1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2#ifndef _BTRFS_CTREE_H_
3#define _BTRFS_CTREE_H_
4
5#include <linux/btrfs.h>
6#include <linux/types.h>
7#ifdef __KERNEL__
8#include <linux/stddef.h>
9#else
10#include <stddef.h>
11#endif
12
13/* ASCII for _BHRfS_M, no terminating nul */
14#define BTRFS_MAGIC 0x4D5F53665248425FULL
15
16#define BTRFS_MAX_LEVEL 8
17
18/*
19 * We can actually store much bigger names, but lets not confuse the rest of
20 * linux.
21 */
22#define BTRFS_NAME_LEN 255
23
24/*
25 * Theoretical limit is larger, but we keep this down to a sane value. That
26 * should limit greatly the possibility of collisions on inode ref items.
27 */
28#define BTRFS_LINK_MAX 65535U
29
30/*
31 * This header contains the structure definitions and constants used
32 * by file system objects that can be retrieved using
33 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
34 * is needed to describe a leaf node's key or item contents.
35 */
36
37/* holds pointers to all of the tree roots */
38#define BTRFS_ROOT_TREE_OBJECTID 1ULL
39
40/* stores information about which extents are in use, and reference counts */
41#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
42
43/*
44 * chunk tree stores translations from logical -> physical block numbering
45 * the super block points to the chunk tree
46 */
47#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
48
49/*
50 * stores information about which areas of a given device are in use.
51 * one per device.  The tree of tree roots points to the device tree
52 */
53#define BTRFS_DEV_TREE_OBJECTID 4ULL
54
55/* one per subvolume, storing files and directories */
56#define BTRFS_FS_TREE_OBJECTID 5ULL
57
58/* directory objectid inside the root tree */
59#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
60
61/* holds checksums of all the data extents */
62#define BTRFS_CSUM_TREE_OBJECTID 7ULL
63
64/* holds quota configuration and tracking */
65#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
66
67/* for storing items that use the BTRFS_UUID_KEY* types */
68#define BTRFS_UUID_TREE_OBJECTID 9ULL
69
70/* tracks free space in block groups. */
71#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
72
73/* Holds the block group items for extent tree v2. */
74#define BTRFS_BLOCK_GROUP_TREE_OBJECTID 11ULL
75
76/* Tracks RAID stripes in block groups. */
77#define BTRFS_RAID_STRIPE_TREE_OBJECTID 12ULL
78
79/* device stats in the device tree */
80#define BTRFS_DEV_STATS_OBJECTID 0ULL
81
82/* for storing balance parameters in the root tree */
83#define BTRFS_BALANCE_OBJECTID -4ULL
84
85/* orphan objectid for tracking unlinked/truncated files */
86#define BTRFS_ORPHAN_OBJECTID -5ULL
87
88/* does write ahead logging to speed up fsyncs */
89#define BTRFS_TREE_LOG_OBJECTID -6ULL
90#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
91
92/* for space balancing */
93#define BTRFS_TREE_RELOC_OBJECTID -8ULL
94#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
95
96/*
97 * extent checksums all have this objectid
98 * this allows them to share the logging tree
99 * for fsyncs
100 */
101#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
102
103/* For storing free space cache */
104#define BTRFS_FREE_SPACE_OBJECTID -11ULL
105
106/*
107 * The inode number assigned to the special inode for storing
108 * free ino cache
109 */
110#define BTRFS_FREE_INO_OBJECTID -12ULL
111
112/* dummy objectid represents multiple objectids */
113#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
114
115/*
116 * All files have objectids in this range.
117 */
118#define BTRFS_FIRST_FREE_OBJECTID 256ULL
119#define BTRFS_LAST_FREE_OBJECTID -256ULL
120#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
121
122
123/*
124 * the device items go into the chunk tree.  The key is in the form
125 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
126 */
127#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
128
129#define BTRFS_BTREE_INODE_OBJECTID 1
130
131#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
132
133#define BTRFS_DEV_REPLACE_DEVID 0ULL
134
135/*
136 * inode items have the data typically returned from stat and store other
137 * info about object characteristics.  There is one for every file and dir in
138 * the FS
139 */
140#define BTRFS_INODE_ITEM_KEY		1
141#define BTRFS_INODE_REF_KEY		12
142#define BTRFS_INODE_EXTREF_KEY		13
143#define BTRFS_XATTR_ITEM_KEY		24
144
145/*
146 * fs verity items are stored under two different key types on disk.
147 * The descriptor items:
148 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ]
149 *
150 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the size
151 * of the descriptor item and some extra data for encryption.
152 * Starting at offset 1, these hold the generic fs verity descriptor.  The
153 * latter are opaque to btrfs, we just read and write them as a blob for the
154 * higher level verity code.  The most common descriptor size is 256 bytes.
155 *
156 * The merkle tree items:
157 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ]
158 *
159 * These also start at offset 0, and correspond to the merkle tree bytes.  When
160 * fsverity asks for page 0 of the merkle tree, we pull up one page starting at
161 * offset 0 for this key type.  These are also opaque to btrfs, we're blindly
162 * storing whatever fsverity sends down.
163 */
164#define BTRFS_VERITY_DESC_ITEM_KEY	36
165#define BTRFS_VERITY_MERKLE_ITEM_KEY	37
166
167#define BTRFS_ORPHAN_ITEM_KEY		48
168/* reserve 2-15 close to the inode for later flexibility */
169
170/*
171 * dir items are the name -> inode pointers in a directory.  There is one
172 * for every name in a directory.  BTRFS_DIR_LOG_ITEM_KEY is no longer used
173 * but it's still defined here for documentation purposes and to help avoid
174 * having its numerical value reused in the future.
175 */
176#define BTRFS_DIR_LOG_ITEM_KEY  60
177#define BTRFS_DIR_LOG_INDEX_KEY 72
178#define BTRFS_DIR_ITEM_KEY	84
179#define BTRFS_DIR_INDEX_KEY	96
180/*
181 * extent data is for file data
182 */
183#define BTRFS_EXTENT_DATA_KEY	108
184
185/*
186 * extent csums are stored in a separate tree and hold csums for
187 * an entire extent on disk.
188 */
189#define BTRFS_EXTENT_CSUM_KEY	128
190
191/*
192 * root items point to tree roots.  They are typically in the root
193 * tree used by the super block to find all the other trees
194 */
195#define BTRFS_ROOT_ITEM_KEY	132
196
197/*
198 * root backrefs tie subvols and snapshots to the directory entries that
199 * reference them
200 */
201#define BTRFS_ROOT_BACKREF_KEY	144
202
203/*
204 * root refs make a fast index for listing all of the snapshots and
205 * subvolumes referenced by a given root.  They point directly to the
206 * directory item in the root that references the subvol
207 */
208#define BTRFS_ROOT_REF_KEY	156
209
210/*
211 * extent items are in the extent map tree.  These record which blocks
212 * are used, and how many references there are to each block
213 */
214#define BTRFS_EXTENT_ITEM_KEY	168
215
216/*
217 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
218 * the length, so we save the level in key->offset instead of the length.
219 */
220#define BTRFS_METADATA_ITEM_KEY	169
221
222/*
223 * Special inline ref key which stores the id of the subvolume which originally
224 * created the extent. This subvolume owns the extent permanently from the
225 * perspective of simple quotas. Needed to know which subvolume to free quota
226 * usage from when the extent is deleted.
227 *
228 * Stored as an inline ref rather to avoid wasting space on a separate item on
229 * top of the existing extent item. However, unlike the other inline refs,
230 * there is one one owner ref per extent rather than one per extent.
231 *
232 * Because of this, it goes at the front of the list of inline refs, and thus
233 * must have a lower type value than any other inline ref type (to satisfy the
234 * disk format rule that inline refs have non-decreasing type).
235 */
236#define BTRFS_EXTENT_OWNER_REF_KEY	172
237
238#define BTRFS_TREE_BLOCK_REF_KEY	176
239
240#define BTRFS_EXTENT_DATA_REF_KEY	178
241
242/*
243 * Obsolete key. Defintion removed in 6.6, value may be reused in the future.
244 *
245 * #define BTRFS_EXTENT_REF_V0_KEY	180
246 */
247
248#define BTRFS_SHARED_BLOCK_REF_KEY	182
249
250#define BTRFS_SHARED_DATA_REF_KEY	184
251
252/*
253 * block groups give us hints into the extent allocation trees.  Which
254 * blocks are free etc etc
255 */
256#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
257
258/*
259 * Every block group is represented in the free space tree by a free space info
260 * item, which stores some accounting information. It is keyed on
261 * (block_group_start, FREE_SPACE_INFO, block_group_length).
262 */
263#define BTRFS_FREE_SPACE_INFO_KEY 198
264
265/*
266 * A free space extent tracks an extent of space that is free in a block group.
267 * It is keyed on (start, FREE_SPACE_EXTENT, length).
268 */
269#define BTRFS_FREE_SPACE_EXTENT_KEY 199
270
271/*
272 * When a block group becomes very fragmented, we convert it to use bitmaps
273 * instead of extents. A free space bitmap is keyed on
274 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
275 * (length / sectorsize) bits.
276 */
277#define BTRFS_FREE_SPACE_BITMAP_KEY 200
278
279#define BTRFS_DEV_EXTENT_KEY	204
280#define BTRFS_DEV_ITEM_KEY	216
281#define BTRFS_CHUNK_ITEM_KEY	228
282
283#define BTRFS_RAID_STRIPE_KEY	230
284
285/*
286 * Records the overall state of the qgroups.
287 * There's only one instance of this key present,
288 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
289 */
290#define BTRFS_QGROUP_STATUS_KEY         240
291/*
292 * Records the currently used space of the qgroup.
293 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
294 */
295#define BTRFS_QGROUP_INFO_KEY           242
296/*
297 * Contains the user configured limits for the qgroup.
298 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
299 */
300#define BTRFS_QGROUP_LIMIT_KEY          244
301/*
302 * Records the child-parent relationship of qgroups. For
303 * each relation, 2 keys are present:
304 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
305 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
306 */
307#define BTRFS_QGROUP_RELATION_KEY       246
308
309/*
310 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
311 */
312#define BTRFS_BALANCE_ITEM_KEY	248
313
314/*
315 * The key type for tree items that are stored persistently, but do not need to
316 * exist for extended period of time. The items can exist in any tree.
317 *
318 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
319 *
320 * Existing items:
321 *
322 * - balance status item
323 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
324 */
325#define BTRFS_TEMPORARY_ITEM_KEY	248
326
327/*
328 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
329 */
330#define BTRFS_DEV_STATS_KEY		249
331
332/*
333 * The key type for tree items that are stored persistently and usually exist
334 * for a long period, eg. filesystem lifetime. The item kinds can be status
335 * information, stats or preference values. The item can exist in any tree.
336 *
337 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
338 *
339 * Existing items:
340 *
341 * - device statistics, store IO stats in the device tree, one key for all
342 *   stats
343 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
344 */
345#define BTRFS_PERSISTENT_ITEM_KEY	249
346
347/*
348 * Persistently stores the device replace state in the device tree.
349 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
350 */
351#define BTRFS_DEV_REPLACE_KEY	250
352
353/*
354 * Stores items that allow to quickly map UUIDs to something else.
355 * These items are part of the filesystem UUID tree.
356 * The key is built like this:
357 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
358 */
359#if BTRFS_UUID_SIZE != 16
360#error "UUID items require BTRFS_UUID_SIZE == 16!"
361#endif
362#define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
363#define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
364						 * received subvols */
365
366/*
367 * string items are for debugging.  They just store a short string of
368 * data in the FS
369 */
370#define BTRFS_STRING_ITEM_KEY	253
371
372/* Maximum metadata block size (nodesize) */
373#define BTRFS_MAX_METADATA_BLOCKSIZE			65536
374
375/* 32 bytes in various csum fields */
376#define BTRFS_CSUM_SIZE 32
377
378/* csum types */
379enum btrfs_csum_type {
380	BTRFS_CSUM_TYPE_CRC32	= 0,
381	BTRFS_CSUM_TYPE_XXHASH	= 1,
382	BTRFS_CSUM_TYPE_SHA256	= 2,
383	BTRFS_CSUM_TYPE_BLAKE2	= 3,
384};
385
386/*
387 * flags definitions for directory entry item type
388 *
389 * Used by:
390 * struct btrfs_dir_item.type
391 *
392 * Values 0..7 must match common file type values in fs_types.h.
393 */
394#define BTRFS_FT_UNKNOWN	0
395#define BTRFS_FT_REG_FILE	1
396#define BTRFS_FT_DIR		2
397#define BTRFS_FT_CHRDEV		3
398#define BTRFS_FT_BLKDEV		4
399#define BTRFS_FT_FIFO		5
400#define BTRFS_FT_SOCK		6
401#define BTRFS_FT_SYMLINK	7
402#define BTRFS_FT_XATTR		8
403#define BTRFS_FT_MAX		9
404/* Directory contains encrypted data */
405#define BTRFS_FT_ENCRYPTED	0x80
406
407static inline __u8 btrfs_dir_flags_to_ftype(__u8 flags)
408{
409	return flags & ~BTRFS_FT_ENCRYPTED;
410}
411
412/*
413 * Inode flags
414 */
415#define BTRFS_INODE_NODATASUM		(1U << 0)
416#define BTRFS_INODE_NODATACOW		(1U << 1)
417#define BTRFS_INODE_READONLY		(1U << 2)
418#define BTRFS_INODE_NOCOMPRESS		(1U << 3)
419#define BTRFS_INODE_PREALLOC		(1U << 4)
420#define BTRFS_INODE_SYNC		(1U << 5)
421#define BTRFS_INODE_IMMUTABLE		(1U << 6)
422#define BTRFS_INODE_APPEND		(1U << 7)
423#define BTRFS_INODE_NODUMP		(1U << 8)
424#define BTRFS_INODE_NOATIME		(1U << 9)
425#define BTRFS_INODE_DIRSYNC		(1U << 10)
426#define BTRFS_INODE_COMPRESS		(1U << 11)
427
428#define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
429
430#define BTRFS_INODE_FLAG_MASK						\
431	(BTRFS_INODE_NODATASUM |					\
432	 BTRFS_INODE_NODATACOW |					\
433	 BTRFS_INODE_READONLY |						\
434	 BTRFS_INODE_NOCOMPRESS |					\
435	 BTRFS_INODE_PREALLOC |						\
436	 BTRFS_INODE_SYNC |						\
437	 BTRFS_INODE_IMMUTABLE |					\
438	 BTRFS_INODE_APPEND |						\
439	 BTRFS_INODE_NODUMP |						\
440	 BTRFS_INODE_NOATIME |						\
441	 BTRFS_INODE_DIRSYNC |						\
442	 BTRFS_INODE_COMPRESS |						\
443	 BTRFS_INODE_ROOT_ITEM_INIT)
444
445#define BTRFS_INODE_RO_VERITY		(1U << 0)
446
447#define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
448
449/*
450 * The key defines the order in the tree, and so it also defines (optimal)
451 * block layout.
452 *
453 * objectid corresponds to the inode number.
454 *
455 * type tells us things about the object, and is a kind of stream selector.
456 * so for a given inode, keys with type of 1 might refer to the inode data,
457 * type of 2 may point to file data in the btree and type == 3 may point to
458 * extents.
459 *
460 * offset is the starting byte offset for this key in the stream.
461 *
462 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
463 * in cpu native order.  Otherwise they are identical and their sizes
464 * should be the same (ie both packed)
465 */
466struct btrfs_disk_key {
467	__le64 objectid;
468	__u8 type;
469	__le64 offset;
470} __attribute__ ((__packed__));
471
472struct btrfs_key {
473	__u64 objectid;
474	__u8 type;
475	__u64 offset;
476} __attribute__ ((__packed__));
477
478/*
479 * Every tree block (leaf or node) starts with this header.
480 */
481struct btrfs_header {
482	/* These first four must match the super block */
483	__u8 csum[BTRFS_CSUM_SIZE];
484	/* FS specific uuid */
485	__u8 fsid[BTRFS_FSID_SIZE];
486	/* Which block this node is supposed to live in */
487	__le64 bytenr;
488	__le64 flags;
489
490	/* Allowed to be different from the super from here on down */
491	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
492	__le64 generation;
493	__le64 owner;
494	__le32 nritems;
495	__u8 level;
496} __attribute__ ((__packed__));
497
498/*
499 * This is a very generous portion of the super block, giving us room to
500 * translate 14 chunks with 3 stripes each.
501 */
502#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
503
504/*
505 * Just in case we somehow lose the roots and are not able to mount, we store
506 * an array of the roots from previous transactions in the super.
507 */
508#define BTRFS_NUM_BACKUP_ROOTS 4
509struct btrfs_root_backup {
510	__le64 tree_root;
511	__le64 tree_root_gen;
512
513	__le64 chunk_root;
514	__le64 chunk_root_gen;
515
516	__le64 extent_root;
517	__le64 extent_root_gen;
518
519	__le64 fs_root;
520	__le64 fs_root_gen;
521
522	__le64 dev_root;
523	__le64 dev_root_gen;
524
525	__le64 csum_root;
526	__le64 csum_root_gen;
527
528	__le64 total_bytes;
529	__le64 bytes_used;
530	__le64 num_devices;
531	/* future */
532	__le64 unused_64[4];
533
534	__u8 tree_root_level;
535	__u8 chunk_root_level;
536	__u8 extent_root_level;
537	__u8 fs_root_level;
538	__u8 dev_root_level;
539	__u8 csum_root_level;
540	/* future and to align */
541	__u8 unused_8[10];
542} __attribute__ ((__packed__));
543
544/*
545 * A leaf is full of items. offset and size tell us where to find the item in
546 * the leaf (relative to the start of the data area)
547 */
548struct btrfs_item {
549	struct btrfs_disk_key key;
550	__le32 offset;
551	__le32 size;
552} __attribute__ ((__packed__));
553
554/*
555 * Leaves have an item area and a data area:
556 * [item0, item1....itemN] [free space] [dataN...data1, data0]
557 *
558 * The data is separate from the items to get the keys closer together during
559 * searches.
560 */
561struct btrfs_leaf {
562	struct btrfs_header header;
563	struct btrfs_item items[];
564} __attribute__ ((__packed__));
565
566/*
567 * All non-leaf blocks are nodes, they hold only keys and pointers to other
568 * blocks.
569 */
570struct btrfs_key_ptr {
571	struct btrfs_disk_key key;
572	__le64 blockptr;
573	__le64 generation;
574} __attribute__ ((__packed__));
575
576struct btrfs_node {
577	struct btrfs_header header;
578	struct btrfs_key_ptr ptrs[];
579} __attribute__ ((__packed__));
580
581struct btrfs_dev_item {
582	/* the internal btrfs device id */
583	__le64 devid;
584
585	/* size of the device */
586	__le64 total_bytes;
587
588	/* bytes used */
589	__le64 bytes_used;
590
591	/* optimal io alignment for this device */
592	__le32 io_align;
593
594	/* optimal io width for this device */
595	__le32 io_width;
596
597	/* minimal io size for this device */
598	__le32 sector_size;
599
600	/* type and info about this device */
601	__le64 type;
602
603	/* expected generation for this device */
604	__le64 generation;
605
606	/*
607	 * starting byte of this partition on the device,
608	 * to allow for stripe alignment in the future
609	 */
610	__le64 start_offset;
611
612	/* grouping information for allocation decisions */
613	__le32 dev_group;
614
615	/* seek speed 0-100 where 100 is fastest */
616	__u8 seek_speed;
617
618	/* bandwidth 0-100 where 100 is fastest */
619	__u8 bandwidth;
620
621	/* btrfs generated uuid for this device */
622	__u8 uuid[BTRFS_UUID_SIZE];
623
624	/* uuid of FS who owns this device */
625	__u8 fsid[BTRFS_UUID_SIZE];
626} __attribute__ ((__packed__));
627
628struct btrfs_stripe {
629	__le64 devid;
630	__le64 offset;
631	__u8 dev_uuid[BTRFS_UUID_SIZE];
632} __attribute__ ((__packed__));
633
634struct btrfs_chunk {
635	/* size of this chunk in bytes */
636	__le64 length;
637
638	/* objectid of the root referencing this chunk */
639	__le64 owner;
640
641	__le64 stripe_len;
642	__le64 type;
643
644	/* optimal io alignment for this chunk */
645	__le32 io_align;
646
647	/* optimal io width for this chunk */
648	__le32 io_width;
649
650	/* minimal io size for this chunk */
651	__le32 sector_size;
652
653	/* 2^16 stripes is quite a lot, a second limit is the size of a single
654	 * item in the btree
655	 */
656	__le16 num_stripes;
657
658	/* sub stripes only matter for raid10 */
659	__le16 sub_stripes;
660	struct btrfs_stripe stripe;
661	/* additional stripes go here */
662} __attribute__ ((__packed__));
663
664/*
665 * The super block basically lists the main trees of the FS.
666 */
667struct btrfs_super_block {
668	/* The first 4 fields must match struct btrfs_header */
669	__u8 csum[BTRFS_CSUM_SIZE];
670	/* FS specific UUID, visible to user */
671	__u8 fsid[BTRFS_FSID_SIZE];
672	/* This block number */
673	__le64 bytenr;
674	__le64 flags;
675
676	/* Allowed to be different from the btrfs_header from here own down */
677	__le64 magic;
678	__le64 generation;
679	__le64 root;
680	__le64 chunk_root;
681	__le64 log_root;
682
683	/*
684	 * This member has never been utilized since the very beginning, thus
685	 * it's always 0 regardless of kernel version.  We always use
686	 * generation + 1 to read log tree root.  So here we mark it deprecated.
687	 */
688	__le64 __unused_log_root_transid;
689	__le64 total_bytes;
690	__le64 bytes_used;
691	__le64 root_dir_objectid;
692	__le64 num_devices;
693	__le32 sectorsize;
694	__le32 nodesize;
695	__le32 __unused_leafsize;
696	__le32 stripesize;
697	__le32 sys_chunk_array_size;
698	__le64 chunk_root_generation;
699	__le64 compat_flags;
700	__le64 compat_ro_flags;
701	__le64 incompat_flags;
702	__le16 csum_type;
703	__u8 root_level;
704	__u8 chunk_root_level;
705	__u8 log_root_level;
706	struct btrfs_dev_item dev_item;
707
708	char label[BTRFS_LABEL_SIZE];
709
710	__le64 cache_generation;
711	__le64 uuid_tree_generation;
712
713	/* The UUID written into btree blocks */
714	__u8 metadata_uuid[BTRFS_FSID_SIZE];
715
716	__u64 nr_global_roots;
717
718	/* Future expansion */
719	__le64 reserved[27];
720	__u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
721	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
722
723	/* Padded to 4096 bytes */
724	__u8 padding[565];
725} __attribute__ ((__packed__));
726
727#define BTRFS_FREE_SPACE_EXTENT	1
728#define BTRFS_FREE_SPACE_BITMAP	2
729
730struct btrfs_free_space_entry {
731	__le64 offset;
732	__le64 bytes;
733	__u8 type;
734} __attribute__ ((__packed__));
735
736struct btrfs_free_space_header {
737	struct btrfs_disk_key location;
738	__le64 generation;
739	__le64 num_entries;
740	__le64 num_bitmaps;
741} __attribute__ ((__packed__));
742
743struct btrfs_raid_stride {
744	/* The id of device this raid extent lives on. */
745	__le64 devid;
746	/* The physical location on disk. */
747	__le64 physical;
748} __attribute__ ((__packed__));
749
750/* The stripe_extent::encoding, 1:1 mapping of enum btrfs_raid_types. */
751#define BTRFS_STRIPE_RAID0	1
752#define BTRFS_STRIPE_RAID1	2
753#define BTRFS_STRIPE_DUP	3
754#define BTRFS_STRIPE_RAID10	4
755#define BTRFS_STRIPE_RAID5	5
756#define BTRFS_STRIPE_RAID6	6
757#define BTRFS_STRIPE_RAID1C3	7
758#define BTRFS_STRIPE_RAID1C4	8
759
760struct btrfs_stripe_extent {
761	__u8 encoding;
762	__u8 reserved[7];
763	/* An array of raid strides this stripe is composed of. */
764	struct btrfs_raid_stride strides[];
765} __attribute__ ((__packed__));
766
767#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
768#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
769
770/* Super block flags */
771/* Errors detected */
772#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
773
774#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
775#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
776#define BTRFS_SUPER_FLAG_METADUMP_V2	(1ULL << 34)
777#define BTRFS_SUPER_FLAG_CHANGING_FSID	(1ULL << 35)
778#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
779
780
781/*
782 * items in the extent btree are used to record the objectid of the
783 * owner of the block and the number of references
784 */
785
786struct btrfs_extent_item {
787	__le64 refs;
788	__le64 generation;
789	__le64 flags;
790} __attribute__ ((__packed__));
791
792struct btrfs_extent_item_v0 {
793	__le32 refs;
794} __attribute__ ((__packed__));
795
796
797#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
798#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
799
800/* following flags only apply to tree blocks */
801
802/* use full backrefs for extent pointers in the block */
803#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
804
805#define BTRFS_BACKREF_REV_MAX		256
806#define BTRFS_BACKREF_REV_SHIFT		56
807#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
808					 BTRFS_BACKREF_REV_SHIFT)
809
810#define BTRFS_OLD_BACKREF_REV		0
811#define BTRFS_MIXED_BACKREF_REV		1
812
813/*
814 * this flag is only used internally by scrub and may be changed at any time
815 * it is only declared here to avoid collisions
816 */
817#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
818
819struct btrfs_tree_block_info {
820	struct btrfs_disk_key key;
821	__u8 level;
822} __attribute__ ((__packed__));
823
824struct btrfs_extent_data_ref {
825	__le64 root;
826	__le64 objectid;
827	__le64 offset;
828	__le32 count;
829} __attribute__ ((__packed__));
830
831struct btrfs_shared_data_ref {
832	__le32 count;
833} __attribute__ ((__packed__));
834
835struct btrfs_extent_owner_ref {
836	__le64 root_id;
837} __attribute__ ((__packed__));
838
839struct btrfs_extent_inline_ref {
840	__u8 type;
841	__le64 offset;
842} __attribute__ ((__packed__));
843
844/* dev extents record free space on individual devices.  The owner
845 * field points back to the chunk allocation mapping tree that allocated
846 * the extent.  The chunk tree uuid field is a way to double check the owner
847 */
848struct btrfs_dev_extent {
849	__le64 chunk_tree;
850	__le64 chunk_objectid;
851	__le64 chunk_offset;
852	__le64 length;
853	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
854} __attribute__ ((__packed__));
855
856struct btrfs_inode_ref {
857	__le64 index;
858	__le16 name_len;
859	/* name goes here */
860} __attribute__ ((__packed__));
861
862struct btrfs_inode_extref {
863	__le64 parent_objectid;
864	__le64 index;
865	__le16 name_len;
866	__u8   name[];
867	/* name goes here */
868} __attribute__ ((__packed__));
869
870struct btrfs_timespec {
871	__le64 sec;
872	__le32 nsec;
873} __attribute__ ((__packed__));
874
875struct btrfs_inode_item {
876	/* nfs style generation number */
877	__le64 generation;
878	/* transid that last touched this inode */
879	__le64 transid;
880	__le64 size;
881	__le64 nbytes;
882	__le64 block_group;
883	__le32 nlink;
884	__le32 uid;
885	__le32 gid;
886	__le32 mode;
887	__le64 rdev;
888	__le64 flags;
889
890	/* modification sequence number for NFS */
891	__le64 sequence;
892
893	/*
894	 * a little future expansion, for more than this we can
895	 * just grow the inode item and version it
896	 */
897	__le64 reserved[4];
898	struct btrfs_timespec atime;
899	struct btrfs_timespec ctime;
900	struct btrfs_timespec mtime;
901	struct btrfs_timespec otime;
902} __attribute__ ((__packed__));
903
904struct btrfs_dir_log_item {
905	__le64 end;
906} __attribute__ ((__packed__));
907
908struct btrfs_dir_item {
909	struct btrfs_disk_key location;
910	__le64 transid;
911	__le16 data_len;
912	__le16 name_len;
913	__u8 type;
914} __attribute__ ((__packed__));
915
916#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
917
918/*
919 * Internal in-memory flag that a subvolume has been marked for deletion but
920 * still visible as a directory
921 */
922#define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
923
924struct btrfs_root_item {
925	struct btrfs_inode_item inode;
926	__le64 generation;
927	__le64 root_dirid;
928	__le64 bytenr;
929	__le64 byte_limit;
930	__le64 bytes_used;
931	__le64 last_snapshot;
932	__le64 flags;
933	__le32 refs;
934	struct btrfs_disk_key drop_progress;
935	__u8 drop_level;
936	__u8 level;
937
938	/*
939	 * The following fields appear after subvol_uuids+subvol_times
940	 * were introduced.
941	 */
942
943	/*
944	 * This generation number is used to test if the new fields are valid
945	 * and up to date while reading the root item. Every time the root item
946	 * is written out, the "generation" field is copied into this field. If
947	 * anyone ever mounted the fs with an older kernel, we will have
948	 * mismatching generation values here and thus must invalidate the
949	 * new fields. See btrfs_update_root and btrfs_find_last_root for
950	 * details.
951	 * the offset of generation_v2 is also used as the start for the memset
952	 * when invalidating the fields.
953	 */
954	__le64 generation_v2;
955	__u8 uuid[BTRFS_UUID_SIZE];
956	__u8 parent_uuid[BTRFS_UUID_SIZE];
957	__u8 received_uuid[BTRFS_UUID_SIZE];
958	__le64 ctransid; /* updated when an inode changes */
959	__le64 otransid; /* trans when created */
960	__le64 stransid; /* trans when sent. non-zero for received subvol */
961	__le64 rtransid; /* trans when received. non-zero for received subvol */
962	struct btrfs_timespec ctime;
963	struct btrfs_timespec otime;
964	struct btrfs_timespec stime;
965	struct btrfs_timespec rtime;
966	__le64 reserved[8]; /* for future */
967} __attribute__ ((__packed__));
968
969/*
970 * Btrfs root item used to be smaller than current size.  The old format ends
971 * at where member generation_v2 is.
972 */
973static inline __u32 btrfs_legacy_root_item_size(void)
974{
975	return offsetof(struct btrfs_root_item, generation_v2);
976}
977
978/*
979 * this is used for both forward and backward root refs
980 */
981struct btrfs_root_ref {
982	__le64 dirid;
983	__le64 sequence;
984	__le16 name_len;
985} __attribute__ ((__packed__));
986
987struct btrfs_disk_balance_args {
988	/*
989	 * profiles to operate on, single is denoted by
990	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
991	 */
992	__le64 profiles;
993
994	/*
995	 * usage filter
996	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
997	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
998	 */
999	union {
1000		__le64 usage;
1001		struct {
1002			__le32 usage_min;
1003			__le32 usage_max;
1004		};
1005	};
1006
1007	/* devid filter */
1008	__le64 devid;
1009
1010	/* devid subset filter [pstart..pend) */
1011	__le64 pstart;
1012	__le64 pend;
1013
1014	/* btrfs virtual address space subset filter [vstart..vend) */
1015	__le64 vstart;
1016	__le64 vend;
1017
1018	/*
1019	 * profile to convert to, single is denoted by
1020	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
1021	 */
1022	__le64 target;
1023
1024	/* BTRFS_BALANCE_ARGS_* */
1025	__le64 flags;
1026
1027	/*
1028	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
1029	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
1030	 * and maximum
1031	 */
1032	union {
1033		__le64 limit;
1034		struct {
1035			__le32 limit_min;
1036			__le32 limit_max;
1037		};
1038	};
1039
1040	/*
1041	 * Process chunks that cross stripes_min..stripes_max devices,
1042	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
1043	 */
1044	__le32 stripes_min;
1045	__le32 stripes_max;
1046
1047	__le64 unused[6];
1048} __attribute__ ((__packed__));
1049
1050/*
1051 * store balance parameters to disk so that balance can be properly
1052 * resumed after crash or unmount
1053 */
1054struct btrfs_balance_item {
1055	/* BTRFS_BALANCE_* */
1056	__le64 flags;
1057
1058	struct btrfs_disk_balance_args data;
1059	struct btrfs_disk_balance_args meta;
1060	struct btrfs_disk_balance_args sys;
1061
1062	__le64 unused[4];
1063} __attribute__ ((__packed__));
1064
1065enum {
1066	BTRFS_FILE_EXTENT_INLINE   = 0,
1067	BTRFS_FILE_EXTENT_REG      = 1,
1068	BTRFS_FILE_EXTENT_PREALLOC = 2,
1069	BTRFS_NR_FILE_EXTENT_TYPES = 3,
1070};
1071
1072struct btrfs_file_extent_item {
1073	/*
1074	 * transaction id that created this extent
1075	 */
1076	__le64 generation;
1077	/*
1078	 * max number of bytes to hold this extent in ram
1079	 * when we split a compressed extent we can't know how big
1080	 * each of the resulting pieces will be.  So, this is
1081	 * an upper limit on the size of the extent in ram instead of
1082	 * an exact limit.
1083	 */
1084	__le64 ram_bytes;
1085
1086	/*
1087	 * 32 bits for the various ways we might encode the data,
1088	 * including compression and encryption.  If any of these
1089	 * are set to something a given disk format doesn't understand
1090	 * it is treated like an incompat flag for reading and writing,
1091	 * but not for stat.
1092	 */
1093	__u8 compression;
1094	__u8 encryption;
1095	__le16 other_encoding; /* spare for later use */
1096
1097	/* are we inline data or a real extent? */
1098	__u8 type;
1099
1100	/*
1101	 * disk space consumed by the extent, checksum blocks are included
1102	 * in these numbers
1103	 *
1104	 * At this offset in the structure, the inline extent data start.
1105	 */
1106	__le64 disk_bytenr;
1107	__le64 disk_num_bytes;
1108	/*
1109	 * the logical offset in file blocks (no csums)
1110	 * this extent record is for.  This allows a file extent to point
1111	 * into the middle of an existing extent on disk, sharing it
1112	 * between two snapshots (useful if some bytes in the middle of the
1113	 * extent have changed
1114	 */
1115	__le64 offset;
1116	/*
1117	 * the logical number of file blocks (no csums included).  This
1118	 * always reflects the size uncompressed and without encoding.
1119	 */
1120	__le64 num_bytes;
1121
1122} __attribute__ ((__packed__));
1123
1124struct btrfs_csum_item {
1125	__u8 csum;
1126} __attribute__ ((__packed__));
1127
1128struct btrfs_dev_stats_item {
1129	/*
1130	 * grow this item struct at the end for future enhancements and keep
1131	 * the existing values unchanged
1132	 */
1133	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
1134} __attribute__ ((__packed__));
1135
1136#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
1137#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
1138
1139struct btrfs_dev_replace_item {
1140	/*
1141	 * grow this item struct at the end for future enhancements and keep
1142	 * the existing values unchanged
1143	 */
1144	__le64 src_devid;
1145	__le64 cursor_left;
1146	__le64 cursor_right;
1147	__le64 cont_reading_from_srcdev_mode;
1148
1149	__le64 replace_state;
1150	__le64 time_started;
1151	__le64 time_stopped;
1152	__le64 num_write_errors;
1153	__le64 num_uncorrectable_read_errors;
1154} __attribute__ ((__packed__));
1155
1156/* different types of block groups (and chunks) */
1157#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
1158#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
1159#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
1160#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
1161#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
1162#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
1163#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
1164#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
1165#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
1166#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
1167#define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
1168#define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
1169					 BTRFS_SPACE_INFO_GLOBAL_RSV)
1170
1171#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
1172					 BTRFS_BLOCK_GROUP_SYSTEM |  \
1173					 BTRFS_BLOCK_GROUP_METADATA)
1174
1175#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
1176					 BTRFS_BLOCK_GROUP_RAID1 |   \
1177					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1178					 BTRFS_BLOCK_GROUP_RAID1C4 | \
1179					 BTRFS_BLOCK_GROUP_RAID5 |   \
1180					 BTRFS_BLOCK_GROUP_RAID6 |   \
1181					 BTRFS_BLOCK_GROUP_DUP |     \
1182					 BTRFS_BLOCK_GROUP_RAID10)
1183#define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
1184					 BTRFS_BLOCK_GROUP_RAID6)
1185
1186#define BTRFS_BLOCK_GROUP_RAID1_MASK	(BTRFS_BLOCK_GROUP_RAID1 |   \
1187					 BTRFS_BLOCK_GROUP_RAID1C3 | \
1188					 BTRFS_BLOCK_GROUP_RAID1C4)
1189
1190/*
1191 * We need a bit for restriper to be able to tell when chunks of type
1192 * SINGLE are available.  This "extended" profile format is used in
1193 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
1194 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
1195 * to avoid remappings between two formats in future.
1196 */
1197#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
1198
1199/*
1200 * A fake block group type that is used to communicate global block reserve
1201 * size to userspace via the SPACE_INFO ioctl.
1202 */
1203#define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
1204
1205#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
1206					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
1207
1208static inline __u64 chunk_to_extended(__u64 flags)
1209{
1210	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
1211		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1212
1213	return flags;
1214}
1215static inline __u64 extended_to_chunk(__u64 flags)
1216{
1217	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
1218}
1219
1220struct btrfs_block_group_item {
1221	__le64 used;
1222	__le64 chunk_objectid;
1223	__le64 flags;
1224} __attribute__ ((__packed__));
1225
1226struct btrfs_free_space_info {
1227	__le32 extent_count;
1228	__le32 flags;
1229} __attribute__ ((__packed__));
1230
1231#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
1232
1233#define BTRFS_QGROUP_LEVEL_SHIFT		48
1234static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
1235{
1236	return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
1237}
1238
1239/*
1240 * is subvolume quota turned on?
1241 */
1242#define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
1243/*
1244 * RESCAN is set during the initialization phase
1245 */
1246#define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
1247/*
1248 * Some qgroup entries are known to be out of date,
1249 * either because the configuration has changed in a way that
1250 * makes a rescan necessary, or because the fs has been mounted
1251 * with a non-qgroup-aware version.
1252 * Turning qouta off and on again makes it inconsistent, too.
1253 */
1254#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
1255
1256/*
1257 * Whether or not this filesystem is using simple quotas.  Not exactly the
1258 * incompat bit, because we support using simple quotas, disabling it, then
1259 * going back to full qgroup quotas.
1260 */
1261#define BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE	(1ULL << 3)
1262
1263#define BTRFS_QGROUP_STATUS_FLAGS_MASK	(BTRFS_QGROUP_STATUS_FLAG_ON |		\
1264					 BTRFS_QGROUP_STATUS_FLAG_RESCAN |	\
1265					 BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT | \
1266					 BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE)
1267
1268#define BTRFS_QGROUP_STATUS_VERSION        1
1269
1270struct btrfs_qgroup_status_item {
1271	__le64 version;
1272	/*
1273	 * the generation is updated during every commit. As older
1274	 * versions of btrfs are not aware of qgroups, it will be
1275	 * possible to detect inconsistencies by checking the
1276	 * generation on mount time
1277	 */
1278	__le64 generation;
1279
1280	/* flag definitions see above */
1281	__le64 flags;
1282
1283	/*
1284	 * only used during scanning to record the progress
1285	 * of the scan. It contains a logical address
1286	 */
1287	__le64 rescan;
1288
1289	/*
1290	 * The generation when quotas were last enabled. Used by simple quotas to
1291	 * avoid decrementing when freeing an extent that was written before
1292	 * enable.
1293	 *
1294	 * Set only if flags contain BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE.
1295	 */
1296	__le64 enable_gen;
1297} __attribute__ ((__packed__));
1298
1299struct btrfs_qgroup_info_item {
1300	__le64 generation;
1301	__le64 rfer;
1302	__le64 rfer_cmpr;
1303	__le64 excl;
1304	__le64 excl_cmpr;
1305} __attribute__ ((__packed__));
1306
1307struct btrfs_qgroup_limit_item {
1308	/*
1309	 * only updated when any of the other values change
1310	 */
1311	__le64 flags;
1312	__le64 max_rfer;
1313	__le64 max_excl;
1314	__le64 rsv_rfer;
1315	__le64 rsv_excl;
1316} __attribute__ ((__packed__));
1317
1318struct btrfs_verity_descriptor_item {
1319	/* Size of the verity descriptor in bytes */
1320	__le64 size;
1321	/*
1322	 * When we implement support for fscrypt, we will need to encrypt the
1323	 * Merkle tree for encrypted verity files. These 128 bits are for the
1324	 * eventual storage of an fscrypt initialization vector.
1325	 */
1326	__le64 reserved[2];
1327	__u8 encryption;
1328} __attribute__ ((__packed__));
1329
1330#endif /* _BTRFS_CTREE_H_ */
1331