return autoremove_wake_function(curr, mode, wake_flags, key);
2524	return -1;
2525}
2526
2527int io_run_task_work_sig(struct io_ring_ctx *ctx)
2528{
2529	if (!llist_empty(&ctx->work_llist)) {
2530		__set_current_state(TASK_RUNNING);
2531		if (io_run_local_work(ctx, INT_MAX) > 0)
2532			return 0;
2533	}
2534	if (io_run_task_work() > 0)
2535		return 0;
2536	if (task_sigpending(current))
2537		return -EINTR;
2538	return 0;
2539}
2540
2541static bool current_pending_io(void)
2542{
2543	struct io_uring_task *tctx = current->io_uring;
2544
2545	if (!tctx)
2546		return false;
2547	return percpu_counter_read_positive(&tctx->inflight);
2548}
2549
2550/* when returns >0, the caller should retry */
2551static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2552					  struct io_wait_queue *iowq)
2553{
2554	int ret;
2555
2556	if (unlikely(READ_ONCE(ctx->check_cq)))
2557		return 1;
2558	if (unlikely(!llist_empty(&ctx->work_llist)))
2559		return 1;
2560	if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2561		return 1;
2562	if (unlikely(task_sigpending(current)))
2563		return -EINTR;
2564	if (unlikely(io_should_wake(iowq)))
2565		return 0;
2566
2567	/*
2568	 * Mark us as being in io_wait if we have pending requests, so cpufreq
2569	 * can take into account that the task is waiting for IO - turns out
2570	 * to be important for low QD IO.
2571	 */
2572	if (current_pending_io())
2573		current->in_iowait = 1;
2574	ret = 0;
2575	if (iowq->timeout == KTIME_MAX)
2576		schedule();
2577	else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2578		ret = -ETIME;
2579	current->in_iowait = 0;
2580	return ret;
2581}
2582
2583/*
2584 * Wait until events become available, if we don't already have some. The
2585 * application must reap them itself, as they reside on the shared cq ring.
2586 */
2587static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2588			  const sigset_t __user *sig, size_t sigsz,
2589			  struct __kernel_timespec __user *uts)
2590{
2591	struct io_wait_queue iowq;
2592	struct io_rings *rings = ctx->rings;
2593	int ret;
2594
2595	if (!io_allowed_run_tw(ctx))
2596		return -EEXIST;
2597	if (!llist_empty(&ctx->work_llist))
2598		io_run_local_work(ctx, min_events);
2599	io_run_task_work();
2600	io_cqring_overflow_flush(ctx);
2601	/* if user messes with these they will just get an early return */
2602	if (__io_cqring_events_user(ctx) >= min_events)
2603		return 0;
2604
2605	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2606	iowq.wq.private = current;
2607	INIT_LIST_HEAD(&iowq.wq.entry);
2608	iowq.ctx = ctx;
2609	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2610	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2611	iowq.timeout = KTIME_MAX;
2612
2613	if (uts) {
2614		struct timespec64 ts;
2615
2616		if (get_timespec64(&ts, uts))
2617			return -EFAULT;
2618
2619		iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2620		io_napi_adjust_timeout(ctx, &iowq, &ts);
2621	}
2622
2623	if (sig) {
2624#ifdef CONFIG_COMPAT
2625		if (in_compat_syscall())
2626			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2627						      sigsz);
2628		else
2629#endif
2630			ret = set_user_sigmask(sig, sigsz);
2631
2632		if (ret)
2633			return ret;
2634	}
2635
2636	io_napi_busy_loop(ctx, &iowq);
2637
2638	trace_io_uring_cqring_wait(ctx, min_events);
2639	do {
2640		int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2641		unsigned long check_cq;
2642
2643		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2644			atomic_set(&ctx->cq_wait_nr, nr_wait);
2645			set_current_state(TASK_INTERRUPTIBLE);
2646		} else {
2647			prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2648							TASK_INTERRUPTIBLE);
2649		}
2650
2651		ret = io_cqring_wait_schedule(ctx, &iowq);
2652		__set_current_state(TASK_RUNNING);
2653		atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2654
2655		/*
2656		 * Run task_work after scheduling and before io_should_wake().
2657		 * If we got woken because of task_work being processed, run it
2658		 * now rather than let the caller do another wait loop.
2659		 */
2660		io_run_task_work();
2661		if (!llist_empty(&ctx->work_llist))
2662			io_run_local_work(ctx, nr_wait);
2663
2664		/*
2665		 * Non-local task_work will be run on exit to userspace, but
2666		 * if we're using DEFER_TASKRUN, then we could have waited
2667		 * with a timeout for a number of requests. If the timeout
2668		 * hits, we could have some requests ready to process. Ensure
2669		 * this break is _after_ we have run task_work, to avoid
2670		 * deferring running potentially pending requests until the
2671		 * next time we wait for events.
2672		 */
2673		if (ret < 0)
2674			break;
2675
2676		check_cq = READ_ONCE(ctx->check_cq);
2677		if (unlikely(check_cq)) {
2678			/* let the caller flush overflows, retry */
2679			if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2680				io_cqring_do_overflow_flush(ctx);
2681			if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2682				ret = -EBADR;
2683				break;
2684			}
2685		}
2686
2687		if (io_should_wake(&iowq)) {
2688			ret = 0;
2689			break;
2690		}
2691		cond_resched();
2692	} while (1);
2693
2694	if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2695		finish_wait(&ctx->cq_wait, &iowq.wq);
2696	restore_saved_sigmask_unless(ret == -EINTR);
2697
2698	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2699}
2700
2701void io_mem_free(void *ptr)
2702{
2703	if (!ptr)
2704		return;
2705
2706	folio_put(virt_to_folio(ptr));
2707}
2708
2709static void io_pages_free(struct page ***pages, int npages)
2710{
2711	struct page **page_array = *pages;
2712	int i;
2713
2714	if (!page_array)
2715		return;
2716
2717	for (i = 0; i < npages; i++)
2718		unpin_user_page(page_array[i]);
2719	kvfree(page_array);
2720	*pages = NULL;
2721}
2722
2723static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2724			    unsigned long uaddr, size_t size)
2725{
2726	struct page **page_array;
2727	unsigned int nr_pages;
2728	void *page_addr;
2729	int ret, i, pinned;
2730
2731	*npages = 0;
2732
2733	if (uaddr & (PAGE_SIZE - 1) || !size)
2734		return ERR_PTR(-EINVAL);
2735
2736	nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2737	if (nr_pages > USHRT_MAX)
2738		return ERR_PTR(-EINVAL);
2739	page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2740	if (!page_array)
2741		return ERR_PTR(-ENOMEM);
2742
2743
2744	pinned = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2745				     page_array);
2746	if (pinned != nr_pages) {
2747		ret = (pinned < 0) ? pinned : -EFAULT;
2748		goto free_pages;
2749	}
2750
2751	page_addr = page_address(page_array[0]);
2752	for (i = 0; i < nr_pages; i++) {
2753		ret = -EINVAL;
2754
2755		/*
2756		 * Can't support mapping user allocated ring memory on 32-bit
2757		 * archs where it could potentially reside in highmem. Just
2758		 * fail those with -EINVAL, just like we did on kernels that
2759		 * didn't support this feature.
2760		 */
2761		if (PageHighMem(page_array[i]))
2762			goto free_pages;
2763
2764		/*
2765		 * No support for discontig pages for now, should either be a
2766		 * single normal page, or a huge page. Later on we can add
2767		 * support for remapping discontig pages, for now we will
2768		 * just fail them with EINVAL.
2769		 */
2770		if (page_address(page_array[i]) != page_addr)
2771			goto free_pages;
2772		page_addr += PAGE_SIZE;
2773	}
2774
2775	*pages = page_array;
2776	*npages = nr_pages;
2777	return page_to_virt(page_array[0]);
2778
2779free_pages:
2780	io_pages_free(&page_array, pinned > 0 ? pinned : 0);
2781	return ERR_PTR(ret);
2782}
2783
2784static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2785			  size_t size)
2786{
2787	return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2788				size);
2789}
2790
2791static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2792			 size_t size)
2793{
2794	return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2795				size);
2796}
2797
2798static void io_rings_free(struct io_ring_ctx *ctx)
2799{
2800	if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2801		io_mem_free(ctx->rings);
2802		io_mem_free(ctx->sq_sqes);
2803	} else {
2804		io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2805		ctx->n_ring_pages = 0;
2806		io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2807		ctx->n_sqe_pages = 0;
2808	}
2809
2810	ctx->rings = NULL;
2811	ctx->sq_sqes = NULL;
2812}
2813
2814void *io_mem_alloc(size_t size)
2815{
2816	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2817	void *ret;
2818
2819	ret = (void *) __get_free_pages(gfp, get_order(size));
2820	if (ret)
2821		return ret;
2822	return ERR_PTR(-ENOMEM);
2823}
2824
2825static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2826				unsigned int cq_entries, size_t *sq_offset)
2827{
2828	struct io_rings *rings;
2829	size_t off, sq_array_size;
2830
2831	off = struct_size(rings, cqes, cq_entries);
2832	if (off == SIZE_MAX)
2833		return SIZE_MAX;
2834	if (ctx->flags & IORING_SETUP_CQE32) {
2835		if (check_shl_overflow(off, 1, &off))
2836			return SIZE_MAX;
2837	}
2838
2839#ifdef CONFIG_SMP
2840	off = ALIGN(off, SMP_CACHE_BYTES);
2841	if (off == 0)
2842		return SIZE_MAX;
2843#endif
2844
2845	if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2846		if (sq_offset)
2847			*sq_offset = SIZE_MAX;
2848		return off;
2849	}
2850
2851	if (sq_offset)
2852		*sq_offset = off;
2853
2854	sq_array_size = array_size(sizeof(u32), sq_entries);
2855	if (sq_array_size == SIZE_MAX)
2856		return SIZE_MAX;
2857
2858	if (check_add_overflow(off, sq_array_size, &off))
2859		return SIZE_MAX;
2860
2861	return off;
2862}
2863
2864static void io_req_caches_free(struct io_ring_ctx *ctx)
2865{
2866	struct io_kiocb *req;
2867	int nr = 0;
2868
2869	mutex_lock(&ctx->uring_lock);
2870	io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2871
2872	while (!io_req_cache_empty(ctx)) {
2873		req = io_extract_req(ctx);
2874		kmem_cache_free(req_cachep, req);
2875		nr++;
2876	}
2877	if (nr)
2878		percpu_ref_put_many(&ctx->refs, nr);
2879	mutex_unlock(&ctx->uring_lock);
2880}
2881
2882static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2883{
2884	kfree(container_of(entry, struct io_rsrc_node, cache));
2885}
2886
2887static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2888{
2889	io_sq_thread_finish(ctx);
2890	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2891	if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2892		return;
2893
2894	mutex_lock(&ctx->uring_lock);
2895	if (ctx->buf_data)
2896		__io_sqe_buffers_unregister(ctx);
2897	if (ctx->file_data)
2898		__io_sqe_files_unregister(ctx);
2899	io_cqring_overflow_kill(ctx);
2900	io_eventfd_unregister(ctx);
2901	io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2902	io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2903	io_futex_cache_free(ctx);
2904	io_destroy_buffers(ctx);
2905	mutex_unlock(&ctx->uring_lock);
2906	if (ctx->sq_creds)
2907		put_cred(ctx->sq_creds);
2908	if (ctx->submitter_task)
2909		put_task_struct(ctx->submitter_task);
2910
2911	/* there are no registered resources left, nobody uses it */
2912	if (ctx->rsrc_node)
2913		io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2914
2915	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2916	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2917
2918	io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2919	if (ctx->mm_account) {
2920		mmdrop(ctx->mm_account);
2921		ctx->mm_account = NULL;
2922	}
2923	io_rings_free(ctx);
2924	io_kbuf_mmap_list_free(ctx);
2925
2926	percpu_ref_exit(&ctx->refs);
2927	free_uid(ctx->user);
2928	io_req_caches_free(ctx);
2929	if (ctx->hash_map)
2930		io_wq_put_hash(ctx->hash_map);
2931	io_napi_free(ctx);
2932	kfree(ctx->cancel_table.hbs);
2933	kfree(ctx->cancel_table_locked.hbs);
2934	xa_destroy(&ctx->io_bl_xa);
2935	kfree(ctx);
2936}
2937
2938static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2939{
2940	struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2941					       poll_wq_task_work);
2942
2943	mutex_lock(&ctx->uring_lock);
2944	ctx->poll_activated = true;
2945	mutex_unlock(&ctx->uring_lock);
2946
2947	/*
2948	 * Wake ups for some events between start of polling and activation
2949	 * might've been lost due to loose synchronisation.
2950	 */
2951	wake_up_all(&ctx->poll_wq);
2952	percpu_ref_put(&ctx->refs);
2953}
2954
2955__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2956{
2957	spin_lock(&ctx->completion_lock);
2958	/* already activated or in progress */
2959	if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2960		goto out;
2961	if (WARN_ON_ONCE(!ctx->task_complete))
2962		goto out;
2963	if (!ctx->submitter_task)
2964		goto out;
2965	/*
2966	 * with ->submitter_task only the submitter task completes requests, we
2967	 * only need to sync with it, which is done by injecting a tw
2968	 */
2969	init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2970	percpu_ref_get(&ctx->refs);
2971	if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2972		percpu_ref_put(&ctx->refs);
2973out:
2974	spin_unlock(&ctx->completion_lock);
2975}
2976
2977static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2978{
2979	struct io_ring_ctx *ctx = file->private_data;
2980	__poll_t mask = 0;
2981
2982	if (unlikely(!ctx->poll_activated))
2983		io_activate_pollwq(ctx);
2984
2985	poll_wait(file, &ctx->poll_wq, wait);
2986	/*
2987	 * synchronizes with barrier from wq_has_sleeper call in
2988	 * io_commit_cqring
2989	 */
2990	smp_rmb();
2991	if (!io_sqring_full(ctx))
2992		mask |= EPOLLOUT | EPOLLWRNORM;
2993
2994	/*
2995	 * Don't flush cqring overflow list here, just do a simple check.
2996	 * Otherwise there could possible be ABBA deadlock:
2997	 *      CPU0                    CPU1
2998	 *      ----                    ----
2999	 * lock(&ctx->uring_lock);
3000	 *                              lock(&ep->mtx);
3001	 *                              lock(&ctx->uring_lock);
3002	 * lock(&ep->mtx);
3003	 *
3004	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3005	 * pushes them to do the flush.
3006	 */
3007
3008	if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3009		mask |= EPOLLIN | EPOLLRDNORM;
3010
3011	return mask;
3012}
3013
3014struct io_tctx_exit {
3015	struct callback_head		task_work;
3016	struct completion		completion;
3017	struct io_ring_ctx		*ctx;
3018};
3019
3020static __cold void io_tctx_exit_cb(struct callback_head *cb)
3021{
3022	struct io_uring_task *tctx = current->io_uring;
3023	struct io_tctx_exit *work;
3024
3025	work = container_of(cb, struct io_tctx_exit, task_work);
3026	/*
3027	 * When @in_cancel, we're in cancellation and it's racy to remove the
3028	 * node. It'll be removed by the end of cancellation, just ignore it.
3029	 * tctx can be NULL if the queueing of this task_work raced with
3030	 * work cancelation off the exec path.
3031	 */
3032	if (tctx && !atomic_read(&tctx->in_cancel))
3033		io_uring_del_tctx_node((unsigned long)work->ctx);
3034	complete(&work->completion);
3035}
3036
3037static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3038{
3039	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3040
3041	return req->ctx == data;
3042}
3043
3044static __cold void io_ring_exit_work(struct work_struct *work)
3045{
3046	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3047	unsigned long timeout = jiffies + HZ * 60 * 5;
3048	unsigned long interval = HZ / 20;
3049	struct io_tctx_exit exit;
3050	struct io_tctx_node *node;
3051	int ret;
3052
3053	/*
3054	 * If we're doing polled IO and end up having requests being
3055	 * submitted async (out-of-line), then completions can come in while
3056	 * we're waiting for refs to drop. We need to reap these manually,
3057	 * as nobody else will be looking for them.
3058	 */
3059	do {
3060		if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3061			mutex_lock(&ctx->uring_lock);
3062			io_cqring_overflow_kill(ctx);
3063			mutex_unlock(&ctx->uring_lock);
3064		}
3065
3066		if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3067			io_move_task_work_from_local(ctx);
3068
3069		while (io_uring_try_cancel_requests(ctx, NULL, true))
3070			cond_resched();
3071
3072		if (ctx->sq_data) {
3073			struct io_sq_data *sqd = ctx->sq_data;
3074			struct task_struct *tsk;
3075
3076			io_sq_thread_park(sqd);
3077			tsk = sqd->thread;
3078			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3079				io_wq_cancel_cb(tsk->io_uring->io_wq,
3080						io_cancel_ctx_cb, ctx, true);
3081			io_sq_thread_unpark(sqd);
3082		}
3083
3084		io_req_caches_free(ctx);
3085
3086		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3087			/* there is little hope left, don't run it too often */
3088			interval = HZ * 60;
3089		}
3090		/*
3091		 * This is really an uninterruptible wait, as it has to be
3092		 * complete. But it's also run from a kworker, which doesn't
3093		 * take signals, so it's fine to make it interruptible. This
3094		 * avoids scenarios where we knowingly can wait much longer
3095		 * on completions, for example if someone does a SIGSTOP on
3096		 * a task that needs to finish task_work to make this loop
3097		 * complete. That's a synthetic situation that should not
3098		 * cause a stuck task backtrace, and hence a potential panic
3099		 * on stuck tasks if that is enabled.
3100		 */
3101	} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3102
3103	init_completion(&exit.completion);
3104	init_task_work(&exit.task_work, io_tctx_exit_cb);
3105	exit.ctx = ctx;
3106
3107	mutex_lock(&ctx->uring_lock);
3108	while (!list_empty(&ctx->tctx_list)) {
3109		WARN_ON_ONCE(time_after(jiffies, timeout));
3110
3111		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3112					ctx_node);
3113		/* don't spin on a single task if cancellation failed */
3114		list_rotate_left(&ctx->tctx_list);
3115		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3116		if (WARN_ON_ONCE(ret))
3117			continue;
3118
3119		mutex_unlock(&ctx->uring_lock);
3120		/*
3121		 * See comment above for
3122		 * wait_for_completion_interruptible_timeout() on why this
3123		 * wait is marked as interruptible.
3124		 */
3125		wait_for_completion_interruptible(&exit.completion);
3126		mutex_lock(&ctx->uring_lock);
3127	}
3128	mutex_unlock(&ctx->uring_lock);
3129	spin_lock(&ctx->completion_lock);
3130	spin_unlock(&ctx->completion_lock);
3131
3132	/* pairs with RCU read section in io_req_local_work_add() */
3133	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3134		synchronize_rcu();
3135
3136	io_ring_ctx_free(ctx);
3137}
3138
3139static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3140{
3141	unsigned long index;
3142	struct creds *creds;
3143
3144	mutex_lock(&ctx->uring_lock);
3145	percpu_ref_kill(&ctx->refs);
3146	xa_for_each(&ctx->personalities, index, creds)
3147		io_unregister_personality(ctx, index);
3148	if (ctx->rings)
3149		io_poll_remove_all(ctx, NULL, true);
3150	mutex_unlock(&ctx->uring_lock);
3151
3152	/*
3153	 * If we failed setting up the ctx, we might not have any rings
3154	 * and therefore did not submit any requests
3155	 */
3156	if (ctx->rings)
3157		io_kill_timeouts(ctx, NULL, true);
3158
3159	flush_delayed_work(&ctx->fallback_work);
3160
3161	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3162	/*
3163	 * Use system_unbound_wq to avoid spawning tons of event kworkers
3164	 * if we're exiting a ton of rings at the same time. It just adds
3165	 * noise and overhead, there's no discernable change in runtime
3166	 * over using system_wq.
3167	 */
3168	queue_work(iou_wq, &ctx->exit_work);
3169}
3170
3171static int io_uring_release(struct inode *inode, struct file *file)
3172{
3173	struct io_ring_ctx *ctx = file->private_data;
3174
3175	file->private_data = NULL;
3176	io_ring_ctx_wait_and_kill(ctx);
3177	return 0;
3178}
3179
3180struct io_task_cancel {
3181	struct task_struct *task;
3182	bool all;
3183};
3184
3185static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3186{
3187	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3188	struct io_task_cancel *cancel = data;
3189
3190	return io_match_task_safe(req, cancel->task, cancel->all);
3191}
3192
3193static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3194					 struct task_struct *task,
3195					 bool cancel_all)
3196{
3197	struct io_defer_entry *de;
3198	LIST_HEAD(list);
3199
3200	spin_lock(&ctx->completion_lock);
3201	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3202		if (io_match_task_safe(de->req, task, cancel_all)) {
3203			list_cut_position(&list, &ctx->defer_list, &de->list);
3204			break;
3205		}
3206	}
3207	spin_unlock(&ctx->completion_lock);
3208	if (list_empty(&list))
3209		return false;
3210
3211	while (!list_empty(&list)) {
3212		de = list_first_entry(&list, struct io_defer_entry, list);
3213		list_del_init(&de->list);
3214		io_req_task_queue_fail(de->req, -ECANCELED);
3215		kfree(de);
3216	}
3217	return true;
3218}
3219
3220static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3221{
3222	struct io_tctx_node *node;
3223	enum io_wq_cancel cret;
3224	bool ret = false;
3225
3226	mutex_lock(&ctx->uring_lock);
3227	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3228		struct io_uring_task *tctx = node->task->io_uring;
3229
3230		/*
3231		 * io_wq will stay alive while we hold uring_lock, because it's
3232		 * killed after ctx nodes, which requires to take the lock.
3233		 */
3234		if (!tctx || !tctx->io_wq)
3235			continue;
3236		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3237		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3238	}
3239	mutex_unlock(&ctx->uring_lock);
3240
3241	return ret;
3242}
3243
3244static bool io_uring_try_cancel_uring_cmd(struct io_ring_ctx *ctx,
3245		struct task_struct *task, bool cancel_all)
3246{
3247	struct hlist_node *tmp;
3248	struct io_kiocb *req;
3249	bool ret = false;
3250
3251	lockdep_assert_held(&ctx->uring_lock);
3252
3253	hlist_for_each_entry_safe(req, tmp, &ctx->cancelable_uring_cmd,
3254			hash_node) {
3255		struct io_uring_cmd *cmd = io_kiocb_to_cmd(req,
3256				struct io_uring_cmd);
3257		struct file *file = req->file;
3258
3259		if (!cancel_all && req->task != task)
3260			continue;
3261
3262		if (cmd->flags & IORING_URING_CMD_CANCELABLE) {
3263			/* ->sqe isn't available if no async data */
3264			if (!req_has_async_data(req))
3265				cmd->sqe = NULL;
3266			file->f_op->uring_cmd(cmd, IO_URING_F_CANCEL);
3267			ret = true;
3268		}
3269	}
3270	io_submit_flush_completions(ctx);
3271
3272	return ret;
3273}
3274
3275static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3276						struct task_struct *task,
3277						bool cancel_all)
3278{
3279	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3280	struct io_uring_task *tctx = task ? task->io_uring : NULL;
3281	enum io_wq_cancel cret;
3282	bool ret = false;
3283
3284	/* set it so io_req_local_work_add() would wake us up */
3285	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3286		atomic_set(&ctx->cq_wait_nr, 1);
3287		smp_mb();
3288	}
3289
3290	/* failed during ring init, it couldn't have issued any requests */
3291	if (!ctx->rings)
3292		return false;
3293
3294	if (!task) {
3295		ret |= io_uring_try_cancel_iowq(ctx);
3296	} else if (tctx && tctx->io_wq) {
3297		/*
3298		 * Cancels requests of all rings, not only @ctx, but
3299		 * it's fine as the task is in exit/exec.
3300		 */
3301		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3302				       &cancel, true);
3303		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3304	}
3305
3306	/* SQPOLL thread does its own polling */
3307	if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3308	    (ctx->sq_data && ctx->sq_data->thread == current)) {
3309		while (!wq_list_empty(&ctx->iopoll_list)) {
3310			io_iopoll_try_reap_events(ctx);
3311			ret = true;
3312			cond_resched();
3313		}
3314	}
3315
3316	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3317	    io_allowed_defer_tw_run(ctx))
3318		ret |= io_run_local_work(ctx, INT_MAX) > 0;
3319	ret |= io_cancel_defer_files(ctx, task, cancel_all);
3320	mutex_lock(&ctx->uring_lock);
3321	ret |= io_poll_remove_all(ctx, task, cancel_all);
3322	ret |= io_waitid_remove_all(ctx, task, cancel_all);
3323	ret |= io_futex_remove_all(ctx, task, cancel_all);
3324	ret |= io_uring_try_cancel_uring_cmd(ctx, task, cancel_all);
3325	mutex_unlock(&ctx->uring_lock);
3326	ret |= io_kill_timeouts(ctx, task, cancel_all);
3327	if (task)
3328		ret |= io_run_task_work() > 0;
3329	return ret;
3330}
3331
3332static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3333{
3334	if (tracked)
3335		return atomic_read(&tctx->inflight_tracked);
3336	return percpu_counter_sum(&tctx->inflight);
3337}
3338
3339/*
3340 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3341 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3342 */
3343__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3344{
3345	struct io_uring_task *tctx = current->io_uring;
3346	struct io_ring_ctx *ctx;
3347	struct io_tctx_node *node;
3348	unsigned long index;
3349	s64 inflight;
3350	DEFINE_WAIT(wait);
3351
3352	WARN_ON_ONCE(sqd && sqd->thread != current);
3353
3354	if (!current->io_uring)
3355		return;
3356	if (tctx->io_wq)
3357		io_wq_exit_start(tctx->io_wq);
3358
3359	atomic_inc(&tctx->in_cancel);
3360	do {
3361		bool loop = false;
3362
3363		io_uring_drop_tctx_refs(current);
3364		/* read completions before cancelations */
3365		inflight = tctx_inflight(tctx, !cancel_all);
3366		if (!inflight)
3367			break;
3368
3369		if (!sqd) {
3370			xa_for_each(&tctx->xa, index, node) {
3371				/* sqpoll task will cancel all its requests */
3372				if (node->ctx->sq_data)
3373					continue;
3374				loop |= io_uring_try_cancel_requests(node->ctx,
3375							current, cancel_all);
3376			}
3377		} else {
3378			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3379				loop |= io_uring_try_cancel_requests(ctx,
3380								     current,
3381								     cancel_all);
3382		}
3383
3384		if (loop) {
3385			cond_resched();
3386			continue;
3387		}
3388
3389		prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3390		io_run_task_work();
3391		io_uring_drop_tctx_refs(current);
3392		xa_for_each(&tctx->xa, index, node) {
3393			if (!llist_empty(&node->ctx->work_llist)) {
3394				WARN_ON_ONCE(node->ctx->submitter_task &&
3395					     node->ctx->submitter_task != current);
3396				goto end_wait;
3397			}
3398		}
3399		/*
3400		 * If we've seen completions, retry without waiting. This
3401		 * avoids a race where a completion comes in before we did
3402		 * prepare_to_wait().
3403		 */
3404		if (inflight == tctx_inflight(tctx, !cancel_all))
3405			schedule();
3406end_wait:
3407		finish_wait(&tctx->wait, &wait);
3408	} while (1);
3409
3410	io_uring_clean_tctx(tctx);
3411	if (cancel_all) {
3412		/*
3413		 * We shouldn't run task_works after cancel, so just leave
3414		 * ->in_cancel set for normal exit.
3415		 */
3416		atomic_dec(&tctx->in_cancel);
3417		/* for exec all current's requests should be gone, kill tctx */
3418		__io_uring_free(current);
3419	}
3420}
3421
3422void __io_uring_cancel(bool cancel_all)
3423{
3424	io_uring_cancel_generic(cancel_all, NULL);
3425}
3426
3427static void *io_uring_validate_mmap_request(struct file *file,
3428					    loff_t pgoff, size_t sz)
3429{
3430	struct io_ring_ctx *ctx = file->private_data;
3431	loff_t offset = pgoff << PAGE_SHIFT;
3432	struct page *page;
3433	void *ptr;
3434
3435	switch (offset & IORING_OFF_MMAP_MASK) {
3436	case IORING_OFF_SQ_RING:
3437	case IORING_OFF_CQ_RING:
3438		/* Don't allow mmap if the ring was setup without it */
3439		if (ctx->flags & IORING_SETUP_NO_MMAP)
3440			return ERR_PTR(-EINVAL);
3441		ptr = ctx->rings;
3442		break;
3443	case IORING_OFF_SQES:
3444		/* Don't allow mmap if the ring was setup without it */
3445		if (ctx->flags & IORING_SETUP_NO_MMAP)
3446			return ERR_PTR(-EINVAL);
3447		ptr = ctx->sq_sqes;
3448		break;
3449	case IORING_OFF_PBUF_RING: {
3450		struct io_buffer_list *bl;
3451		unsigned int bgid;
3452
3453		bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3454		bl = io_pbuf_get_bl(ctx, bgid);
3455		if (IS_ERR(bl))
3456			return bl;
3457		ptr = bl->buf_ring;
3458		io_put_bl(ctx, bl);
3459		break;
3460		}
3461	default:
3462		return ERR_PTR(-EINVAL);
3463	}
3464
3465	page = virt_to_head_page(ptr);
3466	if (sz > page_size(page))
3467		return ERR_PTR(-EINVAL);
3468
3469	return ptr;
3470}
3471
3472#ifdef CONFIG_MMU
3473
3474static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3475{
3476	size_t sz = vma->vm_end - vma->vm_start;
3477	unsigned long pfn;
3478	void *ptr;
3479
3480	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3481	if (IS_ERR(ptr))
3482		return PTR_ERR(ptr);
3483
3484	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3485	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3486}
3487
3488static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3489			unsigned long addr, unsigned long len,
3490			unsigned long pgoff, unsigned long flags)
3491{
3492	void *ptr;
3493
3494	/*
3495	 * Do not allow to map to user-provided address to avoid breaking the
3496	 * aliasing rules. Userspace is not able to guess the offset address of
3497	 * kernel kmalloc()ed memory area.
3498	 */
3499	if (addr)
3500		return -EINVAL;
3501
3502	ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3503	if (IS_ERR(ptr))
3504		return -ENOMEM;
3505
3506	/*
3507	 * Some architectures have strong cache aliasing requirements.
3508	 * For such architectures we need a coherent mapping which aliases
3509	 * kernel memory *and* userspace memory. To achieve that:
3510	 * - use a NULL file pointer to reference physical memory, and
3511	 * - use the kernel virtual address of the shared io_uring context
3512	 *   (instead of the userspace-provided address, which has to be 0UL
3513	 *   anyway).
3514	 * - use the same pgoff which the get_unmapped_area() uses to
3515	 *   calculate the page colouring.
3516	 * For architectures without such aliasing requirements, the
3517	 * architecture will return any suitable mapping because addr is 0.
3518	 */
3519	filp = NULL;
3520	flags |= MAP_SHARED;
3521	pgoff = 0;	/* has been translated to ptr above */
3522#ifdef SHM_COLOUR
3523	addr = (uintptr_t) ptr;
3524	pgoff = addr >> PAGE_SHIFT;
3525#else
3526	addr = 0UL;
3527#endif
3528	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3529}
3530
3531#else /* !CONFIG_MMU */
3532
3533static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3534{
3535	return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3536}
3537
3538static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3539{
3540	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3541}
3542
3543static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3544	unsigned long addr, unsigned long len,
3545	unsigned long pgoff, unsigned long flags)
3546{
3547	void *ptr;
3548
3549	ptr = io_uring_validate_mmap_request(file, pgoff, len);
3550	if (IS_ERR(ptr))
3551		return PTR_ERR(ptr);
3552
3553	return (unsigned long) ptr;
3554}
3555
3556#endif /* !CONFIG_MMU */
3557
3558static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3559{
3560	if (flags & IORING_ENTER_EXT_ARG) {
3561		struct io_uring_getevents_arg arg;
3562
3563		if (argsz != sizeof(arg))
3564			return -EINVAL;
3565		if (copy_from_user(&arg, argp, sizeof(arg)))
3566			return -EFAULT;
3567	}
3568	return 0;
3569}
3570
3571static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3572			  struct __kernel_timespec __user **ts,
3573			  const sigset_t __user **sig)
3574{
3575	struct io_uring_getevents_arg arg;
3576
3577	/*
3578	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3579	 * is just a pointer to the sigset_t.
3580	 */
3581	if (!(flags & IORING_ENTER_EXT_ARG)) {
3582		*sig = (const sigset_t __user *) argp;
3583		*ts = NULL;
3584		return 0;
3585	}
3586
3587	/*
3588	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3589	 * timespec and sigset_t pointers if good.
3590	 */
3591	if (*argsz != sizeof(arg))
3592		return -EINVAL;
3593	if (copy_from_user(&arg, argp, sizeof(arg)))
3594		return -EFAULT;
3595	if (arg.pad)
3596		return -EINVAL;
3597	*sig = u64_to_user_ptr(arg.sigmask);
3598	*argsz = arg.sigmask_sz;
3599	*ts = u64_to_user_ptr(arg.ts);
3600	return 0;
3601}
3602
3603SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3604		u32, min_complete, u32, flags, const void __user *, argp,
3605		size_t, argsz)
3606{
3607	struct io_ring_ctx *ctx;
3608	struct file *file;
3609	long ret;
3610
3611	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3612			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3613			       IORING_ENTER_REGISTERED_RING)))
3614		return -EINVAL;
3615
3616	/*
3617	 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3618	 * need only dereference our task private array to find it.
3619	 */
3620	if (flags & IORING_ENTER_REGISTERED_RING) {
3621		struct io_uring_task *tctx = current->io_uring;
3622
3623		if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3624			return -EINVAL;
3625		fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3626		file = tctx->registered_rings[fd];
3627		if (unlikely(!file))
3628			return -EBADF;
3629	} else {
3630		file = fget(fd);
3631		if (unlikely(!file))
3632			return -EBADF;
3633		ret = -EOPNOTSUPP;
3634		if (unlikely(!io_is_uring_fops(file)))
3635			goto out;
3636	}
3637
3638	ctx = file->private_data;
3639	ret = -EBADFD;
3640	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3641		goto out;
3642
3643	/*
3644	 * For SQ polling, the thread will do all submissions and completions.
3645	 * Just return the requested submit count, and wake the thread if
3646	 * we were asked to.
3647	 */
3648	ret = 0;
3649	if (ctx->flags & IORING_SETUP_SQPOLL) {
3650		io_cqring_overflow_flush(ctx);
3651
3652		if (unlikely(ctx->sq_data->thread == NULL)) {
3653			ret = -EOWNERDEAD;
3654			goto out;
3655		}
3656		if (flags & IORING_ENTER_SQ_WAKEUP)
3657			wake_up(&ctx->sq_data->wait);
3658		if (flags & IORING_ENTER_SQ_WAIT)
3659			io_sqpoll_wait_sq(ctx);
3660
3661		ret = to_submit;
3662	} else if (to_submit) {
3663		ret = io_uring_add_tctx_node(ctx);
3664		if (unlikely(ret))
3665			goto out;
3666
3667		mutex_lock(&ctx->uring_lock);
3668		ret = io_submit_sqes(ctx, to_submit);
3669		if (ret != to_submit) {
3670			mutex_unlock(&ctx->uring_lock);
3671			goto out;
3672		}
3673		if (flags & IORING_ENTER_GETEVENTS) {
3674			if (ctx->syscall_iopoll)
3675				goto iopoll_locked;
3676			/*
3677			 * Ignore errors, we'll soon call io_cqring_wait() and
3678			 * it should handle ownership problems if any.
3679			 */
3680			if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3681				(void)io_run_local_work_locked(ctx, min_complete);
3682		}
3683		mutex_unlock(&ctx->uring_lock);
3684	}
3685
3686	if (flags & IORING_ENTER_GETEVENTS) {
3687		int ret2;
3688
3689		if (ctx->syscall_iopoll) {
3690			/*
3691			 * We disallow the app entering submit/complete with
3692			 * polling, but we still need to lock the ring to
3693			 * prevent racing with polled issue that got punted to
3694			 * a workqueue.
3695			 */
3696			mutex_lock(&ctx->uring_lock);
3697iopoll_locked:
3698			ret2 = io_validate_ext_arg(flags, argp, argsz);
3699			if (likely(!ret2)) {
3700				min_complete = min(min_complete,
3701						   ctx->cq_entries);
3702				ret2 = io_iopoll_check(ctx, min_complete);
3703			}
3704			mutex_unlock(&ctx->uring_lock);
3705		} else {
3706			const sigset_t __user *sig;
3707			struct __kernel_timespec __user *ts;
3708
3709			ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3710			if (likely(!ret2)) {
3711				min_complete = min(min_complete,
3712						   ctx->cq_entries);
3713				ret2 = io_cqring_wait(ctx, min_complete, sig,
3714						      argsz, ts);
3715			}
3716		}
3717
3718		if (!ret) {
3719			ret = ret2;
3720
3721			/*
3722			 * EBADR indicates that one or more CQE were dropped.
3723			 * Once the user has been informed we can clear the bit
3724			 * as they are obviously ok with those drops.
3725			 */
3726			if (unlikely(ret2 == -EBADR))
3727				clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3728					  &ctx->check_cq);
3729		}
3730	}
3731out:
3732	if (!(flags & IORING_ENTER_REGISTERED_RING))
3733		fput(file);
3734	return ret;
3735}
3736
3737static const struct file_operations io_uring_fops = {
3738	.release	= io_uring_release,
3739	.mmap		= io_uring_mmap,
3740#ifndef CONFIG_MMU
3741	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
3742	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3743#else
3744	.get_unmapped_area = io_uring_mmu_get_unmapped_area,
3745#endif
3746	.poll		= io_uring_poll,
3747#ifdef CONFIG_PROC_FS
3748	.show_fdinfo	= io_uring_show_fdinfo,
3749#endif
3750};
3751
3752bool io_is_uring_fops(struct file *file)
3753{
3754	return file->f_op == &io_uring_fops;
3755}
3756
3757static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3758					 struct io_uring_params *p)
3759{
3760	struct io_rings *rings;
3761	size_t size, sq_array_offset;
3762	void *ptr;
3763
3764	/* make sure these are sane, as we already accounted them */
3765	ctx->sq_entries = p->sq_entries;
3766	ctx->cq_entries = p->cq_entries;
3767
3768	size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3769	if (size == SIZE_MAX)
3770		return -EOVERFLOW;
3771
3772	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3773		rings = io_mem_alloc(size);
3774	else
3775		rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3776
3777	if (IS_ERR(rings))
3778		return PTR_ERR(rings);
3779
3780	ctx->rings = rings;
3781	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3782		ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3783	rings->sq_ring_mask = p->sq_entries - 1;
3784	rings->cq_ring_mask = p->cq_entries - 1;
3785	rings->sq_ring_entries = p->sq_entries;
3786	rings->cq_ring_entries = p->cq_entries;
3787
3788	if (p->flags & IORING_SETUP_SQE128)
3789		size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3790	else
3791		size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3792	if (size == SIZE_MAX) {
3793		io_rings_free(ctx);
3794		return -EOVERFLOW;
3795	}
3796
3797	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3798		ptr = io_mem_alloc(size);
3799	else
3800		ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3801
3802	if (IS_ERR(ptr)) {
3803		io_rings_free(ctx);
3804		return PTR_ERR(ptr);
3805	}
3806
3807	ctx->sq_sqes = ptr;
3808	return 0;
3809}
3810
3811static int io_uring_install_fd(struct file *file)
3812{
3813	int fd;
3814
3815	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3816	if (fd < 0)
3817		return fd;
3818	fd_install(fd, file);
3819	return fd;
3820}
3821
3822/*
3823 * Allocate an anonymous fd, this is what constitutes the application
3824 * visible backing of an io_uring instance. The application mmaps this
3825 * fd to gain access to the SQ/CQ ring details.
3826 */
3827static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3828{
3829	/* Create a new inode so that the LSM can block the creation.  */
3830	return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3831					 O_RDWR | O_CLOEXEC, NULL);
3832}
3833
3834static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3835				  struct io_uring_params __user *params)
3836{
3837	struct io_ring_ctx *ctx;
3838	struct io_uring_task *tctx;
3839	struct file *file;
3840	int ret;
3841
3842	if (!entries)
3843		return -EINVAL;
3844	if (entries > IORING_MAX_ENTRIES) {
3845		if (!(p->flags & IORING_SETUP_CLAMP))
3846			return -EINVAL;
3847		entries = IORING_MAX_ENTRIES;
3848	}
3849
3850	if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3851	    && !(p->flags & IORING_SETUP_NO_MMAP))
3852		return -EINVAL;
3853
3854	/*
3855	 * Use twice as many entries for the CQ ring. It's possible for the
3856	 * application to drive a higher depth than the size of the SQ ring,
3857	 * since the sqes are only used at submission time. This allows for
3858	 * some flexibility in overcommitting a bit. If the application has
3859	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3860	 * of CQ ring entries manually.
3861	 */
3862	p->sq_entries = roundup_pow_of_two(entries);
3863	if (p->flags & IORING_SETUP_CQSIZE) {
3864		/*
3865		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3866		 * to a power-of-two, if it isn't already. We do NOT impose
3867		 * any cq vs sq ring sizing.
3868		 */
3869		if (!p->cq_entries)
3870			return -EINVAL;
3871		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3872			if (!(p->flags & IORING_SETUP_CLAMP))
3873				return -EINVAL;
3874			p->cq_entries = IORING_MAX_CQ_ENTRIES;
3875		}
3876		p->cq_entries = roundup_pow_of_two(p->cq_entries);
3877		if (p->cq_entries < p->sq_entries)
3878			return -EINVAL;
3879	} else {
3880		p->cq_entries = 2 * p->sq_entries;
3881	}
3882
3883	ctx = io_ring_ctx_alloc(p);
3884	if (!ctx)
3885		return -ENOMEM;
3886
3887	if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3888	    !(ctx->flags & IORING_SETUP_IOPOLL) &&
3889	    !(ctx->flags & IORING_SETUP_SQPOLL))
3890		ctx->task_complete = true;
3891
3892	if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3893		ctx->lockless_cq = true;
3894
3895	/*
3896	 * lazy poll_wq activation relies on ->task_complete for synchronisation
3897	 * purposes, see io_activate_pollwq()
3898	 */
3899	if (!ctx->task_complete)
3900		ctx->poll_activated = true;
3901
3902	/*
3903	 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3904	 * space applications don't need to do io completion events
3905	 * polling again, they can rely on io_sq_thread to do polling
3906	 * work, which can reduce cpu usage and uring_lock contention.
3907	 */
3908	if (ctx->flags & IORING_SETUP_IOPOLL &&
3909	    !(ctx->flags & IORING_SETUP_SQPOLL))
3910		ctx->syscall_iopoll = 1;
3911
3912	ctx->compat = in_compat_syscall();
3913	if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3914		ctx->user = get_uid(current_user());
3915
3916	/*
3917	 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3918	 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3919	 */
3920	ret = -EINVAL;
3921	if (ctx->flags & IORING_SETUP_SQPOLL) {
3922		/* IPI related flags don't make sense with SQPOLL */
3923		if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3924				  IORING_SETUP_TASKRUN_FLAG |
3925				  IORING_SETUP_DEFER_TASKRUN))
3926			goto err;
3927		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3928	} else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3929		ctx->notify_method = TWA_SIGNAL_NO_IPI;
3930	} else {
3931		if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3932		    !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3933			goto err;
3934		ctx->notify_method = TWA_SIGNAL;
3935	}
3936
3937	/*
3938	 * For DEFER_TASKRUN we require the completion task to be the same as the
3939	 * submission task. This implies that there is only one submitter, so enforce
3940	 * that.
3941	 */
3942	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3943	    !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3944		goto err;
3945	}
3946
3947	/*
3948	 * This is just grabbed for accounting purposes. When a process exits,
3949	 * the mm is exited and dropped before the files, hence we need to hang
3950	 * on to this mm purely for the purposes of being able to unaccount
3951	 * memory (locked/pinned vm). It's not used for anything else.
3952	 */
3953	mmgrab(current->mm);
3954	ctx->mm_account = current->mm;
3955
3956	ret = io_allocate_scq_urings(ctx, p);
3957	if (ret)
3958		goto err;
3959
3960	ret = io_sq_offload_create(ctx, p);
3961	if (ret)
3962		goto err;
3963
3964	ret = io_rsrc_init(ctx);
3965	if (ret)
3966		goto err;
3967
3968	p->sq_off.head = offsetof(struct io_rings, sq.head);
3969	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3970	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3971	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3972	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3973	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3974	if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3975		p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3976	p->sq_off.resv1 = 0;
3977	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3978		p->sq_off.user_addr = 0;
3979
3980	p->cq_off.head = offsetof(struct io_rings, cq.head);
3981	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3982	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3983	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3984	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3985	p->cq_off.cqes = offsetof(struct io_rings, cqes);
3986	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3987	p->cq_off.resv1 = 0;
3988	if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3989		p->cq_off.user_addr = 0;
3990
3991	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3992			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3993			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3994			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3995			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3996			IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3997			IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3998
3999	if (copy_to_user(params, p, sizeof(*p))) {
4000		ret = -EFAULT;
4001		goto err;
4002	}
4003
4004	if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4005	    && !(ctx->flags & IORING_SETUP_R_DISABLED))
4006		WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4007
4008	file = io_uring_get_file(ctx);
4009	if (IS_ERR(file)) {
4010		ret = PTR_ERR(file);
4011		goto err;
4012	}
4013
4014	ret = __io_uring_add_tctx_node(ctx);
4015	if (ret)
4016		goto err_fput;
4017	tctx = current->io_uring;
4018
4019	/*
4020	 * Install ring fd as the very last thing, so we don't risk someone
4021	 * having closed it before we finish setup
4022	 */
4023	if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4024		ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4025	else
4026		ret = io_uring_install_fd(file);
4027	if (ret < 0)
4028		goto err_fput;
4029
4030	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4031	return ret;
4032err:
4033	io_ring_ctx_wait_and_kill(ctx);
4034	return ret;
4035err_fput:
4036	fput(file);
4037	return ret;
4038}
4039
4040/*
4041 * Sets up an aio uring context, and returns the fd. Applications asks for a
4042 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4043 * params structure passed in.
4044 */
4045static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4046{
4047	struct io_uring_params p;
4048	int i;
4049
4050	if (copy_from_user(&p, params, sizeof(p)))
4051		return -EFAULT;
4052	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4053		if (p.resv[i])
4054			return -EINVAL;
4055	}
4056
4057	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4058			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4059			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4060			IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4061			IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4062			IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4063			IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4064			IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4065			IORING_SETUP_NO_SQARRAY))
4066		return -EINVAL;
4067
4068	return io_uring_create(entries, &p, params);
4069}
4070
4071static inline bool io_uring_allowed(void)
4072{
4073	int disabled = READ_ONCE(sysctl_io_uring_disabled);
4074	kgid_t io_uring_group;
4075
4076	if (disabled == 2)
4077		return false;
4078
4079	if (disabled == 0 || capable(CAP_SYS_ADMIN))
4080		return true;
4081
4082	io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4083	if (!gid_valid(io_uring_group))
4084		return false;
4085
4086	return in_group_p(io_uring_group);
4087}
4088
4089SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4090		struct io_uring_params __user *, params)
4091{
4092	if (!io_uring_allowed())
4093		return -EPERM;
4094
4095	return io_uring_setup(entries, params);
4096}
4097
4098static int __init io_uring_init(void)
4099{
4100#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4101	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4102	BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4103} while (0)
4104
4105#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4106	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4107#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4108	__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4109	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4110	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
4111	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
4112	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
4113	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
4114	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
4115	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
4116	BUILD_BUG_SQE_ELEM(8,  __u32,  cmd_op);
4117	BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4118	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
4119	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
4120	BUILD_BUG_SQE_ELEM(24, __u32,  len);
4121	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
4122	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
4123	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4124	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
4125	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
4126	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
4127	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
4128	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
4129	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
4130	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
4131	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
4132	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
4133	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
4134	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
4135	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
4136	BUILD_BUG_SQE_ELEM(28, __u32,  rename_flags);
4137	BUILD_BUG_SQE_ELEM(28, __u32,  unlink_flags);
4138	BUILD_BUG_SQE_ELEM(28, __u32,  hardlink_flags);
4139	BUILD_BUG_SQE_ELEM(28, __u32,  xattr_flags);
4140	BUILD_BUG_SQE_ELEM(28, __u32,  msg_ring_flags);
4141	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
4142	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
4143	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
4144	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
4145	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
4146	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
4147	BUILD_BUG_SQE_ELEM(44, __u16,  addr_len);
4148	BUILD_BUG_SQE_ELEM(46, __u16,  __pad3[0]);
4149	BUILD_BUG_SQE_ELEM(48, __u64,  addr3);
4150	BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4151	BUILD_BUG_SQE_ELEM(56, __u64,  __pad2);
4152
4153	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4154		     sizeof(struct io_uring_rsrc_update));
4155	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4156		     sizeof(struct io_uring_rsrc_update2));
4157
4158	/* ->buf_index is u16 */
4159	BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4160	BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4161		     offsetof(struct io_uring_buf_ring, tail));
4162
4163	/* should fit into one byte */
4164	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4165	BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4166	BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4167
4168	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
4169
4170	BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4171
4172	/* top 8bits are for internal use */
4173	BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4174
4175	io_uring_optable_init();
4176
4177	/*
4178	 * Allow user copy in the per-command field, which starts after the
4179	 * file in io_kiocb and until the opcode field. The openat2 handling
4180	 * requires copying in user memory into the io_kiocb object in that
4181	 * range, and HARDENED_USERCOPY will complain if we haven't
4182	 * correctly annotated this range.
4183	 */
4184	req_cachep = kmem_cache_create_usercopy("io_kiocb",
4185				sizeof(struct io_kiocb), 0,
4186				SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4187				SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4188				offsetof(struct io_kiocb, cmd.data),
4189				sizeof_field(struct io_kiocb, cmd.data), NULL);
4190	io_buf_cachep = KMEM_CACHE(io_buffer,
4191					  SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
4192
4193	iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4194
4195#ifdef CONFIG_SYSCTL
4196	register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4197#endif
4198
4199	return 0;
4200};
4201__initcall(io_uring_init);
4202