1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 *    Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30	PERF_TYPE_HARDWARE			= 0,
31	PERF_TYPE_SOFTWARE			= 1,
32	PERF_TYPE_TRACEPOINT			= 2,
33	PERF_TYPE_HW_CACHE			= 3,
34	PERF_TYPE_RAW				= 4,
35	PERF_TYPE_BREAKPOINT			= 5,
36
37	PERF_TYPE_MAX,				/* non-ABI */
38};
39
40/*
41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42 * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
43 *					AA: hardware event ID
44 *					EEEEEEEE: PMU type ID
45 * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
46 *					BB: hardware cache ID
47 *					CC: hardware cache op ID
48 *					DD: hardware cache op result ID
49 *					EEEEEEEE: PMU type ID
50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51 */
52#define PERF_PMU_TYPE_SHIFT		32
53#define PERF_HW_EVENT_MASK		0xffffffff
54
55/*
56 * Generalized performance event event_id types, used by the
57 * attr.event_id parameter of the sys_perf_event_open()
58 * syscall:
59 */
60enum perf_hw_id {
61	/*
62	 * Common hardware events, generalized by the kernel:
63	 */
64	PERF_COUNT_HW_CPU_CYCLES		= 0,
65	PERF_COUNT_HW_INSTRUCTIONS		= 1,
66	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
67	PERF_COUNT_HW_CACHE_MISSES		= 3,
68	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
69	PERF_COUNT_HW_BRANCH_MISSES		= 5,
70	PERF_COUNT_HW_BUS_CYCLES		= 6,
71	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
72	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
73	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
74
75	PERF_COUNT_HW_MAX,			/* non-ABI */
76};
77
78/*
79 * Generalized hardware cache events:
80 *
81 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82 *       { read, write, prefetch } x
83 *       { accesses, misses }
84 */
85enum perf_hw_cache_id {
86	PERF_COUNT_HW_CACHE_L1D			= 0,
87	PERF_COUNT_HW_CACHE_L1I			= 1,
88	PERF_COUNT_HW_CACHE_LL			= 2,
89	PERF_COUNT_HW_CACHE_DTLB		= 3,
90	PERF_COUNT_HW_CACHE_ITLB		= 4,
91	PERF_COUNT_HW_CACHE_BPU			= 5,
92	PERF_COUNT_HW_CACHE_NODE		= 6,
93
94	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
95};
96
97enum perf_hw_cache_op_id {
98	PERF_COUNT_HW_CACHE_OP_READ		= 0,
99	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
100	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
101
102	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
103};
104
105enum perf_hw_cache_op_result_id {
106	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
107	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
108
109	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
110};
111
112/*
113 * Special "software" events provided by the kernel, even if the hardware
114 * does not support performance events. These events measure various
115 * physical and sw events of the kernel (and allow the profiling of them as
116 * well):
117 */
118enum perf_sw_ids {
119	PERF_COUNT_SW_CPU_CLOCK			= 0,
120	PERF_COUNT_SW_TASK_CLOCK		= 1,
121	PERF_COUNT_SW_PAGE_FAULTS		= 2,
122	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
123	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
124	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
125	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
126	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
127	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
128	PERF_COUNT_SW_DUMMY			= 9,
129	PERF_COUNT_SW_BPF_OUTPUT		= 10,
130	PERF_COUNT_SW_CGROUP_SWITCHES		= 11,
131
132	PERF_COUNT_SW_MAX,			/* non-ABI */
133};
134
135/*
136 * Bits that can be set in attr.sample_type to request information
137 * in the overflow packets.
138 */
139enum perf_event_sample_format {
140	PERF_SAMPLE_IP				= 1U << 0,
141	PERF_SAMPLE_TID				= 1U << 1,
142	PERF_SAMPLE_TIME			= 1U << 2,
143	PERF_SAMPLE_ADDR			= 1U << 3,
144	PERF_SAMPLE_READ			= 1U << 4,
145	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
146	PERF_SAMPLE_ID				= 1U << 6,
147	PERF_SAMPLE_CPU				= 1U << 7,
148	PERF_SAMPLE_PERIOD			= 1U << 8,
149	PERF_SAMPLE_STREAM_ID			= 1U << 9,
150	PERF_SAMPLE_RAW				= 1U << 10,
151	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
152	PERF_SAMPLE_REGS_USER			= 1U << 12,
153	PERF_SAMPLE_STACK_USER			= 1U << 13,
154	PERF_SAMPLE_WEIGHT			= 1U << 14,
155	PERF_SAMPLE_DATA_SRC			= 1U << 15,
156	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
157	PERF_SAMPLE_TRANSACTION			= 1U << 17,
158	PERF_SAMPLE_REGS_INTR			= 1U << 18,
159	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
160	PERF_SAMPLE_AUX				= 1U << 20,
161	PERF_SAMPLE_CGROUP			= 1U << 21,
162	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
163	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
164	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
165
166	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
167};
168
169#define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
170/*
171 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
172 *
173 * If the user does not pass priv level information via branch_sample_type,
174 * the kernel uses the event's priv level. Branch and event priv levels do
175 * not have to match. Branch priv level is checked for permissions.
176 *
177 * The branch types can be combined, however BRANCH_ANY covers all types
178 * of branches and therefore it supersedes all the other types.
179 */
180enum perf_branch_sample_type_shift {
181	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
182	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
183	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
184
185	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
186	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
187	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
188	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
189	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
190	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
191	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
192	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
193
194	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
195	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
196	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
197
198	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
199	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
200
201	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
202
203	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
204
205	PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT	= 18, /* save privilege mode */
206
207	PERF_SAMPLE_BRANCH_COUNTERS_SHIFT	= 19, /* save occurrences of events on a branch */
208
209	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
210};
211
212enum perf_branch_sample_type {
213	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
214	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
215	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
216
217	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
218	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
219	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
220	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
221	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
222	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
223	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
224	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
225
226	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
227	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
228	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
229
230	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
231	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
232
233	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
234		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
235
236	PERF_SAMPLE_BRANCH_HW_INDEX	= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
237
238	PERF_SAMPLE_BRANCH_PRIV_SAVE	= 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT,
239
240	PERF_SAMPLE_BRANCH_COUNTERS	= 1U << PERF_SAMPLE_BRANCH_COUNTERS_SHIFT,
241
242	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
243};
244
245/*
246 * Common flow change classification
247 */
248enum {
249	PERF_BR_UNKNOWN		= 0,	/* unknown */
250	PERF_BR_COND		= 1,	/* conditional */
251	PERF_BR_UNCOND		= 2,	/* unconditional  */
252	PERF_BR_IND		= 3,	/* indirect */
253	PERF_BR_CALL		= 4,	/* function call */
254	PERF_BR_IND_CALL	= 5,	/* indirect function call */
255	PERF_BR_RET		= 6,	/* function return */
256	PERF_BR_SYSCALL		= 7,	/* syscall */
257	PERF_BR_SYSRET		= 8,	/* syscall return */
258	PERF_BR_COND_CALL	= 9,	/* conditional function call */
259	PERF_BR_COND_RET	= 10,	/* conditional function return */
260	PERF_BR_ERET		= 11,	/* exception return */
261	PERF_BR_IRQ		= 12,	/* irq */
262	PERF_BR_SERROR		= 13,	/* system error */
263	PERF_BR_NO_TX		= 14,	/* not in transaction */
264	PERF_BR_EXTEND_ABI	= 15,	/* extend ABI */
265	PERF_BR_MAX,
266};
267
268/*
269 * Common branch speculation outcome classification
270 */
271enum {
272	PERF_BR_SPEC_NA			= 0,	/* Not available */
273	PERF_BR_SPEC_WRONG_PATH		= 1,	/* Speculative but on wrong path */
274	PERF_BR_NON_SPEC_CORRECT_PATH	= 2,	/* Non-speculative but on correct path */
275	PERF_BR_SPEC_CORRECT_PATH	= 3,	/* Speculative and on correct path */
276	PERF_BR_SPEC_MAX,
277};
278
279enum {
280	PERF_BR_NEW_FAULT_ALGN		= 0,    /* Alignment fault */
281	PERF_BR_NEW_FAULT_DATA		= 1,    /* Data fault */
282	PERF_BR_NEW_FAULT_INST		= 2,    /* Inst fault */
283	PERF_BR_NEW_ARCH_1		= 3,    /* Architecture specific */
284	PERF_BR_NEW_ARCH_2		= 4,    /* Architecture specific */
285	PERF_BR_NEW_ARCH_3		= 5,    /* Architecture specific */
286	PERF_BR_NEW_ARCH_4		= 6,    /* Architecture specific */
287	PERF_BR_NEW_ARCH_5		= 7,    /* Architecture specific */
288	PERF_BR_NEW_MAX,
289};
290
291enum {
292	PERF_BR_PRIV_UNKNOWN	= 0,
293	PERF_BR_PRIV_USER	= 1,
294	PERF_BR_PRIV_KERNEL	= 2,
295	PERF_BR_PRIV_HV		= 3,
296};
297
298#define PERF_BR_ARM64_FIQ		PERF_BR_NEW_ARCH_1
299#define PERF_BR_ARM64_DEBUG_HALT	PERF_BR_NEW_ARCH_2
300#define PERF_BR_ARM64_DEBUG_EXIT	PERF_BR_NEW_ARCH_3
301#define PERF_BR_ARM64_DEBUG_INST	PERF_BR_NEW_ARCH_4
302#define PERF_BR_ARM64_DEBUG_DATA	PERF_BR_NEW_ARCH_5
303
304#define PERF_SAMPLE_BRANCH_PLM_ALL \
305	(PERF_SAMPLE_BRANCH_USER|\
306	 PERF_SAMPLE_BRANCH_KERNEL|\
307	 PERF_SAMPLE_BRANCH_HV)
308
309/*
310 * Values to determine ABI of the registers dump.
311 */
312enum perf_sample_regs_abi {
313	PERF_SAMPLE_REGS_ABI_NONE	= 0,
314	PERF_SAMPLE_REGS_ABI_32		= 1,
315	PERF_SAMPLE_REGS_ABI_64		= 2,
316};
317
318/*
319 * Values for the memory transaction event qualifier, mostly for
320 * abort events. Multiple bits can be set.
321 */
322enum {
323	PERF_TXN_ELISION        = (1 << 0), /* From elision */
324	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
325	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
326	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
327	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
328	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
329	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
330	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
331
332	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
333
334	/* bits 32..63 are reserved for the abort code */
335
336	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
337	PERF_TXN_ABORT_SHIFT = 32,
338};
339
340/*
341 * The format of the data returned by read() on a perf event fd,
342 * as specified by attr.read_format:
343 *
344 * struct read_format {
345 *	{ u64		value;
346 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
347 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
348 *	  { u64		id;           } && PERF_FORMAT_ID
349 *	  { u64		lost;         } && PERF_FORMAT_LOST
350 *	} && !PERF_FORMAT_GROUP
351 *
352 *	{ u64		nr;
353 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
354 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
355 *	  { u64		value;
356 *	    { u64	id;           } && PERF_FORMAT_ID
357 *	    { u64	lost;         } && PERF_FORMAT_LOST
358 *	  }		cntr[nr];
359 *	} && PERF_FORMAT_GROUP
360 * };
361 */
362enum perf_event_read_format {
363	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
364	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
365	PERF_FORMAT_ID				= 1U << 2,
366	PERF_FORMAT_GROUP			= 1U << 3,
367	PERF_FORMAT_LOST			= 1U << 4,
368
369	PERF_FORMAT_MAX = 1U << 5,		/* non-ABI */
370};
371
372#define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
373#define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
374#define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
375#define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
376					/* add: sample_stack_user */
377#define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
378#define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
379#define PERF_ATTR_SIZE_VER6	120	/* add: aux_sample_size */
380#define PERF_ATTR_SIZE_VER7	128	/* add: sig_data */
381#define PERF_ATTR_SIZE_VER8	136	/* add: config3 */
382
383/*
384 * Hardware event_id to monitor via a performance monitoring event:
385 *
386 * @sample_max_stack: Max number of frame pointers in a callchain,
387 *		      should be < /proc/sys/kernel/perf_event_max_stack
388 */
389struct perf_event_attr {
390
391	/*
392	 * Major type: hardware/software/tracepoint/etc.
393	 */
394	__u32			type;
395
396	/*
397	 * Size of the attr structure, for fwd/bwd compat.
398	 */
399	__u32			size;
400
401	/*
402	 * Type specific configuration information.
403	 */
404	__u64			config;
405
406	union {
407		__u64		sample_period;
408		__u64		sample_freq;
409	};
410
411	__u64			sample_type;
412	__u64			read_format;
413
414	__u64			disabled       :  1, /* off by default        */
415				inherit	       :  1, /* children inherit it   */
416				pinned	       :  1, /* must always be on PMU */
417				exclusive      :  1, /* only group on PMU     */
418				exclude_user   :  1, /* don't count user      */
419				exclude_kernel :  1, /* ditto kernel          */
420				exclude_hv     :  1, /* ditto hypervisor      */
421				exclude_idle   :  1, /* don't count when idle */
422				mmap           :  1, /* include mmap data     */
423				comm	       :  1, /* include comm data     */
424				freq           :  1, /* use freq, not period  */
425				inherit_stat   :  1, /* per task counts       */
426				enable_on_exec :  1, /* next exec enables     */
427				task           :  1, /* trace fork/exit       */
428				watermark      :  1, /* wakeup_watermark      */
429				/*
430				 * precise_ip:
431				 *
432				 *  0 - SAMPLE_IP can have arbitrary skid
433				 *  1 - SAMPLE_IP must have constant skid
434				 *  2 - SAMPLE_IP requested to have 0 skid
435				 *  3 - SAMPLE_IP must have 0 skid
436				 *
437				 *  See also PERF_RECORD_MISC_EXACT_IP
438				 */
439				precise_ip     :  2, /* skid constraint       */
440				mmap_data      :  1, /* non-exec mmap data    */
441				sample_id_all  :  1, /* sample_type all events */
442
443				exclude_host   :  1, /* don't count in host   */
444				exclude_guest  :  1, /* don't count in guest  */
445
446				exclude_callchain_kernel : 1, /* exclude kernel callchains */
447				exclude_callchain_user   : 1, /* exclude user callchains */
448				mmap2          :  1, /* include mmap with inode data     */
449				comm_exec      :  1, /* flag comm events that are due to an exec */
450				use_clockid    :  1, /* use @clockid for time fields */
451				context_switch :  1, /* context switch data */
452				write_backward :  1, /* Write ring buffer from end to beginning */
453				namespaces     :  1, /* include namespaces data */
454				ksymbol        :  1, /* include ksymbol events */
455				bpf_event      :  1, /* include bpf events */
456				aux_output     :  1, /* generate AUX records instead of events */
457				cgroup         :  1, /* include cgroup events */
458				text_poke      :  1, /* include text poke events */
459				build_id       :  1, /* use build id in mmap2 events */
460				inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
461				remove_on_exec :  1, /* event is removed from task on exec */
462				sigtrap        :  1, /* send synchronous SIGTRAP on event */
463				__reserved_1   : 26;
464
465	union {
466		__u32		wakeup_events;	  /* wakeup every n events */
467		__u32		wakeup_watermark; /* bytes before wakeup   */
468	};
469
470	__u32			bp_type;
471	union {
472		__u64		bp_addr;
473		__u64		kprobe_func; /* for perf_kprobe */
474		__u64		uprobe_path; /* for perf_uprobe */
475		__u64		config1; /* extension of config */
476	};
477	union {
478		__u64		bp_len;
479		__u64		kprobe_addr; /* when kprobe_func == NULL */
480		__u64		probe_offset; /* for perf_[k,u]probe */
481		__u64		config2; /* extension of config1 */
482	};
483	__u64	branch_sample_type; /* enum perf_branch_sample_type */
484
485	/*
486	 * Defines set of user regs to dump on samples.
487	 * See asm/perf_regs.h for details.
488	 */
489	__u64	sample_regs_user;
490
491	/*
492	 * Defines size of the user stack to dump on samples.
493	 */
494	__u32	sample_stack_user;
495
496	__s32	clockid;
497	/*
498	 * Defines set of regs to dump for each sample
499	 * state captured on:
500	 *  - precise = 0: PMU interrupt
501	 *  - precise > 0: sampled instruction
502	 *
503	 * See asm/perf_regs.h for details.
504	 */
505	__u64	sample_regs_intr;
506
507	/*
508	 * Wakeup watermark for AUX area
509	 */
510	__u32	aux_watermark;
511	__u16	sample_max_stack;
512	__u16	__reserved_2;
513	__u32	aux_sample_size;
514	__u32	__reserved_3;
515
516	/*
517	 * User provided data if sigtrap=1, passed back to user via
518	 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
519	 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
520	 * truncated accordingly on 32 bit architectures.
521	 */
522	__u64	sig_data;
523
524	__u64	config3; /* extension of config2 */
525};
526
527/*
528 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
529 * to query bpf programs attached to the same perf tracepoint
530 * as the given perf event.
531 */
532struct perf_event_query_bpf {
533	/*
534	 * The below ids array length
535	 */
536	__u32	ids_len;
537	/*
538	 * Set by the kernel to indicate the number of
539	 * available programs
540	 */
541	__u32	prog_cnt;
542	/*
543	 * User provided buffer to store program ids
544	 */
545	__u32	ids[];
546};
547
548/*
549 * Ioctls that can be done on a perf event fd:
550 */
551#define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
552#define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
553#define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
554#define PERF_EVENT_IOC_RESET			_IO ('$', 3)
555#define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
556#define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
557#define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
558#define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
559#define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
560#define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
561#define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
562#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
563
564enum perf_event_ioc_flags {
565	PERF_IOC_FLAG_GROUP		= 1U << 0,
566};
567
568/*
569 * Structure of the page that can be mapped via mmap
570 */
571struct perf_event_mmap_page {
572	__u32	version;		/* version number of this structure */
573	__u32	compat_version;		/* lowest version this is compat with */
574
575	/*
576	 * Bits needed to read the hw events in user-space.
577	 *
578	 *   u32 seq, time_mult, time_shift, index, width;
579	 *   u64 count, enabled, running;
580	 *   u64 cyc, time_offset;
581	 *   s64 pmc = 0;
582	 *
583	 *   do {
584	 *     seq = pc->lock;
585	 *     barrier()
586	 *
587	 *     enabled = pc->time_enabled;
588	 *     running = pc->time_running;
589	 *
590	 *     if (pc->cap_usr_time && enabled != running) {
591	 *       cyc = rdtsc();
592	 *       time_offset = pc->time_offset;
593	 *       time_mult   = pc->time_mult;
594	 *       time_shift  = pc->time_shift;
595	 *     }
596	 *
597	 *     index = pc->index;
598	 *     count = pc->offset;
599	 *     if (pc->cap_user_rdpmc && index) {
600	 *       width = pc->pmc_width;
601	 *       pmc = rdpmc(index - 1);
602	 *     }
603	 *
604	 *     barrier();
605	 *   } while (pc->lock != seq);
606	 *
607	 * NOTE: for obvious reason this only works on self-monitoring
608	 *       processes.
609	 */
610	__u32	lock;			/* seqlock for synchronization */
611	__u32	index;			/* hardware event identifier */
612	__s64	offset;			/* add to hardware event value */
613	__u64	time_enabled;		/* time event active */
614	__u64	time_running;		/* time event on cpu */
615	union {
616		__u64	capabilities;
617		struct {
618			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
619				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
620
621				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
622				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
623				cap_user_time_zero	: 1, /* The time_zero field is used */
624				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
625				cap_____res		: 58;
626		};
627	};
628
629	/*
630	 * If cap_user_rdpmc this field provides the bit-width of the value
631	 * read using the rdpmc() or equivalent instruction. This can be used
632	 * to sign extend the result like:
633	 *
634	 *   pmc <<= 64 - width;
635	 *   pmc >>= 64 - width; // signed shift right
636	 *   count += pmc;
637	 */
638	__u16	pmc_width;
639
640	/*
641	 * If cap_usr_time the below fields can be used to compute the time
642	 * delta since time_enabled (in ns) using rdtsc or similar.
643	 *
644	 *   u64 quot, rem;
645	 *   u64 delta;
646	 *
647	 *   quot = (cyc >> time_shift);
648	 *   rem = cyc & (((u64)1 << time_shift) - 1);
649	 *   delta = time_offset + quot * time_mult +
650	 *              ((rem * time_mult) >> time_shift);
651	 *
652	 * Where time_offset,time_mult,time_shift and cyc are read in the
653	 * seqcount loop described above. This delta can then be added to
654	 * enabled and possible running (if index), improving the scaling:
655	 *
656	 *   enabled += delta;
657	 *   if (index)
658	 *     running += delta;
659	 *
660	 *   quot = count / running;
661	 *   rem  = count % running;
662	 *   count = quot * enabled + (rem * enabled) / running;
663	 */
664	__u16	time_shift;
665	__u32	time_mult;
666	__u64	time_offset;
667	/*
668	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
669	 * from sample timestamps.
670	 *
671	 *   time = timestamp - time_zero;
672	 *   quot = time / time_mult;
673	 *   rem  = time % time_mult;
674	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
675	 *
676	 * And vice versa:
677	 *
678	 *   quot = cyc >> time_shift;
679	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
680	 *   timestamp = time_zero + quot * time_mult +
681	 *               ((rem * time_mult) >> time_shift);
682	 */
683	__u64	time_zero;
684
685	__u32	size;			/* Header size up to __reserved[] fields. */
686	__u32	__reserved_1;
687
688	/*
689	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
690	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
691	 *
692	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
693	 *
694	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
695	 *       is a correction on top of cap_usr_time, and code that doesn't
696	 *       know about cap_usr_time_short still works under the assumption
697	 *       the counter doesn't wrap.
698	 */
699	__u64	time_cycles;
700	__u64	time_mask;
701
702		/*
703		 * Hole for extension of the self monitor capabilities
704		 */
705
706	__u8	__reserved[116*8];	/* align to 1k. */
707
708	/*
709	 * Control data for the mmap() data buffer.
710	 *
711	 * User-space reading the @data_head value should issue an smp_rmb(),
712	 * after reading this value.
713	 *
714	 * When the mapping is PROT_WRITE the @data_tail value should be
715	 * written by userspace to reflect the last read data, after issueing
716	 * an smp_mb() to separate the data read from the ->data_tail store.
717	 * In this case the kernel will not over-write unread data.
718	 *
719	 * See perf_output_put_handle() for the data ordering.
720	 *
721	 * data_{offset,size} indicate the location and size of the perf record
722	 * buffer within the mmapped area.
723	 */
724	__u64   data_head;		/* head in the data section */
725	__u64	data_tail;		/* user-space written tail */
726	__u64	data_offset;		/* where the buffer starts */
727	__u64	data_size;		/* data buffer size */
728
729	/*
730	 * AUX area is defined by aux_{offset,size} fields that should be set
731	 * by the userspace, so that
732	 *
733	 *   aux_offset >= data_offset + data_size
734	 *
735	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
736	 *
737	 * Ring buffer pointers aux_{head,tail} have the same semantics as
738	 * data_{head,tail} and same ordering rules apply.
739	 */
740	__u64	aux_head;
741	__u64	aux_tail;
742	__u64	aux_offset;
743	__u64	aux_size;
744};
745
746/*
747 * The current state of perf_event_header::misc bits usage:
748 * ('|' used bit, '-' unused bit)
749 *
750 *  012         CDEF
751 *  |||---------||||
752 *
753 *  Where:
754 *    0-2     CPUMODE_MASK
755 *
756 *    C       PROC_MAP_PARSE_TIMEOUT
757 *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
758 *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
759 *    F       (reserved)
760 */
761
762#define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
763#define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
764#define PERF_RECORD_MISC_KERNEL			(1 << 0)
765#define PERF_RECORD_MISC_USER			(2 << 0)
766#define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
767#define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
768#define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
769
770/*
771 * Indicates that /proc/PID/maps parsing are truncated by time out.
772 */
773#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
774/*
775 * Following PERF_RECORD_MISC_* are used on different
776 * events, so can reuse the same bit position:
777 *
778 *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
779 *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
780 *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
781 *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
782 */
783#define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
784#define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
785#define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
786#define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
787/*
788 * These PERF_RECORD_MISC_* flags below are safely reused
789 * for the following events:
790 *
791 *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
792 *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
793 *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
794 *
795 *
796 * PERF_RECORD_MISC_EXACT_IP:
797 *   Indicates that the content of PERF_SAMPLE_IP points to
798 *   the actual instruction that triggered the event. See also
799 *   perf_event_attr::precise_ip.
800 *
801 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
802 *   Indicates that thread was preempted in TASK_RUNNING state.
803 *
804 * PERF_RECORD_MISC_MMAP_BUILD_ID:
805 *   Indicates that mmap2 event carries build id data.
806 */
807#define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
808#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
809#define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
810/*
811 * Reserve the last bit to indicate some extended misc field
812 */
813#define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
814
815struct perf_event_header {
816	__u32	type;
817	__u16	misc;
818	__u16	size;
819};
820
821struct perf_ns_link_info {
822	__u64	dev;
823	__u64	ino;
824};
825
826enum {
827	NET_NS_INDEX		= 0,
828	UTS_NS_INDEX		= 1,
829	IPC_NS_INDEX		= 2,
830	PID_NS_INDEX		= 3,
831	USER_NS_INDEX		= 4,
832	MNT_NS_INDEX		= 5,
833	CGROUP_NS_INDEX		= 6,
834
835	NR_NAMESPACES,		/* number of available namespaces */
836};
837
838enum perf_event_type {
839
840	/*
841	 * If perf_event_attr.sample_id_all is set then all event types will
842	 * have the sample_type selected fields related to where/when
843	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
844	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
845	 * just after the perf_event_header and the fields already present for
846	 * the existing fields, i.e. at the end of the payload. That way a newer
847	 * perf.data file will be supported by older perf tools, with these new
848	 * optional fields being ignored.
849	 *
850	 * struct sample_id {
851	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
852	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
853	 * 	{ u64			id;       } && PERF_SAMPLE_ID
854	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
855	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
856	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
857	 * } && perf_event_attr::sample_id_all
858	 *
859	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
860	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
861	 * relative to header.size.
862	 */
863
864	/*
865	 * The MMAP events record the PROT_EXEC mappings so that we can
866	 * correlate userspace IPs to code. They have the following structure:
867	 *
868	 * struct {
869	 *	struct perf_event_header	header;
870	 *
871	 *	u32				pid, tid;
872	 *	u64				addr;
873	 *	u64				len;
874	 *	u64				pgoff;
875	 *	char				filename[];
876	 * 	struct sample_id		sample_id;
877	 * };
878	 */
879	PERF_RECORD_MMAP			= 1,
880
881	/*
882	 * struct {
883	 *	struct perf_event_header	header;
884	 *	u64				id;
885	 *	u64				lost;
886	 * 	struct sample_id		sample_id;
887	 * };
888	 */
889	PERF_RECORD_LOST			= 2,
890
891	/*
892	 * struct {
893	 *	struct perf_event_header	header;
894	 *
895	 *	u32				pid, tid;
896	 *	char				comm[];
897	 * 	struct sample_id		sample_id;
898	 * };
899	 */
900	PERF_RECORD_COMM			= 3,
901
902	/*
903	 * struct {
904	 *	struct perf_event_header	header;
905	 *	u32				pid, ppid;
906	 *	u32				tid, ptid;
907	 *	u64				time;
908	 * 	struct sample_id		sample_id;
909	 * };
910	 */
911	PERF_RECORD_EXIT			= 4,
912
913	/*
914	 * struct {
915	 *	struct perf_event_header	header;
916	 *	u64				time;
917	 *	u64				id;
918	 *	u64				stream_id;
919	 * 	struct sample_id		sample_id;
920	 * };
921	 */
922	PERF_RECORD_THROTTLE			= 5,
923	PERF_RECORD_UNTHROTTLE			= 6,
924
925	/*
926	 * struct {
927	 *	struct perf_event_header	header;
928	 *	u32				pid, ppid;
929	 *	u32				tid, ptid;
930	 *	u64				time;
931	 * 	struct sample_id		sample_id;
932	 * };
933	 */
934	PERF_RECORD_FORK			= 7,
935
936	/*
937	 * struct {
938	 *	struct perf_event_header	header;
939	 *	u32				pid, tid;
940	 *
941	 *	struct read_format		values;
942	 * 	struct sample_id		sample_id;
943	 * };
944	 */
945	PERF_RECORD_READ			= 8,
946
947	/*
948	 * struct {
949	 *	struct perf_event_header	header;
950	 *
951	 *	#
952	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
953	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
954	 *	# is fixed relative to header.
955	 *	#
956	 *
957	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
958	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
959	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
960	 *	{ u64			time;     } && PERF_SAMPLE_TIME
961	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
962	 *	{ u64			id;	  } && PERF_SAMPLE_ID
963	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
964	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
965	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
966	 *
967	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
968	 *
969	 *	{ u64			nr,
970	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
971	 *
972	 *	#
973	 *	# The RAW record below is opaque data wrt the ABI
974	 *	#
975	 *	# That is, the ABI doesn't make any promises wrt to
976	 *	# the stability of its content, it may vary depending
977	 *	# on event, hardware, kernel version and phase of
978	 *	# the moon.
979	 *	#
980	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
981	 *	#
982	 *
983	 *	{ u32			size;
984	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
985	 *
986	 *	{ u64                   nr;
987	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
988	 *        { u64 from, to, flags } lbr[nr];
989	 *        #
990	 *        # The format of the counters is decided by the
991	 *        # "branch_counter_nr" and "branch_counter_width",
992	 *        # which are defined in the ABI.
993	 *        #
994	 *        { u64 counters; } cntr[nr] && PERF_SAMPLE_BRANCH_COUNTERS
995	 *      } && PERF_SAMPLE_BRANCH_STACK
996	 *
997	 * 	{ u64			abi; # enum perf_sample_regs_abi
998	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
999	 *
1000	 * 	{ u64			size;
1001	 * 	  char			data[size];
1002	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
1003	 *
1004	 *	{ union perf_sample_weight
1005	 *	 {
1006	 *		u64		full; && PERF_SAMPLE_WEIGHT
1007	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
1008	 *		struct {
1009	 *			u32	var1_dw;
1010	 *			u16	var2_w;
1011	 *			u16	var3_w;
1012	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1013	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
1014	 *		struct {
1015	 *			u16	var3_w;
1016	 *			u16	var2_w;
1017	 *			u32	var1_dw;
1018	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1019	 *	#endif
1020	 *	 }
1021	 *	}
1022	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
1023	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
1024	 *	{ u64			abi; # enum perf_sample_regs_abi
1025	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
1026	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
1027	 *	{ u64			size;
1028	 *	  char			data[size]; } && PERF_SAMPLE_AUX
1029	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
1030	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
1031	 * };
1032	 */
1033	PERF_RECORD_SAMPLE			= 9,
1034
1035	/*
1036	 * The MMAP2 records are an augmented version of MMAP, they add
1037	 * maj, min, ino numbers to be used to uniquely identify each mapping
1038	 *
1039	 * struct {
1040	 *	struct perf_event_header	header;
1041	 *
1042	 *	u32				pid, tid;
1043	 *	u64				addr;
1044	 *	u64				len;
1045	 *	u64				pgoff;
1046	 *	union {
1047	 *		struct {
1048	 *			u32		maj;
1049	 *			u32		min;
1050	 *			u64		ino;
1051	 *			u64		ino_generation;
1052	 *		};
1053	 *		struct {
1054	 *			u8		build_id_size;
1055	 *			u8		__reserved_1;
1056	 *			u16		__reserved_2;
1057	 *			u8		build_id[20];
1058	 *		};
1059	 *	};
1060	 *	u32				prot, flags;
1061	 *	char				filename[];
1062	 * 	struct sample_id		sample_id;
1063	 * };
1064	 */
1065	PERF_RECORD_MMAP2			= 10,
1066
1067	/*
1068	 * Records that new data landed in the AUX buffer part.
1069	 *
1070	 * struct {
1071	 * 	struct perf_event_header	header;
1072	 *
1073	 * 	u64				aux_offset;
1074	 * 	u64				aux_size;
1075	 *	u64				flags;
1076	 * 	struct sample_id		sample_id;
1077	 * };
1078	 */
1079	PERF_RECORD_AUX				= 11,
1080
1081	/*
1082	 * Indicates that instruction trace has started
1083	 *
1084	 * struct {
1085	 *	struct perf_event_header	header;
1086	 *	u32				pid;
1087	 *	u32				tid;
1088	 *	struct sample_id		sample_id;
1089	 * };
1090	 */
1091	PERF_RECORD_ITRACE_START		= 12,
1092
1093	/*
1094	 * Records the dropped/lost sample number.
1095	 *
1096	 * struct {
1097	 *	struct perf_event_header	header;
1098	 *
1099	 *	u64				lost;
1100	 *	struct sample_id		sample_id;
1101	 * };
1102	 */
1103	PERF_RECORD_LOST_SAMPLES		= 13,
1104
1105	/*
1106	 * Records a context switch in or out (flagged by
1107	 * PERF_RECORD_MISC_SWITCH_OUT). See also
1108	 * PERF_RECORD_SWITCH_CPU_WIDE.
1109	 *
1110	 * struct {
1111	 *	struct perf_event_header	header;
1112	 *	struct sample_id		sample_id;
1113	 * };
1114	 */
1115	PERF_RECORD_SWITCH			= 14,
1116
1117	/*
1118	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1119	 * next_prev_tid that are the next (switching out) or previous
1120	 * (switching in) pid/tid.
1121	 *
1122	 * struct {
1123	 *	struct perf_event_header	header;
1124	 *	u32				next_prev_pid;
1125	 *	u32				next_prev_tid;
1126	 *	struct sample_id		sample_id;
1127	 * };
1128	 */
1129	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
1130
1131	/*
1132	 * struct {
1133	 *	struct perf_event_header	header;
1134	 *	u32				pid;
1135	 *	u32				tid;
1136	 *	u64				nr_namespaces;
1137	 *	{ u64				dev, inode; } [nr_namespaces];
1138	 *	struct sample_id		sample_id;
1139	 * };
1140	 */
1141	PERF_RECORD_NAMESPACES			= 16,
1142
1143	/*
1144	 * Record ksymbol register/unregister events:
1145	 *
1146	 * struct {
1147	 *	struct perf_event_header	header;
1148	 *	u64				addr;
1149	 *	u32				len;
1150	 *	u16				ksym_type;
1151	 *	u16				flags;
1152	 *	char				name[];
1153	 *	struct sample_id		sample_id;
1154	 * };
1155	 */
1156	PERF_RECORD_KSYMBOL			= 17,
1157
1158	/*
1159	 * Record bpf events:
1160	 *  enum perf_bpf_event_type {
1161	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
1162	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
1163	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1164	 *  };
1165	 *
1166	 * struct {
1167	 *	struct perf_event_header	header;
1168	 *	u16				type;
1169	 *	u16				flags;
1170	 *	u32				id;
1171	 *	u8				tag[BPF_TAG_SIZE];
1172	 *	struct sample_id		sample_id;
1173	 * };
1174	 */
1175	PERF_RECORD_BPF_EVENT			= 18,
1176
1177	/*
1178	 * struct {
1179	 *	struct perf_event_header	header;
1180	 *	u64				id;
1181	 *	char				path[];
1182	 *	struct sample_id		sample_id;
1183	 * };
1184	 */
1185	PERF_RECORD_CGROUP			= 19,
1186
1187	/*
1188	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1189	 * the number of old bytes, 'new_len' is the number of new bytes. Either
1190	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1191	 * addition or removal of a trampoline. 'bytes' contains the old bytes
1192	 * followed immediately by the new bytes.
1193	 *
1194	 * struct {
1195	 *	struct perf_event_header	header;
1196	 *	u64				addr;
1197	 *	u16				old_len;
1198	 *	u16				new_len;
1199	 *	u8				bytes[];
1200	 *	struct sample_id		sample_id;
1201	 * };
1202	 */
1203	PERF_RECORD_TEXT_POKE			= 20,
1204
1205	/*
1206	 * Data written to the AUX area by hardware due to aux_output, may need
1207	 * to be matched to the event by an architecture-specific hardware ID.
1208	 * This records the hardware ID, but requires sample_id to provide the
1209	 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1210	 * records from multiple events.
1211	 *
1212	 * struct {
1213	 *	struct perf_event_header	header;
1214	 *	u64				hw_id;
1215	 *	struct sample_id		sample_id;
1216	 * };
1217	 */
1218	PERF_RECORD_AUX_OUTPUT_HW_ID		= 21,
1219
1220	PERF_RECORD_MAX,			/* non-ABI */
1221};
1222
1223enum perf_record_ksymbol_type {
1224	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
1225	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
1226	/*
1227	 * Out of line code such as kprobe-replaced instructions or optimized
1228	 * kprobes or ftrace trampolines.
1229	 */
1230	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
1231	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
1232};
1233
1234#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
1235
1236enum perf_bpf_event_type {
1237	PERF_BPF_EVENT_UNKNOWN		= 0,
1238	PERF_BPF_EVENT_PROG_LOAD	= 1,
1239	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1240	PERF_BPF_EVENT_MAX,		/* non-ABI */
1241};
1242
1243#define PERF_MAX_STACK_DEPTH		127
1244#define PERF_MAX_CONTEXTS_PER_STACK	  8
1245
1246enum perf_callchain_context {
1247	PERF_CONTEXT_HV			= (__u64)-32,
1248	PERF_CONTEXT_KERNEL		= (__u64)-128,
1249	PERF_CONTEXT_USER		= (__u64)-512,
1250
1251	PERF_CONTEXT_GUEST		= (__u64)-2048,
1252	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
1253	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
1254
1255	PERF_CONTEXT_MAX		= (__u64)-4095,
1256};
1257
1258/**
1259 * PERF_RECORD_AUX::flags bits
1260 */
1261#define PERF_AUX_FLAG_TRUNCATED			0x01	/* record was truncated to fit */
1262#define PERF_AUX_FLAG_OVERWRITE			0x02	/* snapshot from overwrite mode */
1263#define PERF_AUX_FLAG_PARTIAL			0x04	/* record contains gaps */
1264#define PERF_AUX_FLAG_COLLISION			0x08	/* sample collided with another */
1265#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK	0xff00	/* PMU specific trace format type */
1266
1267/* CoreSight PMU AUX buffer formats */
1268#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT	0x0000 /* Default for backward compatibility */
1269#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW		0x0100 /* Raw format of the source */
1270
1271#define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
1272#define PERF_FLAG_FD_OUTPUT		(1UL << 1)
1273#define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
1274#define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
1275
1276#if defined(__LITTLE_ENDIAN_BITFIELD)
1277union perf_mem_data_src {
1278	__u64 val;
1279	struct {
1280		__u64   mem_op:5,	/* type of opcode */
1281			mem_lvl:14,	/* memory hierarchy level */
1282			mem_snoop:5,	/* snoop mode */
1283			mem_lock:2,	/* lock instr */
1284			mem_dtlb:7,	/* tlb access */
1285			mem_lvl_num:4,	/* memory hierarchy level number */
1286			mem_remote:1,   /* remote */
1287			mem_snoopx:2,	/* snoop mode, ext */
1288			mem_blk:3,	/* access blocked */
1289			mem_hops:3,	/* hop level */
1290			mem_rsvd:18;
1291	};
1292};
1293#elif defined(__BIG_ENDIAN_BITFIELD)
1294union perf_mem_data_src {
1295	__u64 val;
1296	struct {
1297		__u64	mem_rsvd:18,
1298			mem_hops:3,	/* hop level */
1299			mem_blk:3,	/* access blocked */
1300			mem_snoopx:2,	/* snoop mode, ext */
1301			mem_remote:1,   /* remote */
1302			mem_lvl_num:4,	/* memory hierarchy level number */
1303			mem_dtlb:7,	/* tlb access */
1304			mem_lock:2,	/* lock instr */
1305			mem_snoop:5,	/* snoop mode */
1306			mem_lvl:14,	/* memory hierarchy level */
1307			mem_op:5;	/* type of opcode */
1308	};
1309};
1310#else
1311#error "Unknown endianness"
1312#endif
1313
1314/* type of opcode (load/store/prefetch,code) */
1315#define PERF_MEM_OP_NA		0x01 /* not available */
1316#define PERF_MEM_OP_LOAD	0x02 /* load instruction */
1317#define PERF_MEM_OP_STORE	0x04 /* store instruction */
1318#define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
1319#define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
1320#define PERF_MEM_OP_SHIFT	0
1321
1322/*
1323 * PERF_MEM_LVL_* namespace being depricated to some extent in the
1324 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1325 * Supporting this namespace inorder to not break defined ABIs.
1326 *
1327 * memory hierarchy (memory level, hit or miss)
1328 */
1329#define PERF_MEM_LVL_NA		0x01  /* not available */
1330#define PERF_MEM_LVL_HIT	0x02  /* hit level */
1331#define PERF_MEM_LVL_MISS	0x04  /* miss level  */
1332#define PERF_MEM_LVL_L1		0x08  /* L1 */
1333#define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
1334#define PERF_MEM_LVL_L2		0x20  /* L2 */
1335#define PERF_MEM_LVL_L3		0x40  /* L3 */
1336#define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
1337#define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
1338#define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
1339#define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
1340#define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
1341#define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
1342#define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
1343#define PERF_MEM_LVL_SHIFT	5
1344
1345#define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
1346#define PERF_MEM_REMOTE_SHIFT	37
1347
1348#define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
1349#define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
1350#define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
1351#define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
1352/* 5-0x7 available */
1353#define PERF_MEM_LVLNUM_UNC	0x08 /* Uncached */
1354#define PERF_MEM_LVLNUM_CXL	0x09 /* CXL */
1355#define PERF_MEM_LVLNUM_IO	0x0a /* I/O */
1356#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1357#define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
1358#define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
1359#define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
1360#define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
1361
1362#define PERF_MEM_LVLNUM_SHIFT	33
1363
1364/* snoop mode */
1365#define PERF_MEM_SNOOP_NA	0x01 /* not available */
1366#define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
1367#define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
1368#define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
1369#define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
1370#define PERF_MEM_SNOOP_SHIFT	19
1371
1372#define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
1373#define PERF_MEM_SNOOPX_PEER	0x02 /* xfer from peer */
1374#define PERF_MEM_SNOOPX_SHIFT  38
1375
1376/* locked instruction */
1377#define PERF_MEM_LOCK_NA	0x01 /* not available */
1378#define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
1379#define PERF_MEM_LOCK_SHIFT	24
1380
1381/* TLB access */
1382#define PERF_MEM_TLB_NA		0x01 /* not available */
1383#define PERF_MEM_TLB_HIT	0x02 /* hit level */
1384#define PERF_MEM_TLB_MISS	0x04 /* miss level */
1385#define PERF_MEM_TLB_L1		0x08 /* L1 */
1386#define PERF_MEM_TLB_L2		0x10 /* L2 */
1387#define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
1388#define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
1389#define PERF_MEM_TLB_SHIFT	26
1390
1391/* Access blocked */
1392#define PERF_MEM_BLK_NA		0x01 /* not available */
1393#define PERF_MEM_BLK_DATA	0x02 /* data could not be forwarded */
1394#define PERF_MEM_BLK_ADDR	0x04 /* address conflict */
1395#define PERF_MEM_BLK_SHIFT	40
1396
1397/* hop level */
1398#define PERF_MEM_HOPS_0		0x01 /* remote core, same node */
1399#define PERF_MEM_HOPS_1		0x02 /* remote node, same socket */
1400#define PERF_MEM_HOPS_2		0x03 /* remote socket, same board */
1401#define PERF_MEM_HOPS_3		0x04 /* remote board */
1402/* 5-7 available */
1403#define PERF_MEM_HOPS_SHIFT	43
1404
1405#define PERF_MEM_S(a, s) \
1406	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1407
1408/*
1409 * single taken branch record layout:
1410 *
1411 *      from: source instruction (may not always be a branch insn)
1412 *        to: branch target
1413 *   mispred: branch target was mispredicted
1414 * predicted: branch target was predicted
1415 *
1416 * support for mispred, predicted is optional. In case it
1417 * is not supported mispred = predicted = 0.
1418 *
1419 *     in_tx: running in a hardware transaction
1420 *     abort: aborting a hardware transaction
1421 *    cycles: cycles from last branch (or 0 if not supported)
1422 *      type: branch type
1423 *      spec: branch speculation info (or 0 if not supported)
1424 */
1425struct perf_branch_entry {
1426	__u64	from;
1427	__u64	to;
1428	__u64	mispred:1,  /* target mispredicted */
1429		predicted:1,/* target predicted */
1430		in_tx:1,    /* in transaction */
1431		abort:1,    /* transaction abort */
1432		cycles:16,  /* cycle count to last branch */
1433		type:4,     /* branch type */
1434		spec:2,     /* branch speculation info */
1435		new_type:4, /* additional branch type */
1436		priv:3,     /* privilege level */
1437		reserved:31;
1438};
1439
1440/* Size of used info bits in struct perf_branch_entry */
1441#define PERF_BRANCH_ENTRY_INFO_BITS_MAX		33
1442
1443union perf_sample_weight {
1444	__u64		full;
1445#if defined(__LITTLE_ENDIAN_BITFIELD)
1446	struct {
1447		__u32	var1_dw;
1448		__u16	var2_w;
1449		__u16	var3_w;
1450	};
1451#elif defined(__BIG_ENDIAN_BITFIELD)
1452	struct {
1453		__u16	var3_w;
1454		__u16	var2_w;
1455		__u32	var1_dw;
1456	};
1457#else
1458#error "Unknown endianness"
1459#endif
1460};
1461
1462#endif /* _UAPI_LINUX_PERF_EVENT_H */
1463