1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10 */
11
12#ifndef IB_VERBS_H
13#define IB_VERBS_H
14
15#include <linux/ethtool.h>
16#include <linux/types.h>
17#include <linux/device.h>
18#include <linux/dma-mapping.h>
19#include <linux/kref.h>
20#include <linux/list.h>
21#include <linux/rwsem.h>
22#include <linux/workqueue.h>
23#include <linux/irq_poll.h>
24#include <uapi/linux/if_ether.h>
25#include <net/ipv6.h>
26#include <net/ip.h>
27#include <linux/string.h>
28#include <linux/slab.h>
29#include <linux/netdevice.h>
30#include <linux/refcount.h>
31#include <linux/if_link.h>
32#include <linux/atomic.h>
33#include <linux/mmu_notifier.h>
34#include <linux/uaccess.h>
35#include <linux/cgroup_rdma.h>
36#include <linux/irqflags.h>
37#include <linux/preempt.h>
38#include <linux/dim.h>
39#include <uapi/rdma/ib_user_verbs.h>
40#include <rdma/rdma_counter.h>
41#include <rdma/restrack.h>
42#include <rdma/signature.h>
43#include <uapi/rdma/rdma_user_ioctl.h>
44#include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46#define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47
48struct ib_umem_odp;
49struct ib_uqp_object;
50struct ib_usrq_object;
51struct ib_uwq_object;
52struct rdma_cm_id;
53struct ib_port;
54struct hw_stats_device_data;
55
56extern struct workqueue_struct *ib_wq;
57extern struct workqueue_struct *ib_comp_wq;
58extern struct workqueue_struct *ib_comp_unbound_wq;
59
60struct ib_ucq_object;
61
62__printf(3, 4) __cold
63void ibdev_printk(const char *level, const struct ib_device *ibdev,
64		  const char *format, ...);
65__printf(2, 3) __cold
66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67__printf(2, 3) __cold
68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69__printf(2, 3) __cold
70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71__printf(2, 3) __cold
72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73__printf(2, 3) __cold
74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75__printf(2, 3) __cold
76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77__printf(2, 3) __cold
78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80#if defined(CONFIG_DYNAMIC_DEBUG) || \
81	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82#define ibdev_dbg(__dev, format, args...)                       \
83	dynamic_ibdev_dbg(__dev, format, ##args)
84#else
85__printf(2, 3) __cold
86static inline
87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88#endif
89
90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
91do {                                                                    \
92	static DEFINE_RATELIMIT_STATE(_rs,                              \
93				      DEFAULT_RATELIMIT_INTERVAL,       \
94				      DEFAULT_RATELIMIT_BURST);         \
95	if (__ratelimit(&_rs))                                          \
96		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
97} while (0)
98
99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
106	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
112	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114#if defined(CONFIG_DYNAMIC_DEBUG) || \
115	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
117#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118do {                                                                    \
119	static DEFINE_RATELIMIT_STATE(_rs,                              \
120				      DEFAULT_RATELIMIT_INTERVAL,       \
121				      DEFAULT_RATELIMIT_BURST);         \
122	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125				    ##__VA_ARGS__);                     \
126} while (0)
127#else
128__printf(2, 3) __cold
129static inline
130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131#endif
132
133union ib_gid {
134	u8	raw[16];
135	struct {
136		__be64	subnet_prefix;
137		__be64	interface_id;
138	} global;
139};
140
141extern union ib_gid zgid;
142
143enum ib_gid_type {
144	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147	IB_GID_TYPE_SIZE
148};
149
150#define ROCE_V2_UDP_DPORT      4791
151struct ib_gid_attr {
152	struct net_device __rcu	*ndev;
153	struct ib_device	*device;
154	union ib_gid		gid;
155	enum ib_gid_type	gid_type;
156	u16			index;
157	u32			port_num;
158};
159
160enum {
161	/* set the local administered indication */
162	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
163};
164
165enum rdma_transport_type {
166	RDMA_TRANSPORT_IB,
167	RDMA_TRANSPORT_IWARP,
168	RDMA_TRANSPORT_USNIC,
169	RDMA_TRANSPORT_USNIC_UDP,
170	RDMA_TRANSPORT_UNSPECIFIED,
171};
172
173enum rdma_protocol_type {
174	RDMA_PROTOCOL_IB,
175	RDMA_PROTOCOL_IBOE,
176	RDMA_PROTOCOL_IWARP,
177	RDMA_PROTOCOL_USNIC_UDP
178};
179
180__attribute_const__ enum rdma_transport_type
181rdma_node_get_transport(unsigned int node_type);
182
183enum rdma_network_type {
184	RDMA_NETWORK_IB,
185	RDMA_NETWORK_ROCE_V1,
186	RDMA_NETWORK_IPV4,
187	RDMA_NETWORK_IPV6
188};
189
190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191{
192	if (network_type == RDMA_NETWORK_IPV4 ||
193	    network_type == RDMA_NETWORK_IPV6)
194		return IB_GID_TYPE_ROCE_UDP_ENCAP;
195	else if (network_type == RDMA_NETWORK_ROCE_V1)
196		return IB_GID_TYPE_ROCE;
197	else
198		return IB_GID_TYPE_IB;
199}
200
201static inline enum rdma_network_type
202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203{
204	if (attr->gid_type == IB_GID_TYPE_IB)
205		return RDMA_NETWORK_IB;
206
207	if (attr->gid_type == IB_GID_TYPE_ROCE)
208		return RDMA_NETWORK_ROCE_V1;
209
210	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211		return RDMA_NETWORK_IPV4;
212	else
213		return RDMA_NETWORK_IPV6;
214}
215
216enum rdma_link_layer {
217	IB_LINK_LAYER_UNSPECIFIED,
218	IB_LINK_LAYER_INFINIBAND,
219	IB_LINK_LAYER_ETHERNET,
220};
221
222enum ib_device_cap_flags {
223	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239	/* Reserved, old SEND_W_INV = 1 << 16,*/
240	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241	/*
242	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244	 * messages and can verify the validity of checksum for
245	 * incoming messages.  Setting this flag implies that the
246	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247	 */
248	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251	/*
252	 * This device supports the IB "base memory management extension",
253	 * which includes support for fast registrations (IB_WR_REG_MR,
254	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
255	 * also be set by any iWarp device which must support FRs to comply
256	 * to the iWarp verbs spec.  iWarp devices also support the
257	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258	 * stag.
259	 */
260	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266	IB_DEVICE_MANAGED_FLOW_STEERING =
267		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270	/* The device supports padding incoming writes to cacheline. */
271	IB_DEVICE_PCI_WRITE_END_PADDING =
272		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273	/* Placement type attributes */
274	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277};
278
279enum ib_kernel_cap_flags {
280	/*
281	 * This device supports a per-device lkey or stag that can be
282	 * used without performing a memory registration for the local
283	 * memory.  Note that ULPs should never check this flag, but
284	 * instead of use the local_dma_lkey flag in the ib_pd structure,
285	 * which will always contain a usable lkey.
286	 */
287	IBK_LOCAL_DMA_LKEY = 1 << 0,
288	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289	IBK_INTEGRITY_HANDOVER = 1 << 1,
290	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291	IBK_ON_DEMAND_PAGING = 1 << 2,
292	/* IB_MR_TYPE_SG_GAPS is supported */
293	IBK_SG_GAPS_REG = 1 << 3,
294	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
295	IBK_ALLOW_USER_UNREG = 1 << 4,
296
297	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300	IBK_UD_TSO = 1 << 6,
301	/* iopib will use the device ops:
302	 *   get_vf_config
303	 *   get_vf_guid
304	 *   get_vf_stats
305	 *   set_vf_guid
306	 *   set_vf_link_state
307	 */
308	IBK_VIRTUAL_FUNCTION = 1 << 7,
309	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310	IBK_RDMA_NETDEV_OPA = 1 << 8,
311};
312
313enum ib_atomic_cap {
314	IB_ATOMIC_NONE,
315	IB_ATOMIC_HCA,
316	IB_ATOMIC_GLOB
317};
318
319enum ib_odp_general_cap_bits {
320	IB_ODP_SUPPORT		= 1 << 0,
321	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322};
323
324enum ib_odp_transport_cap_bits {
325	IB_ODP_SUPPORT_SEND	= 1 << 0,
326	IB_ODP_SUPPORT_RECV	= 1 << 1,
327	IB_ODP_SUPPORT_WRITE	= 1 << 2,
328	IB_ODP_SUPPORT_READ	= 1 << 3,
329	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
330	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
331};
332
333struct ib_odp_caps {
334	uint64_t general_caps;
335	struct {
336		uint32_t  rc_odp_caps;
337		uint32_t  uc_odp_caps;
338		uint32_t  ud_odp_caps;
339		uint32_t  xrc_odp_caps;
340	} per_transport_caps;
341};
342
343struct ib_rss_caps {
344	/* Corresponding bit will be set if qp type from
345	 * 'enum ib_qp_type' is supported, e.g.
346	 * supported_qpts |= 1 << IB_QPT_UD
347	 */
348	u32 supported_qpts;
349	u32 max_rwq_indirection_tables;
350	u32 max_rwq_indirection_table_size;
351};
352
353enum ib_tm_cap_flags {
354	/*  Support tag matching with rendezvous offload for RC transport */
355	IB_TM_CAP_RNDV_RC = 1 << 0,
356};
357
358struct ib_tm_caps {
359	/* Max size of RNDV header */
360	u32 max_rndv_hdr_size;
361	/* Max number of entries in tag matching list */
362	u32 max_num_tags;
363	/* From enum ib_tm_cap_flags */
364	u32 flags;
365	/* Max number of outstanding list operations */
366	u32 max_ops;
367	/* Max number of SGE in tag matching entry */
368	u32 max_sge;
369};
370
371struct ib_cq_init_attr {
372	unsigned int	cqe;
373	u32		comp_vector;
374	u32		flags;
375};
376
377enum ib_cq_attr_mask {
378	IB_CQ_MODERATE = 1 << 0,
379};
380
381struct ib_cq_caps {
382	u16     max_cq_moderation_count;
383	u16     max_cq_moderation_period;
384};
385
386struct ib_dm_mr_attr {
387	u64		length;
388	u64		offset;
389	u32		access_flags;
390};
391
392struct ib_dm_alloc_attr {
393	u64	length;
394	u32	alignment;
395	u32	flags;
396};
397
398struct ib_device_attr {
399	u64			fw_ver;
400	__be64			sys_image_guid;
401	u64			max_mr_size;
402	u64			page_size_cap;
403	u32			vendor_id;
404	u32			vendor_part_id;
405	u32			hw_ver;
406	int			max_qp;
407	int			max_qp_wr;
408	u64			device_cap_flags;
409	u64			kernel_cap_flags;
410	int			max_send_sge;
411	int			max_recv_sge;
412	int			max_sge_rd;
413	int			max_cq;
414	int			max_cqe;
415	int			max_mr;
416	int			max_pd;
417	int			max_qp_rd_atom;
418	int			max_ee_rd_atom;
419	int			max_res_rd_atom;
420	int			max_qp_init_rd_atom;
421	int			max_ee_init_rd_atom;
422	enum ib_atomic_cap	atomic_cap;
423	enum ib_atomic_cap	masked_atomic_cap;
424	int			max_ee;
425	int			max_rdd;
426	int			max_mw;
427	int			max_raw_ipv6_qp;
428	int			max_raw_ethy_qp;
429	int			max_mcast_grp;
430	int			max_mcast_qp_attach;
431	int			max_total_mcast_qp_attach;
432	int			max_ah;
433	int			max_srq;
434	int			max_srq_wr;
435	int			max_srq_sge;
436	unsigned int		max_fast_reg_page_list_len;
437	unsigned int		max_pi_fast_reg_page_list_len;
438	u16			max_pkeys;
439	u8			local_ca_ack_delay;
440	int			sig_prot_cap;
441	int			sig_guard_cap;
442	struct ib_odp_caps	odp_caps;
443	uint64_t		timestamp_mask;
444	uint64_t		hca_core_clock; /* in KHZ */
445	struct ib_rss_caps	rss_caps;
446	u32			max_wq_type_rq;
447	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
448	struct ib_tm_caps	tm_caps;
449	struct ib_cq_caps       cq_caps;
450	u64			max_dm_size;
451	/* Max entries for sgl for optimized performance per READ */
452	u32			max_sgl_rd;
453};
454
455enum ib_mtu {
456	IB_MTU_256  = 1,
457	IB_MTU_512  = 2,
458	IB_MTU_1024 = 3,
459	IB_MTU_2048 = 4,
460	IB_MTU_4096 = 5
461};
462
463enum opa_mtu {
464	OPA_MTU_8192 = 6,
465	OPA_MTU_10240 = 7
466};
467
468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469{
470	switch (mtu) {
471	case IB_MTU_256:  return  256;
472	case IB_MTU_512:  return  512;
473	case IB_MTU_1024: return 1024;
474	case IB_MTU_2048: return 2048;
475	case IB_MTU_4096: return 4096;
476	default: 	  return -1;
477	}
478}
479
480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481{
482	if (mtu >= 4096)
483		return IB_MTU_4096;
484	else if (mtu >= 2048)
485		return IB_MTU_2048;
486	else if (mtu >= 1024)
487		return IB_MTU_1024;
488	else if (mtu >= 512)
489		return IB_MTU_512;
490	else
491		return IB_MTU_256;
492}
493
494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495{
496	switch (mtu) {
497	case OPA_MTU_8192:
498		return 8192;
499	case OPA_MTU_10240:
500		return 10240;
501	default:
502		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503	}
504}
505
506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507{
508	if (mtu >= 10240)
509		return OPA_MTU_10240;
510	else if (mtu >= 8192)
511		return OPA_MTU_8192;
512	else
513		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514}
515
516enum ib_port_state {
517	IB_PORT_NOP		= 0,
518	IB_PORT_DOWN		= 1,
519	IB_PORT_INIT		= 2,
520	IB_PORT_ARMED		= 3,
521	IB_PORT_ACTIVE		= 4,
522	IB_PORT_ACTIVE_DEFER	= 5
523};
524
525enum ib_port_phys_state {
526	IB_PORT_PHYS_STATE_SLEEP = 1,
527	IB_PORT_PHYS_STATE_POLLING = 2,
528	IB_PORT_PHYS_STATE_DISABLED = 3,
529	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530	IB_PORT_PHYS_STATE_LINK_UP = 5,
531	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532	IB_PORT_PHYS_STATE_PHY_TEST = 7,
533};
534
535enum ib_port_width {
536	IB_WIDTH_1X	= 1,
537	IB_WIDTH_2X	= 16,
538	IB_WIDTH_4X	= 2,
539	IB_WIDTH_8X	= 4,
540	IB_WIDTH_12X	= 8
541};
542
543static inline int ib_width_enum_to_int(enum ib_port_width width)
544{
545	switch (width) {
546	case IB_WIDTH_1X:  return  1;
547	case IB_WIDTH_2X:  return  2;
548	case IB_WIDTH_4X:  return  4;
549	case IB_WIDTH_8X:  return  8;
550	case IB_WIDTH_12X: return 12;
551	default: 	  return -1;
552	}
553}
554
555enum ib_port_speed {
556	IB_SPEED_SDR	= 1,
557	IB_SPEED_DDR	= 2,
558	IB_SPEED_QDR	= 4,
559	IB_SPEED_FDR10	= 8,
560	IB_SPEED_FDR	= 16,
561	IB_SPEED_EDR	= 32,
562	IB_SPEED_HDR	= 64,
563	IB_SPEED_NDR	= 128,
564	IB_SPEED_XDR	= 256,
565};
566
567enum ib_stat_flag {
568	IB_STAT_FLAG_OPTIONAL = 1 << 0,
569};
570
571/**
572 * struct rdma_stat_desc
573 * @name - The name of the counter
574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575 * @priv - Driver private information; Core code should not use
576 */
577struct rdma_stat_desc {
578	const char *name;
579	unsigned int flags;
580	const void *priv;
581};
582
583/**
584 * struct rdma_hw_stats
585 * @lock - Mutex to protect parallel write access to lifespan and values
586 *    of counters, which are 64bits and not guaranteed to be written
587 *    atomicaly on 32bits systems.
588 * @timestamp - Used by the core code to track when the last update was
589 * @lifespan - Used by the core code to determine how old the counters
590 *   should be before being updated again.  Stored in jiffies, defaults
591 *   to 10 milliseconds, drivers can override the default be specifying
592 *   their own value during their allocation routine.
593 * @descs - Array of pointers to static descriptors used for the counters
594 *   in directory.
595 * @is_disabled - A bitmap to indicate each counter is currently disabled
596 *   or not.
597 * @num_counters - How many hardware counters there are.  If name is
598 *   shorter than this number, a kernel oops will result.  Driver authors
599 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600 *   in their code to prevent this.
601 * @value - Array of u64 counters that are accessed by the sysfs code and
602 *   filled in by the drivers get_stats routine
603 */
604struct rdma_hw_stats {
605	struct mutex	lock; /* Protect lifespan and values[] */
606	unsigned long	timestamp;
607	unsigned long	lifespan;
608	const struct rdma_stat_desc *descs;
609	unsigned long	*is_disabled;
610	int		num_counters;
611	u64		value[] __counted_by(num_counters);
612};
613
614#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615
616struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617	const struct rdma_stat_desc *descs, int num_counters,
618	unsigned long lifespan);
619
620void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621
622/* Define bits for the various functionality this port needs to be supported by
623 * the core.
624 */
625/* Management                           0x00000FFF */
626#define RDMA_CORE_CAP_IB_MAD            0x00000001
627#define RDMA_CORE_CAP_IB_SMI            0x00000002
628#define RDMA_CORE_CAP_IB_CM             0x00000004
629#define RDMA_CORE_CAP_IW_CM             0x00000008
630#define RDMA_CORE_CAP_IB_SA             0x00000010
631#define RDMA_CORE_CAP_OPA_MAD           0x00000020
632
633/* Address format                       0x000FF000 */
634#define RDMA_CORE_CAP_AF_IB             0x00001000
635#define RDMA_CORE_CAP_ETH_AH            0x00002000
636#define RDMA_CORE_CAP_OPA_AH            0x00004000
637#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
638
639/* Protocol                             0xFFF00000 */
640#define RDMA_CORE_CAP_PROT_IB           0x00100000
641#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
642#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
643#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
645#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
646
647#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648					| RDMA_CORE_CAP_PROT_ROCE     \
649					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650
651#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
652					| RDMA_CORE_CAP_IB_MAD \
653					| RDMA_CORE_CAP_IB_SMI \
654					| RDMA_CORE_CAP_IB_CM  \
655					| RDMA_CORE_CAP_IB_SA  \
656					| RDMA_CORE_CAP_AF_IB)
657#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
658					| RDMA_CORE_CAP_IB_MAD  \
659					| RDMA_CORE_CAP_IB_CM   \
660					| RDMA_CORE_CAP_AF_IB   \
661					| RDMA_CORE_CAP_ETH_AH)
662#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
663					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664					| RDMA_CORE_CAP_IB_MAD  \
665					| RDMA_CORE_CAP_IB_CM   \
666					| RDMA_CORE_CAP_AF_IB   \
667					| RDMA_CORE_CAP_ETH_AH)
668#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
669					| RDMA_CORE_CAP_IW_CM)
670#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
671					| RDMA_CORE_CAP_OPA_MAD)
672
673#define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
674
675#define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
676
677struct ib_port_attr {
678	u64			subnet_prefix;
679	enum ib_port_state	state;
680	enum ib_mtu		max_mtu;
681	enum ib_mtu		active_mtu;
682	u32                     phys_mtu;
683	int			gid_tbl_len;
684	unsigned int		ip_gids:1;
685	/* This is the value from PortInfo CapabilityMask, defined by IBA */
686	u32			port_cap_flags;
687	u32			max_msg_sz;
688	u32			bad_pkey_cntr;
689	u32			qkey_viol_cntr;
690	u16			pkey_tbl_len;
691	u32			sm_lid;
692	u32			lid;
693	u8			lmc;
694	u8			max_vl_num;
695	u8			sm_sl;
696	u8			subnet_timeout;
697	u8			init_type_reply;
698	u8			active_width;
699	u16			active_speed;
700	u8                      phys_state;
701	u16			port_cap_flags2;
702};
703
704enum ib_device_modify_flags {
705	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
706	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
707};
708
709#define IB_DEVICE_NODE_DESC_MAX 64
710
711struct ib_device_modify {
712	u64	sys_image_guid;
713	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
714};
715
716enum ib_port_modify_flags {
717	IB_PORT_SHUTDOWN		= 1,
718	IB_PORT_INIT_TYPE		= (1<<2),
719	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
720	IB_PORT_OPA_MASK_CHG		= (1<<4)
721};
722
723struct ib_port_modify {
724	u32	set_port_cap_mask;
725	u32	clr_port_cap_mask;
726	u8	init_type;
727};
728
729enum ib_event_type {
730	IB_EVENT_CQ_ERR,
731	IB_EVENT_QP_FATAL,
732	IB_EVENT_QP_REQ_ERR,
733	IB_EVENT_QP_ACCESS_ERR,
734	IB_EVENT_COMM_EST,
735	IB_EVENT_SQ_DRAINED,
736	IB_EVENT_PATH_MIG,
737	IB_EVENT_PATH_MIG_ERR,
738	IB_EVENT_DEVICE_FATAL,
739	IB_EVENT_PORT_ACTIVE,
740	IB_EVENT_PORT_ERR,
741	IB_EVENT_LID_CHANGE,
742	IB_EVENT_PKEY_CHANGE,
743	IB_EVENT_SM_CHANGE,
744	IB_EVENT_SRQ_ERR,
745	IB_EVENT_SRQ_LIMIT_REACHED,
746	IB_EVENT_QP_LAST_WQE_REACHED,
747	IB_EVENT_CLIENT_REREGISTER,
748	IB_EVENT_GID_CHANGE,
749	IB_EVENT_WQ_FATAL,
750};
751
752const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753
754struct ib_event {
755	struct ib_device	*device;
756	union {
757		struct ib_cq	*cq;
758		struct ib_qp	*qp;
759		struct ib_srq	*srq;
760		struct ib_wq	*wq;
761		u32		port_num;
762	} element;
763	enum ib_event_type	event;
764};
765
766struct ib_event_handler {
767	struct ib_device *device;
768	void            (*handler)(struct ib_event_handler *, struct ib_event *);
769	struct list_head  list;
770};
771
772#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
773	do {							\
774		(_ptr)->device  = _device;			\
775		(_ptr)->handler = _handler;			\
776		INIT_LIST_HEAD(&(_ptr)->list);			\
777	} while (0)
778
779struct ib_global_route {
780	const struct ib_gid_attr *sgid_attr;
781	union ib_gid	dgid;
782	u32		flow_label;
783	u8		sgid_index;
784	u8		hop_limit;
785	u8		traffic_class;
786};
787
788struct ib_grh {
789	__be32		version_tclass_flow;
790	__be16		paylen;
791	u8		next_hdr;
792	u8		hop_limit;
793	union ib_gid	sgid;
794	union ib_gid	dgid;
795};
796
797union rdma_network_hdr {
798	struct ib_grh ibgrh;
799	struct {
800		/* The IB spec states that if it's IPv4, the header
801		 * is located in the last 20 bytes of the header.
802		 */
803		u8		reserved[20];
804		struct iphdr	roce4grh;
805	};
806};
807
808#define IB_QPN_MASK		0xFFFFFF
809
810enum {
811	IB_MULTICAST_QPN = 0xffffff
812};
813
814#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
815#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
816
817enum ib_ah_flags {
818	IB_AH_GRH	= 1
819};
820
821enum ib_rate {
822	IB_RATE_PORT_CURRENT = 0,
823	IB_RATE_2_5_GBPS = 2,
824	IB_RATE_5_GBPS   = 5,
825	IB_RATE_10_GBPS  = 3,
826	IB_RATE_20_GBPS  = 6,
827	IB_RATE_30_GBPS  = 4,
828	IB_RATE_40_GBPS  = 7,
829	IB_RATE_60_GBPS  = 8,
830	IB_RATE_80_GBPS  = 9,
831	IB_RATE_120_GBPS = 10,
832	IB_RATE_14_GBPS  = 11,
833	IB_RATE_56_GBPS  = 12,
834	IB_RATE_112_GBPS = 13,
835	IB_RATE_168_GBPS = 14,
836	IB_RATE_25_GBPS  = 15,
837	IB_RATE_100_GBPS = 16,
838	IB_RATE_200_GBPS = 17,
839	IB_RATE_300_GBPS = 18,
840	IB_RATE_28_GBPS  = 19,
841	IB_RATE_50_GBPS  = 20,
842	IB_RATE_400_GBPS = 21,
843	IB_RATE_600_GBPS = 22,
844	IB_RATE_800_GBPS = 23,
845};
846
847/**
848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851 * @rate: rate to convert.
852 */
853__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854
855/**
856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858 * @rate: rate to convert.
859 */
860__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861
862
863/**
864 * enum ib_mr_type - memory region type
865 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
866 *                            normal registration
867 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
868 *                            register any arbitrary sg lists (without
869 *                            the normal mr constraints - see
870 *                            ib_map_mr_sg)
871 * @IB_MR_TYPE_DM:            memory region that is used for device
872 *                            memory registration
873 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
874 *                            application
875 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
876 *                            without address translations (VA=PA)
877 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
878 *                            data integrity operations
879 */
880enum ib_mr_type {
881	IB_MR_TYPE_MEM_REG,
882	IB_MR_TYPE_SG_GAPS,
883	IB_MR_TYPE_DM,
884	IB_MR_TYPE_USER,
885	IB_MR_TYPE_DMA,
886	IB_MR_TYPE_INTEGRITY,
887};
888
889enum ib_mr_status_check {
890	IB_MR_CHECK_SIG_STATUS = 1,
891};
892
893/**
894 * struct ib_mr_status - Memory region status container
895 *
896 * @fail_status: Bitmask of MR checks status. For each
897 *     failed check a corresponding status bit is set.
898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899 *     failure.
900 */
901struct ib_mr_status {
902	u32		    fail_status;
903	struct ib_sig_err   sig_err;
904};
905
906/**
907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908 * enum.
909 * @mult: multiple to convert.
910 */
911__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912
913struct rdma_ah_init_attr {
914	struct rdma_ah_attr *ah_attr;
915	u32 flags;
916	struct net_device *xmit_slave;
917};
918
919enum rdma_ah_attr_type {
920	RDMA_AH_ATTR_TYPE_UNDEFINED,
921	RDMA_AH_ATTR_TYPE_IB,
922	RDMA_AH_ATTR_TYPE_ROCE,
923	RDMA_AH_ATTR_TYPE_OPA,
924};
925
926struct ib_ah_attr {
927	u16			dlid;
928	u8			src_path_bits;
929};
930
931struct roce_ah_attr {
932	u8			dmac[ETH_ALEN];
933};
934
935struct opa_ah_attr {
936	u32			dlid;
937	u8			src_path_bits;
938	bool			make_grd;
939};
940
941struct rdma_ah_attr {
942	struct ib_global_route	grh;
943	u8			sl;
944	u8			static_rate;
945	u32			port_num;
946	u8			ah_flags;
947	enum rdma_ah_attr_type type;
948	union {
949		struct ib_ah_attr ib;
950		struct roce_ah_attr roce;
951		struct opa_ah_attr opa;
952	};
953};
954
955enum ib_wc_status {
956	IB_WC_SUCCESS,
957	IB_WC_LOC_LEN_ERR,
958	IB_WC_LOC_QP_OP_ERR,
959	IB_WC_LOC_EEC_OP_ERR,
960	IB_WC_LOC_PROT_ERR,
961	IB_WC_WR_FLUSH_ERR,
962	IB_WC_MW_BIND_ERR,
963	IB_WC_BAD_RESP_ERR,
964	IB_WC_LOC_ACCESS_ERR,
965	IB_WC_REM_INV_REQ_ERR,
966	IB_WC_REM_ACCESS_ERR,
967	IB_WC_REM_OP_ERR,
968	IB_WC_RETRY_EXC_ERR,
969	IB_WC_RNR_RETRY_EXC_ERR,
970	IB_WC_LOC_RDD_VIOL_ERR,
971	IB_WC_REM_INV_RD_REQ_ERR,
972	IB_WC_REM_ABORT_ERR,
973	IB_WC_INV_EECN_ERR,
974	IB_WC_INV_EEC_STATE_ERR,
975	IB_WC_FATAL_ERR,
976	IB_WC_RESP_TIMEOUT_ERR,
977	IB_WC_GENERAL_ERR
978};
979
980const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981
982enum ib_wc_opcode {
983	IB_WC_SEND = IB_UVERBS_WC_SEND,
984	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990	IB_WC_LSO = IB_UVERBS_WC_TSO,
991	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992	IB_WC_REG_MR,
993	IB_WC_MASKED_COMP_SWAP,
994	IB_WC_MASKED_FETCH_ADD,
995	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996/*
997 * Set value of IB_WC_RECV so consumers can test if a completion is a
998 * receive by testing (opcode & IB_WC_RECV).
999 */
1000	IB_WC_RECV			= 1 << 7,
1001	IB_WC_RECV_RDMA_WITH_IMM
1002};
1003
1004enum ib_wc_flags {
1005	IB_WC_GRH		= 1,
1006	IB_WC_WITH_IMM		= (1<<1),
1007	IB_WC_WITH_INVALIDATE	= (1<<2),
1008	IB_WC_IP_CSUM_OK	= (1<<3),
1009	IB_WC_WITH_SMAC		= (1<<4),
1010	IB_WC_WITH_VLAN		= (1<<5),
1011	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1012};
1013
1014struct ib_wc {
1015	union {
1016		u64		wr_id;
1017		struct ib_cqe	*wr_cqe;
1018	};
1019	enum ib_wc_status	status;
1020	enum ib_wc_opcode	opcode;
1021	u32			vendor_err;
1022	u32			byte_len;
1023	struct ib_qp	       *qp;
1024	union {
1025		__be32		imm_data;
1026		u32		invalidate_rkey;
1027	} ex;
1028	u32			src_qp;
1029	u32			slid;
1030	int			wc_flags;
1031	u16			pkey_index;
1032	u8			sl;
1033	u8			dlid_path_bits;
1034	u32 port_num; /* valid only for DR SMPs on switches */
1035	u8			smac[ETH_ALEN];
1036	u16			vlan_id;
1037	u8			network_hdr_type;
1038};
1039
1040enum ib_cq_notify_flags {
1041	IB_CQ_SOLICITED			= 1 << 0,
1042	IB_CQ_NEXT_COMP			= 1 << 1,
1043	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1045};
1046
1047enum ib_srq_type {
1048	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051};
1052
1053static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054{
1055	return srq_type == IB_SRQT_XRC ||
1056	       srq_type == IB_SRQT_TM;
1057}
1058
1059enum ib_srq_attr_mask {
1060	IB_SRQ_MAX_WR	= 1 << 0,
1061	IB_SRQ_LIMIT	= 1 << 1,
1062};
1063
1064struct ib_srq_attr {
1065	u32	max_wr;
1066	u32	max_sge;
1067	u32	srq_limit;
1068};
1069
1070struct ib_srq_init_attr {
1071	void		      (*event_handler)(struct ib_event *, void *);
1072	void		       *srq_context;
1073	struct ib_srq_attr	attr;
1074	enum ib_srq_type	srq_type;
1075
1076	struct {
1077		struct ib_cq   *cq;
1078		union {
1079			struct {
1080				struct ib_xrcd *xrcd;
1081			} xrc;
1082
1083			struct {
1084				u32		max_num_tags;
1085			} tag_matching;
1086		};
1087	} ext;
1088};
1089
1090struct ib_qp_cap {
1091	u32	max_send_wr;
1092	u32	max_recv_wr;
1093	u32	max_send_sge;
1094	u32	max_recv_sge;
1095	u32	max_inline_data;
1096
1097	/*
1098	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099	 * ib_create_qp() will calculate the right amount of needed WRs
1100	 * and MRs based on this.
1101	 */
1102	u32	max_rdma_ctxs;
1103};
1104
1105enum ib_sig_type {
1106	IB_SIGNAL_ALL_WR,
1107	IB_SIGNAL_REQ_WR
1108};
1109
1110enum ib_qp_type {
1111	/*
1112	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113	 * here (and in that order) since the MAD layer uses them as
1114	 * indices into a 2-entry table.
1115	 */
1116	IB_QPT_SMI,
1117	IB_QPT_GSI,
1118
1119	IB_QPT_RC = IB_UVERBS_QPT_RC,
1120	IB_QPT_UC = IB_UVERBS_QPT_UC,
1121	IB_QPT_UD = IB_UVERBS_QPT_UD,
1122	IB_QPT_RAW_IPV6,
1123	IB_QPT_RAW_ETHERTYPE,
1124	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127	IB_QPT_MAX,
1128	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129	/* Reserve a range for qp types internal to the low level driver.
1130	 * These qp types will not be visible at the IB core layer, so the
1131	 * IB_QPT_MAX usages should not be affected in the core layer
1132	 */
1133	IB_QPT_RESERVED1 = 0x1000,
1134	IB_QPT_RESERVED2,
1135	IB_QPT_RESERVED3,
1136	IB_QPT_RESERVED4,
1137	IB_QPT_RESERVED5,
1138	IB_QPT_RESERVED6,
1139	IB_QPT_RESERVED7,
1140	IB_QPT_RESERVED8,
1141	IB_QPT_RESERVED9,
1142	IB_QPT_RESERVED10,
1143};
1144
1145enum ib_qp_create_flags {
1146	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1147	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1148		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1150	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1151	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1152	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1153	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1154	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1155	IB_QP_CREATE_SCATTER_FCS		=
1156		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157	IB_QP_CREATE_CVLAN_STRIPPING		=
1158		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1160	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1161		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162	/* reserve bits 26-31 for low level drivers' internal use */
1163	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1164	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1165};
1166
1167/*
1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169 * callback to destroy the passed in QP.
1170 */
1171
1172struct ib_qp_init_attr {
1173	/* This callback occurs in workqueue context */
1174	void                  (*event_handler)(struct ib_event *, void *);
1175
1176	void		       *qp_context;
1177	struct ib_cq	       *send_cq;
1178	struct ib_cq	       *recv_cq;
1179	struct ib_srq	       *srq;
1180	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1181	struct ib_qp_cap	cap;
1182	enum ib_sig_type	sq_sig_type;
1183	enum ib_qp_type		qp_type;
1184	u32			create_flags;
1185
1186	/*
1187	 * Only needed for special QP types, or when using the RW API.
1188	 */
1189	u32			port_num;
1190	struct ib_rwq_ind_table *rwq_ind_tbl;
1191	u32			source_qpn;
1192};
1193
1194struct ib_qp_open_attr {
1195	void                  (*event_handler)(struct ib_event *, void *);
1196	void		       *qp_context;
1197	u32			qp_num;
1198	enum ib_qp_type		qp_type;
1199};
1200
1201enum ib_rnr_timeout {
1202	IB_RNR_TIMER_655_36 =  0,
1203	IB_RNR_TIMER_000_01 =  1,
1204	IB_RNR_TIMER_000_02 =  2,
1205	IB_RNR_TIMER_000_03 =  3,
1206	IB_RNR_TIMER_000_04 =  4,
1207	IB_RNR_TIMER_000_06 =  5,
1208	IB_RNR_TIMER_000_08 =  6,
1209	IB_RNR_TIMER_000_12 =  7,
1210	IB_RNR_TIMER_000_16 =  8,
1211	IB_RNR_TIMER_000_24 =  9,
1212	IB_RNR_TIMER_000_32 = 10,
1213	IB_RNR_TIMER_000_48 = 11,
1214	IB_RNR_TIMER_000_64 = 12,
1215	IB_RNR_TIMER_000_96 = 13,
1216	IB_RNR_TIMER_001_28 = 14,
1217	IB_RNR_TIMER_001_92 = 15,
1218	IB_RNR_TIMER_002_56 = 16,
1219	IB_RNR_TIMER_003_84 = 17,
1220	IB_RNR_TIMER_005_12 = 18,
1221	IB_RNR_TIMER_007_68 = 19,
1222	IB_RNR_TIMER_010_24 = 20,
1223	IB_RNR_TIMER_015_36 = 21,
1224	IB_RNR_TIMER_020_48 = 22,
1225	IB_RNR_TIMER_030_72 = 23,
1226	IB_RNR_TIMER_040_96 = 24,
1227	IB_RNR_TIMER_061_44 = 25,
1228	IB_RNR_TIMER_081_92 = 26,
1229	IB_RNR_TIMER_122_88 = 27,
1230	IB_RNR_TIMER_163_84 = 28,
1231	IB_RNR_TIMER_245_76 = 29,
1232	IB_RNR_TIMER_327_68 = 30,
1233	IB_RNR_TIMER_491_52 = 31
1234};
1235
1236enum ib_qp_attr_mask {
1237	IB_QP_STATE			= 1,
1238	IB_QP_CUR_STATE			= (1<<1),
1239	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1240	IB_QP_ACCESS_FLAGS		= (1<<3),
1241	IB_QP_PKEY_INDEX		= (1<<4),
1242	IB_QP_PORT			= (1<<5),
1243	IB_QP_QKEY			= (1<<6),
1244	IB_QP_AV			= (1<<7),
1245	IB_QP_PATH_MTU			= (1<<8),
1246	IB_QP_TIMEOUT			= (1<<9),
1247	IB_QP_RETRY_CNT			= (1<<10),
1248	IB_QP_RNR_RETRY			= (1<<11),
1249	IB_QP_RQ_PSN			= (1<<12),
1250	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1251	IB_QP_ALT_PATH			= (1<<14),
1252	IB_QP_MIN_RNR_TIMER		= (1<<15),
1253	IB_QP_SQ_PSN			= (1<<16),
1254	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1255	IB_QP_PATH_MIG_STATE		= (1<<18),
1256	IB_QP_CAP			= (1<<19),
1257	IB_QP_DEST_QPN			= (1<<20),
1258	IB_QP_RESERVED1			= (1<<21),
1259	IB_QP_RESERVED2			= (1<<22),
1260	IB_QP_RESERVED3			= (1<<23),
1261	IB_QP_RESERVED4			= (1<<24),
1262	IB_QP_RATE_LIMIT		= (1<<25),
1263
1264	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265};
1266
1267enum ib_qp_state {
1268	IB_QPS_RESET,
1269	IB_QPS_INIT,
1270	IB_QPS_RTR,
1271	IB_QPS_RTS,
1272	IB_QPS_SQD,
1273	IB_QPS_SQE,
1274	IB_QPS_ERR
1275};
1276
1277enum ib_mig_state {
1278	IB_MIG_MIGRATED,
1279	IB_MIG_REARM,
1280	IB_MIG_ARMED
1281};
1282
1283enum ib_mw_type {
1284	IB_MW_TYPE_1 = 1,
1285	IB_MW_TYPE_2 = 2
1286};
1287
1288struct ib_qp_attr {
1289	enum ib_qp_state	qp_state;
1290	enum ib_qp_state	cur_qp_state;
1291	enum ib_mtu		path_mtu;
1292	enum ib_mig_state	path_mig_state;
1293	u32			qkey;
1294	u32			rq_psn;
1295	u32			sq_psn;
1296	u32			dest_qp_num;
1297	int			qp_access_flags;
1298	struct ib_qp_cap	cap;
1299	struct rdma_ah_attr	ah_attr;
1300	struct rdma_ah_attr	alt_ah_attr;
1301	u16			pkey_index;
1302	u16			alt_pkey_index;
1303	u8			en_sqd_async_notify;
1304	u8			sq_draining;
1305	u8			max_rd_atomic;
1306	u8			max_dest_rd_atomic;
1307	u8			min_rnr_timer;
1308	u32			port_num;
1309	u8			timeout;
1310	u8			retry_cnt;
1311	u8			rnr_retry;
1312	u32			alt_port_num;
1313	u8			alt_timeout;
1314	u32			rate_limit;
1315	struct net_device	*xmit_slave;
1316};
1317
1318enum ib_wr_opcode {
1319	/* These are shared with userspace */
1320	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322	IB_WR_SEND = IB_UVERBS_WR_SEND,
1323	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328	IB_WR_LSO = IB_UVERBS_WR_TSO,
1329	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338
1339	/* These are kernel only and can not be issued by userspace */
1340	IB_WR_REG_MR = 0x20,
1341	IB_WR_REG_MR_INTEGRITY,
1342
1343	/* reserve values for low level drivers' internal use.
1344	 * These values will not be used at all in the ib core layer.
1345	 */
1346	IB_WR_RESERVED1 = 0xf0,
1347	IB_WR_RESERVED2,
1348	IB_WR_RESERVED3,
1349	IB_WR_RESERVED4,
1350	IB_WR_RESERVED5,
1351	IB_WR_RESERVED6,
1352	IB_WR_RESERVED7,
1353	IB_WR_RESERVED8,
1354	IB_WR_RESERVED9,
1355	IB_WR_RESERVED10,
1356};
1357
1358enum ib_send_flags {
1359	IB_SEND_FENCE		= 1,
1360	IB_SEND_SIGNALED	= (1<<1),
1361	IB_SEND_SOLICITED	= (1<<2),
1362	IB_SEND_INLINE		= (1<<3),
1363	IB_SEND_IP_CSUM		= (1<<4),
1364
1365	/* reserve bits 26-31 for low level drivers' internal use */
1366	IB_SEND_RESERVED_START	= (1 << 26),
1367	IB_SEND_RESERVED_END	= (1 << 31),
1368};
1369
1370struct ib_sge {
1371	u64	addr;
1372	u32	length;
1373	u32	lkey;
1374};
1375
1376struct ib_cqe {
1377	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378};
1379
1380struct ib_send_wr {
1381	struct ib_send_wr      *next;
1382	union {
1383		u64		wr_id;
1384		struct ib_cqe	*wr_cqe;
1385	};
1386	struct ib_sge	       *sg_list;
1387	int			num_sge;
1388	enum ib_wr_opcode	opcode;
1389	int			send_flags;
1390	union {
1391		__be32		imm_data;
1392		u32		invalidate_rkey;
1393	} ex;
1394};
1395
1396struct ib_rdma_wr {
1397	struct ib_send_wr	wr;
1398	u64			remote_addr;
1399	u32			rkey;
1400};
1401
1402static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403{
1404	return container_of(wr, struct ib_rdma_wr, wr);
1405}
1406
1407struct ib_atomic_wr {
1408	struct ib_send_wr	wr;
1409	u64			remote_addr;
1410	u64			compare_add;
1411	u64			swap;
1412	u64			compare_add_mask;
1413	u64			swap_mask;
1414	u32			rkey;
1415};
1416
1417static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418{
1419	return container_of(wr, struct ib_atomic_wr, wr);
1420}
1421
1422struct ib_ud_wr {
1423	struct ib_send_wr	wr;
1424	struct ib_ah		*ah;
1425	void			*header;
1426	int			hlen;
1427	int			mss;
1428	u32			remote_qpn;
1429	u32			remote_qkey;
1430	u16			pkey_index; /* valid for GSI only */
1431	u32			port_num; /* valid for DR SMPs on switch only */
1432};
1433
1434static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435{
1436	return container_of(wr, struct ib_ud_wr, wr);
1437}
1438
1439struct ib_reg_wr {
1440	struct ib_send_wr	wr;
1441	struct ib_mr		*mr;
1442	u32			key;
1443	int			access;
1444};
1445
1446static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447{
1448	return container_of(wr, struct ib_reg_wr, wr);
1449}
1450
1451struct ib_recv_wr {
1452	struct ib_recv_wr      *next;
1453	union {
1454		u64		wr_id;
1455		struct ib_cqe	*wr_cqe;
1456	};
1457	struct ib_sge	       *sg_list;
1458	int			num_sge;
1459};
1460
1461enum ib_access_flags {
1462	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473
1474	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475	IB_ACCESS_SUPPORTED =
1476		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477};
1478
1479/*
1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481 * are hidden here instead of a uapi header!
1482 */
1483enum ib_mr_rereg_flags {
1484	IB_MR_REREG_TRANS	= 1,
1485	IB_MR_REREG_PD		= (1<<1),
1486	IB_MR_REREG_ACCESS	= (1<<2),
1487	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1488};
1489
1490struct ib_umem;
1491
1492enum rdma_remove_reason {
1493	/*
1494	 * Userspace requested uobject deletion or initial try
1495	 * to remove uobject via cleanup. Call could fail
1496	 */
1497	RDMA_REMOVE_DESTROY,
1498	/* Context deletion. This call should delete the actual object itself */
1499	RDMA_REMOVE_CLOSE,
1500	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1501	RDMA_REMOVE_DRIVER_REMOVE,
1502	/* uobj is being cleaned-up before being committed */
1503	RDMA_REMOVE_ABORT,
1504	/* The driver failed to destroy the uobject and is being disconnected */
1505	RDMA_REMOVE_DRIVER_FAILURE,
1506};
1507
1508struct ib_rdmacg_object {
1509#ifdef CONFIG_CGROUP_RDMA
1510	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1511#endif
1512};
1513
1514struct ib_ucontext {
1515	struct ib_device       *device;
1516	struct ib_uverbs_file  *ufile;
1517
1518	struct ib_rdmacg_object	cg_obj;
1519	/*
1520	 * Implementation details of the RDMA core, don't use in drivers:
1521	 */
1522	struct rdma_restrack_entry res;
1523	struct xarray mmap_xa;
1524};
1525
1526struct ib_uobject {
1527	u64			user_handle;	/* handle given to us by userspace */
1528	/* ufile & ucontext owning this object */
1529	struct ib_uverbs_file  *ufile;
1530	/* FIXME, save memory: ufile->context == context */
1531	struct ib_ucontext     *context;	/* associated user context */
1532	void		       *object;		/* containing object */
1533	struct list_head	list;		/* link to context's list */
1534	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1535	int			id;		/* index into kernel idr */
1536	struct kref		ref;
1537	atomic_t		usecnt;		/* protects exclusive access */
1538	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1539
1540	const struct uverbs_api_object *uapi_object;
1541};
1542
1543struct ib_udata {
1544	const void __user *inbuf;
1545	void __user *outbuf;
1546	size_t       inlen;
1547	size_t       outlen;
1548};
1549
1550struct ib_pd {
1551	u32			local_dma_lkey;
1552	u32			flags;
1553	struct ib_device       *device;
1554	struct ib_uobject      *uobject;
1555	atomic_t          	usecnt; /* count all resources */
1556
1557	u32			unsafe_global_rkey;
1558
1559	/*
1560	 * Implementation details of the RDMA core, don't use in drivers:
1561	 */
1562	struct ib_mr	       *__internal_mr;
1563	struct rdma_restrack_entry res;
1564};
1565
1566struct ib_xrcd {
1567	struct ib_device       *device;
1568	atomic_t		usecnt; /* count all exposed resources */
1569	struct inode	       *inode;
1570	struct rw_semaphore	tgt_qps_rwsem;
1571	struct xarray		tgt_qps;
1572};
1573
1574struct ib_ah {
1575	struct ib_device	*device;
1576	struct ib_pd		*pd;
1577	struct ib_uobject	*uobject;
1578	const struct ib_gid_attr *sgid_attr;
1579	enum rdma_ah_attr_type	type;
1580};
1581
1582typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
1584enum ib_poll_context {
1585	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1586	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1587	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1591};
1592
1593struct ib_cq {
1594	struct ib_device       *device;
1595	struct ib_ucq_object   *uobject;
1596	ib_comp_handler   	comp_handler;
1597	void                  (*event_handler)(struct ib_event *, void *);
1598	void                   *cq_context;
1599	int               	cqe;
1600	unsigned int		cqe_used;
1601	atomic_t          	usecnt; /* count number of work queues */
1602	enum ib_poll_context	poll_ctx;
1603	struct ib_wc		*wc;
1604	struct list_head        pool_entry;
1605	union {
1606		struct irq_poll		iop;
1607		struct work_struct	work;
1608	};
1609	struct workqueue_struct *comp_wq;
1610	struct dim *dim;
1611
1612	/* updated only by trace points */
1613	ktime_t timestamp;
1614	u8 interrupt:1;
1615	u8 shared:1;
1616	unsigned int comp_vector;
1617
1618	/*
1619	 * Implementation details of the RDMA core, don't use in drivers:
1620	 */
1621	struct rdma_restrack_entry res;
1622};
1623
1624struct ib_srq {
1625	struct ib_device       *device;
1626	struct ib_pd	       *pd;
1627	struct ib_usrq_object  *uobject;
1628	void		      (*event_handler)(struct ib_event *, void *);
1629	void		       *srq_context;
1630	enum ib_srq_type	srq_type;
1631	atomic_t		usecnt;
1632
1633	struct {
1634		struct ib_cq   *cq;
1635		union {
1636			struct {
1637				struct ib_xrcd *xrcd;
1638				u32		srq_num;
1639			} xrc;
1640		};
1641	} ext;
1642
1643	/*
1644	 * Implementation details of the RDMA core, don't use in drivers:
1645	 */
1646	struct rdma_restrack_entry res;
1647};
1648
1649enum ib_raw_packet_caps {
1650	/*
1651	 * Strip cvlan from incoming packet and report it in the matching work
1652	 * completion is supported.
1653	 */
1654	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656	/*
1657	 * Scatter FCS field of an incoming packet to host memory is supported.
1658	 */
1659	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660	/* Checksum offloads are supported (for both send and receive). */
1661	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662	/*
1663	 * When a packet is received for an RQ with no receive WQEs, the
1664	 * packet processing is delayed.
1665	 */
1666	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667};
1668
1669enum ib_wq_type {
1670	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671};
1672
1673enum ib_wq_state {
1674	IB_WQS_RESET,
1675	IB_WQS_RDY,
1676	IB_WQS_ERR
1677};
1678
1679struct ib_wq {
1680	struct ib_device       *device;
1681	struct ib_uwq_object   *uobject;
1682	void		    *wq_context;
1683	void		    (*event_handler)(struct ib_event *, void *);
1684	struct ib_pd	       *pd;
1685	struct ib_cq	       *cq;
1686	u32		wq_num;
1687	enum ib_wq_state       state;
1688	enum ib_wq_type	wq_type;
1689	atomic_t		usecnt;
1690};
1691
1692enum ib_wq_flags {
1693	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698};
1699
1700struct ib_wq_init_attr {
1701	void		       *wq_context;
1702	enum ib_wq_type	wq_type;
1703	u32		max_wr;
1704	u32		max_sge;
1705	struct	ib_cq	       *cq;
1706	void		    (*event_handler)(struct ib_event *, void *);
1707	u32		create_flags; /* Use enum ib_wq_flags */
1708};
1709
1710enum ib_wq_attr_mask {
1711	IB_WQ_STATE		= 1 << 0,
1712	IB_WQ_CUR_STATE		= 1 << 1,
1713	IB_WQ_FLAGS		= 1 << 2,
1714};
1715
1716struct ib_wq_attr {
1717	enum	ib_wq_state	wq_state;
1718	enum	ib_wq_state	curr_wq_state;
1719	u32			flags; /* Use enum ib_wq_flags */
1720	u32			flags_mask; /* Use enum ib_wq_flags */
1721};
1722
1723struct ib_rwq_ind_table {
1724	struct ib_device	*device;
1725	struct ib_uobject      *uobject;
1726	atomic_t		usecnt;
1727	u32		ind_tbl_num;
1728	u32		log_ind_tbl_size;
1729	struct ib_wq	**ind_tbl;
1730};
1731
1732struct ib_rwq_ind_table_init_attr {
1733	u32		log_ind_tbl_size;
1734	/* Each entry is a pointer to Receive Work Queue */
1735	struct ib_wq	**ind_tbl;
1736};
1737
1738enum port_pkey_state {
1739	IB_PORT_PKEY_NOT_VALID = 0,
1740	IB_PORT_PKEY_VALID = 1,
1741	IB_PORT_PKEY_LISTED = 2,
1742};
1743
1744struct ib_qp_security;
1745
1746struct ib_port_pkey {
1747	enum port_pkey_state	state;
1748	u16			pkey_index;
1749	u32			port_num;
1750	struct list_head	qp_list;
1751	struct list_head	to_error_list;
1752	struct ib_qp_security  *sec;
1753};
1754
1755struct ib_ports_pkeys {
1756	struct ib_port_pkey	main;
1757	struct ib_port_pkey	alt;
1758};
1759
1760struct ib_qp_security {
1761	struct ib_qp	       *qp;
1762	struct ib_device       *dev;
1763	/* Hold this mutex when changing port and pkey settings. */
1764	struct mutex		mutex;
1765	struct ib_ports_pkeys  *ports_pkeys;
1766	/* A list of all open shared QP handles.  Required to enforce security
1767	 * properly for all users of a shared QP.
1768	 */
1769	struct list_head        shared_qp_list;
1770	void                   *security;
1771	bool			destroying;
1772	atomic_t		error_list_count;
1773	struct completion	error_complete;
1774	int			error_comps_pending;
1775};
1776
1777/*
1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1780 */
1781struct ib_qp {
1782	struct ib_device       *device;
1783	struct ib_pd	       *pd;
1784	struct ib_cq	       *send_cq;
1785	struct ib_cq	       *recv_cq;
1786	spinlock_t		mr_lock;
1787	int			mrs_used;
1788	struct list_head	rdma_mrs;
1789	struct list_head	sig_mrs;
1790	struct ib_srq	       *srq;
1791	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1792	struct list_head	xrcd_list;
1793
1794	/* count times opened, mcast attaches, flow attaches */
1795	atomic_t		usecnt;
1796	struct list_head	open_list;
1797	struct ib_qp           *real_qp;
1798	struct ib_uqp_object   *uobject;
1799	void                  (*event_handler)(struct ib_event *, void *);
1800	void		       *qp_context;
1801	/* sgid_attrs associated with the AV's */
1802	const struct ib_gid_attr *av_sgid_attr;
1803	const struct ib_gid_attr *alt_path_sgid_attr;
1804	u32			qp_num;
1805	u32			max_write_sge;
1806	u32			max_read_sge;
1807	enum ib_qp_type		qp_type;
1808	struct ib_rwq_ind_table *rwq_ind_tbl;
1809	struct ib_qp_security  *qp_sec;
1810	u32			port;
1811
1812	bool			integrity_en;
1813	/*
1814	 * Implementation details of the RDMA core, don't use in drivers:
1815	 */
1816	struct rdma_restrack_entry     res;
1817
1818	/* The counter the qp is bind to */
1819	struct rdma_counter    *counter;
1820};
1821
1822struct ib_dm {
1823	struct ib_device  *device;
1824	u32		   length;
1825	u32		   flags;
1826	struct ib_uobject *uobject;
1827	atomic_t	   usecnt;
1828};
1829
1830struct ib_mr {
1831	struct ib_device  *device;
1832	struct ib_pd	  *pd;
1833	u32		   lkey;
1834	u32		   rkey;
1835	u64		   iova;
1836	u64		   length;
1837	unsigned int	   page_size;
1838	enum ib_mr_type	   type;
1839	bool		   need_inval;
1840	union {
1841		struct ib_uobject	*uobject;	/* user */
1842		struct list_head	qp_entry;	/* FR */
1843	};
1844
1845	struct ib_dm      *dm;
1846	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1847	/*
1848	 * Implementation details of the RDMA core, don't use in drivers:
1849	 */
1850	struct rdma_restrack_entry res;
1851};
1852
1853struct ib_mw {
1854	struct ib_device	*device;
1855	struct ib_pd		*pd;
1856	struct ib_uobject	*uobject;
1857	u32			rkey;
1858	enum ib_mw_type         type;
1859};
1860
1861/* Supported steering options */
1862enum ib_flow_attr_type {
1863	/* steering according to rule specifications */
1864	IB_FLOW_ATTR_NORMAL		= 0x0,
1865	/* default unicast and multicast rule -
1866	 * receive all Eth traffic which isn't steered to any QP
1867	 */
1868	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1869	/* default multicast rule -
1870	 * receive all Eth multicast traffic which isn't steered to any QP
1871	 */
1872	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1873	/* sniffer rule - receive all port traffic */
1874	IB_FLOW_ATTR_SNIFFER		= 0x3
1875};
1876
1877/* Supported steering header types */
1878enum ib_flow_spec_type {
1879	/* L2 headers*/
1880	IB_FLOW_SPEC_ETH		= 0x20,
1881	IB_FLOW_SPEC_IB			= 0x22,
1882	/* L3 header*/
1883	IB_FLOW_SPEC_IPV4		= 0x30,
1884	IB_FLOW_SPEC_IPV6		= 0x31,
1885	IB_FLOW_SPEC_ESP                = 0x34,
1886	/* L4 headers*/
1887	IB_FLOW_SPEC_TCP		= 0x40,
1888	IB_FLOW_SPEC_UDP		= 0x41,
1889	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1890	IB_FLOW_SPEC_GRE		= 0x51,
1891	IB_FLOW_SPEC_MPLS		= 0x60,
1892	IB_FLOW_SPEC_INNER		= 0x100,
1893	/* Actions */
1894	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1895	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1896	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1897	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1898};
1899#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1900#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1901
1902enum ib_flow_flags {
1903	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1904	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1905	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1906};
1907
1908struct ib_flow_eth_filter {
1909	u8	dst_mac[6];
1910	u8	src_mac[6];
1911	__be16	ether_type;
1912	__be16	vlan_tag;
1913};
1914
1915struct ib_flow_spec_eth {
1916	u32			  type;
1917	u16			  size;
1918	struct ib_flow_eth_filter val;
1919	struct ib_flow_eth_filter mask;
1920};
1921
1922struct ib_flow_ib_filter {
1923	__be16 dlid;
1924	__u8   sl;
1925};
1926
1927struct ib_flow_spec_ib {
1928	u32			 type;
1929	u16			 size;
1930	struct ib_flow_ib_filter val;
1931	struct ib_flow_ib_filter mask;
1932};
1933
1934/* IPv4 header flags */
1935enum ib_ipv4_flags {
1936	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1937	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1938				    last have this flag set */
1939};
1940
1941struct ib_flow_ipv4_filter {
1942	__be32	src_ip;
1943	__be32	dst_ip;
1944	u8	proto;
1945	u8	tos;
1946	u8	ttl;
1947	u8	flags;
1948};
1949
1950struct ib_flow_spec_ipv4 {
1951	u32			   type;
1952	u16			   size;
1953	struct ib_flow_ipv4_filter val;
1954	struct ib_flow_ipv4_filter mask;
1955};
1956
1957struct ib_flow_ipv6_filter {
1958	u8	src_ip[16];
1959	u8	dst_ip[16];
1960	__be32	flow_label;
1961	u8	next_hdr;
1962	u8	traffic_class;
1963	u8	hop_limit;
1964} __packed;
1965
1966struct ib_flow_spec_ipv6 {
1967	u32			   type;
1968	u16			   size;
1969	struct ib_flow_ipv6_filter val;
1970	struct ib_flow_ipv6_filter mask;
1971};
1972
1973struct ib_flow_tcp_udp_filter {
1974	__be16	dst_port;
1975	__be16	src_port;
1976};
1977
1978struct ib_flow_spec_tcp_udp {
1979	u32			      type;
1980	u16			      size;
1981	struct ib_flow_tcp_udp_filter val;
1982	struct ib_flow_tcp_udp_filter mask;
1983};
1984
1985struct ib_flow_tunnel_filter {
1986	__be32	tunnel_id;
1987};
1988
1989/* ib_flow_spec_tunnel describes the Vxlan tunnel
1990 * the tunnel_id from val has the vni value
1991 */
1992struct ib_flow_spec_tunnel {
1993	u32			      type;
1994	u16			      size;
1995	struct ib_flow_tunnel_filter  val;
1996	struct ib_flow_tunnel_filter  mask;
1997};
1998
1999struct ib_flow_esp_filter {
2000	__be32	spi;
2001	__be32  seq;
2002};
2003
2004struct ib_flow_spec_esp {
2005	u32                           type;
2006	u16			      size;
2007	struct ib_flow_esp_filter     val;
2008	struct ib_flow_esp_filter     mask;
2009};
2010
2011struct ib_flow_gre_filter {
2012	__be16 c_ks_res0_ver;
2013	__be16 protocol;
2014	__be32 key;
2015};
2016
2017struct ib_flow_spec_gre {
2018	u32                           type;
2019	u16			      size;
2020	struct ib_flow_gre_filter     val;
2021	struct ib_flow_gre_filter     mask;
2022};
2023
2024struct ib_flow_mpls_filter {
2025	__be32 tag;
2026};
2027
2028struct ib_flow_spec_mpls {
2029	u32                           type;
2030	u16			      size;
2031	struct ib_flow_mpls_filter     val;
2032	struct ib_flow_mpls_filter     mask;
2033};
2034
2035struct ib_flow_spec_action_tag {
2036	enum ib_flow_spec_type	      type;
2037	u16			      size;
2038	u32                           tag_id;
2039};
2040
2041struct ib_flow_spec_action_drop {
2042	enum ib_flow_spec_type	      type;
2043	u16			      size;
2044};
2045
2046struct ib_flow_spec_action_handle {
2047	enum ib_flow_spec_type	      type;
2048	u16			      size;
2049	struct ib_flow_action	     *act;
2050};
2051
2052enum ib_counters_description {
2053	IB_COUNTER_PACKETS,
2054	IB_COUNTER_BYTES,
2055};
2056
2057struct ib_flow_spec_action_count {
2058	enum ib_flow_spec_type type;
2059	u16 size;
2060	struct ib_counters *counters;
2061};
2062
2063union ib_flow_spec {
2064	struct {
2065		u32			type;
2066		u16			size;
2067	};
2068	struct ib_flow_spec_eth		eth;
2069	struct ib_flow_spec_ib		ib;
2070	struct ib_flow_spec_ipv4        ipv4;
2071	struct ib_flow_spec_tcp_udp	tcp_udp;
2072	struct ib_flow_spec_ipv6        ipv6;
2073	struct ib_flow_spec_tunnel      tunnel;
2074	struct ib_flow_spec_esp		esp;
2075	struct ib_flow_spec_gre		gre;
2076	struct ib_flow_spec_mpls	mpls;
2077	struct ib_flow_spec_action_tag  flow_tag;
2078	struct ib_flow_spec_action_drop drop;
2079	struct ib_flow_spec_action_handle action;
2080	struct ib_flow_spec_action_count flow_count;
2081};
2082
2083struct ib_flow_attr {
2084	enum ib_flow_attr_type type;
2085	u16	     size;
2086	u16	     priority;
2087	u32	     flags;
2088	u8	     num_of_specs;
2089	u32	     port;
2090	union ib_flow_spec flows[];
2091};
2092
2093struct ib_flow {
2094	struct ib_qp		*qp;
2095	struct ib_device	*device;
2096	struct ib_uobject	*uobject;
2097};
2098
2099enum ib_flow_action_type {
2100	IB_FLOW_ACTION_UNSPECIFIED,
2101	IB_FLOW_ACTION_ESP = 1,
2102};
2103
2104struct ib_flow_action_attrs_esp_keymats {
2105	enum ib_uverbs_flow_action_esp_keymat			protocol;
2106	union {
2107		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2108	} keymat;
2109};
2110
2111struct ib_flow_action_attrs_esp_replays {
2112	enum ib_uverbs_flow_action_esp_replay			protocol;
2113	union {
2114		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2115	} replay;
2116};
2117
2118enum ib_flow_action_attrs_esp_flags {
2119	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2120	 * This is done in order to share the same flags between user-space and
2121	 * kernel and spare an unnecessary translation.
2122	 */
2123
2124	/* Kernel flags */
2125	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2126	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2127};
2128
2129struct ib_flow_spec_list {
2130	struct ib_flow_spec_list	*next;
2131	union ib_flow_spec		spec;
2132};
2133
2134struct ib_flow_action_attrs_esp {
2135	struct ib_flow_action_attrs_esp_keymats		*keymat;
2136	struct ib_flow_action_attrs_esp_replays		*replay;
2137	struct ib_flow_spec_list			*encap;
2138	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2139	 * Value of 0 is a valid value.
2140	 */
2141	u32						esn;
2142	u32						spi;
2143	u32						seq;
2144	u32						tfc_pad;
2145	/* Use enum ib_flow_action_attrs_esp_flags */
2146	u64						flags;
2147	u64						hard_limit_pkts;
2148};
2149
2150struct ib_flow_action {
2151	struct ib_device		*device;
2152	struct ib_uobject		*uobject;
2153	enum ib_flow_action_type	type;
2154	atomic_t			usecnt;
2155};
2156
2157struct ib_mad;
2158
2159enum ib_process_mad_flags {
2160	IB_MAD_IGNORE_MKEY	= 1,
2161	IB_MAD_IGNORE_BKEY	= 2,
2162	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2163};
2164
2165enum ib_mad_result {
2166	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2167	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2168	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2169	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2170};
2171
2172struct ib_port_cache {
2173	u64		      subnet_prefix;
2174	struct ib_pkey_cache  *pkey;
2175	struct ib_gid_table   *gid;
2176	u8                     lmc;
2177	enum ib_port_state     port_state;
2178};
2179
2180struct ib_port_immutable {
2181	int                           pkey_tbl_len;
2182	int                           gid_tbl_len;
2183	u32                           core_cap_flags;
2184	u32                           max_mad_size;
2185};
2186
2187struct ib_port_data {
2188	struct ib_device *ib_dev;
2189
2190	struct ib_port_immutable immutable;
2191
2192	spinlock_t pkey_list_lock;
2193
2194	spinlock_t netdev_lock;
2195
2196	struct list_head pkey_list;
2197
2198	struct ib_port_cache cache;
2199
2200	struct net_device __rcu *netdev;
2201	netdevice_tracker netdev_tracker;
2202	struct hlist_node ndev_hash_link;
2203	struct rdma_port_counter port_counter;
2204	struct ib_port *sysfs;
2205};
2206
2207/* rdma netdev type - specifies protocol type */
2208enum rdma_netdev_t {
2209	RDMA_NETDEV_OPA_VNIC,
2210	RDMA_NETDEV_IPOIB,
2211};
2212
2213/**
2214 * struct rdma_netdev - rdma netdev
2215 * For cases where netstack interfacing is required.
2216 */
2217struct rdma_netdev {
2218	void              *clnt_priv;
2219	struct ib_device  *hca;
2220	u32		   port_num;
2221	int                mtu;
2222
2223	/*
2224	 * cleanup function must be specified.
2225	 * FIXME: This is only used for OPA_VNIC and that usage should be
2226	 * removed too.
2227	 */
2228	void (*free_rdma_netdev)(struct net_device *netdev);
2229
2230	/* control functions */
2231	void (*set_id)(struct net_device *netdev, int id);
2232	/* send packet */
2233	int (*send)(struct net_device *dev, struct sk_buff *skb,
2234		    struct ib_ah *address, u32 dqpn);
2235	/* multicast */
2236	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2237			    union ib_gid *gid, u16 mlid,
2238			    int set_qkey, u32 qkey);
2239	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2240			    union ib_gid *gid, u16 mlid);
2241	/* timeout */
2242	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2243};
2244
2245struct rdma_netdev_alloc_params {
2246	size_t sizeof_priv;
2247	unsigned int txqs;
2248	unsigned int rxqs;
2249	void *param;
2250
2251	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2252				      struct net_device *netdev, void *param);
2253};
2254
2255struct ib_odp_counters {
2256	atomic64_t faults;
2257	atomic64_t invalidations;
2258	atomic64_t prefetch;
2259};
2260
2261struct ib_counters {
2262	struct ib_device	*device;
2263	struct ib_uobject	*uobject;
2264	/* num of objects attached */
2265	atomic_t	usecnt;
2266};
2267
2268struct ib_counters_read_attr {
2269	u64	*counters_buff;
2270	u32	ncounters;
2271	u32	flags; /* use enum ib_read_counters_flags */
2272};
2273
2274struct uverbs_attr_bundle;
2275struct iw_cm_id;
2276struct iw_cm_conn_param;
2277
2278#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2279	.size_##ib_struct =                                                    \
2280		(sizeof(struct drv_struct) +                                   \
2281		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2282		 BUILD_BUG_ON_ZERO(                                            \
2283			 !__same_type(((struct drv_struct *)NULL)->member,     \
2284				      struct ib_struct)))
2285
2286#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2287	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2288					   gfp, false))
2289
2290#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2291	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2292					   GFP_KERNEL, true))
2293
2294#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2295	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2296
2297#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2298
2299struct rdma_user_mmap_entry {
2300	struct kref ref;
2301	struct ib_ucontext *ucontext;
2302	unsigned long start_pgoff;
2303	size_t npages;
2304	bool driver_removed;
2305};
2306
2307/* Return the offset (in bytes) the user should pass to libc's mmap() */
2308static inline u64
2309rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2310{
2311	return (u64)entry->start_pgoff << PAGE_SHIFT;
2312}
2313
2314/**
2315 * struct ib_device_ops - InfiniBand device operations
2316 * This structure defines all the InfiniBand device operations, providers will
2317 * need to define the supported operations, otherwise they will be set to null.
2318 */
2319struct ib_device_ops {
2320	struct module *owner;
2321	enum rdma_driver_id driver_id;
2322	u32 uverbs_abi_ver;
2323	unsigned int uverbs_no_driver_id_binding:1;
2324
2325	/*
2326	 * NOTE: New drivers should not make use of device_group; instead new
2327	 * device parameter should be exposed via netlink command. This
2328	 * mechanism exists only for existing drivers.
2329	 */
2330	const struct attribute_group *device_group;
2331	const struct attribute_group **port_groups;
2332
2333	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2334			 const struct ib_send_wr **bad_send_wr);
2335	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2336			 const struct ib_recv_wr **bad_recv_wr);
2337	void (*drain_rq)(struct ib_qp *qp);
2338	void (*drain_sq)(struct ib_qp *qp);
2339	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2340	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2341	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2342	int (*post_srq_recv)(struct ib_srq *srq,
2343			     const struct ib_recv_wr *recv_wr,
2344			     const struct ib_recv_wr **bad_recv_wr);
2345	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2346			   u32 port_num, const struct ib_wc *in_wc,
2347			   const struct ib_grh *in_grh,
2348			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2349			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2350	int (*query_device)(struct ib_device *device,
2351			    struct ib_device_attr *device_attr,
2352			    struct ib_udata *udata);
2353	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2354			     struct ib_device_modify *device_modify);
2355	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2356	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2357						     int comp_vector);
2358	int (*query_port)(struct ib_device *device, u32 port_num,
2359			  struct ib_port_attr *port_attr);
2360	int (*modify_port)(struct ib_device *device, u32 port_num,
2361			   int port_modify_mask,
2362			   struct ib_port_modify *port_modify);
2363	/**
2364	 * The following mandatory functions are used only at device
2365	 * registration.  Keep functions such as these at the end of this
2366	 * structure to avoid cache line misses when accessing struct ib_device
2367	 * in fast paths.
2368	 */
2369	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2370				  struct ib_port_immutable *immutable);
2371	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2372					       u32 port_num);
2373	/**
2374	 * When calling get_netdev, the HW vendor's driver should return the
2375	 * net device of device @device at port @port_num or NULL if such
2376	 * a net device doesn't exist. The vendor driver should call dev_hold
2377	 * on this net device. The HW vendor's device driver must guarantee
2378	 * that this function returns NULL before the net device has finished
2379	 * NETDEV_UNREGISTER state.
2380	 */
2381	struct net_device *(*get_netdev)(struct ib_device *device,
2382					 u32 port_num);
2383	/**
2384	 * rdma netdev operation
2385	 *
2386	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2387	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2388	 */
2389	struct net_device *(*alloc_rdma_netdev)(
2390		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2391		const char *name, unsigned char name_assign_type,
2392		void (*setup)(struct net_device *));
2393
2394	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2395				      enum rdma_netdev_t type,
2396				      struct rdma_netdev_alloc_params *params);
2397	/**
2398	 * query_gid should be return GID value for @device, when @port_num
2399	 * link layer is either IB or iWarp. It is no-op if @port_num port
2400	 * is RoCE link layer.
2401	 */
2402	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2403			 union ib_gid *gid);
2404	/**
2405	 * When calling add_gid, the HW vendor's driver should add the gid
2406	 * of device of port at gid index available at @attr. Meta-info of
2407	 * that gid (for example, the network device related to this gid) is
2408	 * available at @attr. @context allows the HW vendor driver to store
2409	 * extra information together with a GID entry. The HW vendor driver may
2410	 * allocate memory to contain this information and store it in @context
2411	 * when a new GID entry is written to. Params are consistent until the
2412	 * next call of add_gid or delete_gid. The function should return 0 on
2413	 * success or error otherwise. The function could be called
2414	 * concurrently for different ports. This function is only called when
2415	 * roce_gid_table is used.
2416	 */
2417	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2418	/**
2419	 * When calling del_gid, the HW vendor's driver should delete the
2420	 * gid of device @device at gid index gid_index of port port_num
2421	 * available in @attr.
2422	 * Upon the deletion of a GID entry, the HW vendor must free any
2423	 * allocated memory. The caller will clear @context afterwards.
2424	 * This function is only called when roce_gid_table is used.
2425	 */
2426	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2427	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2428			  u16 *pkey);
2429	int (*alloc_ucontext)(struct ib_ucontext *context,
2430			      struct ib_udata *udata);
2431	void (*dealloc_ucontext)(struct ib_ucontext *context);
2432	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2433	/**
2434	 * This will be called once refcount of an entry in mmap_xa reaches
2435	 * zero. The type of the memory that was mapped may differ between
2436	 * entries and is opaque to the rdma_user_mmap interface.
2437	 * Therefore needs to be implemented by the driver in mmap_free.
2438	 */
2439	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2440	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2441	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2442	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2443	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2444			 struct ib_udata *udata);
2445	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2446			      struct ib_udata *udata);
2447	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2448	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2449	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2450	int (*create_srq)(struct ib_srq *srq,
2451			  struct ib_srq_init_attr *srq_init_attr,
2452			  struct ib_udata *udata);
2453	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2454			  enum ib_srq_attr_mask srq_attr_mask,
2455			  struct ib_udata *udata);
2456	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2457	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2458	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2459			 struct ib_udata *udata);
2460	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2461			 int qp_attr_mask, struct ib_udata *udata);
2462	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2463			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2464	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2465	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2466			 struct ib_udata *udata);
2467	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2468	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2469	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2470	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2471	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2472				     u64 virt_addr, int mr_access_flags,
2473				     struct ib_udata *udata);
2474	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2475					    u64 length, u64 virt_addr, int fd,
2476					    int mr_access_flags,
2477					    struct ib_udata *udata);
2478	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2479				       u64 length, u64 virt_addr,
2480				       int mr_access_flags, struct ib_pd *pd,
2481				       struct ib_udata *udata);
2482	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2483	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2484				  u32 max_num_sg);
2485	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2486					    u32 max_num_data_sg,
2487					    u32 max_num_meta_sg);
2488	int (*advise_mr)(struct ib_pd *pd,
2489			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2490			 struct ib_sge *sg_list, u32 num_sge,
2491			 struct uverbs_attr_bundle *attrs);
2492
2493	/*
2494	 * Kernel users should universally support relaxed ordering (RO), as
2495	 * they are designed to read data only after observing the CQE and use
2496	 * the DMA API correctly.
2497	 *
2498	 * Some drivers implicitly enable RO if platform supports it.
2499	 */
2500	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2501			 unsigned int *sg_offset);
2502	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2503			       struct ib_mr_status *mr_status);
2504	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2505	int (*dealloc_mw)(struct ib_mw *mw);
2506	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2507	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2508	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2509	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2510	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2511				       struct ib_flow_attr *flow_attr,
2512				       struct ib_udata *udata);
2513	int (*destroy_flow)(struct ib_flow *flow_id);
2514	int (*destroy_flow_action)(struct ib_flow_action *action);
2515	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2516				 int state);
2517	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2518			     struct ifla_vf_info *ivf);
2519	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2520			    struct ifla_vf_stats *stats);
2521	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2522			    struct ifla_vf_guid *node_guid,
2523			    struct ifla_vf_guid *port_guid);
2524	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2525			   int type);
2526	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2527				   struct ib_wq_init_attr *init_attr,
2528				   struct ib_udata *udata);
2529	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2530	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2531			 u32 wq_attr_mask, struct ib_udata *udata);
2532	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2533				    struct ib_rwq_ind_table_init_attr *init_attr,
2534				    struct ib_udata *udata);
2535	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2536	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2537				  struct ib_ucontext *context,
2538				  struct ib_dm_alloc_attr *attr,
2539				  struct uverbs_attr_bundle *attrs);
2540	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2541	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2542				   struct ib_dm_mr_attr *attr,
2543				   struct uverbs_attr_bundle *attrs);
2544	int (*create_counters)(struct ib_counters *counters,
2545			       struct uverbs_attr_bundle *attrs);
2546	int (*destroy_counters)(struct ib_counters *counters);
2547	int (*read_counters)(struct ib_counters *counters,
2548			     struct ib_counters_read_attr *counters_read_attr,
2549			     struct uverbs_attr_bundle *attrs);
2550	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2551			    int data_sg_nents, unsigned int *data_sg_offset,
2552			    struct scatterlist *meta_sg, int meta_sg_nents,
2553			    unsigned int *meta_sg_offset);
2554
2555	/**
2556	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2557	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2558	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2559	 *   return struct tells the core to set a default lifespan.
2560	 */
2561	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2562	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2563						     u32 port_num);
2564	/**
2565	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2566	 * @index - The index in the value array we wish to have updated, or
2567	 *   num_counters if we want all stats updated
2568	 * Return codes -
2569	 *   < 0 - Error, no counters updated
2570	 *   index - Updated the single counter pointed to by index
2571	 *   num_counters - Updated all counters (will reset the timestamp
2572	 *     and prevent further calls for lifespan milliseconds)
2573	 * Drivers are allowed to update all counters in leiu of just the
2574	 *   one given in index at their option
2575	 */
2576	int (*get_hw_stats)(struct ib_device *device,
2577			    struct rdma_hw_stats *stats, u32 port, int index);
2578
2579	/**
2580	 * modify_hw_stat - Modify the counter configuration
2581	 * @enable: true/false when enable/disable a counter
2582	 * Return codes - 0 on success or error code otherwise.
2583	 */
2584	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2585			      unsigned int counter_index, bool enable);
2586	/**
2587	 * Allows rdma drivers to add their own restrack attributes.
2588	 */
2589	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2590	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2591	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2592	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2593	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2594	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2595	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2596	int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2597	int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2598
2599	/* Device lifecycle callbacks */
2600	/*
2601	 * Called after the device becomes registered, before clients are
2602	 * attached
2603	 */
2604	int (*enable_driver)(struct ib_device *dev);
2605	/*
2606	 * This is called as part of ib_dealloc_device().
2607	 */
2608	void (*dealloc_driver)(struct ib_device *dev);
2609
2610	/* iWarp CM callbacks */
2611	void (*iw_add_ref)(struct ib_qp *qp);
2612	void (*iw_rem_ref)(struct ib_qp *qp);
2613	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2614	int (*iw_connect)(struct iw_cm_id *cm_id,
2615			  struct iw_cm_conn_param *conn_param);
2616	int (*iw_accept)(struct iw_cm_id *cm_id,
2617			 struct iw_cm_conn_param *conn_param);
2618	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2619			 u8 pdata_len);
2620	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2621	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2622	/**
2623	 * counter_bind_qp - Bind a QP to a counter.
2624	 * @counter - The counter to be bound. If counter->id is zero then
2625	 *   the driver needs to allocate a new counter and set counter->id
2626	 */
2627	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2628	/**
2629	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2630	 *   counter and bind it onto the default one
2631	 */
2632	int (*counter_unbind_qp)(struct ib_qp *qp);
2633	/**
2634	 * counter_dealloc -De-allocate the hw counter
2635	 */
2636	int (*counter_dealloc)(struct rdma_counter *counter);
2637	/**
2638	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2639	 * the driver initialized data.
2640	 */
2641	struct rdma_hw_stats *(*counter_alloc_stats)(
2642		struct rdma_counter *counter);
2643	/**
2644	 * counter_update_stats - Query the stats value of this counter
2645	 */
2646	int (*counter_update_stats)(struct rdma_counter *counter);
2647
2648	/**
2649	 * Allows rdma drivers to add their own restrack attributes
2650	 * dumped via 'rdma stat' iproute2 command.
2651	 */
2652	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2653
2654	/* query driver for its ucontext properties */
2655	int (*query_ucontext)(struct ib_ucontext *context,
2656			      struct uverbs_attr_bundle *attrs);
2657
2658	/*
2659	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2660	 * Everyone else relies on Linux memory management model.
2661	 */
2662	int (*get_numa_node)(struct ib_device *dev);
2663
2664	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2665	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2666	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2667	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2668	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2669	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2670	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2671	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2672	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2673	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2674};
2675
2676struct ib_core_device {
2677	/* device must be the first element in structure until,
2678	 * union of ib_core_device and device exists in ib_device.
2679	 */
2680	struct device dev;
2681	possible_net_t rdma_net;
2682	struct kobject *ports_kobj;
2683	struct list_head port_list;
2684	struct ib_device *owner; /* reach back to owner ib_device */
2685};
2686
2687struct rdma_restrack_root;
2688struct ib_device {
2689	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2690	struct device                *dma_device;
2691	struct ib_device_ops	     ops;
2692	char                          name[IB_DEVICE_NAME_MAX];
2693	struct rcu_head rcu_head;
2694
2695	struct list_head              event_handler_list;
2696	/* Protects event_handler_list */
2697	struct rw_semaphore event_handler_rwsem;
2698
2699	/* Protects QP's event_handler calls and open_qp list */
2700	spinlock_t qp_open_list_lock;
2701
2702	struct rw_semaphore	      client_data_rwsem;
2703	struct xarray                 client_data;
2704	struct mutex                  unregistration_lock;
2705
2706	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2707	rwlock_t cache_lock;
2708	/**
2709	 * port_data is indexed by port number
2710	 */
2711	struct ib_port_data *port_data;
2712
2713	int			      num_comp_vectors;
2714
2715	union {
2716		struct device		dev;
2717		struct ib_core_device	coredev;
2718	};
2719
2720	/* First group is for device attributes,
2721	 * Second group is for driver provided attributes (optional).
2722	 * Third group is for the hw_stats
2723	 * It is a NULL terminated array.
2724	 */
2725	const struct attribute_group	*groups[4];
2726
2727	u64			     uverbs_cmd_mask;
2728
2729	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2730	__be64			     node_guid;
2731	u32			     local_dma_lkey;
2732	u16                          is_switch:1;
2733	/* Indicates kernel verbs support, should not be used in drivers */
2734	u16                          kverbs_provider:1;
2735	/* CQ adaptive moderation (RDMA DIM) */
2736	u16                          use_cq_dim:1;
2737	u8                           node_type;
2738	u32			     phys_port_cnt;
2739	struct ib_device_attr        attrs;
2740	struct hw_stats_device_data *hw_stats_data;
2741
2742#ifdef CONFIG_CGROUP_RDMA
2743	struct rdmacg_device         cg_device;
2744#endif
2745
2746	u32                          index;
2747
2748	spinlock_t                   cq_pools_lock;
2749	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2750
2751	struct rdma_restrack_root *res;
2752
2753	const struct uapi_definition   *driver_def;
2754
2755	/*
2756	 * Positive refcount indicates that the device is currently
2757	 * registered and cannot be unregistered.
2758	 */
2759	refcount_t refcount;
2760	struct completion unreg_completion;
2761	struct work_struct unregistration_work;
2762
2763	const struct rdma_link_ops *link_ops;
2764
2765	/* Protects compat_devs xarray modifications */
2766	struct mutex compat_devs_mutex;
2767	/* Maintains compat devices for each net namespace */
2768	struct xarray compat_devs;
2769
2770	/* Used by iWarp CM */
2771	char iw_ifname[IFNAMSIZ];
2772	u32 iw_driver_flags;
2773	u32 lag_flags;
2774};
2775
2776static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2777				    gfp_t gfp, bool is_numa_aware)
2778{
2779	if (is_numa_aware && dev->ops.get_numa_node)
2780		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2781
2782	return kzalloc(size, gfp);
2783}
2784
2785struct ib_client_nl_info;
2786struct ib_client {
2787	const char *name;
2788	int (*add)(struct ib_device *ibdev);
2789	void (*remove)(struct ib_device *, void *client_data);
2790	void (*rename)(struct ib_device *dev, void *client_data);
2791	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2792			   struct ib_client_nl_info *res);
2793	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2794
2795	/* Returns the net_dev belonging to this ib_client and matching the
2796	 * given parameters.
2797	 * @dev:	 An RDMA device that the net_dev use for communication.
2798	 * @port:	 A physical port number on the RDMA device.
2799	 * @pkey:	 P_Key that the net_dev uses if applicable.
2800	 * @gid:	 A GID that the net_dev uses to communicate.
2801	 * @addr:	 An IP address the net_dev is configured with.
2802	 * @client_data: The device's client data set by ib_set_client_data().
2803	 *
2804	 * An ib_client that implements a net_dev on top of RDMA devices
2805	 * (such as IP over IB) should implement this callback, allowing the
2806	 * rdma_cm module to find the right net_dev for a given request.
2807	 *
2808	 * The caller is responsible for calling dev_put on the returned
2809	 * netdev. */
2810	struct net_device *(*get_net_dev_by_params)(
2811			struct ib_device *dev,
2812			u32 port,
2813			u16 pkey,
2814			const union ib_gid *gid,
2815			const struct sockaddr *addr,
2816			void *client_data);
2817
2818	refcount_t uses;
2819	struct completion uses_zero;
2820	u32 client_id;
2821
2822	/* kverbs are not required by the client */
2823	u8 no_kverbs_req:1;
2824};
2825
2826/*
2827 * IB block DMA iterator
2828 *
2829 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2830 * to a HW supported page size.
2831 */
2832struct ib_block_iter {
2833	/* internal states */
2834	struct scatterlist *__sg;	/* sg holding the current aligned block */
2835	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2836	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2837	unsigned int __sg_nents;	/* number of SG entries */
2838	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2839	unsigned int __pg_bit;		/* alignment of current block */
2840};
2841
2842struct ib_device *_ib_alloc_device(size_t size);
2843#define ib_alloc_device(drv_struct, member)                                    \
2844	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2845				      BUILD_BUG_ON_ZERO(offsetof(              \
2846					      struct drv_struct, member))),    \
2847		     struct drv_struct, member)
2848
2849void ib_dealloc_device(struct ib_device *device);
2850
2851void ib_get_device_fw_str(struct ib_device *device, char *str);
2852
2853int ib_register_device(struct ib_device *device, const char *name,
2854		       struct device *dma_device);
2855void ib_unregister_device(struct ib_device *device);
2856void ib_unregister_driver(enum rdma_driver_id driver_id);
2857void ib_unregister_device_and_put(struct ib_device *device);
2858void ib_unregister_device_queued(struct ib_device *ib_dev);
2859
2860int ib_register_client   (struct ib_client *client);
2861void ib_unregister_client(struct ib_client *client);
2862
2863void __rdma_block_iter_start(struct ib_block_iter *biter,
2864			     struct scatterlist *sglist,
2865			     unsigned int nents,
2866			     unsigned long pgsz);
2867bool __rdma_block_iter_next(struct ib_block_iter *biter);
2868
2869/**
2870 * rdma_block_iter_dma_address - get the aligned dma address of the current
2871 * block held by the block iterator.
2872 * @biter: block iterator holding the memory block
2873 */
2874static inline dma_addr_t
2875rdma_block_iter_dma_address(struct ib_block_iter *biter)
2876{
2877	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2878}
2879
2880/**
2881 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2882 * @sglist: sglist to iterate over
2883 * @biter: block iterator holding the memory block
2884 * @nents: maximum number of sg entries to iterate over
2885 * @pgsz: best HW supported page size to use
2886 *
2887 * Callers may use rdma_block_iter_dma_address() to get each
2888 * blocks aligned DMA address.
2889 */
2890#define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2891	for (__rdma_block_iter_start(biter, sglist, nents,	\
2892				     pgsz);			\
2893	     __rdma_block_iter_next(biter);)
2894
2895/**
2896 * ib_get_client_data - Get IB client context
2897 * @device:Device to get context for
2898 * @client:Client to get context for
2899 *
2900 * ib_get_client_data() returns the client context data set with
2901 * ib_set_client_data(). This can only be called while the client is
2902 * registered to the device, once the ib_client remove() callback returns this
2903 * cannot be called.
2904 */
2905static inline void *ib_get_client_data(struct ib_device *device,
2906				       struct ib_client *client)
2907{
2908	return xa_load(&device->client_data, client->client_id);
2909}
2910void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2911			 void *data);
2912void ib_set_device_ops(struct ib_device *device,
2913		       const struct ib_device_ops *ops);
2914
2915int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2916		      unsigned long pfn, unsigned long size, pgprot_t prot,
2917		      struct rdma_user_mmap_entry *entry);
2918int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2919				struct rdma_user_mmap_entry *entry,
2920				size_t length);
2921int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2922				      struct rdma_user_mmap_entry *entry,
2923				      size_t length, u32 min_pgoff,
2924				      u32 max_pgoff);
2925
2926static inline int
2927rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2928				  struct rdma_user_mmap_entry *entry,
2929				  size_t length, u32 pgoff)
2930{
2931	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2932						 pgoff);
2933}
2934
2935struct rdma_user_mmap_entry *
2936rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2937			       unsigned long pgoff);
2938struct rdma_user_mmap_entry *
2939rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2940			 struct vm_area_struct *vma);
2941void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2942
2943void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2944
2945static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2946{
2947	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2948}
2949
2950static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2951{
2952	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2953}
2954
2955static inline bool ib_is_buffer_cleared(const void __user *p,
2956					size_t len)
2957{
2958	bool ret;
2959	u8 *buf;
2960
2961	if (len > USHRT_MAX)
2962		return false;
2963
2964	buf = memdup_user(p, len);
2965	if (IS_ERR(buf))
2966		return false;
2967
2968	ret = !memchr_inv(buf, 0, len);
2969	kfree(buf);
2970	return ret;
2971}
2972
2973static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2974				       size_t offset,
2975				       size_t len)
2976{
2977	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2978}
2979
2980/**
2981 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2982 * contains all required attributes and no attributes not allowed for
2983 * the given QP state transition.
2984 * @cur_state: Current QP state
2985 * @next_state: Next QP state
2986 * @type: QP type
2987 * @mask: Mask of supplied QP attributes
2988 *
2989 * This function is a helper function that a low-level driver's
2990 * modify_qp method can use to validate the consumer's input.  It
2991 * checks that cur_state and next_state are valid QP states, that a
2992 * transition from cur_state to next_state is allowed by the IB spec,
2993 * and that the attribute mask supplied is allowed for the transition.
2994 */
2995bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2996			enum ib_qp_type type, enum ib_qp_attr_mask mask);
2997
2998void ib_register_event_handler(struct ib_event_handler *event_handler);
2999void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3000void ib_dispatch_event(const struct ib_event *event);
3001
3002int ib_query_port(struct ib_device *device,
3003		  u32 port_num, struct ib_port_attr *port_attr);
3004
3005enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3006					       u32 port_num);
3007
3008/**
3009 * rdma_cap_ib_switch - Check if the device is IB switch
3010 * @device: Device to check
3011 *
3012 * Device driver is responsible for setting is_switch bit on
3013 * in ib_device structure at init time.
3014 *
3015 * Return: true if the device is IB switch.
3016 */
3017static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3018{
3019	return device->is_switch;
3020}
3021
3022/**
3023 * rdma_start_port - Return the first valid port number for the device
3024 * specified
3025 *
3026 * @device: Device to be checked
3027 *
3028 * Return start port number
3029 */
3030static inline u32 rdma_start_port(const struct ib_device *device)
3031{
3032	return rdma_cap_ib_switch(device) ? 0 : 1;
3033}
3034
3035/**
3036 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3037 * @device - The struct ib_device * to iterate over
3038 * @iter - The unsigned int to store the port number
3039 */
3040#define rdma_for_each_port(device, iter)                                       \
3041	for (iter = rdma_start_port(device +				       \
3042				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3043								   iter)));    \
3044	     iter <= rdma_end_port(device); iter++)
3045
3046/**
3047 * rdma_end_port - Return the last valid port number for the device
3048 * specified
3049 *
3050 * @device: Device to be checked
3051 *
3052 * Return last port number
3053 */
3054static inline u32 rdma_end_port(const struct ib_device *device)
3055{
3056	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3057}
3058
3059static inline int rdma_is_port_valid(const struct ib_device *device,
3060				     unsigned int port)
3061{
3062	return (port >= rdma_start_port(device) &&
3063		port <= rdma_end_port(device));
3064}
3065
3066static inline bool rdma_is_grh_required(const struct ib_device *device,
3067					u32 port_num)
3068{
3069	return device->port_data[port_num].immutable.core_cap_flags &
3070	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3071}
3072
3073static inline bool rdma_protocol_ib(const struct ib_device *device,
3074				    u32 port_num)
3075{
3076	return device->port_data[port_num].immutable.core_cap_flags &
3077	       RDMA_CORE_CAP_PROT_IB;
3078}
3079
3080static inline bool rdma_protocol_roce(const struct ib_device *device,
3081				      u32 port_num)
3082{
3083	return device->port_data[port_num].immutable.core_cap_flags &
3084	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3085}
3086
3087static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3088						u32 port_num)
3089{
3090	return device->port_data[port_num].immutable.core_cap_flags &
3091	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3092}
3093
3094static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3095						u32 port_num)
3096{
3097	return device->port_data[port_num].immutable.core_cap_flags &
3098	       RDMA_CORE_CAP_PROT_ROCE;
3099}
3100
3101static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3102				       u32 port_num)
3103{
3104	return device->port_data[port_num].immutable.core_cap_flags &
3105	       RDMA_CORE_CAP_PROT_IWARP;
3106}
3107
3108static inline bool rdma_ib_or_roce(const struct ib_device *device,
3109				   u32 port_num)
3110{
3111	return rdma_protocol_ib(device, port_num) ||
3112		rdma_protocol_roce(device, port_num);
3113}
3114
3115static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3116					    u32 port_num)
3117{
3118	return device->port_data[port_num].immutable.core_cap_flags &
3119	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3120}
3121
3122static inline bool rdma_protocol_usnic(const struct ib_device *device,
3123				       u32 port_num)
3124{
3125	return device->port_data[port_num].immutable.core_cap_flags &
3126	       RDMA_CORE_CAP_PROT_USNIC;
3127}
3128
3129/**
3130 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3131 * Management Datagrams.
3132 * @device: Device to check
3133 * @port_num: Port number to check
3134 *
3135 * Management Datagrams (MAD) are a required part of the InfiniBand
3136 * specification and are supported on all InfiniBand devices.  A slightly
3137 * extended version are also supported on OPA interfaces.
3138 *
3139 * Return: true if the port supports sending/receiving of MAD packets.
3140 */
3141static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3142{
3143	return device->port_data[port_num].immutable.core_cap_flags &
3144	       RDMA_CORE_CAP_IB_MAD;
3145}
3146
3147/**
3148 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3149 * Management Datagrams.
3150 * @device: Device to check
3151 * @port_num: Port number to check
3152 *
3153 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3154 * datagrams with their own versions.  These OPA MADs share many but not all of
3155 * the characteristics of InfiniBand MADs.
3156 *
3157 * OPA MADs differ in the following ways:
3158 *
3159 *    1) MADs are variable size up to 2K
3160 *       IBTA defined MADs remain fixed at 256 bytes
3161 *    2) OPA SMPs must carry valid PKeys
3162 *    3) OPA SMP packets are a different format
3163 *
3164 * Return: true if the port supports OPA MAD packet formats.
3165 */
3166static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3167{
3168	return device->port_data[port_num].immutable.core_cap_flags &
3169		RDMA_CORE_CAP_OPA_MAD;
3170}
3171
3172/**
3173 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3174 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3175 * @device: Device to check
3176 * @port_num: Port number to check
3177 *
3178 * Each InfiniBand node is required to provide a Subnet Management Agent
3179 * that the subnet manager can access.  Prior to the fabric being fully
3180 * configured by the subnet manager, the SMA is accessed via a well known
3181 * interface called the Subnet Management Interface (SMI).  This interface
3182 * uses directed route packets to communicate with the SM to get around the
3183 * chicken and egg problem of the SM needing to know what's on the fabric
3184 * in order to configure the fabric, and needing to configure the fabric in
3185 * order to send packets to the devices on the fabric.  These directed
3186 * route packets do not need the fabric fully configured in order to reach
3187 * their destination.  The SMI is the only method allowed to send
3188 * directed route packets on an InfiniBand fabric.
3189 *
3190 * Return: true if the port provides an SMI.
3191 */
3192static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3193{
3194	return device->port_data[port_num].immutable.core_cap_flags &
3195	       RDMA_CORE_CAP_IB_SMI;
3196}
3197
3198/**
3199 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3200 * Communication Manager.
3201 * @device: Device to check
3202 * @port_num: Port number to check
3203 *
3204 * The InfiniBand Communication Manager is one of many pre-defined General
3205 * Service Agents (GSA) that are accessed via the General Service
3206 * Interface (GSI).  It's role is to facilitate establishment of connections
3207 * between nodes as well as other management related tasks for established
3208 * connections.
3209 *
3210 * Return: true if the port supports an IB CM (this does not guarantee that
3211 * a CM is actually running however).
3212 */
3213static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3214{
3215	return device->port_data[port_num].immutable.core_cap_flags &
3216	       RDMA_CORE_CAP_IB_CM;
3217}
3218
3219/**
3220 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3221 * Communication Manager.
3222 * @device: Device to check
3223 * @port_num: Port number to check
3224 *
3225 * Similar to above, but specific to iWARP connections which have a different
3226 * managment protocol than InfiniBand.
3227 *
3228 * Return: true if the port supports an iWARP CM (this does not guarantee that
3229 * a CM is actually running however).
3230 */
3231static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3232{
3233	return device->port_data[port_num].immutable.core_cap_flags &
3234	       RDMA_CORE_CAP_IW_CM;
3235}
3236
3237/**
3238 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3239 * Subnet Administration.
3240 * @device: Device to check
3241 * @port_num: Port number to check
3242 *
3243 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3244 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3245 * fabrics, devices should resolve routes to other hosts by contacting the
3246 * SA to query the proper route.
3247 *
3248 * Return: true if the port should act as a client to the fabric Subnet
3249 * Administration interface.  This does not imply that the SA service is
3250 * running locally.
3251 */
3252static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3253{
3254	return device->port_data[port_num].immutable.core_cap_flags &
3255	       RDMA_CORE_CAP_IB_SA;
3256}
3257
3258/**
3259 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3260 * Multicast.
3261 * @device: Device to check
3262 * @port_num: Port number to check
3263 *
3264 * InfiniBand multicast registration is more complex than normal IPv4 or
3265 * IPv6 multicast registration.  Each Host Channel Adapter must register
3266 * with the Subnet Manager when it wishes to join a multicast group.  It
3267 * should do so only once regardless of how many queue pairs it subscribes
3268 * to this group.  And it should leave the group only after all queue pairs
3269 * attached to the group have been detached.
3270 *
3271 * Return: true if the port must undertake the additional adminstrative
3272 * overhead of registering/unregistering with the SM and tracking of the
3273 * total number of queue pairs attached to the multicast group.
3274 */
3275static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3276				     u32 port_num)
3277{
3278	return rdma_cap_ib_sa(device, port_num);
3279}
3280
3281/**
3282 * rdma_cap_af_ib - Check if the port of device has the capability
3283 * Native Infiniband Address.
3284 * @device: Device to check
3285 * @port_num: Port number to check
3286 *
3287 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3288 * GID.  RoCE uses a different mechanism, but still generates a GID via
3289 * a prescribed mechanism and port specific data.
3290 *
3291 * Return: true if the port uses a GID address to identify devices on the
3292 * network.
3293 */
3294static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3295{
3296	return device->port_data[port_num].immutable.core_cap_flags &
3297	       RDMA_CORE_CAP_AF_IB;
3298}
3299
3300/**
3301 * rdma_cap_eth_ah - Check if the port of device has the capability
3302 * Ethernet Address Handle.
3303 * @device: Device to check
3304 * @port_num: Port number to check
3305 *
3306 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3307 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3308 * port.  Normally, packet headers are generated by the sending host
3309 * adapter, but when sending connectionless datagrams, we must manually
3310 * inject the proper headers for the fabric we are communicating over.
3311 *
3312 * Return: true if we are running as a RoCE port and must force the
3313 * addition of a Global Route Header built from our Ethernet Address
3314 * Handle into our header list for connectionless packets.
3315 */
3316static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3317{
3318	return device->port_data[port_num].immutable.core_cap_flags &
3319	       RDMA_CORE_CAP_ETH_AH;
3320}
3321
3322/**
3323 * rdma_cap_opa_ah - Check if the port of device supports
3324 * OPA Address handles
3325 * @device: Device to check
3326 * @port_num: Port number to check
3327 *
3328 * Return: true if we are running on an OPA device which supports
3329 * the extended OPA addressing.
3330 */
3331static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3332{
3333	return (device->port_data[port_num].immutable.core_cap_flags &
3334		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3335}
3336
3337/**
3338 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3339 *
3340 * @device: Device
3341 * @port_num: Port number
3342 *
3343 * This MAD size includes the MAD headers and MAD payload.  No other headers
3344 * are included.
3345 *
3346 * Return the max MAD size required by the Port.  Will return 0 if the port
3347 * does not support MADs
3348 */
3349static inline size_t rdma_max_mad_size(const struct ib_device *device,
3350				       u32 port_num)
3351{
3352	return device->port_data[port_num].immutable.max_mad_size;
3353}
3354
3355/**
3356 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3357 * @device: Device to check
3358 * @port_num: Port number to check
3359 *
3360 * RoCE GID table mechanism manages the various GIDs for a device.
3361 *
3362 * NOTE: if allocating the port's GID table has failed, this call will still
3363 * return true, but any RoCE GID table API will fail.
3364 *
3365 * Return: true if the port uses RoCE GID table mechanism in order to manage
3366 * its GIDs.
3367 */
3368static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3369					   u32 port_num)
3370{
3371	return rdma_protocol_roce(device, port_num) &&
3372		device->ops.add_gid && device->ops.del_gid;
3373}
3374
3375/*
3376 * Check if the device supports READ W/ INVALIDATE.
3377 */
3378static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3379{
3380	/*
3381	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3382	 * has support for it yet.
3383	 */
3384	return rdma_protocol_iwarp(dev, port_num);
3385}
3386
3387/**
3388 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3389 * @device: Device
3390 * @port_num: 1 based Port number
3391 *
3392 * Return true if port is an Intel OPA port , false if not
3393 */
3394static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3395					  u32 port_num)
3396{
3397	return (device->port_data[port_num].immutable.core_cap_flags &
3398		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3399}
3400
3401/**
3402 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3403 * @device: Device
3404 * @port_num: Port number
3405 * @mtu: enum value of MTU
3406 *
3407 * Return the MTU size supported by the port as an integer value. Will return
3408 * -1 if enum value of mtu is not supported.
3409 */
3410static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3411				       int mtu)
3412{
3413	if (rdma_core_cap_opa_port(device, port))
3414		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3415	else
3416		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3417}
3418
3419/**
3420 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3421 * @device: Device
3422 * @port_num: Port number
3423 * @attr: port attribute
3424 *
3425 * Return the MTU size supported by the port as an integer value.
3426 */
3427static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3428				     struct ib_port_attr *attr)
3429{
3430	if (rdma_core_cap_opa_port(device, port))
3431		return attr->phys_mtu;
3432	else
3433		return ib_mtu_enum_to_int(attr->max_mtu);
3434}
3435
3436int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3437			 int state);
3438int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3439		     struct ifla_vf_info *info);
3440int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3441		    struct ifla_vf_stats *stats);
3442int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3443		    struct ifla_vf_guid *node_guid,
3444		    struct ifla_vf_guid *port_guid);
3445int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3446		   int type);
3447
3448int ib_query_pkey(struct ib_device *device,
3449		  u32 port_num, u16 index, u16 *pkey);
3450
3451int ib_modify_device(struct ib_device *device,
3452		     int device_modify_mask,
3453		     struct ib_device_modify *device_modify);
3454
3455int ib_modify_port(struct ib_device *device,
3456		   u32 port_num, int port_modify_mask,
3457		   struct ib_port_modify *port_modify);
3458
3459int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3460		u32 *port_num, u16 *index);
3461
3462int ib_find_pkey(struct ib_device *device,
3463		 u32 port_num, u16 pkey, u16 *index);
3464
3465enum ib_pd_flags {
3466	/*
3467	 * Create a memory registration for all memory in the system and place
3468	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3469	 * ULPs to avoid the overhead of dynamic MRs.
3470	 *
3471	 * This flag is generally considered unsafe and must only be used in
3472	 * extremly trusted environments.  Every use of it will log a warning
3473	 * in the kernel log.
3474	 */
3475	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3476};
3477
3478struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3479		const char *caller);
3480
3481/**
3482 * ib_alloc_pd - Allocates an unused protection domain.
3483 * @device: The device on which to allocate the protection domain.
3484 * @flags: protection domain flags
3485 *
3486 * A protection domain object provides an association between QPs, shared
3487 * receive queues, address handles, memory regions, and memory windows.
3488 *
3489 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3490 * memory operations.
3491 */
3492#define ib_alloc_pd(device, flags) \
3493	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3494
3495int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3496
3497/**
3498 * ib_dealloc_pd - Deallocate kernel PD
3499 * @pd: The protection domain
3500 *
3501 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3502 */
3503static inline void ib_dealloc_pd(struct ib_pd *pd)
3504{
3505	int ret = ib_dealloc_pd_user(pd, NULL);
3506
3507	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3508}
3509
3510enum rdma_create_ah_flags {
3511	/* In a sleepable context */
3512	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3513};
3514
3515/**
3516 * rdma_create_ah - Creates an address handle for the given address vector.
3517 * @pd: The protection domain associated with the address handle.
3518 * @ah_attr: The attributes of the address vector.
3519 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3520 *
3521 * The address handle is used to reference a local or global destination
3522 * in all UD QP post sends.
3523 */
3524struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3525			     u32 flags);
3526
3527/**
3528 * rdma_create_user_ah - Creates an address handle for the given address vector.
3529 * It resolves destination mac address for ah attribute of RoCE type.
3530 * @pd: The protection domain associated with the address handle.
3531 * @ah_attr: The attributes of the address vector.
3532 * @udata: pointer to user's input output buffer information need by
3533 *         provider driver.
3534 *
3535 * It returns 0 on success and returns appropriate error code on error.
3536 * The address handle is used to reference a local or global destination
3537 * in all UD QP post sends.
3538 */
3539struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3540				  struct rdma_ah_attr *ah_attr,
3541				  struct ib_udata *udata);
3542/**
3543 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3544 *   work completion.
3545 * @hdr: the L3 header to parse
3546 * @net_type: type of header to parse
3547 * @sgid: place to store source gid
3548 * @dgid: place to store destination gid
3549 */
3550int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3551			      enum rdma_network_type net_type,
3552			      union ib_gid *sgid, union ib_gid *dgid);
3553
3554/**
3555 * ib_get_rdma_header_version - Get the header version
3556 * @hdr: the L3 header to parse
3557 */
3558int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3559
3560/**
3561 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3562 *   work completion.
3563 * @device: Device on which the received message arrived.
3564 * @port_num: Port on which the received message arrived.
3565 * @wc: Work completion associated with the received message.
3566 * @grh: References the received global route header.  This parameter is
3567 *   ignored unless the work completion indicates that the GRH is valid.
3568 * @ah_attr: Returned attributes that can be used when creating an address
3569 *   handle for replying to the message.
3570 * When ib_init_ah_attr_from_wc() returns success,
3571 * (a) for IB link layer it optionally contains a reference to SGID attribute
3572 * when GRH is present for IB link layer.
3573 * (b) for RoCE link layer it contains a reference to SGID attribute.
3574 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3575 * attributes which are initialized using ib_init_ah_attr_from_wc().
3576 *
3577 */
3578int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3579			    const struct ib_wc *wc, const struct ib_grh *grh,
3580			    struct rdma_ah_attr *ah_attr);
3581
3582/**
3583 * ib_create_ah_from_wc - Creates an address handle associated with the
3584 *   sender of the specified work completion.
3585 * @pd: The protection domain associated with the address handle.
3586 * @wc: Work completion information associated with a received message.
3587 * @grh: References the received global route header.  This parameter is
3588 *   ignored unless the work completion indicates that the GRH is valid.
3589 * @port_num: The outbound port number to associate with the address.
3590 *
3591 * The address handle is used to reference a local or global destination
3592 * in all UD QP post sends.
3593 */
3594struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3595				   const struct ib_grh *grh, u32 port_num);
3596
3597/**
3598 * rdma_modify_ah - Modifies the address vector associated with an address
3599 *   handle.
3600 * @ah: The address handle to modify.
3601 * @ah_attr: The new address vector attributes to associate with the
3602 *   address handle.
3603 */
3604int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3605
3606/**
3607 * rdma_query_ah - Queries the address vector associated with an address
3608 *   handle.
3609 * @ah: The address handle to query.
3610 * @ah_attr: The address vector attributes associated with the address
3611 *   handle.
3612 */
3613int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3614
3615enum rdma_destroy_ah_flags {
3616	/* In a sleepable context */
3617	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3618};
3619
3620/**
3621 * rdma_destroy_ah_user - Destroys an address handle.
3622 * @ah: The address handle to destroy.
3623 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3624 * @udata: Valid user data or NULL for kernel objects
3625 */
3626int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3627
3628/**
3629 * rdma_destroy_ah - Destroys an kernel address handle.
3630 * @ah: The address handle to destroy.
3631 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3632 *
3633 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3634 */
3635static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3636{
3637	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3638
3639	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3640}
3641
3642struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3643				  struct ib_srq_init_attr *srq_init_attr,
3644				  struct ib_usrq_object *uobject,
3645				  struct ib_udata *udata);
3646static inline struct ib_srq *
3647ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3648{
3649	if (!pd->device->ops.create_srq)
3650		return ERR_PTR(-EOPNOTSUPP);
3651
3652	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3653}
3654
3655/**
3656 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3657 * @srq: The SRQ to modify.
3658 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3659 *   the current values of selected SRQ attributes are returned.
3660 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3661 *   are being modified.
3662 *
3663 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3664 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3665 * the number of receives queued drops below the limit.
3666 */
3667int ib_modify_srq(struct ib_srq *srq,
3668		  struct ib_srq_attr *srq_attr,
3669		  enum ib_srq_attr_mask srq_attr_mask);
3670
3671/**
3672 * ib_query_srq - Returns the attribute list and current values for the
3673 *   specified SRQ.
3674 * @srq: The SRQ to query.
3675 * @srq_attr: The attributes of the specified SRQ.
3676 */
3677int ib_query_srq(struct ib_srq *srq,
3678		 struct ib_srq_attr *srq_attr);
3679
3680/**
3681 * ib_destroy_srq_user - Destroys the specified SRQ.
3682 * @srq: The SRQ to destroy.
3683 * @udata: Valid user data or NULL for kernel objects
3684 */
3685int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3686
3687/**
3688 * ib_destroy_srq - Destroys the specified kernel SRQ.
3689 * @srq: The SRQ to destroy.
3690 *
3691 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3692 */
3693static inline void ib_destroy_srq(struct ib_srq *srq)
3694{
3695	int ret = ib_destroy_srq_user(srq, NULL);
3696
3697	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3698}
3699
3700/**
3701 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3702 * @srq: The SRQ to post the work request on.
3703 * @recv_wr: A list of work requests to post on the receive queue.
3704 * @bad_recv_wr: On an immediate failure, this parameter will reference
3705 *   the work request that failed to be posted on the QP.
3706 */
3707static inline int ib_post_srq_recv(struct ib_srq *srq,
3708				   const struct ib_recv_wr *recv_wr,
3709				   const struct ib_recv_wr **bad_recv_wr)
3710{
3711	const struct ib_recv_wr *dummy;
3712
3713	return srq->device->ops.post_srq_recv(srq, recv_wr,
3714					      bad_recv_wr ? : &dummy);
3715}
3716
3717struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3718				  struct ib_qp_init_attr *qp_init_attr,
3719				  const char *caller);
3720/**
3721 * ib_create_qp - Creates a kernel QP associated with the specific protection
3722 * domain.
3723 * @pd: The protection domain associated with the QP.
3724 * @init_attr: A list of initial attributes required to create the
3725 *   QP.  If QP creation succeeds, then the attributes are updated to
3726 *   the actual capabilities of the created QP.
3727 */
3728static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3729					 struct ib_qp_init_attr *init_attr)
3730{
3731	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3732}
3733
3734/**
3735 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3736 * @qp: The QP to modify.
3737 * @attr: On input, specifies the QP attributes to modify.  On output,
3738 *   the current values of selected QP attributes are returned.
3739 * @attr_mask: A bit-mask used to specify which attributes of the QP
3740 *   are being modified.
3741 * @udata: pointer to user's input output buffer information
3742 *   are being modified.
3743 * It returns 0 on success and returns appropriate error code on error.
3744 */
3745int ib_modify_qp_with_udata(struct ib_qp *qp,
3746			    struct ib_qp_attr *attr,
3747			    int attr_mask,
3748			    struct ib_udata *udata);
3749
3750/**
3751 * ib_modify_qp - Modifies the attributes for the specified QP and then
3752 *   transitions the QP to the given state.
3753 * @qp: The QP to modify.
3754 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3755 *   the current values of selected QP attributes are returned.
3756 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3757 *   are being modified.
3758 */
3759int ib_modify_qp(struct ib_qp *qp,
3760		 struct ib_qp_attr *qp_attr,
3761		 int qp_attr_mask);
3762
3763/**
3764 * ib_query_qp - Returns the attribute list and current values for the
3765 *   specified QP.
3766 * @qp: The QP to query.
3767 * @qp_attr: The attributes of the specified QP.
3768 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3769 * @qp_init_attr: Additional attributes of the selected QP.
3770 *
3771 * The qp_attr_mask may be used to limit the query to gathering only the
3772 * selected attributes.
3773 */
3774int ib_query_qp(struct ib_qp *qp,
3775		struct ib_qp_attr *qp_attr,
3776		int qp_attr_mask,
3777		struct ib_qp_init_attr *qp_init_attr);
3778
3779/**
3780 * ib_destroy_qp - Destroys the specified QP.
3781 * @qp: The QP to destroy.
3782 * @udata: Valid udata or NULL for kernel objects
3783 */
3784int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3785
3786/**
3787 * ib_destroy_qp - Destroys the specified kernel QP.
3788 * @qp: The QP to destroy.
3789 *
3790 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3791 */
3792static inline int ib_destroy_qp(struct ib_qp *qp)
3793{
3794	return ib_destroy_qp_user(qp, NULL);
3795}
3796
3797/**
3798 * ib_open_qp - Obtain a reference to an existing sharable QP.
3799 * @xrcd - XRC domain
3800 * @qp_open_attr: Attributes identifying the QP to open.
3801 *
3802 * Returns a reference to a sharable QP.
3803 */
3804struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3805			 struct ib_qp_open_attr *qp_open_attr);
3806
3807/**
3808 * ib_close_qp - Release an external reference to a QP.
3809 * @qp: The QP handle to release
3810 *
3811 * The opened QP handle is released by the caller.  The underlying
3812 * shared QP is not destroyed until all internal references are released.
3813 */
3814int ib_close_qp(struct ib_qp *qp);
3815
3816/**
3817 * ib_post_send - Posts a list of work requests to the send queue of
3818 *   the specified QP.
3819 * @qp: The QP to post the work request on.
3820 * @send_wr: A list of work requests to post on the send queue.
3821 * @bad_send_wr: On an immediate failure, this parameter will reference
3822 *   the work request that failed to be posted on the QP.
3823 *
3824 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3825 * error is returned, the QP state shall not be affected,
3826 * ib_post_send() will return an immediate error after queueing any
3827 * earlier work requests in the list.
3828 */
3829static inline int ib_post_send(struct ib_qp *qp,
3830			       const struct ib_send_wr *send_wr,
3831			       const struct ib_send_wr **bad_send_wr)
3832{
3833	const struct ib_send_wr *dummy;
3834
3835	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3836}
3837
3838/**
3839 * ib_post_recv - Posts a list of work requests to the receive queue of
3840 *   the specified QP.
3841 * @qp: The QP to post the work request on.
3842 * @recv_wr: A list of work requests to post on the receive queue.
3843 * @bad_recv_wr: On an immediate failure, this parameter will reference
3844 *   the work request that failed to be posted on the QP.
3845 */
3846static inline int ib_post_recv(struct ib_qp *qp,
3847			       const struct ib_recv_wr *recv_wr,
3848			       const struct ib_recv_wr **bad_recv_wr)
3849{
3850	const struct ib_recv_wr *dummy;
3851
3852	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3853}
3854
3855struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3856			    int comp_vector, enum ib_poll_context poll_ctx,
3857			    const char *caller);
3858static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3859					int nr_cqe, int comp_vector,
3860					enum ib_poll_context poll_ctx)
3861{
3862	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3863			     KBUILD_MODNAME);
3864}
3865
3866struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3867				int nr_cqe, enum ib_poll_context poll_ctx,
3868				const char *caller);
3869
3870/**
3871 * ib_alloc_cq_any: Allocate kernel CQ
3872 * @dev: The IB device
3873 * @private: Private data attached to the CQE
3874 * @nr_cqe: Number of CQEs in the CQ
3875 * @poll_ctx: Context used for polling the CQ
3876 */
3877static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3878					    void *private, int nr_cqe,
3879					    enum ib_poll_context poll_ctx)
3880{
3881	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3882				 KBUILD_MODNAME);
3883}
3884
3885void ib_free_cq(struct ib_cq *cq);
3886int ib_process_cq_direct(struct ib_cq *cq, int budget);
3887
3888/**
3889 * ib_create_cq - Creates a CQ on the specified device.
3890 * @device: The device on which to create the CQ.
3891 * @comp_handler: A user-specified callback that is invoked when a
3892 *   completion event occurs on the CQ.
3893 * @event_handler: A user-specified callback that is invoked when an
3894 *   asynchronous event not associated with a completion occurs on the CQ.
3895 * @cq_context: Context associated with the CQ returned to the user via
3896 *   the associated completion and event handlers.
3897 * @cq_attr: The attributes the CQ should be created upon.
3898 *
3899 * Users can examine the cq structure to determine the actual CQ size.
3900 */
3901struct ib_cq *__ib_create_cq(struct ib_device *device,
3902			     ib_comp_handler comp_handler,
3903			     void (*event_handler)(struct ib_event *, void *),
3904			     void *cq_context,
3905			     const struct ib_cq_init_attr *cq_attr,
3906			     const char *caller);
3907#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3908	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3909
3910/**
3911 * ib_resize_cq - Modifies the capacity of the CQ.
3912 * @cq: The CQ to resize.
3913 * @cqe: The minimum size of the CQ.
3914 *
3915 * Users can examine the cq structure to determine the actual CQ size.
3916 */
3917int ib_resize_cq(struct ib_cq *cq, int cqe);
3918
3919/**
3920 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3921 * @cq: The CQ to modify.
3922 * @cq_count: number of CQEs that will trigger an event
3923 * @cq_period: max period of time in usec before triggering an event
3924 *
3925 */
3926int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3927
3928/**
3929 * ib_destroy_cq_user - Destroys the specified CQ.
3930 * @cq: The CQ to destroy.
3931 * @udata: Valid user data or NULL for kernel objects
3932 */
3933int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3934
3935/**
3936 * ib_destroy_cq - Destroys the specified kernel CQ.
3937 * @cq: The CQ to destroy.
3938 *
3939 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3940 */
3941static inline void ib_destroy_cq(struct ib_cq *cq)
3942{
3943	int ret = ib_destroy_cq_user(cq, NULL);
3944
3945	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3946}
3947
3948/**
3949 * ib_poll_cq - poll a CQ for completion(s)
3950 * @cq:the CQ being polled
3951 * @num_entries:maximum number of completions to return
3952 * @wc:array of at least @num_entries &struct ib_wc where completions
3953 *   will be returned
3954 *
3955 * Poll a CQ for (possibly multiple) completions.  If the return value
3956 * is < 0, an error occurred.  If the return value is >= 0, it is the
3957 * number of completions returned.  If the return value is
3958 * non-negative and < num_entries, then the CQ was emptied.
3959 */
3960static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3961			     struct ib_wc *wc)
3962{
3963	return cq->device->ops.poll_cq(cq, num_entries, wc);
3964}
3965
3966/**
3967 * ib_req_notify_cq - Request completion notification on a CQ.
3968 * @cq: The CQ to generate an event for.
3969 * @flags:
3970 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3971 *   to request an event on the next solicited event or next work
3972 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3973 *   may also be |ed in to request a hint about missed events, as
3974 *   described below.
3975 *
3976 * Return Value:
3977 *    < 0 means an error occurred while requesting notification
3978 *   == 0 means notification was requested successfully, and if
3979 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3980 *        were missed and it is safe to wait for another event.  In
3981 *        this case is it guaranteed that any work completions added
3982 *        to the CQ since the last CQ poll will trigger a completion
3983 *        notification event.
3984 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3985 *        in.  It means that the consumer must poll the CQ again to
3986 *        make sure it is empty to avoid missing an event because of a
3987 *        race between requesting notification and an entry being
3988 *        added to the CQ.  This return value means it is possible
3989 *        (but not guaranteed) that a work completion has been added
3990 *        to the CQ since the last poll without triggering a
3991 *        completion notification event.
3992 */
3993static inline int ib_req_notify_cq(struct ib_cq *cq,
3994				   enum ib_cq_notify_flags flags)
3995{
3996	return cq->device->ops.req_notify_cq(cq, flags);
3997}
3998
3999struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4000			     int comp_vector_hint,
4001			     enum ib_poll_context poll_ctx);
4002
4003void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4004
4005/*
4006 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4007 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4008 * address into the dma address.
4009 */
4010static inline bool ib_uses_virt_dma(struct ib_device *dev)
4011{
4012	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4013}
4014
4015/*
4016 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4017 */
4018static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4019{
4020	if (ib_uses_virt_dma(dev))
4021		return false;
4022
4023	return dma_pci_p2pdma_supported(dev->dma_device);
4024}
4025
4026/**
4027 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4028 * @dma_addr: The DMA address
4029 *
4030 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4031 * going through the dma_addr marshalling.
4032 */
4033static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4034{
4035	/* virt_dma mode maps the kvs's directly into the dma addr */
4036	return (void *)(uintptr_t)dma_addr;
4037}
4038
4039/**
4040 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4041 * @dma_addr: The DMA address
4042 *
4043 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4044 * through the dma_addr marshalling.
4045 */
4046static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4047{
4048	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4049}
4050
4051/**
4052 * ib_dma_mapping_error - check a DMA addr for error
4053 * @dev: The device for which the dma_addr was created
4054 * @dma_addr: The DMA address to check
4055 */
4056static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4057{
4058	if (ib_uses_virt_dma(dev))
4059		return 0;
4060	return dma_mapping_error(dev->dma_device, dma_addr);
4061}
4062
4063/**
4064 * ib_dma_map_single - Map a kernel virtual address to DMA address
4065 * @dev: The device for which the dma_addr is to be created
4066 * @cpu_addr: The kernel virtual address
4067 * @size: The size of the region in bytes
4068 * @direction: The direction of the DMA
4069 */
4070static inline u64 ib_dma_map_single(struct ib_device *dev,
4071				    void *cpu_addr, size_t size,
4072				    enum dma_data_direction direction)
4073{
4074	if (ib_uses_virt_dma(dev))
4075		return (uintptr_t)cpu_addr;
4076	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4077}
4078
4079/**
4080 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4081 * @dev: The device for which the DMA address was created
4082 * @addr: The DMA address
4083 * @size: The size of the region in bytes
4084 * @direction: The direction of the DMA
4085 */
4086static inline void ib_dma_unmap_single(struct ib_device *dev,
4087				       u64 addr, size_t size,
4088				       enum dma_data_direction direction)
4089{
4090	if (!ib_uses_virt_dma(dev))
4091		dma_unmap_single(dev->dma_device, addr, size, direction);
4092}
4093
4094/**
4095 * ib_dma_map_page - Map a physical page to DMA address
4096 * @dev: The device for which the dma_addr is to be created
4097 * @page: The page to be mapped
4098 * @offset: The offset within the page
4099 * @size: The size of the region in bytes
4100 * @direction: The direction of the DMA
4101 */
4102static inline u64 ib_dma_map_page(struct ib_device *dev,
4103				  struct page *page,
4104				  unsigned long offset,
4105				  size_t size,
4106					 enum dma_data_direction direction)
4107{
4108	if (ib_uses_virt_dma(dev))
4109		return (uintptr_t)(page_address(page) + offset);
4110	return dma_map_page(dev->dma_device, page, offset, size, direction);
4111}
4112
4113/**
4114 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4115 * @dev: The device for which the DMA address was created
4116 * @addr: The DMA address
4117 * @size: The size of the region in bytes
4118 * @direction: The direction of the DMA
4119 */
4120static inline void ib_dma_unmap_page(struct ib_device *dev,
4121				     u64 addr, size_t size,
4122				     enum dma_data_direction direction)
4123{
4124	if (!ib_uses_virt_dma(dev))
4125		dma_unmap_page(dev->dma_device, addr, size, direction);
4126}
4127
4128int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4129static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4130				      struct scatterlist *sg, int nents,
4131				      enum dma_data_direction direction,
4132				      unsigned long dma_attrs)
4133{
4134	if (ib_uses_virt_dma(dev))
4135		return ib_dma_virt_map_sg(dev, sg, nents);
4136	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4137				dma_attrs);
4138}
4139
4140static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4141					 struct scatterlist *sg, int nents,
4142					 enum dma_data_direction direction,
4143					 unsigned long dma_attrs)
4144{
4145	if (!ib_uses_virt_dma(dev))
4146		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4147				   dma_attrs);
4148}
4149
4150/**
4151 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4152 * @dev: The device for which the DMA addresses are to be created
4153 * @sg: The sg_table object describing the buffer
4154 * @direction: The direction of the DMA
4155 * @attrs: Optional DMA attributes for the map operation
4156 */
4157static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4158					   struct sg_table *sgt,
4159					   enum dma_data_direction direction,
4160					   unsigned long dma_attrs)
4161{
4162	int nents;
4163
4164	if (ib_uses_virt_dma(dev)) {
4165		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4166		if (!nents)
4167			return -EIO;
4168		sgt->nents = nents;
4169		return 0;
4170	}
4171	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4172}
4173
4174static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4175					      struct sg_table *sgt,
4176					      enum dma_data_direction direction,
4177					      unsigned long dma_attrs)
4178{
4179	if (!ib_uses_virt_dma(dev))
4180		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4181}
4182
4183/**
4184 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4185 * @dev: The device for which the DMA addresses are to be created
4186 * @sg: The array of scatter/gather entries
4187 * @nents: The number of scatter/gather entries
4188 * @direction: The direction of the DMA
4189 */
4190static inline int ib_dma_map_sg(struct ib_device *dev,
4191				struct scatterlist *sg, int nents,
4192				enum dma_data_direction direction)
4193{
4194	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4195}
4196
4197/**
4198 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4199 * @dev: The device for which the DMA addresses were created
4200 * @sg: The array of scatter/gather entries
4201 * @nents: The number of scatter/gather entries
4202 * @direction: The direction of the DMA
4203 */
4204static inline void ib_dma_unmap_sg(struct ib_device *dev,
4205				   struct scatterlist *sg, int nents,
4206				   enum dma_data_direction direction)
4207{
4208	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4209}
4210
4211/**
4212 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4213 * @dev: The device to query
4214 *
4215 * The returned value represents a size in bytes.
4216 */
4217static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4218{
4219	if (ib_uses_virt_dma(dev))
4220		return UINT_MAX;
4221	return dma_get_max_seg_size(dev->dma_device);
4222}
4223
4224/**
4225 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4226 * @dev: The device for which the DMA address was created
4227 * @addr: The DMA address
4228 * @size: The size of the region in bytes
4229 * @dir: The direction of the DMA
4230 */
4231static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4232					      u64 addr,
4233					      size_t size,
4234					      enum dma_data_direction dir)
4235{
4236	if (!ib_uses_virt_dma(dev))
4237		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4238}
4239
4240/**
4241 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4242 * @dev: The device for which the DMA address was created
4243 * @addr: The DMA address
4244 * @size: The size of the region in bytes
4245 * @dir: The direction of the DMA
4246 */
4247static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4248						 u64 addr,
4249						 size_t size,
4250						 enum dma_data_direction dir)
4251{
4252	if (!ib_uses_virt_dma(dev))
4253		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4254}
4255
4256/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4257 * space. This function should be called when 'current' is the owning MM.
4258 */
4259struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4260			     u64 virt_addr, int mr_access_flags);
4261
4262/* ib_advise_mr -  give an advice about an address range in a memory region */
4263int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4264		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4265/**
4266 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4267 *   HCA translation table.
4268 * @mr: The memory region to deregister.
4269 * @udata: Valid user data or NULL for kernel object
4270 *
4271 * This function can fail, if the memory region has memory windows bound to it.
4272 */
4273int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4274
4275/**
4276 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4277 *   HCA translation table.
4278 * @mr: The memory region to deregister.
4279 *
4280 * This function can fail, if the memory region has memory windows bound to it.
4281 *
4282 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4283 */
4284static inline int ib_dereg_mr(struct ib_mr *mr)
4285{
4286	return ib_dereg_mr_user(mr, NULL);
4287}
4288
4289struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4290			  u32 max_num_sg);
4291
4292struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4293				    u32 max_num_data_sg,
4294				    u32 max_num_meta_sg);
4295
4296/**
4297 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4298 *   R_Key and L_Key.
4299 * @mr - struct ib_mr pointer to be updated.
4300 * @newkey - new key to be used.
4301 */
4302static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4303{
4304	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4305	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4306}
4307
4308/**
4309 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4310 * for calculating a new rkey for type 2 memory windows.
4311 * @rkey - the rkey to increment.
4312 */
4313static inline u32 ib_inc_rkey(u32 rkey)
4314{
4315	const u32 mask = 0x000000ff;
4316	return ((rkey + 1) & mask) | (rkey & ~mask);
4317}
4318
4319/**
4320 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4321 * @qp: QP to attach to the multicast group.  The QP must be type
4322 *   IB_QPT_UD.
4323 * @gid: Multicast group GID.
4324 * @lid: Multicast group LID in host byte order.
4325 *
4326 * In order to send and receive multicast packets, subnet
4327 * administration must have created the multicast group and configured
4328 * the fabric appropriately.  The port associated with the specified
4329 * QP must also be a member of the multicast group.
4330 */
4331int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4332
4333/**
4334 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4335 * @qp: QP to detach from the multicast group.
4336 * @gid: Multicast group GID.
4337 * @lid: Multicast group LID in host byte order.
4338 */
4339int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4340
4341struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4342				   struct inode *inode, struct ib_udata *udata);
4343int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4344
4345static inline int ib_check_mr_access(struct ib_device *ib_dev,
4346				     unsigned int flags)
4347{
4348	u64 device_cap = ib_dev->attrs.device_cap_flags;
4349
4350	/*
4351	 * Local write permission is required if remote write or
4352	 * remote atomic permission is also requested.
4353	 */
4354	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4355	    !(flags & IB_ACCESS_LOCAL_WRITE))
4356		return -EINVAL;
4357
4358	if (flags & ~IB_ACCESS_SUPPORTED)
4359		return -EINVAL;
4360
4361	if (flags & IB_ACCESS_ON_DEMAND &&
4362	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4363		return -EOPNOTSUPP;
4364
4365	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4366	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4367	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4368	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4369		return -EOPNOTSUPP;
4370
4371	return 0;
4372}
4373
4374static inline bool ib_access_writable(int access_flags)
4375{
4376	/*
4377	 * We have writable memory backing the MR if any of the following
4378	 * access flags are set.  "Local write" and "remote write" obviously
4379	 * require write access.  "Remote atomic" can do things like fetch and
4380	 * add, which will modify memory, and "MW bind" can change permissions
4381	 * by binding a window.
4382	 */
4383	return access_flags &
4384		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4385		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4386}
4387
4388/**
4389 * ib_check_mr_status: lightweight check of MR status.
4390 *     This routine may provide status checks on a selected
4391 *     ib_mr. first use is for signature status check.
4392 *
4393 * @mr: A memory region.
4394 * @check_mask: Bitmask of which checks to perform from
4395 *     ib_mr_status_check enumeration.
4396 * @mr_status: The container of relevant status checks.
4397 *     failed checks will be indicated in the status bitmask
4398 *     and the relevant info shall be in the error item.
4399 */
4400int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4401		       struct ib_mr_status *mr_status);
4402
4403/**
4404 * ib_device_try_get: Hold a registration lock
4405 * device: The device to lock
4406 *
4407 * A device under an active registration lock cannot become unregistered. It
4408 * is only possible to obtain a registration lock on a device that is fully
4409 * registered, otherwise this function returns false.
4410 *
4411 * The registration lock is only necessary for actions which require the
4412 * device to still be registered. Uses that only require the device pointer to
4413 * be valid should use get_device(&ibdev->dev) to hold the memory.
4414 *
4415 */
4416static inline bool ib_device_try_get(struct ib_device *dev)
4417{
4418	return refcount_inc_not_zero(&dev->refcount);
4419}
4420
4421void ib_device_put(struct ib_device *device);
4422struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4423					  enum rdma_driver_id driver_id);
4424struct ib_device *ib_device_get_by_name(const char *name,
4425					enum rdma_driver_id driver_id);
4426struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4427					    u16 pkey, const union ib_gid *gid,
4428					    const struct sockaddr *addr);
4429int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4430			 unsigned int port);
4431struct ib_wq *ib_create_wq(struct ib_pd *pd,
4432			   struct ib_wq_init_attr *init_attr);
4433int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4434
4435int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4436		 unsigned int *sg_offset, unsigned int page_size);
4437int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4438		    int data_sg_nents, unsigned int *data_sg_offset,
4439		    struct scatterlist *meta_sg, int meta_sg_nents,
4440		    unsigned int *meta_sg_offset, unsigned int page_size);
4441
4442static inline int
4443ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4444		  unsigned int *sg_offset, unsigned int page_size)
4445{
4446	int n;
4447
4448	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4449	mr->iova = 0;
4450
4451	return n;
4452}
4453
4454int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4455		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4456
4457void ib_drain_rq(struct ib_qp *qp);
4458void ib_drain_sq(struct ib_qp *qp);
4459void ib_drain_qp(struct ib_qp *qp);
4460
4461int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4462		     u8 *width);
4463
4464static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4465{
4466	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4467		return attr->roce.dmac;
4468	return NULL;
4469}
4470
4471static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4472{
4473	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4474		attr->ib.dlid = (u16)dlid;
4475	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4476		attr->opa.dlid = dlid;
4477}
4478
4479static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4480{
4481	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4482		return attr->ib.dlid;
4483	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4484		return attr->opa.dlid;
4485	return 0;
4486}
4487
4488static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4489{
4490	attr->sl = sl;
4491}
4492
4493static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4494{
4495	return attr->sl;
4496}
4497
4498static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4499					 u8 src_path_bits)
4500{
4501	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4502		attr->ib.src_path_bits = src_path_bits;
4503	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4504		attr->opa.src_path_bits = src_path_bits;
4505}
4506
4507static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4508{
4509	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4510		return attr->ib.src_path_bits;
4511	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4512		return attr->opa.src_path_bits;
4513	return 0;
4514}
4515
4516static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4517					bool make_grd)
4518{
4519	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4520		attr->opa.make_grd = make_grd;
4521}
4522
4523static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4524{
4525	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4526		return attr->opa.make_grd;
4527	return false;
4528}
4529
4530static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4531{
4532	attr->port_num = port_num;
4533}
4534
4535static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4536{
4537	return attr->port_num;
4538}
4539
4540static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4541					   u8 static_rate)
4542{
4543	attr->static_rate = static_rate;
4544}
4545
4546static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4547{
4548	return attr->static_rate;
4549}
4550
4551static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4552					enum ib_ah_flags flag)
4553{
4554	attr->ah_flags = flag;
4555}
4556
4557static inline enum ib_ah_flags
4558		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4559{
4560	return attr->ah_flags;
4561}
4562
4563static inline const struct ib_global_route
4564		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4565{
4566	return &attr->grh;
4567}
4568
4569/*To retrieve and modify the grh */
4570static inline struct ib_global_route
4571		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4572{
4573	return &attr->grh;
4574}
4575
4576static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4577{
4578	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4579
4580	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4581}
4582
4583static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4584					     __be64 prefix)
4585{
4586	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4587
4588	grh->dgid.global.subnet_prefix = prefix;
4589}
4590
4591static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4592					    __be64 if_id)
4593{
4594	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4595
4596	grh->dgid.global.interface_id = if_id;
4597}
4598
4599static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4600				   union ib_gid *dgid, u32 flow_label,
4601				   u8 sgid_index, u8 hop_limit,
4602				   u8 traffic_class)
4603{
4604	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4605
4606	attr->ah_flags = IB_AH_GRH;
4607	if (dgid)
4608		grh->dgid = *dgid;
4609	grh->flow_label = flow_label;
4610	grh->sgid_index = sgid_index;
4611	grh->hop_limit = hop_limit;
4612	grh->traffic_class = traffic_class;
4613	grh->sgid_attr = NULL;
4614}
4615
4616void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4617void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4618			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4619			     const struct ib_gid_attr *sgid_attr);
4620void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4621		       const struct rdma_ah_attr *src);
4622void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4623			  const struct rdma_ah_attr *new);
4624void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4625
4626/**
4627 * rdma_ah_find_type - Return address handle type.
4628 *
4629 * @dev: Device to be checked
4630 * @port_num: Port number
4631 */
4632static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4633						       u32 port_num)
4634{
4635	if (rdma_protocol_roce(dev, port_num))
4636		return RDMA_AH_ATTR_TYPE_ROCE;
4637	if (rdma_protocol_ib(dev, port_num)) {
4638		if (rdma_cap_opa_ah(dev, port_num))
4639			return RDMA_AH_ATTR_TYPE_OPA;
4640		return RDMA_AH_ATTR_TYPE_IB;
4641	}
4642
4643	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4644}
4645
4646/**
4647 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4648 *     In the current implementation the only way to
4649 *     get the 32bit lid is from other sources for OPA.
4650 *     For IB, lids will always be 16bits so cast the
4651 *     value accordingly.
4652 *
4653 * @lid: A 32bit LID
4654 */
4655static inline u16 ib_lid_cpu16(u32 lid)
4656{
4657	WARN_ON_ONCE(lid & 0xFFFF0000);
4658	return (u16)lid;
4659}
4660
4661/**
4662 * ib_lid_be16 - Return lid in 16bit BE encoding.
4663 *
4664 * @lid: A 32bit LID
4665 */
4666static inline __be16 ib_lid_be16(u32 lid)
4667{
4668	WARN_ON_ONCE(lid & 0xFFFF0000);
4669	return cpu_to_be16((u16)lid);
4670}
4671
4672/**
4673 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4674 *   vector
4675 * @device:         the rdma device
4676 * @comp_vector:    index of completion vector
4677 *
4678 * Returns NULL on failure, otherwise a corresponding cpu map of the
4679 * completion vector (returns all-cpus map if the device driver doesn't
4680 * implement get_vector_affinity).
4681 */
4682static inline const struct cpumask *
4683ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4684{
4685	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4686	    !device->ops.get_vector_affinity)
4687		return NULL;
4688
4689	return device->ops.get_vector_affinity(device, comp_vector);
4690
4691}
4692
4693/**
4694 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4695 * and add their gids, as needed, to the relevant RoCE devices.
4696 *
4697 * @device:         the rdma device
4698 */
4699void rdma_roce_rescan_device(struct ib_device *ibdev);
4700
4701struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4702
4703int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4704
4705struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4706				     enum rdma_netdev_t type, const char *name,
4707				     unsigned char name_assign_type,
4708				     void (*setup)(struct net_device *));
4709
4710int rdma_init_netdev(struct ib_device *device, u32 port_num,
4711		     enum rdma_netdev_t type, const char *name,
4712		     unsigned char name_assign_type,
4713		     void (*setup)(struct net_device *),
4714		     struct net_device *netdev);
4715
4716/**
4717 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4718 *
4719 * @device:	device pointer for which ib_device pointer to retrieve
4720 *
4721 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4722 *
4723 */
4724static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4725{
4726	struct ib_core_device *coredev =
4727		container_of(device, struct ib_core_device, dev);
4728
4729	return coredev->owner;
4730}
4731
4732/**
4733 * ibdev_to_node - return the NUMA node for a given ib_device
4734 * @dev:	device to get the NUMA node for.
4735 */
4736static inline int ibdev_to_node(struct ib_device *ibdev)
4737{
4738	struct device *parent = ibdev->dev.parent;
4739
4740	if (!parent)
4741		return NUMA_NO_NODE;
4742	return dev_to_node(parent);
4743}
4744
4745/**
4746 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4747 *			       ib_device holder structure from device pointer.
4748 *
4749 * NOTE: New drivers should not make use of this API; This API is only for
4750 * existing drivers who have exposed sysfs entries using
4751 * ops->device_group.
4752 */
4753#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4754	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4755
4756bool rdma_dev_access_netns(const struct ib_device *device,
4757			   const struct net *net);
4758
4759#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4760#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4761#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4762
4763/**
4764 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4765 *                               on the flow_label
4766 *
4767 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4768 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4769 * convention.
4770 */
4771static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4772{
4773	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4774
4775	fl_low ^= fl_high >> 14;
4776	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4777}
4778
4779/**
4780 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4781 *                        local and remote qpn values
4782 *
4783 * This function folded the multiplication results of two qpns, 24 bit each,
4784 * fields, and converts it to a 20 bit results.
4785 *
4786 * This function will create symmetric flow_label value based on the local
4787 * and remote qpn values. this will allow both the requester and responder
4788 * to calculate the same flow_label for a given connection.
4789 *
4790 * This helper function should be used by driver in case the upper layer
4791 * provide a zero flow_label value. This is to improve entropy of RDMA
4792 * traffic in the network.
4793 */
4794static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4795{
4796	u64 v = (u64)lqpn * rqpn;
4797
4798	v ^= v >> 20;
4799	v ^= v >> 40;
4800
4801	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4802}
4803
4804/**
4805 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4806 *                      label. If flow label is not defined in GRH then
4807 *                      calculate it based on lqpn/rqpn.
4808 *
4809 * @fl:                 flow label from GRH
4810 * @lqpn:               local qp number
4811 * @rqpn:               remote qp number
4812 */
4813static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4814{
4815	if (!fl)
4816		fl = rdma_calc_flow_label(lqpn, rqpn);
4817
4818	return rdma_flow_label_to_udp_sport(fl);
4819}
4820
4821const struct ib_port_immutable*
4822ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4823#endif /* IB_VERBS_H */
4824