1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * VFIO API definition
4 *
5 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
6 *     Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#ifndef _UAPIVFIO_H
13#define _UAPIVFIO_H
14
15#include <linux/types.h>
16#include <linux/ioctl.h>
17
18#define VFIO_API_VERSION	0
19
20
21/* Kernel & User level defines for VFIO IOCTLs. */
22
23/* Extensions */
24
25#define VFIO_TYPE1_IOMMU		1
26#define VFIO_SPAPR_TCE_IOMMU		2
27#define VFIO_TYPE1v2_IOMMU		3
28/*
29 * IOMMU enforces DMA cache coherence (ex. PCIe NoSnoop stripping).  This
30 * capability is subject to change as groups are added or removed.
31 */
32#define VFIO_DMA_CC_IOMMU		4
33
34/* Check if EEH is supported */
35#define VFIO_EEH			5
36
37/* Two-stage IOMMU */
38#define VFIO_TYPE1_NESTING_IOMMU	6	/* Implies v2 */
39
40#define VFIO_SPAPR_TCE_v2_IOMMU		7
41
42/*
43 * The No-IOMMU IOMMU offers no translation or isolation for devices and
44 * supports no ioctls outside of VFIO_CHECK_EXTENSION.  Use of VFIO's No-IOMMU
45 * code will taint the host kernel and should be used with extreme caution.
46 */
47#define VFIO_NOIOMMU_IOMMU		8
48
49/* Supports VFIO_DMA_UNMAP_FLAG_ALL */
50#define VFIO_UNMAP_ALL			9
51
52/*
53 * Supports the vaddr flag for DMA map and unmap.  Not supported for mediated
54 * devices, so this capability is subject to change as groups are added or
55 * removed.
56 */
57#define VFIO_UPDATE_VADDR		10
58
59/*
60 * The IOCTL interface is designed for extensibility by embedding the
61 * structure length (argsz) and flags into structures passed between
62 * kernel and userspace.  We therefore use the _IO() macro for these
63 * defines to avoid implicitly embedding a size into the ioctl request.
64 * As structure fields are added, argsz will increase to match and flag
65 * bits will be defined to indicate additional fields with valid data.
66 * It's *always* the caller's responsibility to indicate the size of
67 * the structure passed by setting argsz appropriately.
68 */
69
70#define VFIO_TYPE	(';')
71#define VFIO_BASE	100
72
73/*
74 * For extension of INFO ioctls, VFIO makes use of a capability chain
75 * designed after PCI/e capabilities.  A flag bit indicates whether
76 * this capability chain is supported and a field defined in the fixed
77 * structure defines the offset of the first capability in the chain.
78 * This field is only valid when the corresponding bit in the flags
79 * bitmap is set.  This offset field is relative to the start of the
80 * INFO buffer, as is the next field within each capability header.
81 * The id within the header is a shared address space per INFO ioctl,
82 * while the version field is specific to the capability id.  The
83 * contents following the header are specific to the capability id.
84 */
85struct vfio_info_cap_header {
86	__u16	id;		/* Identifies capability */
87	__u16	version;	/* Version specific to the capability ID */
88	__u32	next;		/* Offset of next capability */
89};
90
91/*
92 * Callers of INFO ioctls passing insufficiently sized buffers will see
93 * the capability chain flag bit set, a zero value for the first capability
94 * offset (if available within the provided argsz), and argsz will be
95 * updated to report the necessary buffer size.  For compatibility, the
96 * INFO ioctl will not report error in this case, but the capability chain
97 * will not be available.
98 */
99
100/* -------- IOCTLs for VFIO file descriptor (/dev/vfio/vfio) -------- */
101
102/**
103 * VFIO_GET_API_VERSION - _IO(VFIO_TYPE, VFIO_BASE + 0)
104 *
105 * Report the version of the VFIO API.  This allows us to bump the entire
106 * API version should we later need to add or change features in incompatible
107 * ways.
108 * Return: VFIO_API_VERSION
109 * Availability: Always
110 */
111#define VFIO_GET_API_VERSION		_IO(VFIO_TYPE, VFIO_BASE + 0)
112
113/**
114 * VFIO_CHECK_EXTENSION - _IOW(VFIO_TYPE, VFIO_BASE + 1, __u32)
115 *
116 * Check whether an extension is supported.
117 * Return: 0 if not supported, 1 (or some other positive integer) if supported.
118 * Availability: Always
119 */
120#define VFIO_CHECK_EXTENSION		_IO(VFIO_TYPE, VFIO_BASE + 1)
121
122/**
123 * VFIO_SET_IOMMU - _IOW(VFIO_TYPE, VFIO_BASE + 2, __s32)
124 *
125 * Set the iommu to the given type.  The type must be supported by an
126 * iommu driver as verified by calling CHECK_EXTENSION using the same
127 * type.  A group must be set to this file descriptor before this
128 * ioctl is available.  The IOMMU interfaces enabled by this call are
129 * specific to the value set.
130 * Return: 0 on success, -errno on failure
131 * Availability: When VFIO group attached
132 */
133#define VFIO_SET_IOMMU			_IO(VFIO_TYPE, VFIO_BASE + 2)
134
135/* -------- IOCTLs for GROUP file descriptors (/dev/vfio/$GROUP) -------- */
136
137/**
138 * VFIO_GROUP_GET_STATUS - _IOR(VFIO_TYPE, VFIO_BASE + 3,
139 *						struct vfio_group_status)
140 *
141 * Retrieve information about the group.  Fills in provided
142 * struct vfio_group_info.  Caller sets argsz.
143 * Return: 0 on succes, -errno on failure.
144 * Availability: Always
145 */
146struct vfio_group_status {
147	__u32	argsz;
148	__u32	flags;
149#define VFIO_GROUP_FLAGS_VIABLE		(1 << 0)
150#define VFIO_GROUP_FLAGS_CONTAINER_SET	(1 << 1)
151};
152#define VFIO_GROUP_GET_STATUS		_IO(VFIO_TYPE, VFIO_BASE + 3)
153
154/**
155 * VFIO_GROUP_SET_CONTAINER - _IOW(VFIO_TYPE, VFIO_BASE + 4, __s32)
156 *
157 * Set the container for the VFIO group to the open VFIO file
158 * descriptor provided.  Groups may only belong to a single
159 * container.  Containers may, at their discretion, support multiple
160 * groups.  Only when a container is set are all of the interfaces
161 * of the VFIO file descriptor and the VFIO group file descriptor
162 * available to the user.
163 * Return: 0 on success, -errno on failure.
164 * Availability: Always
165 */
166#define VFIO_GROUP_SET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 4)
167
168/**
169 * VFIO_GROUP_UNSET_CONTAINER - _IO(VFIO_TYPE, VFIO_BASE + 5)
170 *
171 * Remove the group from the attached container.  This is the
172 * opposite of the SET_CONTAINER call and returns the group to
173 * an initial state.  All device file descriptors must be released
174 * prior to calling this interface.  When removing the last group
175 * from a container, the IOMMU will be disabled and all state lost,
176 * effectively also returning the VFIO file descriptor to an initial
177 * state.
178 * Return: 0 on success, -errno on failure.
179 * Availability: When attached to container
180 */
181#define VFIO_GROUP_UNSET_CONTAINER	_IO(VFIO_TYPE, VFIO_BASE + 5)
182
183/**
184 * VFIO_GROUP_GET_DEVICE_FD - _IOW(VFIO_TYPE, VFIO_BASE + 6, char)
185 *
186 * Return a new file descriptor for the device object described by
187 * the provided string.  The string should match a device listed in
188 * the devices subdirectory of the IOMMU group sysfs entry.  The
189 * group containing the device must already be added to this context.
190 * Return: new file descriptor on success, -errno on failure.
191 * Availability: When attached to container
192 */
193#define VFIO_GROUP_GET_DEVICE_FD	_IO(VFIO_TYPE, VFIO_BASE + 6)
194
195/* --------------- IOCTLs for DEVICE file descriptors --------------- */
196
197/**
198 * VFIO_DEVICE_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 7,
199 *						struct vfio_device_info)
200 *
201 * Retrieve information about the device.  Fills in provided
202 * struct vfio_device_info.  Caller sets argsz.
203 * Return: 0 on success, -errno on failure.
204 */
205struct vfio_device_info {
206	__u32	argsz;
207	__u32	flags;
208#define VFIO_DEVICE_FLAGS_RESET	(1 << 0)	/* Device supports reset */
209#define VFIO_DEVICE_FLAGS_PCI	(1 << 1)	/* vfio-pci device */
210#define VFIO_DEVICE_FLAGS_PLATFORM (1 << 2)	/* vfio-platform device */
211#define VFIO_DEVICE_FLAGS_AMBA  (1 << 3)	/* vfio-amba device */
212#define VFIO_DEVICE_FLAGS_CCW	(1 << 4)	/* vfio-ccw device */
213#define VFIO_DEVICE_FLAGS_AP	(1 << 5)	/* vfio-ap device */
214#define VFIO_DEVICE_FLAGS_FSL_MC (1 << 6)	/* vfio-fsl-mc device */
215#define VFIO_DEVICE_FLAGS_CAPS	(1 << 7)	/* Info supports caps */
216#define VFIO_DEVICE_FLAGS_CDX	(1 << 8)	/* vfio-cdx device */
217	__u32	num_regions;	/* Max region index + 1 */
218	__u32	num_irqs;	/* Max IRQ index + 1 */
219	__u32   cap_offset;	/* Offset within info struct of first cap */
220	__u32   pad;
221};
222#define VFIO_DEVICE_GET_INFO		_IO(VFIO_TYPE, VFIO_BASE + 7)
223
224/*
225 * Vendor driver using Mediated device framework should provide device_api
226 * attribute in supported type attribute groups. Device API string should be one
227 * of the following corresponding to device flags in vfio_device_info structure.
228 */
229
230#define VFIO_DEVICE_API_PCI_STRING		"vfio-pci"
231#define VFIO_DEVICE_API_PLATFORM_STRING		"vfio-platform"
232#define VFIO_DEVICE_API_AMBA_STRING		"vfio-amba"
233#define VFIO_DEVICE_API_CCW_STRING		"vfio-ccw"
234#define VFIO_DEVICE_API_AP_STRING		"vfio-ap"
235
236/*
237 * The following capabilities are unique to s390 zPCI devices.  Their contents
238 * are further-defined in vfio_zdev.h
239 */
240#define VFIO_DEVICE_INFO_CAP_ZPCI_BASE		1
241#define VFIO_DEVICE_INFO_CAP_ZPCI_GROUP		2
242#define VFIO_DEVICE_INFO_CAP_ZPCI_UTIL		3
243#define VFIO_DEVICE_INFO_CAP_ZPCI_PFIP		4
244
245/*
246 * The following VFIO_DEVICE_INFO capability reports support for PCIe AtomicOp
247 * completion to the root bus with supported widths provided via flags.
248 */
249#define VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP	5
250struct vfio_device_info_cap_pci_atomic_comp {
251	struct vfio_info_cap_header header;
252	__u32 flags;
253#define VFIO_PCI_ATOMIC_COMP32	(1 << 0)
254#define VFIO_PCI_ATOMIC_COMP64	(1 << 1)
255#define VFIO_PCI_ATOMIC_COMP128	(1 << 2)
256	__u32 reserved;
257};
258
259/**
260 * VFIO_DEVICE_GET_REGION_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 8,
261 *				       struct vfio_region_info)
262 *
263 * Retrieve information about a device region.  Caller provides
264 * struct vfio_region_info with index value set.  Caller sets argsz.
265 * Implementation of region mapping is bus driver specific.  This is
266 * intended to describe MMIO, I/O port, as well as bus specific
267 * regions (ex. PCI config space).  Zero sized regions may be used
268 * to describe unimplemented regions (ex. unimplemented PCI BARs).
269 * Return: 0 on success, -errno on failure.
270 */
271struct vfio_region_info {
272	__u32	argsz;
273	__u32	flags;
274#define VFIO_REGION_INFO_FLAG_READ	(1 << 0) /* Region supports read */
275#define VFIO_REGION_INFO_FLAG_WRITE	(1 << 1) /* Region supports write */
276#define VFIO_REGION_INFO_FLAG_MMAP	(1 << 2) /* Region supports mmap */
277#define VFIO_REGION_INFO_FLAG_CAPS	(1 << 3) /* Info supports caps */
278	__u32	index;		/* Region index */
279	__u32	cap_offset;	/* Offset within info struct of first cap */
280	__aligned_u64	size;	/* Region size (bytes) */
281	__aligned_u64	offset;	/* Region offset from start of device fd */
282};
283#define VFIO_DEVICE_GET_REGION_INFO	_IO(VFIO_TYPE, VFIO_BASE + 8)
284
285/*
286 * The sparse mmap capability allows finer granularity of specifying areas
287 * within a region with mmap support.  When specified, the user should only
288 * mmap the offset ranges specified by the areas array.  mmaps outside of the
289 * areas specified may fail (such as the range covering a PCI MSI-X table) or
290 * may result in improper device behavior.
291 *
292 * The structures below define version 1 of this capability.
293 */
294#define VFIO_REGION_INFO_CAP_SPARSE_MMAP	1
295
296struct vfio_region_sparse_mmap_area {
297	__aligned_u64	offset;	/* Offset of mmap'able area within region */
298	__aligned_u64	size;	/* Size of mmap'able area */
299};
300
301struct vfio_region_info_cap_sparse_mmap {
302	struct vfio_info_cap_header header;
303	__u32	nr_areas;
304	__u32	reserved;
305	struct vfio_region_sparse_mmap_area areas[];
306};
307
308/*
309 * The device specific type capability allows regions unique to a specific
310 * device or class of devices to be exposed.  This helps solve the problem for
311 * vfio bus drivers of defining which region indexes correspond to which region
312 * on the device, without needing to resort to static indexes, as done by
313 * vfio-pci.  For instance, if we were to go back in time, we might remove
314 * VFIO_PCI_VGA_REGION_INDEX and let vfio-pci simply define that all indexes
315 * greater than or equal to VFIO_PCI_NUM_REGIONS are device specific and we'd
316 * make a "VGA" device specific type to describe the VGA access space.  This
317 * means that non-VGA devices wouldn't need to waste this index, and thus the
318 * address space associated with it due to implementation of device file
319 * descriptor offsets in vfio-pci.
320 *
321 * The current implementation is now part of the user ABI, so we can't use this
322 * for VGA, but there are other upcoming use cases, such as opregions for Intel
323 * IGD devices and framebuffers for vGPU devices.  We missed VGA, but we'll
324 * use this for future additions.
325 *
326 * The structure below defines version 1 of this capability.
327 */
328#define VFIO_REGION_INFO_CAP_TYPE	2
329
330struct vfio_region_info_cap_type {
331	struct vfio_info_cap_header header;
332	__u32 type;	/* global per bus driver */
333	__u32 subtype;	/* type specific */
334};
335
336/*
337 * List of region types, global per bus driver.
338 * If you introduce a new type, please add it here.
339 */
340
341/* PCI region type containing a PCI vendor part */
342#define VFIO_REGION_TYPE_PCI_VENDOR_TYPE	(1 << 31)
343#define VFIO_REGION_TYPE_PCI_VENDOR_MASK	(0xffff)
344#define VFIO_REGION_TYPE_GFX                    (1)
345#define VFIO_REGION_TYPE_CCW			(2)
346#define VFIO_REGION_TYPE_MIGRATION_DEPRECATED   (3)
347
348/* sub-types for VFIO_REGION_TYPE_PCI_* */
349
350/* 8086 vendor PCI sub-types */
351#define VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION	(1)
352#define VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG	(2)
353#define VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG	(3)
354
355/* 10de vendor PCI sub-types */
356/*
357 * NVIDIA GPU NVlink2 RAM is coherent RAM mapped onto the host address space.
358 *
359 * Deprecated, region no longer provided
360 */
361#define VFIO_REGION_SUBTYPE_NVIDIA_NVLINK2_RAM	(1)
362
363/* 1014 vendor PCI sub-types */
364/*
365 * IBM NPU NVlink2 ATSD (Address Translation Shootdown) register of NPU
366 * to do TLB invalidation on a GPU.
367 *
368 * Deprecated, region no longer provided
369 */
370#define VFIO_REGION_SUBTYPE_IBM_NVLINK2_ATSD	(1)
371
372/* sub-types for VFIO_REGION_TYPE_GFX */
373#define VFIO_REGION_SUBTYPE_GFX_EDID            (1)
374
375/**
376 * struct vfio_region_gfx_edid - EDID region layout.
377 *
378 * Set display link state and EDID blob.
379 *
380 * The EDID blob has monitor information such as brand, name, serial
381 * number, physical size, supported video modes and more.
382 *
383 * This special region allows userspace (typically qemu) set a virtual
384 * EDID for the virtual monitor, which allows a flexible display
385 * configuration.
386 *
387 * For the edid blob spec look here:
388 *    https://en.wikipedia.org/wiki/Extended_Display_Identification_Data
389 *
390 * On linux systems you can find the EDID blob in sysfs:
391 *    /sys/class/drm/${card}/${connector}/edid
392 *
393 * You can use the edid-decode ulility (comes with xorg-x11-utils) to
394 * decode the EDID blob.
395 *
396 * @edid_offset: location of the edid blob, relative to the
397 *               start of the region (readonly).
398 * @edid_max_size: max size of the edid blob (readonly).
399 * @edid_size: actual edid size (read/write).
400 * @link_state: display link state (read/write).
401 * VFIO_DEVICE_GFX_LINK_STATE_UP: Monitor is turned on.
402 * VFIO_DEVICE_GFX_LINK_STATE_DOWN: Monitor is turned off.
403 * @max_xres: max display width (0 == no limitation, readonly).
404 * @max_yres: max display height (0 == no limitation, readonly).
405 *
406 * EDID update protocol:
407 *   (1) set link-state to down.
408 *   (2) update edid blob and size.
409 *   (3) set link-state to up.
410 */
411struct vfio_region_gfx_edid {
412	__u32 edid_offset;
413	__u32 edid_max_size;
414	__u32 edid_size;
415	__u32 max_xres;
416	__u32 max_yres;
417	__u32 link_state;
418#define VFIO_DEVICE_GFX_LINK_STATE_UP    1
419#define VFIO_DEVICE_GFX_LINK_STATE_DOWN  2
420};
421
422/* sub-types for VFIO_REGION_TYPE_CCW */
423#define VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD	(1)
424#define VFIO_REGION_SUBTYPE_CCW_SCHIB		(2)
425#define VFIO_REGION_SUBTYPE_CCW_CRW		(3)
426
427/* sub-types for VFIO_REGION_TYPE_MIGRATION */
428#define VFIO_REGION_SUBTYPE_MIGRATION_DEPRECATED (1)
429
430struct vfio_device_migration_info {
431	__u32 device_state;         /* VFIO device state */
432#define VFIO_DEVICE_STATE_V1_STOP      (0)
433#define VFIO_DEVICE_STATE_V1_RUNNING   (1 << 0)
434#define VFIO_DEVICE_STATE_V1_SAVING    (1 << 1)
435#define VFIO_DEVICE_STATE_V1_RESUMING  (1 << 2)
436#define VFIO_DEVICE_STATE_MASK      (VFIO_DEVICE_STATE_V1_RUNNING | \
437				     VFIO_DEVICE_STATE_V1_SAVING |  \
438				     VFIO_DEVICE_STATE_V1_RESUMING)
439
440#define VFIO_DEVICE_STATE_VALID(state) \
441	(state & VFIO_DEVICE_STATE_V1_RESUMING ? \
442	(state & VFIO_DEVICE_STATE_MASK) == VFIO_DEVICE_STATE_V1_RESUMING : 1)
443
444#define VFIO_DEVICE_STATE_IS_ERROR(state) \
445	((state & VFIO_DEVICE_STATE_MASK) == (VFIO_DEVICE_STATE_V1_SAVING | \
446					      VFIO_DEVICE_STATE_V1_RESUMING))
447
448#define VFIO_DEVICE_STATE_SET_ERROR(state) \
449	((state & ~VFIO_DEVICE_STATE_MASK) | VFIO_DEVICE_STATE_V1_SAVING | \
450					     VFIO_DEVICE_STATE_V1_RESUMING)
451
452	__u32 reserved;
453	__aligned_u64 pending_bytes;
454	__aligned_u64 data_offset;
455	__aligned_u64 data_size;
456};
457
458/*
459 * The MSIX mappable capability informs that MSIX data of a BAR can be mmapped
460 * which allows direct access to non-MSIX registers which happened to be within
461 * the same system page.
462 *
463 * Even though the userspace gets direct access to the MSIX data, the existing
464 * VFIO_DEVICE_SET_IRQS interface must still be used for MSIX configuration.
465 */
466#define VFIO_REGION_INFO_CAP_MSIX_MAPPABLE	3
467
468/*
469 * Capability with compressed real address (aka SSA - small system address)
470 * where GPU RAM is mapped on a system bus. Used by a GPU for DMA routing
471 * and by the userspace to associate a NVLink bridge with a GPU.
472 *
473 * Deprecated, capability no longer provided
474 */
475#define VFIO_REGION_INFO_CAP_NVLINK2_SSATGT	4
476
477struct vfio_region_info_cap_nvlink2_ssatgt {
478	struct vfio_info_cap_header header;
479	__aligned_u64 tgt;
480};
481
482/*
483 * Capability with an NVLink link speed. The value is read by
484 * the NVlink2 bridge driver from the bridge's "ibm,nvlink-speed"
485 * property in the device tree. The value is fixed in the hardware
486 * and failing to provide the correct value results in the link
487 * not working with no indication from the driver why.
488 *
489 * Deprecated, capability no longer provided
490 */
491#define VFIO_REGION_INFO_CAP_NVLINK2_LNKSPD	5
492
493struct vfio_region_info_cap_nvlink2_lnkspd {
494	struct vfio_info_cap_header header;
495	__u32 link_speed;
496	__u32 __pad;
497};
498
499/**
500 * VFIO_DEVICE_GET_IRQ_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 9,
501 *				    struct vfio_irq_info)
502 *
503 * Retrieve information about a device IRQ.  Caller provides
504 * struct vfio_irq_info with index value set.  Caller sets argsz.
505 * Implementation of IRQ mapping is bus driver specific.  Indexes
506 * using multiple IRQs are primarily intended to support MSI-like
507 * interrupt blocks.  Zero count irq blocks may be used to describe
508 * unimplemented interrupt types.
509 *
510 * The EVENTFD flag indicates the interrupt index supports eventfd based
511 * signaling.
512 *
513 * The MASKABLE flags indicates the index supports MASK and UNMASK
514 * actions described below.
515 *
516 * AUTOMASKED indicates that after signaling, the interrupt line is
517 * automatically masked by VFIO and the user needs to unmask the line
518 * to receive new interrupts.  This is primarily intended to distinguish
519 * level triggered interrupts.
520 *
521 * The NORESIZE flag indicates that the interrupt lines within the index
522 * are setup as a set and new subindexes cannot be enabled without first
523 * disabling the entire index.  This is used for interrupts like PCI MSI
524 * and MSI-X where the driver may only use a subset of the available
525 * indexes, but VFIO needs to enable a specific number of vectors
526 * upfront.  In the case of MSI-X, where the user can enable MSI-X and
527 * then add and unmask vectors, it's up to userspace to make the decision
528 * whether to allocate the maximum supported number of vectors or tear
529 * down setup and incrementally increase the vectors as each is enabled.
530 * Absence of the NORESIZE flag indicates that vectors can be enabled
531 * and disabled dynamically without impacting other vectors within the
532 * index.
533 */
534struct vfio_irq_info {
535	__u32	argsz;
536	__u32	flags;
537#define VFIO_IRQ_INFO_EVENTFD		(1 << 0)
538#define VFIO_IRQ_INFO_MASKABLE		(1 << 1)
539#define VFIO_IRQ_INFO_AUTOMASKED	(1 << 2)
540#define VFIO_IRQ_INFO_NORESIZE		(1 << 3)
541	__u32	index;		/* IRQ index */
542	__u32	count;		/* Number of IRQs within this index */
543};
544#define VFIO_DEVICE_GET_IRQ_INFO	_IO(VFIO_TYPE, VFIO_BASE + 9)
545
546/**
547 * VFIO_DEVICE_SET_IRQS - _IOW(VFIO_TYPE, VFIO_BASE + 10, struct vfio_irq_set)
548 *
549 * Set signaling, masking, and unmasking of interrupts.  Caller provides
550 * struct vfio_irq_set with all fields set.  'start' and 'count' indicate
551 * the range of subindexes being specified.
552 *
553 * The DATA flags specify the type of data provided.  If DATA_NONE, the
554 * operation performs the specified action immediately on the specified
555 * interrupt(s).  For example, to unmask AUTOMASKED interrupt [0,0]:
556 * flags = (DATA_NONE|ACTION_UNMASK), index = 0, start = 0, count = 1.
557 *
558 * DATA_BOOL allows sparse support for the same on arrays of interrupts.
559 * For example, to mask interrupts [0,1] and [0,3] (but not [0,2]):
560 * flags = (DATA_BOOL|ACTION_MASK), index = 0, start = 1, count = 3,
561 * data = {1,0,1}
562 *
563 * DATA_EVENTFD binds the specified ACTION to the provided __s32 eventfd.
564 * A value of -1 can be used to either de-assign interrupts if already
565 * assigned or skip un-assigned interrupts.  For example, to set an eventfd
566 * to be trigger for interrupts [0,0] and [0,2]:
567 * flags = (DATA_EVENTFD|ACTION_TRIGGER), index = 0, start = 0, count = 3,
568 * data = {fd1, -1, fd2}
569 * If index [0,1] is previously set, two count = 1 ioctls calls would be
570 * required to set [0,0] and [0,2] without changing [0,1].
571 *
572 * Once a signaling mechanism is set, DATA_BOOL or DATA_NONE can be used
573 * with ACTION_TRIGGER to perform kernel level interrupt loopback testing
574 * from userspace (ie. simulate hardware triggering).
575 *
576 * Setting of an event triggering mechanism to userspace for ACTION_TRIGGER
577 * enables the interrupt index for the device.  Individual subindex interrupts
578 * can be disabled using the -1 value for DATA_EVENTFD or the index can be
579 * disabled as a whole with: flags = (DATA_NONE|ACTION_TRIGGER), count = 0.
580 *
581 * Note that ACTION_[UN]MASK specify user->kernel signaling (irqfds) while
582 * ACTION_TRIGGER specifies kernel->user signaling.
583 */
584struct vfio_irq_set {
585	__u32	argsz;
586	__u32	flags;
587#define VFIO_IRQ_SET_DATA_NONE		(1 << 0) /* Data not present */
588#define VFIO_IRQ_SET_DATA_BOOL		(1 << 1) /* Data is bool (u8) */
589#define VFIO_IRQ_SET_DATA_EVENTFD	(1 << 2) /* Data is eventfd (s32) */
590#define VFIO_IRQ_SET_ACTION_MASK	(1 << 3) /* Mask interrupt */
591#define VFIO_IRQ_SET_ACTION_UNMASK	(1 << 4) /* Unmask interrupt */
592#define VFIO_IRQ_SET_ACTION_TRIGGER	(1 << 5) /* Trigger interrupt */
593	__u32	index;
594	__u32	start;
595	__u32	count;
596	__u8	data[];
597};
598#define VFIO_DEVICE_SET_IRQS		_IO(VFIO_TYPE, VFIO_BASE + 10)
599
600#define VFIO_IRQ_SET_DATA_TYPE_MASK	(VFIO_IRQ_SET_DATA_NONE | \
601					 VFIO_IRQ_SET_DATA_BOOL | \
602					 VFIO_IRQ_SET_DATA_EVENTFD)
603#define VFIO_IRQ_SET_ACTION_TYPE_MASK	(VFIO_IRQ_SET_ACTION_MASK | \
604					 VFIO_IRQ_SET_ACTION_UNMASK | \
605					 VFIO_IRQ_SET_ACTION_TRIGGER)
606/**
607 * VFIO_DEVICE_RESET - _IO(VFIO_TYPE, VFIO_BASE + 11)
608 *
609 * Reset a device.
610 */
611#define VFIO_DEVICE_RESET		_IO(VFIO_TYPE, VFIO_BASE + 11)
612
613/*
614 * The VFIO-PCI bus driver makes use of the following fixed region and
615 * IRQ index mapping.  Unimplemented regions return a size of zero.
616 * Unimplemented IRQ types return a count of zero.
617 */
618
619enum {
620	VFIO_PCI_BAR0_REGION_INDEX,
621	VFIO_PCI_BAR1_REGION_INDEX,
622	VFIO_PCI_BAR2_REGION_INDEX,
623	VFIO_PCI_BAR3_REGION_INDEX,
624	VFIO_PCI_BAR4_REGION_INDEX,
625	VFIO_PCI_BAR5_REGION_INDEX,
626	VFIO_PCI_ROM_REGION_INDEX,
627	VFIO_PCI_CONFIG_REGION_INDEX,
628	/*
629	 * Expose VGA regions defined for PCI base class 03, subclass 00.
630	 * This includes I/O port ranges 0x3b0 to 0x3bb and 0x3c0 to 0x3df
631	 * as well as the MMIO range 0xa0000 to 0xbffff.  Each implemented
632	 * range is found at it's identity mapped offset from the region
633	 * offset, for example 0x3b0 is region_info.offset + 0x3b0.  Areas
634	 * between described ranges are unimplemented.
635	 */
636	VFIO_PCI_VGA_REGION_INDEX,
637	VFIO_PCI_NUM_REGIONS = 9 /* Fixed user ABI, region indexes >=9 use */
638				 /* device specific cap to define content. */
639};
640
641enum {
642	VFIO_PCI_INTX_IRQ_INDEX,
643	VFIO_PCI_MSI_IRQ_INDEX,
644	VFIO_PCI_MSIX_IRQ_INDEX,
645	VFIO_PCI_ERR_IRQ_INDEX,
646	VFIO_PCI_REQ_IRQ_INDEX,
647	VFIO_PCI_NUM_IRQS
648};
649
650/*
651 * The vfio-ccw bus driver makes use of the following fixed region and
652 * IRQ index mapping. Unimplemented regions return a size of zero.
653 * Unimplemented IRQ types return a count of zero.
654 */
655
656enum {
657	VFIO_CCW_CONFIG_REGION_INDEX,
658	VFIO_CCW_NUM_REGIONS
659};
660
661enum {
662	VFIO_CCW_IO_IRQ_INDEX,
663	VFIO_CCW_CRW_IRQ_INDEX,
664	VFIO_CCW_REQ_IRQ_INDEX,
665	VFIO_CCW_NUM_IRQS
666};
667
668/*
669 * The vfio-ap bus driver makes use of the following IRQ index mapping.
670 * Unimplemented IRQ types return a count of zero.
671 */
672enum {
673	VFIO_AP_REQ_IRQ_INDEX,
674	VFIO_AP_NUM_IRQS
675};
676
677/**
678 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO - _IOWR(VFIO_TYPE, VFIO_BASE + 12,
679 *					      struct vfio_pci_hot_reset_info)
680 *
681 * This command is used to query the affected devices in the hot reset for
682 * a given device.
683 *
684 * This command always reports the segment, bus, and devfn information for
685 * each affected device, and selectively reports the group_id or devid per
686 * the way how the calling device is opened.
687 *
688 *	- If the calling device is opened via the traditional group/container
689 *	  API, group_id is reported.  User should check if it has owned all
690 *	  the affected devices and provides a set of group fds to prove the
691 *	  ownership in VFIO_DEVICE_PCI_HOT_RESET ioctl.
692 *
693 *	- If the calling device is opened as a cdev, devid is reported.
694 *	  Flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set to indicate this
695 *	  data type.  All the affected devices should be represented in
696 *	  the dev_set, ex. bound to a vfio driver, and also be owned by
697 *	  this interface which is determined by the following conditions:
698 *	  1) Has a valid devid within the iommufd_ctx of the calling device.
699 *	     Ownership cannot be determined across separate iommufd_ctx and
700 *	     the cdev calling conventions do not support a proof-of-ownership
701 *	     model as provided in the legacy group interface.  In this case
702 *	     valid devid with value greater than zero is provided in the return
703 *	     structure.
704 *	  2) Does not have a valid devid within the iommufd_ctx of the calling
705 *	     device, but belongs to the same IOMMU group as the calling device
706 *	     or another opened device that has a valid devid within the
707 *	     iommufd_ctx of the calling device.  This provides implicit ownership
708 *	     for devices within the same DMA isolation context.  In this case
709 *	     the devid value of VFIO_PCI_DEVID_OWNED is provided in the return
710 *	     structure.
711 *
712 *	  A devid value of VFIO_PCI_DEVID_NOT_OWNED is provided in the return
713 *	  structure for affected devices where device is NOT represented in the
714 *	  dev_set or ownership is not available.  Such devices prevent the use
715 *	  of VFIO_DEVICE_PCI_HOT_RESET ioctl outside of the proof-of-ownership
716 *	  calling conventions (ie. via legacy group accessed devices).  Flag
717 *	  VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED would be set when all the
718 *	  affected devices are represented in the dev_set and also owned by
719 *	  the user.  This flag is available only when
720 *	  flag VFIO_PCI_HOT_RESET_FLAG_DEV_ID is set, otherwise reserved.
721 *	  When set, user could invoke VFIO_DEVICE_PCI_HOT_RESET with a zero
722 *	  length fd array on the calling device as the ownership is validated
723 *	  by iommufd_ctx.
724 *
725 * Return: 0 on success, -errno on failure:
726 *	-enospc = insufficient buffer, -enodev = unsupported for device.
727 */
728struct vfio_pci_dependent_device {
729	union {
730		__u32   group_id;
731		__u32	devid;
732#define VFIO_PCI_DEVID_OWNED		0
733#define VFIO_PCI_DEVID_NOT_OWNED	-1
734	};
735	__u16	segment;
736	__u8	bus;
737	__u8	devfn; /* Use PCI_SLOT/PCI_FUNC */
738};
739
740struct vfio_pci_hot_reset_info {
741	__u32	argsz;
742	__u32	flags;
743#define VFIO_PCI_HOT_RESET_FLAG_DEV_ID		(1 << 0)
744#define VFIO_PCI_HOT_RESET_FLAG_DEV_ID_OWNED	(1 << 1)
745	__u32	count;
746	struct vfio_pci_dependent_device	devices[];
747};
748
749#define VFIO_DEVICE_GET_PCI_HOT_RESET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
750
751/**
752 * VFIO_DEVICE_PCI_HOT_RESET - _IOW(VFIO_TYPE, VFIO_BASE + 13,
753 *				    struct vfio_pci_hot_reset)
754 *
755 * A PCI hot reset results in either a bus or slot reset which may affect
756 * other devices sharing the bus/slot.  The calling user must have
757 * ownership of the full set of affected devices as determined by the
758 * VFIO_DEVICE_GET_PCI_HOT_RESET_INFO ioctl.
759 *
760 * When called on a device file descriptor acquired through the vfio
761 * group interface, the user is required to provide proof of ownership
762 * of those affected devices via the group_fds array in struct
763 * vfio_pci_hot_reset.
764 *
765 * When called on a direct cdev opened vfio device, the flags field of
766 * struct vfio_pci_hot_reset_info reports the ownership status of the
767 * affected devices and this ioctl must be called with an empty group_fds
768 * array.  See above INFO ioctl definition for ownership requirements.
769 *
770 * Mixed usage of legacy groups and cdevs across the set of affected
771 * devices is not supported.
772 *
773 * Return: 0 on success, -errno on failure.
774 */
775struct vfio_pci_hot_reset {
776	__u32	argsz;
777	__u32	flags;
778	__u32	count;
779	__s32	group_fds[];
780};
781
782#define VFIO_DEVICE_PCI_HOT_RESET	_IO(VFIO_TYPE, VFIO_BASE + 13)
783
784/**
785 * VFIO_DEVICE_QUERY_GFX_PLANE - _IOW(VFIO_TYPE, VFIO_BASE + 14,
786 *                                    struct vfio_device_query_gfx_plane)
787 *
788 * Set the drm_plane_type and flags, then retrieve the gfx plane info.
789 *
790 * flags supported:
791 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_DMABUF are set
792 *   to ask if the mdev supports dma-buf. 0 on support, -EINVAL on no
793 *   support for dma-buf.
794 * - VFIO_GFX_PLANE_TYPE_PROBE and VFIO_GFX_PLANE_TYPE_REGION are set
795 *   to ask if the mdev supports region. 0 on support, -EINVAL on no
796 *   support for region.
797 * - VFIO_GFX_PLANE_TYPE_DMABUF or VFIO_GFX_PLANE_TYPE_REGION is set
798 *   with each call to query the plane info.
799 * - Others are invalid and return -EINVAL.
800 *
801 * Note:
802 * 1. Plane could be disabled by guest. In that case, success will be
803 *    returned with zero-initialized drm_format, size, width and height
804 *    fields.
805 * 2. x_hot/y_hot is set to 0xFFFFFFFF if no hotspot information available
806 *
807 * Return: 0 on success, -errno on other failure.
808 */
809struct vfio_device_gfx_plane_info {
810	__u32 argsz;
811	__u32 flags;
812#define VFIO_GFX_PLANE_TYPE_PROBE (1 << 0)
813#define VFIO_GFX_PLANE_TYPE_DMABUF (1 << 1)
814#define VFIO_GFX_PLANE_TYPE_REGION (1 << 2)
815	/* in */
816	__u32 drm_plane_type;	/* type of plane: DRM_PLANE_TYPE_* */
817	/* out */
818	__u32 drm_format;	/* drm format of plane */
819	__aligned_u64 drm_format_mod;   /* tiled mode */
820	__u32 width;	/* width of plane */
821	__u32 height;	/* height of plane */
822	__u32 stride;	/* stride of plane */
823	__u32 size;	/* size of plane in bytes, align on page*/
824	__u32 x_pos;	/* horizontal position of cursor plane */
825	__u32 y_pos;	/* vertical position of cursor plane*/
826	__u32 x_hot;    /* horizontal position of cursor hotspot */
827	__u32 y_hot;    /* vertical position of cursor hotspot */
828	union {
829		__u32 region_index;	/* region index */
830		__u32 dmabuf_id;	/* dma-buf id */
831	};
832	__u32 reserved;
833};
834
835#define VFIO_DEVICE_QUERY_GFX_PLANE _IO(VFIO_TYPE, VFIO_BASE + 14)
836
837/**
838 * VFIO_DEVICE_GET_GFX_DMABUF - _IOW(VFIO_TYPE, VFIO_BASE + 15, __u32)
839 *
840 * Return a new dma-buf file descriptor for an exposed guest framebuffer
841 * described by the provided dmabuf_id. The dmabuf_id is returned from VFIO_
842 * DEVICE_QUERY_GFX_PLANE as a token of the exposed guest framebuffer.
843 */
844
845#define VFIO_DEVICE_GET_GFX_DMABUF _IO(VFIO_TYPE, VFIO_BASE + 15)
846
847/**
848 * VFIO_DEVICE_IOEVENTFD - _IOW(VFIO_TYPE, VFIO_BASE + 16,
849 *                              struct vfio_device_ioeventfd)
850 *
851 * Perform a write to the device at the specified device fd offset, with
852 * the specified data and width when the provided eventfd is triggered.
853 * vfio bus drivers may not support this for all regions, for all widths,
854 * or at all.  vfio-pci currently only enables support for BAR regions,
855 * excluding the MSI-X vector table.
856 *
857 * Return: 0 on success, -errno on failure.
858 */
859struct vfio_device_ioeventfd {
860	__u32	argsz;
861	__u32	flags;
862#define VFIO_DEVICE_IOEVENTFD_8		(1 << 0) /* 1-byte write */
863#define VFIO_DEVICE_IOEVENTFD_16	(1 << 1) /* 2-byte write */
864#define VFIO_DEVICE_IOEVENTFD_32	(1 << 2) /* 4-byte write */
865#define VFIO_DEVICE_IOEVENTFD_64	(1 << 3) /* 8-byte write */
866#define VFIO_DEVICE_IOEVENTFD_SIZE_MASK	(0xf)
867	__aligned_u64	offset;		/* device fd offset of write */
868	__aligned_u64	data;		/* data to be written */
869	__s32	fd;			/* -1 for de-assignment */
870	__u32	reserved;
871};
872
873#define VFIO_DEVICE_IOEVENTFD		_IO(VFIO_TYPE, VFIO_BASE + 16)
874
875/**
876 * VFIO_DEVICE_FEATURE - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
877 *			       struct vfio_device_feature)
878 *
879 * Get, set, or probe feature data of the device.  The feature is selected
880 * using the FEATURE_MASK portion of the flags field.  Support for a feature
881 * can be probed by setting both the FEATURE_MASK and PROBE bits.  A probe
882 * may optionally include the GET and/or SET bits to determine read vs write
883 * access of the feature respectively.  Probing a feature will return success
884 * if the feature is supported and all of the optionally indicated GET/SET
885 * methods are supported.  The format of the data portion of the structure is
886 * specific to the given feature.  The data portion is not required for
887 * probing.  GET and SET are mutually exclusive, except for use with PROBE.
888 *
889 * Return 0 on success, -errno on failure.
890 */
891struct vfio_device_feature {
892	__u32	argsz;
893	__u32	flags;
894#define VFIO_DEVICE_FEATURE_MASK	(0xffff) /* 16-bit feature index */
895#define VFIO_DEVICE_FEATURE_GET		(1 << 16) /* Get feature into data[] */
896#define VFIO_DEVICE_FEATURE_SET		(1 << 17) /* Set feature from data[] */
897#define VFIO_DEVICE_FEATURE_PROBE	(1 << 18) /* Probe feature support */
898	__u8	data[];
899};
900
901#define VFIO_DEVICE_FEATURE		_IO(VFIO_TYPE, VFIO_BASE + 17)
902
903/*
904 * VFIO_DEVICE_BIND_IOMMUFD - _IOR(VFIO_TYPE, VFIO_BASE + 18,
905 *				   struct vfio_device_bind_iommufd)
906 * @argsz:	 User filled size of this data.
907 * @flags:	 Must be 0.
908 * @iommufd:	 iommufd to bind.
909 * @out_devid:	 The device id generated by this bind. devid is a handle for
910 *		 this device/iommufd bond and can be used in IOMMUFD commands.
911 *
912 * Bind a vfio_device to the specified iommufd.
913 *
914 * User is restricted from accessing the device before the binding operation
915 * is completed.  Only allowed on cdev fds.
916 *
917 * Unbind is automatically conducted when device fd is closed.
918 *
919 * Return: 0 on success, -errno on failure.
920 */
921struct vfio_device_bind_iommufd {
922	__u32		argsz;
923	__u32		flags;
924	__s32		iommufd;
925	__u32		out_devid;
926};
927
928#define VFIO_DEVICE_BIND_IOMMUFD	_IO(VFIO_TYPE, VFIO_BASE + 18)
929
930/*
931 * VFIO_DEVICE_ATTACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 19,
932 *					struct vfio_device_attach_iommufd_pt)
933 * @argsz:	User filled size of this data.
934 * @flags:	Must be 0.
935 * @pt_id:	Input the target id which can represent an ioas or a hwpt
936 *		allocated via iommufd subsystem.
937 *		Output the input ioas id or the attached hwpt id which could
938 *		be the specified hwpt itself or a hwpt automatically created
939 *		for the specified ioas by kernel during the attachment.
940 *
941 * Associate the device with an address space within the bound iommufd.
942 * Undo by VFIO_DEVICE_DETACH_IOMMUFD_PT or device fd close.  This is only
943 * allowed on cdev fds.
944 *
945 * If a vfio device is currently attached to a valid hw_pagetable, without doing
946 * a VFIO_DEVICE_DETACH_IOMMUFD_PT, a second VFIO_DEVICE_ATTACH_IOMMUFD_PT ioctl
947 * passing in another hw_pagetable (hwpt) id is allowed. This action, also known
948 * as a hw_pagetable replacement, will replace the device's currently attached
949 * hw_pagetable with a new hw_pagetable corresponding to the given pt_id.
950 *
951 * Return: 0 on success, -errno on failure.
952 */
953struct vfio_device_attach_iommufd_pt {
954	__u32	argsz;
955	__u32	flags;
956	__u32	pt_id;
957};
958
959#define VFIO_DEVICE_ATTACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 19)
960
961/*
962 * VFIO_DEVICE_DETACH_IOMMUFD_PT - _IOW(VFIO_TYPE, VFIO_BASE + 20,
963 *					struct vfio_device_detach_iommufd_pt)
964 * @argsz:	User filled size of this data.
965 * @flags:	Must be 0.
966 *
967 * Remove the association of the device and its current associated address
968 * space.  After it, the device should be in a blocking DMA state.  This is only
969 * allowed on cdev fds.
970 *
971 * Return: 0 on success, -errno on failure.
972 */
973struct vfio_device_detach_iommufd_pt {
974	__u32	argsz;
975	__u32	flags;
976};
977
978#define VFIO_DEVICE_DETACH_IOMMUFD_PT		_IO(VFIO_TYPE, VFIO_BASE + 20)
979
980/*
981 * Provide support for setting a PCI VF Token, which is used as a shared
982 * secret between PF and VF drivers.  This feature may only be set on a
983 * PCI SR-IOV PF when SR-IOV is enabled on the PF and there are no existing
984 * open VFs.  Data provided when setting this feature is a 16-byte array
985 * (__u8 b[16]), representing a UUID.
986 */
987#define VFIO_DEVICE_FEATURE_PCI_VF_TOKEN	(0)
988
989/*
990 * Indicates the device can support the migration API through
991 * VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE. If this GET succeeds, the RUNNING and
992 * ERROR states are always supported. Support for additional states is
993 * indicated via the flags field; at least VFIO_MIGRATION_STOP_COPY must be
994 * set.
995 *
996 * VFIO_MIGRATION_STOP_COPY means that STOP, STOP_COPY and
997 * RESUMING are supported.
998 *
999 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
1000 * is supported in addition to the STOP_COPY states.
1001 *
1002 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
1003 * PRE_COPY is supported in addition to the STOP_COPY states.
1004 *
1005 * VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
1006 * means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
1007 * in addition to the STOP_COPY states.
1008 *
1009 * Other combinations of flags have behavior to be defined in the future.
1010 */
1011struct vfio_device_feature_migration {
1012	__aligned_u64 flags;
1013#define VFIO_MIGRATION_STOP_COPY	(1 << 0)
1014#define VFIO_MIGRATION_P2P		(1 << 1)
1015#define VFIO_MIGRATION_PRE_COPY		(1 << 2)
1016};
1017#define VFIO_DEVICE_FEATURE_MIGRATION 1
1018
1019/*
1020 * Upon VFIO_DEVICE_FEATURE_SET, execute a migration state change on the VFIO
1021 * device. The new state is supplied in device_state, see enum
1022 * vfio_device_mig_state for details
1023 *
1024 * The kernel migration driver must fully transition the device to the new state
1025 * value before the operation returns to the user.
1026 *
1027 * The kernel migration driver must not generate asynchronous device state
1028 * transitions outside of manipulation by the user or the VFIO_DEVICE_RESET
1029 * ioctl as described above.
1030 *
1031 * If this function fails then current device_state may be the original
1032 * operating state or some other state along the combination transition path.
1033 * The user can then decide if it should execute a VFIO_DEVICE_RESET, attempt
1034 * to return to the original state, or attempt to return to some other state
1035 * such as RUNNING or STOP.
1036 *
1037 * If the new_state starts a new data transfer session then the FD associated
1038 * with that session is returned in data_fd. The user is responsible to close
1039 * this FD when it is finished. The user must consider the migration data stream
1040 * carried over the FD to be opaque and must preserve the byte order of the
1041 * stream. The user is not required to preserve buffer segmentation when writing
1042 * the data stream during the RESUMING operation.
1043 *
1044 * Upon VFIO_DEVICE_FEATURE_GET, get the current migration state of the VFIO
1045 * device, data_fd will be -1.
1046 */
1047struct vfio_device_feature_mig_state {
1048	__u32 device_state; /* From enum vfio_device_mig_state */
1049	__s32 data_fd;
1050};
1051#define VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE 2
1052
1053/*
1054 * The device migration Finite State Machine is described by the enum
1055 * vfio_device_mig_state. Some of the FSM arcs will create a migration data
1056 * transfer session by returning a FD, in this case the migration data will
1057 * flow over the FD using read() and write() as discussed below.
1058 *
1059 * There are 5 states to support VFIO_MIGRATION_STOP_COPY:
1060 *  RUNNING - The device is running normally
1061 *  STOP - The device does not change the internal or external state
1062 *  STOP_COPY - The device internal state can be read out
1063 *  RESUMING - The device is stopped and is loading a new internal state
1064 *  ERROR - The device has failed and must be reset
1065 *
1066 * And optional states to support VFIO_MIGRATION_P2P:
1067 *  RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
1068 * And VFIO_MIGRATION_PRE_COPY:
1069 *  PRE_COPY - The device is running normally but tracking internal state
1070 *             changes
1071 * And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
1072 *  PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
1073 *
1074 * The FSM takes actions on the arcs between FSM states. The driver implements
1075 * the following behavior for the FSM arcs:
1076 *
1077 * RUNNING_P2P -> STOP
1078 * STOP_COPY -> STOP
1079 *   While in STOP the device must stop the operation of the device. The device
1080 *   must not generate interrupts, DMA, or any other change to external state.
1081 *   It must not change its internal state. When stopped the device and kernel
1082 *   migration driver must accept and respond to interaction to support external
1083 *   subsystems in the STOP state, for example PCI MSI-X and PCI config space.
1084 *   Failure by the user to restrict device access while in STOP must not result
1085 *   in error conditions outside the user context (ex. host system faults).
1086 *
1087 *   The STOP_COPY arc will terminate a data transfer session.
1088 *
1089 * RESUMING -> STOP
1090 *   Leaving RESUMING terminates a data transfer session and indicates the
1091 *   device should complete processing of the data delivered by write(). The
1092 *   kernel migration driver should complete the incorporation of data written
1093 *   to the data transfer FD into the device internal state and perform
1094 *   final validity and consistency checking of the new device state. If the
1095 *   user provided data is found to be incomplete, inconsistent, or otherwise
1096 *   invalid, the migration driver must fail the SET_STATE ioctl and
1097 *   optionally go to the ERROR state as described below.
1098 *
1099 *   While in STOP the device has the same behavior as other STOP states
1100 *   described above.
1101 *
1102 *   To abort a RESUMING session the device must be reset.
1103 *
1104 * PRE_COPY -> RUNNING
1105 * RUNNING_P2P -> RUNNING
1106 *   While in RUNNING the device is fully operational, the device may generate
1107 *   interrupts, DMA, respond to MMIO, all vfio device regions are functional,
1108 *   and the device may advance its internal state.
1109 *
1110 *   The PRE_COPY arc will terminate a data transfer session.
1111 *
1112 * PRE_COPY_P2P -> RUNNING_P2P
1113 * RUNNING -> RUNNING_P2P
1114 * STOP -> RUNNING_P2P
1115 *   While in RUNNING_P2P the device is partially running in the P2P quiescent
1116 *   state defined below.
1117 *
1118 *   The PRE_COPY_P2P arc will terminate a data transfer session.
1119 *
1120 * RUNNING -> PRE_COPY
1121 * RUNNING_P2P -> PRE_COPY_P2P
1122 * STOP -> STOP_COPY
1123 *   PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
1124 *   which share a data transfer session. Moving between these states alters
1125 *   what is streamed in session, but does not terminate or otherwise affect
1126 *   the associated fd.
1127 *
1128 *   These arcs begin the process of saving the device state and will return a
1129 *   new data_fd. The migration driver may perform actions such as enabling
1130 *   dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
1131 *
1132 *   Each arc does not change the device operation, the device remains
1133 *   RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
1134 *   in PRE_COPY_P2P -> STOP_COPY.
1135 *
1136 * PRE_COPY -> PRE_COPY_P2P
1137 *   Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
1138 *   However, while in the PRE_COPY_P2P state, the device is partially running
1139 *   in the P2P quiescent state defined below, like RUNNING_P2P.
1140 *
1141 * PRE_COPY_P2P -> PRE_COPY
1142 *   This arc allows returning the device to a full RUNNING behavior while
1143 *   continuing all the behaviors of PRE_COPY.
1144 *
1145 * PRE_COPY_P2P -> STOP_COPY
1146 *   While in the STOP_COPY state the device has the same behavior as STOP
1147 *   with the addition that the data transfers session continues to stream the
1148 *   migration state. End of stream on the FD indicates the entire device
1149 *   state has been transferred.
1150 *
1151 *   The user should take steps to restrict access to vfio device regions while
1152 *   the device is in STOP_COPY or risk corruption of the device migration data
1153 *   stream.
1154 *
1155 * STOP -> RESUMING
1156 *   Entering the RESUMING state starts a process of restoring the device state
1157 *   and will return a new data_fd. The data stream fed into the data_fd should
1158 *   be taken from the data transfer output of a single FD during saving from
1159 *   a compatible device. The migration driver may alter/reset the internal
1160 *   device state for this arc if required to prepare the device to receive the
1161 *   migration data.
1162 *
1163 * STOP_COPY -> PRE_COPY
1164 * STOP_COPY -> PRE_COPY_P2P
1165 *   These arcs are not permitted and return error if requested. Future
1166 *   revisions of this API may define behaviors for these arcs, in this case
1167 *   support will be discoverable by a new flag in
1168 *   VFIO_DEVICE_FEATURE_MIGRATION.
1169 *
1170 * any -> ERROR
1171 *   ERROR cannot be specified as a device state, however any transition request
1172 *   can be failed with an errno return and may then move the device_state into
1173 *   ERROR. In this case the device was unable to execute the requested arc and
1174 *   was also unable to restore the device to any valid device_state.
1175 *   To recover from ERROR VFIO_DEVICE_RESET must be used to return the
1176 *   device_state back to RUNNING.
1177 *
1178 * The optional peer to peer (P2P) quiescent state is intended to be a quiescent
1179 * state for the device for the purposes of managing multiple devices within a
1180 * user context where peer-to-peer DMA between devices may be active. The
1181 * RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
1182 * any new P2P DMA transactions. If the device can identify P2P transactions
1183 * then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
1184 * driver must complete any such outstanding operations prior to completing the
1185 * FSM arc into a P2P state. For the purpose of specification the states
1186 * behave as though the device was fully running if not supported. Like while in
1187 * STOP or STOP_COPY the user must not touch the device, otherwise the state
1188 * can be exited.
1189 *
1190 * The remaining possible transitions are interpreted as combinations of the
1191 * above FSM arcs. As there are multiple paths through the FSM arcs the path
1192 * should be selected based on the following rules:
1193 *   - Select the shortest path.
1194 *   - The path cannot have saving group states as interior arcs, only
1195 *     starting/end states.
1196 * Refer to vfio_mig_get_next_state() for the result of the algorithm.
1197 *
1198 * The automatic transit through the FSM arcs that make up the combination
1199 * transition is invisible to the user. When working with combination arcs the
1200 * user may see any step along the path in the device_state if SET_STATE
1201 * fails. When handling these types of errors users should anticipate future
1202 * revisions of this protocol using new states and those states becoming
1203 * visible in this case.
1204 *
1205 * The optional states cannot be used with SET_STATE if the device does not
1206 * support them. The user can discover if these states are supported by using
1207 * VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
1208 * avoid knowing about these optional states if the kernel driver supports them.
1209 *
1210 * Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
1211 * is not present.
1212 */
1213enum vfio_device_mig_state {
1214	VFIO_DEVICE_STATE_ERROR = 0,
1215	VFIO_DEVICE_STATE_STOP = 1,
1216	VFIO_DEVICE_STATE_RUNNING = 2,
1217	VFIO_DEVICE_STATE_STOP_COPY = 3,
1218	VFIO_DEVICE_STATE_RESUMING = 4,
1219	VFIO_DEVICE_STATE_RUNNING_P2P = 5,
1220	VFIO_DEVICE_STATE_PRE_COPY = 6,
1221	VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
1222	VFIO_DEVICE_STATE_NR,
1223};
1224
1225/**
1226 * VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
1227 *
1228 * This ioctl is used on the migration data FD in the precopy phase of the
1229 * migration data transfer. It returns an estimate of the current data sizes
1230 * remaining to be transferred. It allows the user to judge when it is
1231 * appropriate to leave PRE_COPY for STOP_COPY.
1232 *
1233 * This ioctl is valid only in PRE_COPY states and kernel driver should
1234 * return -EINVAL from any other migration state.
1235 *
1236 * The vfio_precopy_info data structure returned by this ioctl provides
1237 * estimates of data available from the device during the PRE_COPY states.
1238 * This estimate is split into two categories, initial_bytes and
1239 * dirty_bytes.
1240 *
1241 * The initial_bytes field indicates the amount of initial precopy
1242 * data available from the device. This field should have a non-zero initial
1243 * value and decrease as migration data is read from the device.
1244 * It is recommended to leave PRE_COPY for STOP_COPY only after this field
1245 * reaches zero. Leaving PRE_COPY earlier might make things slower.
1246 *
1247 * The dirty_bytes field tracks device state changes relative to data
1248 * previously retrieved.  This field starts at zero and may increase as
1249 * the internal device state is modified or decrease as that modified
1250 * state is read from the device.
1251 *
1252 * Userspace may use the combination of these fields to estimate the
1253 * potential data size available during the PRE_COPY phases, as well as
1254 * trends relative to the rate the device is dirtying its internal
1255 * state, but these fields are not required to have any bearing relative
1256 * to the data size available during the STOP_COPY phase.
1257 *
1258 * Drivers have a lot of flexibility in when and what they transfer during the
1259 * PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
1260 *
1261 * During pre-copy the migration data FD has a temporary "end of stream" that is
1262 * reached when both initial_bytes and dirty_byte are zero. For instance, this
1263 * may indicate that the device is idle and not currently dirtying any internal
1264 * state. When read() is done on this temporary end of stream the kernel driver
1265 * should return ENOMSG from read(). Userspace can wait for more data (which may
1266 * never come) by using poll.
1267 *
1268 * Once in STOP_COPY the migration data FD has a permanent end of stream
1269 * signaled in the usual way by read() always returning 0 and poll always
1270 * returning readable. ENOMSG may not be returned in STOP_COPY.
1271 * Support for this ioctl is mandatory if a driver claims to support
1272 * VFIO_MIGRATION_PRE_COPY.
1273 *
1274 * Return: 0 on success, -1 and errno set on failure.
1275 */
1276struct vfio_precopy_info {
1277	__u32 argsz;
1278	__u32 flags;
1279	__aligned_u64 initial_bytes;
1280	__aligned_u64 dirty_bytes;
1281};
1282
1283#define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
1284
1285/*
1286 * Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
1287 * state with the platform-based power management.  Device use of lower power
1288 * states depends on factors managed by the runtime power management core,
1289 * including system level support and coordinating support among dependent
1290 * devices.  Enabling device low power entry does not guarantee lower power
1291 * usage by the device, nor is a mechanism provided through this feature to
1292 * know the current power state of the device.  If any device access happens
1293 * (either from the host or through the vfio uAPI) when the device is in the
1294 * low power state, then the host will move the device out of the low power
1295 * state as necessary prior to the access.  Once the access is completed, the
1296 * device may re-enter the low power state.  For single shot low power support
1297 * with wake-up notification, see
1298 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP below.  Access to mmap'd
1299 * device regions is disabled on LOW_POWER_ENTRY and may only be resumed after
1300 * calling LOW_POWER_EXIT.
1301 */
1302#define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY 3
1303
1304/*
1305 * This device feature has the same behavior as
1306 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY with the exception that the user
1307 * provides an eventfd for wake-up notification.  When the device moves out of
1308 * the low power state for the wake-up, the host will not allow the device to
1309 * re-enter a low power state without a subsequent user call to one of the low
1310 * power entry device feature IOCTLs.  Access to mmap'd device regions is
1311 * disabled on LOW_POWER_ENTRY_WITH_WAKEUP and may only be resumed after the
1312 * low power exit.  The low power exit can happen either through LOW_POWER_EXIT
1313 * or through any other access (where the wake-up notification has been
1314 * generated).  The access to mmap'd device regions will not trigger low power
1315 * exit.
1316 *
1317 * The notification through the provided eventfd will be generated only when
1318 * the device has entered and is resumed from a low power state after
1319 * calling this device feature IOCTL.  A device that has not entered low power
1320 * state, as managed through the runtime power management core, will not
1321 * generate a notification through the provided eventfd on access.  Calling the
1322 * LOW_POWER_EXIT feature is optional in the case where notification has been
1323 * signaled on the provided eventfd that a resume from low power has occurred.
1324 */
1325struct vfio_device_low_power_entry_with_wakeup {
1326	__s32 wakeup_eventfd;
1327	__u32 reserved;
1328};
1329
1330#define VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP 4
1331
1332/*
1333 * Upon VFIO_DEVICE_FEATURE_SET, disallow use of device low power states as
1334 * previously enabled via VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY or
1335 * VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP device features.
1336 * This device feature IOCTL may itself generate a wakeup eventfd notification
1337 * in the latter case if the device had previously entered a low power state.
1338 */
1339#define VFIO_DEVICE_FEATURE_LOW_POWER_EXIT 5
1340
1341/*
1342 * Upon VFIO_DEVICE_FEATURE_SET start/stop device DMA logging.
1343 * VFIO_DEVICE_FEATURE_PROBE can be used to detect if the device supports
1344 * DMA logging.
1345 *
1346 * DMA logging allows a device to internally record what DMAs the device is
1347 * initiating and report them back to userspace. It is part of the VFIO
1348 * migration infrastructure that allows implementing dirty page tracking
1349 * during the pre copy phase of live migration. Only DMA WRITEs are logged,
1350 * and this API is not connected to VFIO_DEVICE_FEATURE_MIG_DEVICE_STATE.
1351 *
1352 * When DMA logging is started a range of IOVAs to monitor is provided and the
1353 * device can optimize its logging to cover only the IOVA range given. Each
1354 * DMA that the device initiates inside the range will be logged by the device
1355 * for later retrieval.
1356 *
1357 * page_size is an input that hints what tracking granularity the device
1358 * should try to achieve. If the device cannot do the hinted page size then
1359 * it's the driver choice which page size to pick based on its support.
1360 * On output the device will return the page size it selected.
1361 *
1362 * ranges is a pointer to an array of
1363 * struct vfio_device_feature_dma_logging_range.
1364 *
1365 * The core kernel code guarantees to support by minimum num_ranges that fit
1366 * into a single kernel page. User space can try higher values but should give
1367 * up if the above can't be achieved as of some driver limitations.
1368 *
1369 * A single call to start device DMA logging can be issued and a matching stop
1370 * should follow at the end. Another start is not allowed in the meantime.
1371 */
1372struct vfio_device_feature_dma_logging_control {
1373	__aligned_u64 page_size;
1374	__u32 num_ranges;
1375	__u32 __reserved;
1376	__aligned_u64 ranges;
1377};
1378
1379struct vfio_device_feature_dma_logging_range {
1380	__aligned_u64 iova;
1381	__aligned_u64 length;
1382};
1383
1384#define VFIO_DEVICE_FEATURE_DMA_LOGGING_START 6
1385
1386/*
1387 * Upon VFIO_DEVICE_FEATURE_SET stop device DMA logging that was started
1388 * by VFIO_DEVICE_FEATURE_DMA_LOGGING_START
1389 */
1390#define VFIO_DEVICE_FEATURE_DMA_LOGGING_STOP 7
1391
1392/*
1393 * Upon VFIO_DEVICE_FEATURE_GET read back and clear the device DMA log
1394 *
1395 * Query the device's DMA log for written pages within the given IOVA range.
1396 * During querying the log is cleared for the IOVA range.
1397 *
1398 * bitmap is a pointer to an array of u64s that will hold the output bitmap
1399 * with 1 bit reporting a page_size unit of IOVA. The mapping of IOVA to bits
1400 * is given by:
1401 *  bitmap[(addr - iova)/page_size] & (1ULL << (addr % 64))
1402 *
1403 * The input page_size can be any power of two value and does not have to
1404 * match the value given to VFIO_DEVICE_FEATURE_DMA_LOGGING_START. The driver
1405 * will format its internal logging to match the reporting page size, possibly
1406 * by replicating bits if the internal page size is lower than requested.
1407 *
1408 * The LOGGING_REPORT will only set bits in the bitmap and never clear or
1409 * perform any initialization of the user provided bitmap.
1410 *
1411 * If any error is returned userspace should assume that the dirty log is
1412 * corrupted. Error recovery is to consider all memory dirty and try to
1413 * restart the dirty tracking, or to abort/restart the whole migration.
1414 *
1415 * If DMA logging is not enabled, an error will be returned.
1416 *
1417 */
1418struct vfio_device_feature_dma_logging_report {
1419	__aligned_u64 iova;
1420	__aligned_u64 length;
1421	__aligned_u64 page_size;
1422	__aligned_u64 bitmap;
1423};
1424
1425#define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
1426
1427/*
1428 * Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
1429 * be required to complete stop copy.
1430 *
1431 * Note: Can be called on each device state.
1432 */
1433
1434struct vfio_device_feature_mig_data_size {
1435	__aligned_u64 stop_copy_length;
1436};
1437
1438#define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
1439
1440/**
1441 * Upon VFIO_DEVICE_FEATURE_SET, set or clear the BUS mastering for the device
1442 * based on the operation specified in op flag.
1443 *
1444 * The functionality is incorporated for devices that needs bus master control,
1445 * but the in-band device interface lacks the support. Consequently, it is not
1446 * applicable to PCI devices, as bus master control for PCI devices is managed
1447 * in-band through the configuration space. At present, this feature is supported
1448 * only for CDX devices.
1449 * When the device's BUS MASTER setting is configured as CLEAR, it will result in
1450 * blocking all incoming DMA requests from the device. On the other hand, configuring
1451 * the device's BUS MASTER setting as SET (enable) will grant the device the
1452 * capability to perform DMA to the host memory.
1453 */
1454struct vfio_device_feature_bus_master {
1455	__u32 op;
1456#define		VFIO_DEVICE_FEATURE_CLEAR_MASTER	0	/* Clear Bus Master */
1457#define		VFIO_DEVICE_FEATURE_SET_MASTER		1	/* Set Bus Master */
1458};
1459#define VFIO_DEVICE_FEATURE_BUS_MASTER 10
1460
1461/* -------- API for Type1 VFIO IOMMU -------- */
1462
1463/**
1464 * VFIO_IOMMU_GET_INFO - _IOR(VFIO_TYPE, VFIO_BASE + 12, struct vfio_iommu_info)
1465 *
1466 * Retrieve information about the IOMMU object. Fills in provided
1467 * struct vfio_iommu_info. Caller sets argsz.
1468 *
1469 * XXX Should we do these by CHECK_EXTENSION too?
1470 */
1471struct vfio_iommu_type1_info {
1472	__u32	argsz;
1473	__u32	flags;
1474#define VFIO_IOMMU_INFO_PGSIZES (1 << 0)	/* supported page sizes info */
1475#define VFIO_IOMMU_INFO_CAPS	(1 << 1)	/* Info supports caps */
1476	__aligned_u64	iova_pgsizes;		/* Bitmap of supported page sizes */
1477	__u32   cap_offset;	/* Offset within info struct of first cap */
1478	__u32   pad;
1479};
1480
1481/*
1482 * The IOVA capability allows to report the valid IOVA range(s)
1483 * excluding any non-relaxable reserved regions exposed by
1484 * devices attached to the container. Any DMA map attempt
1485 * outside the valid iova range will return error.
1486 *
1487 * The structures below define version 1 of this capability.
1488 */
1489#define VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE  1
1490
1491struct vfio_iova_range {
1492	__u64	start;
1493	__u64	end;
1494};
1495
1496struct vfio_iommu_type1_info_cap_iova_range {
1497	struct	vfio_info_cap_header header;
1498	__u32	nr_iovas;
1499	__u32	reserved;
1500	struct	vfio_iova_range iova_ranges[];
1501};
1502
1503/*
1504 * The migration capability allows to report supported features for migration.
1505 *
1506 * The structures below define version 1 of this capability.
1507 *
1508 * The existence of this capability indicates that IOMMU kernel driver supports
1509 * dirty page logging.
1510 *
1511 * pgsize_bitmap: Kernel driver returns bitmap of supported page sizes for dirty
1512 * page logging.
1513 * max_dirty_bitmap_size: Kernel driver returns maximum supported dirty bitmap
1514 * size in bytes that can be used by user applications when getting the dirty
1515 * bitmap.
1516 */
1517#define VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION  2
1518
1519struct vfio_iommu_type1_info_cap_migration {
1520	struct	vfio_info_cap_header header;
1521	__u32	flags;
1522	__u64	pgsize_bitmap;
1523	__u64	max_dirty_bitmap_size;		/* in bytes */
1524};
1525
1526/*
1527 * The DMA available capability allows to report the current number of
1528 * simultaneously outstanding DMA mappings that are allowed.
1529 *
1530 * The structure below defines version 1 of this capability.
1531 *
1532 * avail: specifies the current number of outstanding DMA mappings allowed.
1533 */
1534#define VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL 3
1535
1536struct vfio_iommu_type1_info_dma_avail {
1537	struct	vfio_info_cap_header header;
1538	__u32	avail;
1539};
1540
1541#define VFIO_IOMMU_GET_INFO _IO(VFIO_TYPE, VFIO_BASE + 12)
1542
1543/**
1544 * VFIO_IOMMU_MAP_DMA - _IOW(VFIO_TYPE, VFIO_BASE + 13, struct vfio_dma_map)
1545 *
1546 * Map process virtual addresses to IO virtual addresses using the
1547 * provided struct vfio_dma_map. Caller sets argsz. READ &/ WRITE required.
1548 *
1549 * If flags & VFIO_DMA_MAP_FLAG_VADDR, update the base vaddr for iova. The vaddr
1550 * must have previously been invalidated with VFIO_DMA_UNMAP_FLAG_VADDR.  To
1551 * maintain memory consistency within the user application, the updated vaddr
1552 * must address the same memory object as originally mapped.  Failure to do so
1553 * will result in user memory corruption and/or device misbehavior.  iova and
1554 * size must match those in the original MAP_DMA call.  Protection is not
1555 * changed, and the READ & WRITE flags must be 0.
1556 */
1557struct vfio_iommu_type1_dma_map {
1558	__u32	argsz;
1559	__u32	flags;
1560#define VFIO_DMA_MAP_FLAG_READ (1 << 0)		/* readable from device */
1561#define VFIO_DMA_MAP_FLAG_WRITE (1 << 1)	/* writable from device */
1562#define VFIO_DMA_MAP_FLAG_VADDR (1 << 2)
1563	__u64	vaddr;				/* Process virtual address */
1564	__u64	iova;				/* IO virtual address */
1565	__u64	size;				/* Size of mapping (bytes) */
1566};
1567
1568#define VFIO_IOMMU_MAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 13)
1569
1570struct vfio_bitmap {
1571	__u64        pgsize;	/* page size for bitmap in bytes */
1572	__u64        size;	/* in bytes */
1573	__u64 __user *data;	/* one bit per page */
1574};
1575
1576/**
1577 * VFIO_IOMMU_UNMAP_DMA - _IOWR(VFIO_TYPE, VFIO_BASE + 14,
1578 *							struct vfio_dma_unmap)
1579 *
1580 * Unmap IO virtual addresses using the provided struct vfio_dma_unmap.
1581 * Caller sets argsz.  The actual unmapped size is returned in the size
1582 * field.  No guarantee is made to the user that arbitrary unmaps of iova
1583 * or size different from those used in the original mapping call will
1584 * succeed.
1585 *
1586 * VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP should be set to get the dirty bitmap
1587 * before unmapping IO virtual addresses. When this flag is set, the user must
1588 * provide a struct vfio_bitmap in data[]. User must provide zero-allocated
1589 * memory via vfio_bitmap.data and its size in the vfio_bitmap.size field.
1590 * A bit in the bitmap represents one page, of user provided page size in
1591 * vfio_bitmap.pgsize field, consecutively starting from iova offset. Bit set
1592 * indicates that the page at that offset from iova is dirty. A Bitmap of the
1593 * pages in the range of unmapped size is returned in the user-provided
1594 * vfio_bitmap.data.
1595 *
1596 * If flags & VFIO_DMA_UNMAP_FLAG_ALL, unmap all addresses.  iova and size
1597 * must be 0.  This cannot be combined with the get-dirty-bitmap flag.
1598 *
1599 * If flags & VFIO_DMA_UNMAP_FLAG_VADDR, do not unmap, but invalidate host
1600 * virtual addresses in the iova range.  DMA to already-mapped pages continues.
1601 * Groups may not be added to the container while any addresses are invalid.
1602 * This cannot be combined with the get-dirty-bitmap flag.
1603 */
1604struct vfio_iommu_type1_dma_unmap {
1605	__u32	argsz;
1606	__u32	flags;
1607#define VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP (1 << 0)
1608#define VFIO_DMA_UNMAP_FLAG_ALL		     (1 << 1)
1609#define VFIO_DMA_UNMAP_FLAG_VADDR	     (1 << 2)
1610	__u64	iova;				/* IO virtual address */
1611	__u64	size;				/* Size of mapping (bytes) */
1612	__u8    data[];
1613};
1614
1615#define VFIO_IOMMU_UNMAP_DMA _IO(VFIO_TYPE, VFIO_BASE + 14)
1616
1617/*
1618 * IOCTLs to enable/disable IOMMU container usage.
1619 * No parameters are supported.
1620 */
1621#define VFIO_IOMMU_ENABLE	_IO(VFIO_TYPE, VFIO_BASE + 15)
1622#define VFIO_IOMMU_DISABLE	_IO(VFIO_TYPE, VFIO_BASE + 16)
1623
1624/**
1625 * VFIO_IOMMU_DIRTY_PAGES - _IOWR(VFIO_TYPE, VFIO_BASE + 17,
1626 *                                     struct vfio_iommu_type1_dirty_bitmap)
1627 * IOCTL is used for dirty pages logging.
1628 * Caller should set flag depending on which operation to perform, details as
1629 * below:
1630 *
1631 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_START flag set, instructs
1632 * the IOMMU driver to log pages that are dirtied or potentially dirtied by
1633 * the device; designed to be used when a migration is in progress. Dirty pages
1634 * are logged until logging is disabled by user application by calling the IOCTL
1635 * with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag.
1636 *
1637 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP flag set, instructs
1638 * the IOMMU driver to stop logging dirtied pages.
1639 *
1640 * Calling the IOCTL with VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP flag set
1641 * returns the dirty pages bitmap for IOMMU container for a given IOVA range.
1642 * The user must specify the IOVA range and the pgsize through the structure
1643 * vfio_iommu_type1_dirty_bitmap_get in the data[] portion. This interface
1644 * supports getting a bitmap of the smallest supported pgsize only and can be
1645 * modified in future to get a bitmap of any specified supported pgsize. The
1646 * user must provide a zeroed memory area for the bitmap memory and specify its
1647 * size in bitmap.size. One bit is used to represent one page consecutively
1648 * starting from iova offset. The user should provide page size in bitmap.pgsize
1649 * field. A bit set in the bitmap indicates that the page at that offset from
1650 * iova is dirty. The caller must set argsz to a value including the size of
1651 * structure vfio_iommu_type1_dirty_bitmap_get, but excluding the size of the
1652 * actual bitmap. If dirty pages logging is not enabled, an error will be
1653 * returned.
1654 *
1655 * Only one of the flags _START, _STOP and _GET may be specified at a time.
1656 *
1657 */
1658struct vfio_iommu_type1_dirty_bitmap {
1659	__u32        argsz;
1660	__u32        flags;
1661#define VFIO_IOMMU_DIRTY_PAGES_FLAG_START	(1 << 0)
1662#define VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP	(1 << 1)
1663#define VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP	(1 << 2)
1664	__u8         data[];
1665};
1666
1667struct vfio_iommu_type1_dirty_bitmap_get {
1668	__u64              iova;	/* IO virtual address */
1669	__u64              size;	/* Size of iova range */
1670	struct vfio_bitmap bitmap;
1671};
1672
1673#define VFIO_IOMMU_DIRTY_PAGES             _IO(VFIO_TYPE, VFIO_BASE + 17)
1674
1675/* -------- Additional API for SPAPR TCE (Server POWERPC) IOMMU -------- */
1676
1677/*
1678 * The SPAPR TCE DDW info struct provides the information about
1679 * the details of Dynamic DMA window capability.
1680 *
1681 * @pgsizes contains a page size bitmask, 4K/64K/16M are supported.
1682 * @max_dynamic_windows_supported tells the maximum number of windows
1683 * which the platform can create.
1684 * @levels tells the maximum number of levels in multi-level IOMMU tables;
1685 * this allows splitting a table into smaller chunks which reduces
1686 * the amount of physically contiguous memory required for the table.
1687 */
1688struct vfio_iommu_spapr_tce_ddw_info {
1689	__u64 pgsizes;			/* Bitmap of supported page sizes */
1690	__u32 max_dynamic_windows_supported;
1691	__u32 levels;
1692};
1693
1694/*
1695 * The SPAPR TCE info struct provides the information about the PCI bus
1696 * address ranges available for DMA, these values are programmed into
1697 * the hardware so the guest has to know that information.
1698 *
1699 * The DMA 32 bit window start is an absolute PCI bus address.
1700 * The IOVA address passed via map/unmap ioctls are absolute PCI bus
1701 * addresses too so the window works as a filter rather than an offset
1702 * for IOVA addresses.
1703 *
1704 * Flags supported:
1705 * - VFIO_IOMMU_SPAPR_INFO_DDW: informs the userspace that dynamic DMA windows
1706 *   (DDW) support is present. @ddw is only supported when DDW is present.
1707 */
1708struct vfio_iommu_spapr_tce_info {
1709	__u32 argsz;
1710	__u32 flags;
1711#define VFIO_IOMMU_SPAPR_INFO_DDW	(1 << 0)	/* DDW supported */
1712	__u32 dma32_window_start;	/* 32 bit window start (bytes) */
1713	__u32 dma32_window_size;	/* 32 bit window size (bytes) */
1714	struct vfio_iommu_spapr_tce_ddw_info ddw;
1715};
1716
1717#define VFIO_IOMMU_SPAPR_TCE_GET_INFO	_IO(VFIO_TYPE, VFIO_BASE + 12)
1718
1719/*
1720 * EEH PE operation struct provides ways to:
1721 * - enable/disable EEH functionality;
1722 * - unfreeze IO/DMA for frozen PE;
1723 * - read PE state;
1724 * - reset PE;
1725 * - configure PE;
1726 * - inject EEH error.
1727 */
1728struct vfio_eeh_pe_err {
1729	__u32 type;
1730	__u32 func;
1731	__u64 addr;
1732	__u64 mask;
1733};
1734
1735struct vfio_eeh_pe_op {
1736	__u32 argsz;
1737	__u32 flags;
1738	__u32 op;
1739	union {
1740		struct vfio_eeh_pe_err err;
1741	};
1742};
1743
1744#define VFIO_EEH_PE_DISABLE		0	/* Disable EEH functionality */
1745#define VFIO_EEH_PE_ENABLE		1	/* Enable EEH functionality  */
1746#define VFIO_EEH_PE_UNFREEZE_IO		2	/* Enable IO for frozen PE   */
1747#define VFIO_EEH_PE_UNFREEZE_DMA	3	/* Enable DMA for frozen PE  */
1748#define VFIO_EEH_PE_GET_STATE		4	/* PE state retrieval        */
1749#define  VFIO_EEH_PE_STATE_NORMAL	0	/* PE in functional state    */
1750#define  VFIO_EEH_PE_STATE_RESET	1	/* PE reset in progress      */
1751#define  VFIO_EEH_PE_STATE_STOPPED	2	/* Stopped DMA and IO        */
1752#define  VFIO_EEH_PE_STATE_STOPPED_DMA	4	/* Stopped DMA only          */
1753#define  VFIO_EEH_PE_STATE_UNAVAIL	5	/* State unavailable         */
1754#define VFIO_EEH_PE_RESET_DEACTIVATE	5	/* Deassert PE reset         */
1755#define VFIO_EEH_PE_RESET_HOT		6	/* Assert hot reset          */
1756#define VFIO_EEH_PE_RESET_FUNDAMENTAL	7	/* Assert fundamental reset  */
1757#define VFIO_EEH_PE_CONFIGURE		8	/* PE configuration          */
1758#define VFIO_EEH_PE_INJECT_ERR		9	/* Inject EEH error          */
1759
1760#define VFIO_EEH_PE_OP			_IO(VFIO_TYPE, VFIO_BASE + 21)
1761
1762/**
1763 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 17, struct vfio_iommu_spapr_register_memory)
1764 *
1765 * Registers user space memory where DMA is allowed. It pins
1766 * user pages and does the locked memory accounting so
1767 * subsequent VFIO_IOMMU_MAP_DMA/VFIO_IOMMU_UNMAP_DMA calls
1768 * get faster.
1769 */
1770struct vfio_iommu_spapr_register_memory {
1771	__u32	argsz;
1772	__u32	flags;
1773	__u64	vaddr;				/* Process virtual address */
1774	__u64	size;				/* Size of mapping (bytes) */
1775};
1776#define VFIO_IOMMU_SPAPR_REGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 17)
1777
1778/**
1779 * VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY - _IOW(VFIO_TYPE, VFIO_BASE + 18, struct vfio_iommu_spapr_register_memory)
1780 *
1781 * Unregisters user space memory registered with
1782 * VFIO_IOMMU_SPAPR_REGISTER_MEMORY.
1783 * Uses vfio_iommu_spapr_register_memory for parameters.
1784 */
1785#define VFIO_IOMMU_SPAPR_UNREGISTER_MEMORY	_IO(VFIO_TYPE, VFIO_BASE + 18)
1786
1787/**
1788 * VFIO_IOMMU_SPAPR_TCE_CREATE - _IOWR(VFIO_TYPE, VFIO_BASE + 19, struct vfio_iommu_spapr_tce_create)
1789 *
1790 * Creates an additional TCE table and programs it (sets a new DMA window)
1791 * to every IOMMU group in the container. It receives page shift, window
1792 * size and number of levels in the TCE table being created.
1793 *
1794 * It allocates and returns an offset on a PCI bus of the new DMA window.
1795 */
1796struct vfio_iommu_spapr_tce_create {
1797	__u32 argsz;
1798	__u32 flags;
1799	/* in */
1800	__u32 page_shift;
1801	__u32 __resv1;
1802	__u64 window_size;
1803	__u32 levels;
1804	__u32 __resv2;
1805	/* out */
1806	__u64 start_addr;
1807};
1808#define VFIO_IOMMU_SPAPR_TCE_CREATE	_IO(VFIO_TYPE, VFIO_BASE + 19)
1809
1810/**
1811 * VFIO_IOMMU_SPAPR_TCE_REMOVE - _IOW(VFIO_TYPE, VFIO_BASE + 20, struct vfio_iommu_spapr_tce_remove)
1812 *
1813 * Unprograms a TCE table from all groups in the container and destroys it.
1814 * It receives a PCI bus offset as a window id.
1815 */
1816struct vfio_iommu_spapr_tce_remove {
1817	__u32 argsz;
1818	__u32 flags;
1819	/* in */
1820	__u64 start_addr;
1821};
1822#define VFIO_IOMMU_SPAPR_TCE_REMOVE	_IO(VFIO_TYPE, VFIO_BASE + 20)
1823
1824/* ***************************************************************** */
1825
1826#endif /* _UAPIVFIO_H */
1827