1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Definitions for the AF_INET socket handler.
8 *
9 * Version:	@(#)sock.h	1.0.4	05/13/93
10 *
11 * Authors:	Ross Biro
12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 *		Alan Cox	:	Volatiles in skbuff pointers. See
18 *					skbuff comments. May be overdone,
19 *					better to prove they can be removed
20 *					than the reverse.
21 *		Alan Cox	:	Added a zapped field for tcp to note
22 *					a socket is reset and must stay shut up
23 *		Alan Cox	:	New fields for options
24 *	Pauline Middelink	:	identd support
25 *		Alan Cox	:	Eliminate low level recv/recvfrom
26 *		David S. Miller	:	New socket lookup architecture.
27 *              Steve Whitehouse:       Default routines for sock_ops
28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29 *              			protinfo be just a void pointer, as the
30 *              			protocol specific parts were moved to
31 *              			respective headers and ipv4/v6, etc now
32 *              			use private slabcaches for its socks
33 *              Pedro Hortas	:	New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h>	/* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/rculist_nulls.h>
60#include <linux/poll.h>
61#include <linux/sockptr.h>
62#include <linux/indirect_call_wrapper.h>
63#include <linux/atomic.h>
64#include <linux/refcount.h>
65#include <linux/llist.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71#include <uapi/linux/socket.h>
72
73/*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79/* This is the per-socket lock.  The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83typedef struct {
84	spinlock_t		slock;
85	int			owned;
86	wait_queue_head_t	wq;
87	/*
88	 * We express the mutex-alike socket_lock semantics
89	 * to the lock validator by explicitly managing
90	 * the slock as a lock variant (in addition to
91	 * the slock itself):
92	 */
93#ifdef CONFIG_DEBUG_LOCK_ALLOC
94	struct lockdep_map dep_map;
95#endif
96} socket_lock_t;
97
98struct sock;
99struct proto;
100struct net;
101
102typedef __u32 __bitwise __portpair;
103typedef __u64 __bitwise __addrpair;
104
105/**
106 *	struct sock_common - minimal network layer representation of sockets
107 *	@skc_daddr: Foreign IPv4 addr
108 *	@skc_rcv_saddr: Bound local IPv4 addr
109 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 *	@skc_hash: hash value used with various protocol lookup tables
111 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
112 *	@skc_dport: placeholder for inet_dport/tw_dport
113 *	@skc_num: placeholder for inet_num/tw_num
114 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
115 *	@skc_family: network address family
116 *	@skc_state: Connection state
117 *	@skc_reuse: %SO_REUSEADDR setting
118 *	@skc_reuseport: %SO_REUSEPORT setting
119 *	@skc_ipv6only: socket is IPV6 only
120 *	@skc_net_refcnt: socket is using net ref counting
121 *	@skc_bound_dev_if: bound device index if != 0
122 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
123 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 *	@skc_prot: protocol handlers inside a network family
125 *	@skc_net: reference to the network namespace of this socket
126 *	@skc_v6_daddr: IPV6 destination address
127 *	@skc_v6_rcv_saddr: IPV6 source address
128 *	@skc_cookie: socket's cookie value
129 *	@skc_node: main hash linkage for various protocol lookup tables
130 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 *	@skc_tx_queue_mapping: tx queue number for this connection
132 *	@skc_rx_queue_mapping: rx queue number for this connection
133 *	@skc_flags: place holder for sk_flags
134 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 *	@skc_listener: connection request listener socket (aka rsk_listener)
137 *		[union with @skc_flags]
138 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 *		[union with @skc_flags]
140 *	@skc_incoming_cpu: record/match cpu processing incoming packets
141 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 *		[union with @skc_incoming_cpu]
143 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 *		[union with @skc_incoming_cpu]
145 *	@skc_refcnt: reference count
146 *
147 *	This is the minimal network layer representation of sockets, the header
148 *	for struct sock and struct inet_timewait_sock.
149 */
150struct sock_common {
151	union {
152		__addrpair	skc_addrpair;
153		struct {
154			__be32	skc_daddr;
155			__be32	skc_rcv_saddr;
156		};
157	};
158	union  {
159		unsigned int	skc_hash;
160		__u16		skc_u16hashes[2];
161	};
162	/* skc_dport && skc_num must be grouped as well */
163	union {
164		__portpair	skc_portpair;
165		struct {
166			__be16	skc_dport;
167			__u16	skc_num;
168		};
169	};
170
171	unsigned short		skc_family;
172	volatile unsigned char	skc_state;
173	unsigned char		skc_reuse:4;
174	unsigned char		skc_reuseport:1;
175	unsigned char		skc_ipv6only:1;
176	unsigned char		skc_net_refcnt:1;
177	int			skc_bound_dev_if;
178	union {
179		struct hlist_node	skc_bind_node;
180		struct hlist_node	skc_portaddr_node;
181	};
182	struct proto		*skc_prot;
183	possible_net_t		skc_net;
184
185#if IS_ENABLED(CONFIG_IPV6)
186	struct in6_addr		skc_v6_daddr;
187	struct in6_addr		skc_v6_rcv_saddr;
188#endif
189
190	atomic64_t		skc_cookie;
191
192	/* following fields are padding to force
193	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194	 * assuming IPV6 is enabled. We use this padding differently
195	 * for different kind of 'sockets'
196	 */
197	union {
198		unsigned long	skc_flags;
199		struct sock	*skc_listener; /* request_sock */
200		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201	};
202	/*
203	 * fields between dontcopy_begin/dontcopy_end
204	 * are not copied in sock_copy()
205	 */
206	/* private: */
207	int			skc_dontcopy_begin[0];
208	/* public: */
209	union {
210		struct hlist_node	skc_node;
211		struct hlist_nulls_node skc_nulls_node;
212	};
213	unsigned short		skc_tx_queue_mapping;
214#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215	unsigned short		skc_rx_queue_mapping;
216#endif
217	union {
218		int		skc_incoming_cpu;
219		u32		skc_rcv_wnd;
220		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
221	};
222
223	refcount_t		skc_refcnt;
224	/* private: */
225	int                     skc_dontcopy_end[0];
226	union {
227		u32		skc_rxhash;
228		u32		skc_window_clamp;
229		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230	};
231	/* public: */
232};
233
234struct bpf_local_storage;
235struct sk_filter;
236
237/**
238  *	struct sock - network layer representation of sockets
239  *	@__sk_common: shared layout with inet_timewait_sock
240  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242  *	@sk_lock:	synchronizer
243  *	@sk_kern_sock: True if sock is using kernel lock classes
244  *	@sk_rcvbuf: size of receive buffer in bytes
245  *	@sk_wq: sock wait queue and async head
246  *	@sk_rx_dst: receive input route used by early demux
247  *	@sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248  *	@sk_rx_dst_cookie: cookie for @sk_rx_dst
249  *	@sk_dst_cache: destination cache
250  *	@sk_dst_pending_confirm: need to confirm neighbour
251  *	@sk_policy: flow policy
252  *	@sk_receive_queue: incoming packets
253  *	@sk_wmem_alloc: transmit queue bytes committed
254  *	@sk_tsq_flags: TCP Small Queues flags
255  *	@sk_write_queue: Packet sending queue
256  *	@sk_omem_alloc: "o" is "option" or "other"
257  *	@sk_wmem_queued: persistent queue size
258  *	@sk_forward_alloc: space allocated forward
259  *	@sk_reserved_mem: space reserved and non-reclaimable for the socket
260  *	@sk_napi_id: id of the last napi context to receive data for sk
261  *	@sk_ll_usec: usecs to busypoll when there is no data
262  *	@sk_allocation: allocation mode
263  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
265  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266  *	@sk_sndbuf: size of send buffer in bytes
267  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268  *	@sk_no_check_rx: allow zero checksum in RX packets
269  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270  *	@sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272  *	@sk_gso_max_size: Maximum GSO segment size to build
273  *	@sk_gso_max_segs: Maximum number of GSO segments
274  *	@sk_pacing_shift: scaling factor for TCP Small Queues
275  *	@sk_lingertime: %SO_LINGER l_linger setting
276  *	@sk_backlog: always used with the per-socket spinlock held
277  *	@sk_callback_lock: used with the callbacks in the end of this struct
278  *	@sk_error_queue: rarely used
279  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280  *			  IPV6_ADDRFORM for instance)
281  *	@sk_err: last error
282  *	@sk_err_soft: errors that don't cause failure but are the cause of a
283  *		      persistent failure not just 'timed out'
284  *	@sk_drops: raw/udp drops counter
285  *	@sk_ack_backlog: current listen backlog
286  *	@sk_max_ack_backlog: listen backlog set in listen()
287  *	@sk_uid: user id of owner
288  *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
289  *	@sk_busy_poll_budget: napi processing budget when busypolling
290  *	@sk_priority: %SO_PRIORITY setting
291  *	@sk_type: socket type (%SOCK_STREAM, etc)
292  *	@sk_protocol: which protocol this socket belongs in this network family
293  *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294  *	@sk_peer_pid: &struct pid for this socket's peer
295  *	@sk_peer_cred: %SO_PEERCRED setting
296  *	@sk_rcvlowat: %SO_RCVLOWAT setting
297  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
298  *	@sk_sndtimeo: %SO_SNDTIMEO setting
299  *	@sk_txhash: computed flow hash for use on transmit
300  *	@sk_txrehash: enable TX hash rethink
301  *	@sk_filter: socket filtering instructions
302  *	@sk_timer: sock cleanup timer
303  *	@sk_stamp: time stamp of last packet received
304  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305  *	@sk_tsflags: SO_TIMESTAMPING flags
306  *	@sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307  *			   Sockets that can be used under memory reclaim should
308  *			   set this to false.
309  *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310  *	              for timestamping
311  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
312  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
313  *	@sk_socket: Identd and reporting IO signals
314  *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315  *	@sk_frag: cached page frag
316  *	@sk_peek_off: current peek_offset value
317  *	@sk_send_head: front of stuff to transmit
318  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319  *	@sk_security: used by security modules
320  *	@sk_mark: generic packet mark
321  *	@sk_cgrp_data: cgroup data for this cgroup
322  *	@sk_memcg: this socket's memory cgroup association
323  *	@sk_write_pending: a write to stream socket waits to start
324  *	@sk_disconnects: number of disconnect operations performed on this sock
325  *	@sk_state_change: callback to indicate change in the state of the sock
326  *	@sk_data_ready: callback to indicate there is data to be processed
327  *	@sk_write_space: callback to indicate there is bf sending space available
328  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329  *	@sk_backlog_rcv: callback to process the backlog
330  *	@sk_validate_xmit_skb: ptr to an optional validate function
331  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332  *	@sk_reuseport_cb: reuseport group container
333  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334  *	@sk_rcu: used during RCU grace period
335  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
338  *	@sk_txtime_unused: unused txtime flags
339  *	@ns_tracker: tracker for netns reference
340  */
341struct sock {
342	/*
343	 * Now struct inet_timewait_sock also uses sock_common, so please just
344	 * don't add nothing before this first member (__sk_common) --acme
345	 */
346	struct sock_common	__sk_common;
347#define sk_node			__sk_common.skc_node
348#define sk_nulls_node		__sk_common.skc_nulls_node
349#define sk_refcnt		__sk_common.skc_refcnt
350#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
351#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
352#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
353#endif
354
355#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
356#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
357#define sk_hash			__sk_common.skc_hash
358#define sk_portpair		__sk_common.skc_portpair
359#define sk_num			__sk_common.skc_num
360#define sk_dport		__sk_common.skc_dport
361#define sk_addrpair		__sk_common.skc_addrpair
362#define sk_daddr		__sk_common.skc_daddr
363#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
364#define sk_family		__sk_common.skc_family
365#define sk_state		__sk_common.skc_state
366#define sk_reuse		__sk_common.skc_reuse
367#define sk_reuseport		__sk_common.skc_reuseport
368#define sk_ipv6only		__sk_common.skc_ipv6only
369#define sk_net_refcnt		__sk_common.skc_net_refcnt
370#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
371#define sk_bind_node		__sk_common.skc_bind_node
372#define sk_prot			__sk_common.skc_prot
373#define sk_net			__sk_common.skc_net
374#define sk_v6_daddr		__sk_common.skc_v6_daddr
375#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
376#define sk_cookie		__sk_common.skc_cookie
377#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
378#define sk_flags		__sk_common.skc_flags
379#define sk_rxhash		__sk_common.skc_rxhash
380
381	__cacheline_group_begin(sock_write_rx);
382
383	atomic_t		sk_drops;
384	__s32			sk_peek_off;
385	struct sk_buff_head	sk_error_queue;
386	struct sk_buff_head	sk_receive_queue;
387	/*
388	 * The backlog queue is special, it is always used with
389	 * the per-socket spinlock held and requires low latency
390	 * access. Therefore we special case it's implementation.
391	 * Note : rmem_alloc is in this structure to fill a hole
392	 * on 64bit arches, not because its logically part of
393	 * backlog.
394	 */
395	struct {
396		atomic_t	rmem_alloc;
397		int		len;
398		struct sk_buff	*head;
399		struct sk_buff	*tail;
400	} sk_backlog;
401#define sk_rmem_alloc sk_backlog.rmem_alloc
402
403	__cacheline_group_end(sock_write_rx);
404
405	__cacheline_group_begin(sock_read_rx);
406	/* early demux fields */
407	struct dst_entry __rcu	*sk_rx_dst;
408	int			sk_rx_dst_ifindex;
409	u32			sk_rx_dst_cookie;
410
411#ifdef CONFIG_NET_RX_BUSY_POLL
412	unsigned int		sk_ll_usec;
413	unsigned int		sk_napi_id;
414	u16			sk_busy_poll_budget;
415	u8			sk_prefer_busy_poll;
416#endif
417	u8			sk_userlocks;
418	int			sk_rcvbuf;
419
420	struct sk_filter __rcu	*sk_filter;
421	union {
422		struct socket_wq __rcu	*sk_wq;
423		/* private: */
424		struct socket_wq	*sk_wq_raw;
425		/* public: */
426	};
427
428	void			(*sk_data_ready)(struct sock *sk);
429	long			sk_rcvtimeo;
430	int			sk_rcvlowat;
431	__cacheline_group_end(sock_read_rx);
432
433	__cacheline_group_begin(sock_read_rxtx);
434	int			sk_err;
435	struct socket		*sk_socket;
436	struct mem_cgroup	*sk_memcg;
437#ifdef CONFIG_XFRM
438	struct xfrm_policy __rcu *sk_policy[2];
439#endif
440	__cacheline_group_end(sock_read_rxtx);
441
442	__cacheline_group_begin(sock_write_rxtx);
443	socket_lock_t		sk_lock;
444	u32			sk_reserved_mem;
445	int			sk_forward_alloc;
446	u32			sk_tsflags;
447	__cacheline_group_end(sock_write_rxtx);
448
449	__cacheline_group_begin(sock_write_tx);
450	int			sk_write_pending;
451	atomic_t		sk_omem_alloc;
452	int			sk_sndbuf;
453
454	int			sk_wmem_queued;
455	refcount_t		sk_wmem_alloc;
456	unsigned long		sk_tsq_flags;
457	union {
458		struct sk_buff	*sk_send_head;
459		struct rb_root	tcp_rtx_queue;
460	};
461	struct sk_buff_head	sk_write_queue;
462	u32			sk_dst_pending_confirm;
463	u32			sk_pacing_status; /* see enum sk_pacing */
464	struct page_frag	sk_frag;
465	struct timer_list	sk_timer;
466
467	unsigned long		sk_pacing_rate; /* bytes per second */
468	atomic_t		sk_zckey;
469	atomic_t		sk_tskey;
470	__cacheline_group_end(sock_write_tx);
471
472	__cacheline_group_begin(sock_read_tx);
473	unsigned long		sk_max_pacing_rate;
474	long			sk_sndtimeo;
475	u32			sk_priority;
476	u32			sk_mark;
477	struct dst_entry __rcu	*sk_dst_cache;
478	netdev_features_t	sk_route_caps;
479#ifdef CONFIG_SOCK_VALIDATE_XMIT
480	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
481							struct net_device *dev,
482							struct sk_buff *skb);
483#endif
484	u16			sk_gso_type;
485	u16			sk_gso_max_segs;
486	unsigned int		sk_gso_max_size;
487	gfp_t			sk_allocation;
488	u32			sk_txhash;
489	u8			sk_pacing_shift;
490	bool			sk_use_task_frag;
491	__cacheline_group_end(sock_read_tx);
492
493	/*
494	 * Because of non atomicity rules, all
495	 * changes are protected by socket lock.
496	 */
497	u8			sk_gso_disabled : 1,
498				sk_kern_sock : 1,
499				sk_no_check_tx : 1,
500				sk_no_check_rx : 1;
501	u8			sk_shutdown;
502	u16			sk_type;
503	u16			sk_protocol;
504	unsigned long	        sk_lingertime;
505	struct proto		*sk_prot_creator;
506	rwlock_t		sk_callback_lock;
507	int			sk_err_soft;
508	u32			sk_ack_backlog;
509	u32			sk_max_ack_backlog;
510	kuid_t			sk_uid;
511	spinlock_t		sk_peer_lock;
512	int			sk_bind_phc;
513	struct pid		*sk_peer_pid;
514	const struct cred	*sk_peer_cred;
515
516	ktime_t			sk_stamp;
517#if BITS_PER_LONG==32
518	seqlock_t		sk_stamp_seq;
519#endif
520	int			sk_disconnects;
521
522	u8			sk_txrehash;
523	u8			sk_clockid;
524	u8			sk_txtime_deadline_mode : 1,
525				sk_txtime_report_errors : 1,
526				sk_txtime_unused : 6;
527
528	void			*sk_user_data;
529#ifdef CONFIG_SECURITY
530	void			*sk_security;
531#endif
532	struct sock_cgroup_data	sk_cgrp_data;
533	void			(*sk_state_change)(struct sock *sk);
534	void			(*sk_write_space)(struct sock *sk);
535	void			(*sk_error_report)(struct sock *sk);
536	int			(*sk_backlog_rcv)(struct sock *sk,
537						  struct sk_buff *skb);
538	void                    (*sk_destruct)(struct sock *sk);
539	struct sock_reuseport __rcu	*sk_reuseport_cb;
540#ifdef CONFIG_BPF_SYSCALL
541	struct bpf_local_storage __rcu	*sk_bpf_storage;
542#endif
543	struct rcu_head		sk_rcu;
544	netns_tracker		ns_tracker;
545};
546
547enum sk_pacing {
548	SK_PACING_NONE		= 0,
549	SK_PACING_NEEDED	= 1,
550	SK_PACING_FQ		= 2,
551};
552
553/* flag bits in sk_user_data
554 *
555 * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
556 *   not be suitable for copying when cloning the socket. For instance,
557 *   it can point to a reference counted object. sk_user_data bottom
558 *   bit is set if pointer must not be copied.
559 *
560 * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
561 *   managed/owned by a BPF reuseport array. This bit should be set
562 *   when sk_user_data's sk is added to the bpf's reuseport_array.
563 *
564 * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
565 *   sk_user_data points to psock type. This bit should be set
566 *   when sk_user_data is assigned to a psock object.
567 */
568#define SK_USER_DATA_NOCOPY	1UL
569#define SK_USER_DATA_BPF	2UL
570#define SK_USER_DATA_PSOCK	4UL
571#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
572				  SK_USER_DATA_PSOCK)
573
574/**
575 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
576 * @sk: socket
577 */
578static inline bool sk_user_data_is_nocopy(const struct sock *sk)
579{
580	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
581}
582
583#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
584
585/**
586 * __locked_read_sk_user_data_with_flags - return the pointer
587 * only if argument flags all has been set in sk_user_data. Otherwise
588 * return NULL
589 *
590 * @sk: socket
591 * @flags: flag bits
592 *
593 * The caller must be holding sk->sk_callback_lock.
594 */
595static inline void *
596__locked_read_sk_user_data_with_flags(const struct sock *sk,
597				      uintptr_t flags)
598{
599	uintptr_t sk_user_data =
600		(uintptr_t)rcu_dereference_check(__sk_user_data(sk),
601						 lockdep_is_held(&sk->sk_callback_lock));
602
603	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
604
605	if ((sk_user_data & flags) == flags)
606		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
607	return NULL;
608}
609
610/**
611 * __rcu_dereference_sk_user_data_with_flags - return the pointer
612 * only if argument flags all has been set in sk_user_data. Otherwise
613 * return NULL
614 *
615 * @sk: socket
616 * @flags: flag bits
617 */
618static inline void *
619__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
620					  uintptr_t flags)
621{
622	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
623
624	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
625
626	if ((sk_user_data & flags) == flags)
627		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
628	return NULL;
629}
630
631#define rcu_dereference_sk_user_data(sk)				\
632	__rcu_dereference_sk_user_data_with_flags(sk, 0)
633#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
634({									\
635	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
636		  __tmp2 = (uintptr_t)(flags);				\
637	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
638	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
639	rcu_assign_pointer(__sk_user_data((sk)),			\
640			   __tmp1 | __tmp2);				\
641})
642#define rcu_assign_sk_user_data(sk, ptr)				\
643	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
644
645static inline
646struct net *sock_net(const struct sock *sk)
647{
648	return read_pnet(&sk->sk_net);
649}
650
651static inline
652void sock_net_set(struct sock *sk, struct net *net)
653{
654	write_pnet(&sk->sk_net, net);
655}
656
657/*
658 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
659 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
660 * on a socket means that the socket will reuse everybody else's port
661 * without looking at the other's sk_reuse value.
662 */
663
664#define SK_NO_REUSE	0
665#define SK_CAN_REUSE	1
666#define SK_FORCE_REUSE	2
667
668int sk_set_peek_off(struct sock *sk, int val);
669
670static inline int sk_peek_offset(const struct sock *sk, int flags)
671{
672	if (unlikely(flags & MSG_PEEK)) {
673		return READ_ONCE(sk->sk_peek_off);
674	}
675
676	return 0;
677}
678
679static inline void sk_peek_offset_bwd(struct sock *sk, int val)
680{
681	s32 off = READ_ONCE(sk->sk_peek_off);
682
683	if (unlikely(off >= 0)) {
684		off = max_t(s32, off - val, 0);
685		WRITE_ONCE(sk->sk_peek_off, off);
686	}
687}
688
689static inline void sk_peek_offset_fwd(struct sock *sk, int val)
690{
691	sk_peek_offset_bwd(sk, -val);
692}
693
694/*
695 * Hashed lists helper routines
696 */
697static inline struct sock *sk_entry(const struct hlist_node *node)
698{
699	return hlist_entry(node, struct sock, sk_node);
700}
701
702static inline struct sock *__sk_head(const struct hlist_head *head)
703{
704	return hlist_entry(head->first, struct sock, sk_node);
705}
706
707static inline struct sock *sk_head(const struct hlist_head *head)
708{
709	return hlist_empty(head) ? NULL : __sk_head(head);
710}
711
712static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
713{
714	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
715}
716
717static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
718{
719	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
720}
721
722static inline struct sock *sk_next(const struct sock *sk)
723{
724	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
725}
726
727static inline struct sock *sk_nulls_next(const struct sock *sk)
728{
729	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
730		hlist_nulls_entry(sk->sk_nulls_node.next,
731				  struct sock, sk_nulls_node) :
732		NULL;
733}
734
735static inline bool sk_unhashed(const struct sock *sk)
736{
737	return hlist_unhashed(&sk->sk_node);
738}
739
740static inline bool sk_hashed(const struct sock *sk)
741{
742	return !sk_unhashed(sk);
743}
744
745static inline void sk_node_init(struct hlist_node *node)
746{
747	node->pprev = NULL;
748}
749
750static inline void __sk_del_node(struct sock *sk)
751{
752	__hlist_del(&sk->sk_node);
753}
754
755/* NB: equivalent to hlist_del_init_rcu */
756static inline bool __sk_del_node_init(struct sock *sk)
757{
758	if (sk_hashed(sk)) {
759		__sk_del_node(sk);
760		sk_node_init(&sk->sk_node);
761		return true;
762	}
763	return false;
764}
765
766/* Grab socket reference count. This operation is valid only
767   when sk is ALREADY grabbed f.e. it is found in hash table
768   or a list and the lookup is made under lock preventing hash table
769   modifications.
770 */
771
772static __always_inline void sock_hold(struct sock *sk)
773{
774	refcount_inc(&sk->sk_refcnt);
775}
776
777/* Ungrab socket in the context, which assumes that socket refcnt
778   cannot hit zero, f.e. it is true in context of any socketcall.
779 */
780static __always_inline void __sock_put(struct sock *sk)
781{
782	refcount_dec(&sk->sk_refcnt);
783}
784
785static inline bool sk_del_node_init(struct sock *sk)
786{
787	bool rc = __sk_del_node_init(sk);
788
789	if (rc) {
790		/* paranoid for a while -acme */
791		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
792		__sock_put(sk);
793	}
794	return rc;
795}
796#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
797
798static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
799{
800	if (sk_hashed(sk)) {
801		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
802		return true;
803	}
804	return false;
805}
806
807static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
808{
809	bool rc = __sk_nulls_del_node_init_rcu(sk);
810
811	if (rc) {
812		/* paranoid for a while -acme */
813		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
814		__sock_put(sk);
815	}
816	return rc;
817}
818
819static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
820{
821	hlist_add_head(&sk->sk_node, list);
822}
823
824static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
825{
826	sock_hold(sk);
827	__sk_add_node(sk, list);
828}
829
830static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
831{
832	sock_hold(sk);
833	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
834	    sk->sk_family == AF_INET6)
835		hlist_add_tail_rcu(&sk->sk_node, list);
836	else
837		hlist_add_head_rcu(&sk->sk_node, list);
838}
839
840static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
841{
842	sock_hold(sk);
843	hlist_add_tail_rcu(&sk->sk_node, list);
844}
845
846static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
847{
848	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
849}
850
851static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
852{
853	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
854}
855
856static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
857{
858	sock_hold(sk);
859	__sk_nulls_add_node_rcu(sk, list);
860}
861
862static inline void __sk_del_bind_node(struct sock *sk)
863{
864	__hlist_del(&sk->sk_bind_node);
865}
866
867static inline void sk_add_bind_node(struct sock *sk,
868					struct hlist_head *list)
869{
870	hlist_add_head(&sk->sk_bind_node, list);
871}
872
873#define sk_for_each(__sk, list) \
874	hlist_for_each_entry(__sk, list, sk_node)
875#define sk_for_each_rcu(__sk, list) \
876	hlist_for_each_entry_rcu(__sk, list, sk_node)
877#define sk_nulls_for_each(__sk, node, list) \
878	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
879#define sk_nulls_for_each_rcu(__sk, node, list) \
880	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
881#define sk_for_each_from(__sk) \
882	hlist_for_each_entry_from(__sk, sk_node)
883#define sk_nulls_for_each_from(__sk, node) \
884	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
885		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
886#define sk_for_each_safe(__sk, tmp, list) \
887	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
888#define sk_for_each_bound(__sk, list) \
889	hlist_for_each_entry(__sk, list, sk_bind_node)
890
891/**
892 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
893 * @tpos:	the type * to use as a loop cursor.
894 * @pos:	the &struct hlist_node to use as a loop cursor.
895 * @head:	the head for your list.
896 * @offset:	offset of hlist_node within the struct.
897 *
898 */
899#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
900	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
901	     pos != NULL &&						       \
902		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
903	     pos = rcu_dereference(hlist_next_rcu(pos)))
904
905static inline struct user_namespace *sk_user_ns(const struct sock *sk)
906{
907	/* Careful only use this in a context where these parameters
908	 * can not change and must all be valid, such as recvmsg from
909	 * userspace.
910	 */
911	return sk->sk_socket->file->f_cred->user_ns;
912}
913
914/* Sock flags */
915enum sock_flags {
916	SOCK_DEAD,
917	SOCK_DONE,
918	SOCK_URGINLINE,
919	SOCK_KEEPOPEN,
920	SOCK_LINGER,
921	SOCK_DESTROY,
922	SOCK_BROADCAST,
923	SOCK_TIMESTAMP,
924	SOCK_ZAPPED,
925	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
926	SOCK_DBG, /* %SO_DEBUG setting */
927	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
928	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
929	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
930	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
931	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
932	SOCK_FASYNC, /* fasync() active */
933	SOCK_RXQ_OVFL,
934	SOCK_ZEROCOPY, /* buffers from userspace */
935	SOCK_WIFI_STATUS, /* push wifi status to userspace */
936	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
937		     * Will use last 4 bytes of packet sent from
938		     * user-space instead.
939		     */
940	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
941	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
942	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
943	SOCK_TXTIME,
944	SOCK_XDP, /* XDP is attached */
945	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
946	SOCK_RCVMARK, /* Receive SO_MARK  ancillary data with packet */
947};
948
949#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
950
951static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
952{
953	nsk->sk_flags = osk->sk_flags;
954}
955
956static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
957{
958	__set_bit(flag, &sk->sk_flags);
959}
960
961static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
962{
963	__clear_bit(flag, &sk->sk_flags);
964}
965
966static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
967				     int valbool)
968{
969	if (valbool)
970		sock_set_flag(sk, bit);
971	else
972		sock_reset_flag(sk, bit);
973}
974
975static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
976{
977	return test_bit(flag, &sk->sk_flags);
978}
979
980#ifdef CONFIG_NET
981DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
982static inline int sk_memalloc_socks(void)
983{
984	return static_branch_unlikely(&memalloc_socks_key);
985}
986
987void __receive_sock(struct file *file);
988#else
989
990static inline int sk_memalloc_socks(void)
991{
992	return 0;
993}
994
995static inline void __receive_sock(struct file *file)
996{ }
997#endif
998
999static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1000{
1001	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1002}
1003
1004static inline void sk_acceptq_removed(struct sock *sk)
1005{
1006	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1007}
1008
1009static inline void sk_acceptq_added(struct sock *sk)
1010{
1011	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1012}
1013
1014/* Note: If you think the test should be:
1015 *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1017 */
1018static inline bool sk_acceptq_is_full(const struct sock *sk)
1019{
1020	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1021}
1022
1023/*
1024 * Compute minimal free write space needed to queue new packets.
1025 */
1026static inline int sk_stream_min_wspace(const struct sock *sk)
1027{
1028	return READ_ONCE(sk->sk_wmem_queued) >> 1;
1029}
1030
1031static inline int sk_stream_wspace(const struct sock *sk)
1032{
1033	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1034}
1035
1036static inline void sk_wmem_queued_add(struct sock *sk, int val)
1037{
1038	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1039}
1040
1041static inline void sk_forward_alloc_add(struct sock *sk, int val)
1042{
1043	/* Paired with lockless reads of sk->sk_forward_alloc */
1044	WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1045}
1046
1047void sk_stream_write_space(struct sock *sk);
1048
1049/* OOB backlog add */
1050static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1051{
1052	/* dont let skb dst not refcounted, we are going to leave rcu lock */
1053	skb_dst_force(skb);
1054
1055	if (!sk->sk_backlog.tail)
1056		WRITE_ONCE(sk->sk_backlog.head, skb);
1057	else
1058		sk->sk_backlog.tail->next = skb;
1059
1060	WRITE_ONCE(sk->sk_backlog.tail, skb);
1061	skb->next = NULL;
1062}
1063
1064/*
1065 * Take into account size of receive queue and backlog queue
1066 * Do not take into account this skb truesize,
1067 * to allow even a single big packet to come.
1068 */
1069static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1070{
1071	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1072
1073	return qsize > limit;
1074}
1075
1076/* The per-socket spinlock must be held here. */
1077static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1078					      unsigned int limit)
1079{
1080	if (sk_rcvqueues_full(sk, limit))
1081		return -ENOBUFS;
1082
1083	/*
1084	 * If the skb was allocated from pfmemalloc reserves, only
1085	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1086	 * helping free memory
1087	 */
1088	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1089		return -ENOMEM;
1090
1091	__sk_add_backlog(sk, skb);
1092	sk->sk_backlog.len += skb->truesize;
1093	return 0;
1094}
1095
1096int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1097
1098INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1099INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1100
1101static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1102{
1103	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1104		return __sk_backlog_rcv(sk, skb);
1105
1106	return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1107				  tcp_v6_do_rcv,
1108				  tcp_v4_do_rcv,
1109				  sk, skb);
1110}
1111
1112static inline void sk_incoming_cpu_update(struct sock *sk)
1113{
1114	int cpu = raw_smp_processor_id();
1115
1116	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1117		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1118}
1119
1120
1121static inline void sock_rps_save_rxhash(struct sock *sk,
1122					const struct sk_buff *skb)
1123{
1124#ifdef CONFIG_RPS
1125	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1126	 * here, and another one in sock_rps_record_flow().
1127	 */
1128	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1129		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1130#endif
1131}
1132
1133static inline void sock_rps_reset_rxhash(struct sock *sk)
1134{
1135#ifdef CONFIG_RPS
1136	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1137	WRITE_ONCE(sk->sk_rxhash, 0);
1138#endif
1139}
1140
1141#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1142	({	int __rc, __dis = __sk->sk_disconnects;			\
1143		release_sock(__sk);					\
1144		__rc = __condition;					\
1145		if (!__rc) {						\
1146			*(__timeo) = wait_woken(__wait,			\
1147						TASK_INTERRUPTIBLE,	\
1148						*(__timeo));		\
1149		}							\
1150		sched_annotate_sleep();					\
1151		lock_sock(__sk);					\
1152		__rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1153		__rc;							\
1154	})
1155
1156int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1157int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1158void sk_stream_wait_close(struct sock *sk, long timeo_p);
1159int sk_stream_error(struct sock *sk, int flags, int err);
1160void sk_stream_kill_queues(struct sock *sk);
1161void sk_set_memalloc(struct sock *sk);
1162void sk_clear_memalloc(struct sock *sk);
1163
1164void __sk_flush_backlog(struct sock *sk);
1165
1166static inline bool sk_flush_backlog(struct sock *sk)
1167{
1168	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1169		__sk_flush_backlog(sk);
1170		return true;
1171	}
1172	return false;
1173}
1174
1175int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1176
1177struct request_sock_ops;
1178struct timewait_sock_ops;
1179struct inet_hashinfo;
1180struct raw_hashinfo;
1181struct smc_hashinfo;
1182struct module;
1183struct sk_psock;
1184
1185/*
1186 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1187 * un-modified. Special care is taken when initializing object to zero.
1188 */
1189static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1190{
1191	if (offsetof(struct sock, sk_node.next) != 0)
1192		memset(sk, 0, offsetof(struct sock, sk_node.next));
1193	memset(&sk->sk_node.pprev, 0,
1194	       size - offsetof(struct sock, sk_node.pprev));
1195}
1196
1197/* Networking protocol blocks we attach to sockets.
1198 * socket layer -> transport layer interface
1199 */
1200struct proto {
1201	void			(*close)(struct sock *sk,
1202					long timeout);
1203	int			(*pre_connect)(struct sock *sk,
1204					struct sockaddr *uaddr,
1205					int addr_len);
1206	int			(*connect)(struct sock *sk,
1207					struct sockaddr *uaddr,
1208					int addr_len);
1209	int			(*disconnect)(struct sock *sk, int flags);
1210
1211	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1212					  bool kern);
1213
1214	int			(*ioctl)(struct sock *sk, int cmd,
1215					 int *karg);
1216	int			(*init)(struct sock *sk);
1217	void			(*destroy)(struct sock *sk);
1218	void			(*shutdown)(struct sock *sk, int how);
1219	int			(*setsockopt)(struct sock *sk, int level,
1220					int optname, sockptr_t optval,
1221					unsigned int optlen);
1222	int			(*getsockopt)(struct sock *sk, int level,
1223					int optname, char __user *optval,
1224					int __user *option);
1225	void			(*keepalive)(struct sock *sk, int valbool);
1226#ifdef CONFIG_COMPAT
1227	int			(*compat_ioctl)(struct sock *sk,
1228					unsigned int cmd, unsigned long arg);
1229#endif
1230	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1231					   size_t len);
1232	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1233					   size_t len, int flags, int *addr_len);
1234	void			(*splice_eof)(struct socket *sock);
1235	int			(*bind)(struct sock *sk,
1236					struct sockaddr *addr, int addr_len);
1237	int			(*bind_add)(struct sock *sk,
1238					struct sockaddr *addr, int addr_len);
1239
1240	int			(*backlog_rcv) (struct sock *sk,
1241						struct sk_buff *skb);
1242	bool			(*bpf_bypass_getsockopt)(int level,
1243							 int optname);
1244
1245	void		(*release_cb)(struct sock *sk);
1246
1247	/* Keeping track of sk's, looking them up, and port selection methods. */
1248	int			(*hash)(struct sock *sk);
1249	void			(*unhash)(struct sock *sk);
1250	void			(*rehash)(struct sock *sk);
1251	int			(*get_port)(struct sock *sk, unsigned short snum);
1252	void			(*put_port)(struct sock *sk);
1253#ifdef CONFIG_BPF_SYSCALL
1254	int			(*psock_update_sk_prot)(struct sock *sk,
1255							struct sk_psock *psock,
1256							bool restore);
1257#endif
1258
1259	/* Keeping track of sockets in use */
1260#ifdef CONFIG_PROC_FS
1261	unsigned int		inuse_idx;
1262#endif
1263
1264#if IS_ENABLED(CONFIG_MPTCP)
1265	int			(*forward_alloc_get)(const struct sock *sk);
1266#endif
1267
1268	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1269	bool			(*sock_is_readable)(struct sock *sk);
1270	/* Memory pressure */
1271	void			(*enter_memory_pressure)(struct sock *sk);
1272	void			(*leave_memory_pressure)(struct sock *sk);
1273	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1274	int  __percpu		*per_cpu_fw_alloc;
1275	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1276
1277	/*
1278	 * Pressure flag: try to collapse.
1279	 * Technical note: it is used by multiple contexts non atomically.
1280	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1281	 * All the __sk_mem_schedule() is of this nature: accounting
1282	 * is strict, actions are advisory and have some latency.
1283	 */
1284	unsigned long		*memory_pressure;
1285	long			*sysctl_mem;
1286
1287	int			*sysctl_wmem;
1288	int			*sysctl_rmem;
1289	u32			sysctl_wmem_offset;
1290	u32			sysctl_rmem_offset;
1291
1292	int			max_header;
1293	bool			no_autobind;
1294
1295	struct kmem_cache	*slab;
1296	unsigned int		obj_size;
1297	unsigned int		ipv6_pinfo_offset;
1298	slab_flags_t		slab_flags;
1299	unsigned int		useroffset;	/* Usercopy region offset */
1300	unsigned int		usersize;	/* Usercopy region size */
1301
1302	unsigned int __percpu	*orphan_count;
1303
1304	struct request_sock_ops	*rsk_prot;
1305	struct timewait_sock_ops *twsk_prot;
1306
1307	union {
1308		struct inet_hashinfo	*hashinfo;
1309		struct udp_table	*udp_table;
1310		struct raw_hashinfo	*raw_hash;
1311		struct smc_hashinfo	*smc_hash;
1312	} h;
1313
1314	struct module		*owner;
1315
1316	char			name[32];
1317
1318	struct list_head	node;
1319	int			(*diag_destroy)(struct sock *sk, int err);
1320} __randomize_layout;
1321
1322int proto_register(struct proto *prot, int alloc_slab);
1323void proto_unregister(struct proto *prot);
1324int sock_load_diag_module(int family, int protocol);
1325
1326INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1327
1328static inline int sk_forward_alloc_get(const struct sock *sk)
1329{
1330#if IS_ENABLED(CONFIG_MPTCP)
1331	if (sk->sk_prot->forward_alloc_get)
1332		return sk->sk_prot->forward_alloc_get(sk);
1333#endif
1334	return READ_ONCE(sk->sk_forward_alloc);
1335}
1336
1337static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1338{
1339	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1340		return false;
1341
1342	return sk->sk_prot->stream_memory_free ?
1343		INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1344				     tcp_stream_memory_free, sk, wake) : true;
1345}
1346
1347static inline bool sk_stream_memory_free(const struct sock *sk)
1348{
1349	return __sk_stream_memory_free(sk, 0);
1350}
1351
1352static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1353{
1354	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1355	       __sk_stream_memory_free(sk, wake);
1356}
1357
1358static inline bool sk_stream_is_writeable(const struct sock *sk)
1359{
1360	return __sk_stream_is_writeable(sk, 0);
1361}
1362
1363static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1364					    struct cgroup *ancestor)
1365{
1366#ifdef CONFIG_SOCK_CGROUP_DATA
1367	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1368				    ancestor);
1369#else
1370	return -ENOTSUPP;
1371#endif
1372}
1373
1374static inline bool sk_has_memory_pressure(const struct sock *sk)
1375{
1376	return sk->sk_prot->memory_pressure != NULL;
1377}
1378
1379static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1380{
1381	return sk->sk_prot->memory_pressure &&
1382		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1383}
1384
1385static inline bool sk_under_memory_pressure(const struct sock *sk)
1386{
1387	if (!sk->sk_prot->memory_pressure)
1388		return false;
1389
1390	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1391	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1392		return true;
1393
1394	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1395}
1396
1397static inline long
1398proto_memory_allocated(const struct proto *prot)
1399{
1400	return max(0L, atomic_long_read(prot->memory_allocated));
1401}
1402
1403static inline long
1404sk_memory_allocated(const struct sock *sk)
1405{
1406	return proto_memory_allocated(sk->sk_prot);
1407}
1408
1409/* 1 MB per cpu, in page units */
1410#define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1411extern int sysctl_mem_pcpu_rsv;
1412
1413static inline void proto_memory_pcpu_drain(struct proto *proto)
1414{
1415	int val = this_cpu_xchg(*proto->per_cpu_fw_alloc, 0);
1416
1417	if (val)
1418		atomic_long_add(val, proto->memory_allocated);
1419}
1420
1421static inline void
1422sk_memory_allocated_add(const struct sock *sk, int val)
1423{
1424	struct proto *proto = sk->sk_prot;
1425
1426	val = this_cpu_add_return(*proto->per_cpu_fw_alloc, val);
1427
1428	if (unlikely(val >= READ_ONCE(sysctl_mem_pcpu_rsv)))
1429		proto_memory_pcpu_drain(proto);
1430}
1431
1432static inline void
1433sk_memory_allocated_sub(const struct sock *sk, int val)
1434{
1435	struct proto *proto = sk->sk_prot;
1436
1437	val = this_cpu_sub_return(*proto->per_cpu_fw_alloc, val);
1438
1439	if (unlikely(val <= -READ_ONCE(sysctl_mem_pcpu_rsv)))
1440		proto_memory_pcpu_drain(proto);
1441}
1442
1443#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1444
1445static inline void sk_sockets_allocated_dec(struct sock *sk)
1446{
1447	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1448				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1449}
1450
1451static inline void sk_sockets_allocated_inc(struct sock *sk)
1452{
1453	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1454				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1455}
1456
1457static inline u64
1458sk_sockets_allocated_read_positive(struct sock *sk)
1459{
1460	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1461}
1462
1463static inline int
1464proto_sockets_allocated_sum_positive(struct proto *prot)
1465{
1466	return percpu_counter_sum_positive(prot->sockets_allocated);
1467}
1468
1469static inline bool
1470proto_memory_pressure(struct proto *prot)
1471{
1472	if (!prot->memory_pressure)
1473		return false;
1474	return !!READ_ONCE(*prot->memory_pressure);
1475}
1476
1477
1478#ifdef CONFIG_PROC_FS
1479#define PROTO_INUSE_NR	64	/* should be enough for the first time */
1480struct prot_inuse {
1481	int all;
1482	int val[PROTO_INUSE_NR];
1483};
1484
1485static inline void sock_prot_inuse_add(const struct net *net,
1486				       const struct proto *prot, int val)
1487{
1488	this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1489}
1490
1491static inline void sock_inuse_add(const struct net *net, int val)
1492{
1493	this_cpu_add(net->core.prot_inuse->all, val);
1494}
1495
1496int sock_prot_inuse_get(struct net *net, struct proto *proto);
1497int sock_inuse_get(struct net *net);
1498#else
1499static inline void sock_prot_inuse_add(const struct net *net,
1500				       const struct proto *prot, int val)
1501{
1502}
1503
1504static inline void sock_inuse_add(const struct net *net, int val)
1505{
1506}
1507#endif
1508
1509
1510/* With per-bucket locks this operation is not-atomic, so that
1511 * this version is not worse.
1512 */
1513static inline int __sk_prot_rehash(struct sock *sk)
1514{
1515	sk->sk_prot->unhash(sk);
1516	return sk->sk_prot->hash(sk);
1517}
1518
1519/* About 10 seconds */
1520#define SOCK_DESTROY_TIME (10*HZ)
1521
1522/* Sockets 0-1023 can't be bound to unless you are superuser */
1523#define PROT_SOCK	1024
1524
1525#define SHUTDOWN_MASK	3
1526#define RCV_SHUTDOWN	1
1527#define SEND_SHUTDOWN	2
1528
1529#define SOCK_BINDADDR_LOCK	4
1530#define SOCK_BINDPORT_LOCK	8
1531
1532struct socket_alloc {
1533	struct socket socket;
1534	struct inode vfs_inode;
1535};
1536
1537static inline struct socket *SOCKET_I(struct inode *inode)
1538{
1539	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1540}
1541
1542static inline struct inode *SOCK_INODE(struct socket *socket)
1543{
1544	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1545}
1546
1547/*
1548 * Functions for memory accounting
1549 */
1550int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1551int __sk_mem_schedule(struct sock *sk, int size, int kind);
1552void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1553void __sk_mem_reclaim(struct sock *sk, int amount);
1554
1555#define SK_MEM_SEND	0
1556#define SK_MEM_RECV	1
1557
1558/* sysctl_mem values are in pages */
1559static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1560{
1561	return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1562}
1563
1564static inline int sk_mem_pages(int amt)
1565{
1566	return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1567}
1568
1569static inline bool sk_has_account(struct sock *sk)
1570{
1571	/* return true if protocol supports memory accounting */
1572	return !!sk->sk_prot->memory_allocated;
1573}
1574
1575static inline bool sk_wmem_schedule(struct sock *sk, int size)
1576{
1577	int delta;
1578
1579	if (!sk_has_account(sk))
1580		return true;
1581	delta = size - sk->sk_forward_alloc;
1582	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1583}
1584
1585static inline bool
1586sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1587{
1588	int delta;
1589
1590	if (!sk_has_account(sk))
1591		return true;
1592	delta = size - sk->sk_forward_alloc;
1593	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1594		skb_pfmemalloc(skb);
1595}
1596
1597static inline int sk_unused_reserved_mem(const struct sock *sk)
1598{
1599	int unused_mem;
1600
1601	if (likely(!sk->sk_reserved_mem))
1602		return 0;
1603
1604	unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1605			atomic_read(&sk->sk_rmem_alloc);
1606
1607	return unused_mem > 0 ? unused_mem : 0;
1608}
1609
1610static inline void sk_mem_reclaim(struct sock *sk)
1611{
1612	int reclaimable;
1613
1614	if (!sk_has_account(sk))
1615		return;
1616
1617	reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1618
1619	if (reclaimable >= (int)PAGE_SIZE)
1620		__sk_mem_reclaim(sk, reclaimable);
1621}
1622
1623static inline void sk_mem_reclaim_final(struct sock *sk)
1624{
1625	sk->sk_reserved_mem = 0;
1626	sk_mem_reclaim(sk);
1627}
1628
1629static inline void sk_mem_charge(struct sock *sk, int size)
1630{
1631	if (!sk_has_account(sk))
1632		return;
1633	sk_forward_alloc_add(sk, -size);
1634}
1635
1636static inline void sk_mem_uncharge(struct sock *sk, int size)
1637{
1638	if (!sk_has_account(sk))
1639		return;
1640	sk_forward_alloc_add(sk, size);
1641	sk_mem_reclaim(sk);
1642}
1643
1644/*
1645 * Macro so as to not evaluate some arguments when
1646 * lockdep is not enabled.
1647 *
1648 * Mark both the sk_lock and the sk_lock.slock as a
1649 * per-address-family lock class.
1650 */
1651#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1652do {									\
1653	sk->sk_lock.owned = 0;						\
1654	init_waitqueue_head(&sk->sk_lock.wq);				\
1655	spin_lock_init(&(sk)->sk_lock.slock);				\
1656	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1657			sizeof((sk)->sk_lock));				\
1658	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1659				(skey), (sname));				\
1660	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1661} while (0)
1662
1663static inline bool lockdep_sock_is_held(const struct sock *sk)
1664{
1665	return lockdep_is_held(&sk->sk_lock) ||
1666	       lockdep_is_held(&sk->sk_lock.slock);
1667}
1668
1669void lock_sock_nested(struct sock *sk, int subclass);
1670
1671static inline void lock_sock(struct sock *sk)
1672{
1673	lock_sock_nested(sk, 0);
1674}
1675
1676void __lock_sock(struct sock *sk);
1677void __release_sock(struct sock *sk);
1678void release_sock(struct sock *sk);
1679
1680/* BH context may only use the following locking interface. */
1681#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1682#define bh_lock_sock_nested(__sk) \
1683				spin_lock_nested(&((__sk)->sk_lock.slock), \
1684				SINGLE_DEPTH_NESTING)
1685#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1686
1687bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1688
1689/**
1690 * lock_sock_fast - fast version of lock_sock
1691 * @sk: socket
1692 *
1693 * This version should be used for very small section, where process wont block
1694 * return false if fast path is taken:
1695 *
1696 *   sk_lock.slock locked, owned = 0, BH disabled
1697 *
1698 * return true if slow path is taken:
1699 *
1700 *   sk_lock.slock unlocked, owned = 1, BH enabled
1701 */
1702static inline bool lock_sock_fast(struct sock *sk)
1703{
1704	/* The sk_lock has mutex_lock() semantics here. */
1705	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1706
1707	return __lock_sock_fast(sk);
1708}
1709
1710/* fast socket lock variant for caller already holding a [different] socket lock */
1711static inline bool lock_sock_fast_nested(struct sock *sk)
1712{
1713	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1714
1715	return __lock_sock_fast(sk);
1716}
1717
1718/**
1719 * unlock_sock_fast - complement of lock_sock_fast
1720 * @sk: socket
1721 * @slow: slow mode
1722 *
1723 * fast unlock socket for user context.
1724 * If slow mode is on, we call regular release_sock()
1725 */
1726static inline void unlock_sock_fast(struct sock *sk, bool slow)
1727	__releases(&sk->sk_lock.slock)
1728{
1729	if (slow) {
1730		release_sock(sk);
1731		__release(&sk->sk_lock.slock);
1732	} else {
1733		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1734		spin_unlock_bh(&sk->sk_lock.slock);
1735	}
1736}
1737
1738void sockopt_lock_sock(struct sock *sk);
1739void sockopt_release_sock(struct sock *sk);
1740bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1741bool sockopt_capable(int cap);
1742
1743/* Used by processes to "lock" a socket state, so that
1744 * interrupts and bottom half handlers won't change it
1745 * from under us. It essentially blocks any incoming
1746 * packets, so that we won't get any new data or any
1747 * packets that change the state of the socket.
1748 *
1749 * While locked, BH processing will add new packets to
1750 * the backlog queue.  This queue is processed by the
1751 * owner of the socket lock right before it is released.
1752 *
1753 * Since ~2.3.5 it is also exclusive sleep lock serializing
1754 * accesses from user process context.
1755 */
1756
1757static inline void sock_owned_by_me(const struct sock *sk)
1758{
1759#ifdef CONFIG_LOCKDEP
1760	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1761#endif
1762}
1763
1764static inline void sock_not_owned_by_me(const struct sock *sk)
1765{
1766#ifdef CONFIG_LOCKDEP
1767	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1768#endif
1769}
1770
1771static inline bool sock_owned_by_user(const struct sock *sk)
1772{
1773	sock_owned_by_me(sk);
1774	return sk->sk_lock.owned;
1775}
1776
1777static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1778{
1779	return sk->sk_lock.owned;
1780}
1781
1782static inline void sock_release_ownership(struct sock *sk)
1783{
1784	DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1785	sk->sk_lock.owned = 0;
1786
1787	/* The sk_lock has mutex_unlock() semantics: */
1788	mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1789}
1790
1791/* no reclassification while locks are held */
1792static inline bool sock_allow_reclassification(const struct sock *csk)
1793{
1794	struct sock *sk = (struct sock *)csk;
1795
1796	return !sock_owned_by_user_nocheck(sk) &&
1797		!spin_is_locked(&sk->sk_lock.slock);
1798}
1799
1800struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1801		      struct proto *prot, int kern);
1802void sk_free(struct sock *sk);
1803void sk_destruct(struct sock *sk);
1804struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1805void sk_free_unlock_clone(struct sock *sk);
1806
1807struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1808			     gfp_t priority);
1809void __sock_wfree(struct sk_buff *skb);
1810void sock_wfree(struct sk_buff *skb);
1811struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1812			     gfp_t priority);
1813void skb_orphan_partial(struct sk_buff *skb);
1814void sock_rfree(struct sk_buff *skb);
1815void sock_efree(struct sk_buff *skb);
1816#ifdef CONFIG_INET
1817void sock_edemux(struct sk_buff *skb);
1818void sock_pfree(struct sk_buff *skb);
1819#else
1820#define sock_edemux sock_efree
1821#endif
1822
1823int sk_setsockopt(struct sock *sk, int level, int optname,
1824		  sockptr_t optval, unsigned int optlen);
1825int sock_setsockopt(struct socket *sock, int level, int op,
1826		    sockptr_t optval, unsigned int optlen);
1827int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1828		       int optname, sockptr_t optval, int optlen);
1829int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1830		       int optname, sockptr_t optval, sockptr_t optlen);
1831
1832int sk_getsockopt(struct sock *sk, int level, int optname,
1833		  sockptr_t optval, sockptr_t optlen);
1834int sock_gettstamp(struct socket *sock, void __user *userstamp,
1835		   bool timeval, bool time32);
1836struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1837				     unsigned long data_len, int noblock,
1838				     int *errcode, int max_page_order);
1839
1840static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1841						  unsigned long size,
1842						  int noblock, int *errcode)
1843{
1844	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1845}
1846
1847void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1848void sock_kfree_s(struct sock *sk, void *mem, int size);
1849void sock_kzfree_s(struct sock *sk, void *mem, int size);
1850void sk_send_sigurg(struct sock *sk);
1851
1852static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1853{
1854	if (sk->sk_socket)
1855		clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1856	WRITE_ONCE(sk->sk_prot, proto);
1857}
1858
1859struct sockcm_cookie {
1860	u64 transmit_time;
1861	u32 mark;
1862	u32 tsflags;
1863};
1864
1865static inline void sockcm_init(struct sockcm_cookie *sockc,
1866			       const struct sock *sk)
1867{
1868	*sockc = (struct sockcm_cookie) {
1869		.tsflags = READ_ONCE(sk->sk_tsflags)
1870	};
1871}
1872
1873int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1874		     struct sockcm_cookie *sockc);
1875int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1876		   struct sockcm_cookie *sockc);
1877
1878/*
1879 * Functions to fill in entries in struct proto_ops when a protocol
1880 * does not implement a particular function.
1881 */
1882int sock_no_bind(struct socket *, struct sockaddr *, int);
1883int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1884int sock_no_socketpair(struct socket *, struct socket *);
1885int sock_no_accept(struct socket *, struct socket *, int, bool);
1886int sock_no_getname(struct socket *, struct sockaddr *, int);
1887int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1888int sock_no_listen(struct socket *, int);
1889int sock_no_shutdown(struct socket *, int);
1890int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1891int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1892int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1893int sock_no_mmap(struct file *file, struct socket *sock,
1894		 struct vm_area_struct *vma);
1895
1896/*
1897 * Functions to fill in entries in struct proto_ops when a protocol
1898 * uses the inet style.
1899 */
1900int sock_common_getsockopt(struct socket *sock, int level, int optname,
1901				  char __user *optval, int __user *optlen);
1902int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1903			int flags);
1904int sock_common_setsockopt(struct socket *sock, int level, int optname,
1905			   sockptr_t optval, unsigned int optlen);
1906
1907void sk_common_release(struct sock *sk);
1908
1909/*
1910 *	Default socket callbacks and setup code
1911 */
1912
1913/* Initialise core socket variables using an explicit uid. */
1914void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1915
1916/* Initialise core socket variables.
1917 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1918 */
1919void sock_init_data(struct socket *sock, struct sock *sk);
1920
1921/*
1922 * Socket reference counting postulates.
1923 *
1924 * * Each user of socket SHOULD hold a reference count.
1925 * * Each access point to socket (an hash table bucket, reference from a list,
1926 *   running timer, skb in flight MUST hold a reference count.
1927 * * When reference count hits 0, it means it will never increase back.
1928 * * When reference count hits 0, it means that no references from
1929 *   outside exist to this socket and current process on current CPU
1930 *   is last user and may/should destroy this socket.
1931 * * sk_free is called from any context: process, BH, IRQ. When
1932 *   it is called, socket has no references from outside -> sk_free
1933 *   may release descendant resources allocated by the socket, but
1934 *   to the time when it is called, socket is NOT referenced by any
1935 *   hash tables, lists etc.
1936 * * Packets, delivered from outside (from network or from another process)
1937 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1938 *   when they sit in queue. Otherwise, packets will leak to hole, when
1939 *   socket is looked up by one cpu and unhasing is made by another CPU.
1940 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1941 *   (leak to backlog). Packet socket does all the processing inside
1942 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1943 *   use separate SMP lock, so that they are prone too.
1944 */
1945
1946/* Ungrab socket and destroy it, if it was the last reference. */
1947static inline void sock_put(struct sock *sk)
1948{
1949	if (refcount_dec_and_test(&sk->sk_refcnt))
1950		sk_free(sk);
1951}
1952/* Generic version of sock_put(), dealing with all sockets
1953 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1954 */
1955void sock_gen_put(struct sock *sk);
1956
1957int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1958		     unsigned int trim_cap, bool refcounted);
1959static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1960				 const int nested)
1961{
1962	return __sk_receive_skb(sk, skb, nested, 1, true);
1963}
1964
1965static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1966{
1967	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1968	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1969		return;
1970	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1971	 * other WRITE_ONCE() because socket lock might be not held.
1972	 */
1973	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1974}
1975
1976#define NO_QUEUE_MAPPING	USHRT_MAX
1977
1978static inline void sk_tx_queue_clear(struct sock *sk)
1979{
1980	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1981	 * other WRITE_ONCE() because socket lock might be not held.
1982	 */
1983	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1984}
1985
1986static inline int sk_tx_queue_get(const struct sock *sk)
1987{
1988	if (sk) {
1989		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1990		 * and sk_tx_queue_set().
1991		 */
1992		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1993
1994		if (val != NO_QUEUE_MAPPING)
1995			return val;
1996	}
1997	return -1;
1998}
1999
2000static inline void __sk_rx_queue_set(struct sock *sk,
2001				     const struct sk_buff *skb,
2002				     bool force_set)
2003{
2004#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2005	if (skb_rx_queue_recorded(skb)) {
2006		u16 rx_queue = skb_get_rx_queue(skb);
2007
2008		if (force_set ||
2009		    unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2010			WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2011	}
2012#endif
2013}
2014
2015static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2016{
2017	__sk_rx_queue_set(sk, skb, true);
2018}
2019
2020static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2021{
2022	__sk_rx_queue_set(sk, skb, false);
2023}
2024
2025static inline void sk_rx_queue_clear(struct sock *sk)
2026{
2027#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028	WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2029#endif
2030}
2031
2032static inline int sk_rx_queue_get(const struct sock *sk)
2033{
2034#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2035	if (sk) {
2036		int res = READ_ONCE(sk->sk_rx_queue_mapping);
2037
2038		if (res != NO_QUEUE_MAPPING)
2039			return res;
2040	}
2041#endif
2042
2043	return -1;
2044}
2045
2046static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2047{
2048	sk->sk_socket = sock;
2049}
2050
2051static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2052{
2053	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2054	return &rcu_dereference_raw(sk->sk_wq)->wait;
2055}
2056/* Detach socket from process context.
2057 * Announce socket dead, detach it from wait queue and inode.
2058 * Note that parent inode held reference count on this struct sock,
2059 * we do not release it in this function, because protocol
2060 * probably wants some additional cleanups or even continuing
2061 * to work with this socket (TCP).
2062 */
2063static inline void sock_orphan(struct sock *sk)
2064{
2065	write_lock_bh(&sk->sk_callback_lock);
2066	sock_set_flag(sk, SOCK_DEAD);
2067	sk_set_socket(sk, NULL);
2068	sk->sk_wq  = NULL;
2069	write_unlock_bh(&sk->sk_callback_lock);
2070}
2071
2072static inline void sock_graft(struct sock *sk, struct socket *parent)
2073{
2074	WARN_ON(parent->sk);
2075	write_lock_bh(&sk->sk_callback_lock);
2076	rcu_assign_pointer(sk->sk_wq, &parent->wq);
2077	parent->sk = sk;
2078	sk_set_socket(sk, parent);
2079	sk->sk_uid = SOCK_INODE(parent)->i_uid;
2080	security_sock_graft(sk, parent);
2081	write_unlock_bh(&sk->sk_callback_lock);
2082}
2083
2084kuid_t sock_i_uid(struct sock *sk);
2085unsigned long __sock_i_ino(struct sock *sk);
2086unsigned long sock_i_ino(struct sock *sk);
2087
2088static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2089{
2090	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2091}
2092
2093static inline u32 net_tx_rndhash(void)
2094{
2095	u32 v = get_random_u32();
2096
2097	return v ?: 1;
2098}
2099
2100static inline void sk_set_txhash(struct sock *sk)
2101{
2102	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2103	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2104}
2105
2106static inline bool sk_rethink_txhash(struct sock *sk)
2107{
2108	if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2109		sk_set_txhash(sk);
2110		return true;
2111	}
2112	return false;
2113}
2114
2115static inline struct dst_entry *
2116__sk_dst_get(const struct sock *sk)
2117{
2118	return rcu_dereference_check(sk->sk_dst_cache,
2119				     lockdep_sock_is_held(sk));
2120}
2121
2122static inline struct dst_entry *
2123sk_dst_get(const struct sock *sk)
2124{
2125	struct dst_entry *dst;
2126
2127	rcu_read_lock();
2128	dst = rcu_dereference(sk->sk_dst_cache);
2129	if (dst && !rcuref_get(&dst->__rcuref))
2130		dst = NULL;
2131	rcu_read_unlock();
2132	return dst;
2133}
2134
2135static inline void __dst_negative_advice(struct sock *sk)
2136{
2137	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2138
2139	if (dst && dst->ops->negative_advice) {
2140		ndst = dst->ops->negative_advice(dst);
2141
2142		if (ndst != dst) {
2143			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2144			sk_tx_queue_clear(sk);
2145			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2146		}
2147	}
2148}
2149
2150static inline void dst_negative_advice(struct sock *sk)
2151{
2152	sk_rethink_txhash(sk);
2153	__dst_negative_advice(sk);
2154}
2155
2156static inline void
2157__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2158{
2159	struct dst_entry *old_dst;
2160
2161	sk_tx_queue_clear(sk);
2162	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2163	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2164					    lockdep_sock_is_held(sk));
2165	rcu_assign_pointer(sk->sk_dst_cache, dst);
2166	dst_release(old_dst);
2167}
2168
2169static inline void
2170sk_dst_set(struct sock *sk, struct dst_entry *dst)
2171{
2172	struct dst_entry *old_dst;
2173
2174	sk_tx_queue_clear(sk);
2175	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2176	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2177	dst_release(old_dst);
2178}
2179
2180static inline void
2181__sk_dst_reset(struct sock *sk)
2182{
2183	__sk_dst_set(sk, NULL);
2184}
2185
2186static inline void
2187sk_dst_reset(struct sock *sk)
2188{
2189	sk_dst_set(sk, NULL);
2190}
2191
2192struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2193
2194struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2195
2196static inline void sk_dst_confirm(struct sock *sk)
2197{
2198	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2199		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2200}
2201
2202static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2203{
2204	if (skb_get_dst_pending_confirm(skb)) {
2205		struct sock *sk = skb->sk;
2206
2207		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2208			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2209		neigh_confirm(n);
2210	}
2211}
2212
2213bool sk_mc_loop(const struct sock *sk);
2214
2215static inline bool sk_can_gso(const struct sock *sk)
2216{
2217	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2218}
2219
2220void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2221
2222static inline void sk_gso_disable(struct sock *sk)
2223{
2224	sk->sk_gso_disabled = 1;
2225	sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2226}
2227
2228static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2229					   struct iov_iter *from, char *to,
2230					   int copy, int offset)
2231{
2232	if (skb->ip_summed == CHECKSUM_NONE) {
2233		__wsum csum = 0;
2234		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2235			return -EFAULT;
2236		skb->csum = csum_block_add(skb->csum, csum, offset);
2237	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2238		if (!copy_from_iter_full_nocache(to, copy, from))
2239			return -EFAULT;
2240	} else if (!copy_from_iter_full(to, copy, from))
2241		return -EFAULT;
2242
2243	return 0;
2244}
2245
2246static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2247				       struct iov_iter *from, int copy)
2248{
2249	int err, offset = skb->len;
2250
2251	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2252				       copy, offset);
2253	if (err)
2254		__skb_trim(skb, offset);
2255
2256	return err;
2257}
2258
2259static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2260					   struct sk_buff *skb,
2261					   struct page *page,
2262					   int off, int copy)
2263{
2264	int err;
2265
2266	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2267				       copy, skb->len);
2268	if (err)
2269		return err;
2270
2271	skb_len_add(skb, copy);
2272	sk_wmem_queued_add(sk, copy);
2273	sk_mem_charge(sk, copy);
2274	return 0;
2275}
2276
2277/**
2278 * sk_wmem_alloc_get - returns write allocations
2279 * @sk: socket
2280 *
2281 * Return: sk_wmem_alloc minus initial offset of one
2282 */
2283static inline int sk_wmem_alloc_get(const struct sock *sk)
2284{
2285	return refcount_read(&sk->sk_wmem_alloc) - 1;
2286}
2287
2288/**
2289 * sk_rmem_alloc_get - returns read allocations
2290 * @sk: socket
2291 *
2292 * Return: sk_rmem_alloc
2293 */
2294static inline int sk_rmem_alloc_get(const struct sock *sk)
2295{
2296	return atomic_read(&sk->sk_rmem_alloc);
2297}
2298
2299/**
2300 * sk_has_allocations - check if allocations are outstanding
2301 * @sk: socket
2302 *
2303 * Return: true if socket has write or read allocations
2304 */
2305static inline bool sk_has_allocations(const struct sock *sk)
2306{
2307	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2308}
2309
2310/**
2311 * skwq_has_sleeper - check if there are any waiting processes
2312 * @wq: struct socket_wq
2313 *
2314 * Return: true if socket_wq has waiting processes
2315 *
2316 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2317 * barrier call. They were added due to the race found within the tcp code.
2318 *
2319 * Consider following tcp code paths::
2320 *
2321 *   CPU1                CPU2
2322 *   sys_select          receive packet
2323 *   ...                 ...
2324 *   __add_wait_queue    update tp->rcv_nxt
2325 *   ...                 ...
2326 *   tp->rcv_nxt check   sock_def_readable
2327 *   ...                 {
2328 *   schedule               rcu_read_lock();
2329 *                          wq = rcu_dereference(sk->sk_wq);
2330 *                          if (wq && waitqueue_active(&wq->wait))
2331 *                              wake_up_interruptible(&wq->wait)
2332 *                          ...
2333 *                       }
2334 *
2335 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2336 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2337 * could then endup calling schedule and sleep forever if there are no more
2338 * data on the socket.
2339 *
2340 */
2341static inline bool skwq_has_sleeper(struct socket_wq *wq)
2342{
2343	return wq && wq_has_sleeper(&wq->wait);
2344}
2345
2346/**
2347 * sock_poll_wait - place memory barrier behind the poll_wait call.
2348 * @filp:           file
2349 * @sock:           socket to wait on
2350 * @p:              poll_table
2351 *
2352 * See the comments in the wq_has_sleeper function.
2353 */
2354static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2355				  poll_table *p)
2356{
2357	if (!poll_does_not_wait(p)) {
2358		poll_wait(filp, &sock->wq.wait, p);
2359		/* We need to be sure we are in sync with the
2360		 * socket flags modification.
2361		 *
2362		 * This memory barrier is paired in the wq_has_sleeper.
2363		 */
2364		smp_mb();
2365	}
2366}
2367
2368static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2369{
2370	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2371	u32 txhash = READ_ONCE(sk->sk_txhash);
2372
2373	if (txhash) {
2374		skb->l4_hash = 1;
2375		skb->hash = txhash;
2376	}
2377}
2378
2379void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2380
2381/*
2382 *	Queue a received datagram if it will fit. Stream and sequenced
2383 *	protocols can't normally use this as they need to fit buffers in
2384 *	and play with them.
2385 *
2386 *	Inlined as it's very short and called for pretty much every
2387 *	packet ever received.
2388 */
2389static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2390{
2391	skb_orphan(skb);
2392	skb->sk = sk;
2393	skb->destructor = sock_rfree;
2394	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2395	sk_mem_charge(sk, skb->truesize);
2396}
2397
2398static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2399{
2400	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2401		skb_orphan(skb);
2402		skb->destructor = sock_efree;
2403		skb->sk = sk;
2404		return true;
2405	}
2406	return false;
2407}
2408
2409static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2410{
2411	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2412	if (skb) {
2413		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2414			skb_set_owner_r(skb, sk);
2415			return skb;
2416		}
2417		__kfree_skb(skb);
2418	}
2419	return NULL;
2420}
2421
2422static inline void skb_prepare_for_gro(struct sk_buff *skb)
2423{
2424	if (skb->destructor != sock_wfree) {
2425		skb_orphan(skb);
2426		return;
2427	}
2428	skb->slow_gro = 1;
2429}
2430
2431void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2432		    unsigned long expires);
2433
2434void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2435
2436void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2437
2438int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2439			struct sk_buff *skb, unsigned int flags,
2440			void (*destructor)(struct sock *sk,
2441					   struct sk_buff *skb));
2442int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2443
2444int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2445			      enum skb_drop_reason *reason);
2446
2447static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2448{
2449	return sock_queue_rcv_skb_reason(sk, skb, NULL);
2450}
2451
2452int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2453struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2454
2455/*
2456 *	Recover an error report and clear atomically
2457 */
2458
2459static inline int sock_error(struct sock *sk)
2460{
2461	int err;
2462
2463	/* Avoid an atomic operation for the common case.
2464	 * This is racy since another cpu/thread can change sk_err under us.
2465	 */
2466	if (likely(data_race(!sk->sk_err)))
2467		return 0;
2468
2469	err = xchg(&sk->sk_err, 0);
2470	return -err;
2471}
2472
2473void sk_error_report(struct sock *sk);
2474
2475static inline unsigned long sock_wspace(struct sock *sk)
2476{
2477	int amt = 0;
2478
2479	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2480		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2481		if (amt < 0)
2482			amt = 0;
2483	}
2484	return amt;
2485}
2486
2487/* Note:
2488 *  We use sk->sk_wq_raw, from contexts knowing this
2489 *  pointer is not NULL and cannot disappear/change.
2490 */
2491static inline void sk_set_bit(int nr, struct sock *sk)
2492{
2493	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2494	    !sock_flag(sk, SOCK_FASYNC))
2495		return;
2496
2497	set_bit(nr, &sk->sk_wq_raw->flags);
2498}
2499
2500static inline void sk_clear_bit(int nr, struct sock *sk)
2501{
2502	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2503	    !sock_flag(sk, SOCK_FASYNC))
2504		return;
2505
2506	clear_bit(nr, &sk->sk_wq_raw->flags);
2507}
2508
2509static inline void sk_wake_async(const struct sock *sk, int how, int band)
2510{
2511	if (sock_flag(sk, SOCK_FASYNC)) {
2512		rcu_read_lock();
2513		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2514		rcu_read_unlock();
2515	}
2516}
2517
2518/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2519 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2520 * Note: for send buffers, TCP works better if we can build two skbs at
2521 * minimum.
2522 */
2523#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2524
2525#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2526#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2527
2528static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2529{
2530	u32 val;
2531
2532	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2533		return;
2534
2535	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2536	val = max_t(u32, val, sk_unused_reserved_mem(sk));
2537
2538	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2539}
2540
2541/**
2542 * sk_page_frag - return an appropriate page_frag
2543 * @sk: socket
2544 *
2545 * Use the per task page_frag instead of the per socket one for
2546 * optimization when we know that we're in process context and own
2547 * everything that's associated with %current.
2548 *
2549 * Both direct reclaim and page faults can nest inside other
2550 * socket operations and end up recursing into sk_page_frag()
2551 * while it's already in use: explicitly avoid task page_frag
2552 * when users disable sk_use_task_frag.
2553 *
2554 * Return: a per task page_frag if context allows that,
2555 * otherwise a per socket one.
2556 */
2557static inline struct page_frag *sk_page_frag(struct sock *sk)
2558{
2559	if (sk->sk_use_task_frag)
2560		return &current->task_frag;
2561
2562	return &sk->sk_frag;
2563}
2564
2565bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2566
2567/*
2568 *	Default write policy as shown to user space via poll/select/SIGIO
2569 */
2570static inline bool sock_writeable(const struct sock *sk)
2571{
2572	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2573}
2574
2575static inline gfp_t gfp_any(void)
2576{
2577	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2578}
2579
2580static inline gfp_t gfp_memcg_charge(void)
2581{
2582	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2583}
2584
2585static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2586{
2587	return noblock ? 0 : sk->sk_rcvtimeo;
2588}
2589
2590static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2591{
2592	return noblock ? 0 : sk->sk_sndtimeo;
2593}
2594
2595static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2596{
2597	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2598
2599	return v ?: 1;
2600}
2601
2602/* Alas, with timeout socket operations are not restartable.
2603 * Compare this to poll().
2604 */
2605static inline int sock_intr_errno(long timeo)
2606{
2607	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2608}
2609
2610struct sock_skb_cb {
2611	u32 dropcount;
2612};
2613
2614/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2615 * using skb->cb[] would keep using it directly and utilize its
2616 * alignement guarantee.
2617 */
2618#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2619			    sizeof(struct sock_skb_cb)))
2620
2621#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2622			    SOCK_SKB_CB_OFFSET))
2623
2624#define sock_skb_cb_check_size(size) \
2625	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2626
2627static inline void
2628sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2629{
2630	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2631						atomic_read(&sk->sk_drops) : 0;
2632}
2633
2634static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2635{
2636	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2637
2638	atomic_add(segs, &sk->sk_drops);
2639}
2640
2641static inline ktime_t sock_read_timestamp(struct sock *sk)
2642{
2643#if BITS_PER_LONG==32
2644	unsigned int seq;
2645	ktime_t kt;
2646
2647	do {
2648		seq = read_seqbegin(&sk->sk_stamp_seq);
2649		kt = sk->sk_stamp;
2650	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2651
2652	return kt;
2653#else
2654	return READ_ONCE(sk->sk_stamp);
2655#endif
2656}
2657
2658static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2659{
2660#if BITS_PER_LONG==32
2661	write_seqlock(&sk->sk_stamp_seq);
2662	sk->sk_stamp = kt;
2663	write_sequnlock(&sk->sk_stamp_seq);
2664#else
2665	WRITE_ONCE(sk->sk_stamp, kt);
2666#endif
2667}
2668
2669void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2670			   struct sk_buff *skb);
2671void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2672			     struct sk_buff *skb);
2673
2674static inline void
2675sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2676{
2677	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2678	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2679	ktime_t kt = skb->tstamp;
2680	/*
2681	 * generate control messages if
2682	 * - receive time stamping in software requested
2683	 * - software time stamp available and wanted
2684	 * - hardware time stamps available and wanted
2685	 */
2686	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2687	    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2688	    (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2689	    (hwtstamps->hwtstamp &&
2690	     (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2691		__sock_recv_timestamp(msg, sk, skb);
2692	else
2693		sock_write_timestamp(sk, kt);
2694
2695	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2696		__sock_recv_wifi_status(msg, sk, skb);
2697}
2698
2699void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2700		       struct sk_buff *skb);
2701
2702#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2703static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2704				   struct sk_buff *skb)
2705{
2706#define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL)			| \
2707			   (1UL << SOCK_RCVTSTAMP)			| \
2708			   (1UL << SOCK_RCVMARK))
2709#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2710			   SOF_TIMESTAMPING_RAW_HARDWARE)
2711
2712	if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2713	    READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2714		__sock_recv_cmsgs(msg, sk, skb);
2715	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2716		sock_write_timestamp(sk, skb->tstamp);
2717	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2718		sock_write_timestamp(sk, 0);
2719}
2720
2721void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2722
2723/**
2724 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2725 * @sk:		socket sending this packet
2726 * @tsflags:	timestamping flags to use
2727 * @tx_flags:	completed with instructions for time stamping
2728 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2729 *
2730 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2731 */
2732static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2733				      __u8 *tx_flags, __u32 *tskey)
2734{
2735	if (unlikely(tsflags)) {
2736		__sock_tx_timestamp(tsflags, tx_flags);
2737		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2738		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2739			*tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2740	}
2741	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2742		*tx_flags |= SKBTX_WIFI_STATUS;
2743}
2744
2745static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2746				     __u8 *tx_flags)
2747{
2748	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2749}
2750
2751static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2752{
2753	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2754			   &skb_shinfo(skb)->tskey);
2755}
2756
2757static inline bool sk_is_inet(const struct sock *sk)
2758{
2759	int family = READ_ONCE(sk->sk_family);
2760
2761	return family == AF_INET || family == AF_INET6;
2762}
2763
2764static inline bool sk_is_tcp(const struct sock *sk)
2765{
2766	return sk_is_inet(sk) &&
2767	       sk->sk_type == SOCK_STREAM &&
2768	       sk->sk_protocol == IPPROTO_TCP;
2769}
2770
2771static inline bool sk_is_udp(const struct sock *sk)
2772{
2773	return sk_is_inet(sk) &&
2774	       sk->sk_type == SOCK_DGRAM &&
2775	       sk->sk_protocol == IPPROTO_UDP;
2776}
2777
2778static inline bool sk_is_stream_unix(const struct sock *sk)
2779{
2780	return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2781}
2782
2783/**
2784 * sk_eat_skb - Release a skb if it is no longer needed
2785 * @sk: socket to eat this skb from
2786 * @skb: socket buffer to eat
2787 *
2788 * This routine must be called with interrupts disabled or with the socket
2789 * locked so that the sk_buff queue operation is ok.
2790*/
2791static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2792{
2793	__skb_unlink(skb, &sk->sk_receive_queue);
2794	__kfree_skb(skb);
2795}
2796
2797static inline bool
2798skb_sk_is_prefetched(struct sk_buff *skb)
2799{
2800#ifdef CONFIG_INET
2801	return skb->destructor == sock_pfree;
2802#else
2803	return false;
2804#endif /* CONFIG_INET */
2805}
2806
2807/* This helper checks if a socket is a full socket,
2808 * ie _not_ a timewait or request socket.
2809 */
2810static inline bool sk_fullsock(const struct sock *sk)
2811{
2812	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2813}
2814
2815static inline bool
2816sk_is_refcounted(struct sock *sk)
2817{
2818	/* Only full sockets have sk->sk_flags. */
2819	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2820}
2821
2822/* Checks if this SKB belongs to an HW offloaded socket
2823 * and whether any SW fallbacks are required based on dev.
2824 * Check decrypted mark in case skb_orphan() cleared socket.
2825 */
2826static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2827						   struct net_device *dev)
2828{
2829#ifdef CONFIG_SOCK_VALIDATE_XMIT
2830	struct sock *sk = skb->sk;
2831
2832	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2833		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2834#ifdef CONFIG_TLS_DEVICE
2835	} else if (unlikely(skb->decrypted)) {
2836		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2837		kfree_skb(skb);
2838		skb = NULL;
2839#endif
2840	}
2841#endif
2842
2843	return skb;
2844}
2845
2846/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2847 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2848 */
2849static inline bool sk_listener(const struct sock *sk)
2850{
2851	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2852}
2853
2854void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2855int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2856		       int type);
2857
2858bool sk_ns_capable(const struct sock *sk,
2859		   struct user_namespace *user_ns, int cap);
2860bool sk_capable(const struct sock *sk, int cap);
2861bool sk_net_capable(const struct sock *sk, int cap);
2862
2863void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2864
2865/* Take into consideration the size of the struct sk_buff overhead in the
2866 * determination of these values, since that is non-constant across
2867 * platforms.  This makes socket queueing behavior and performance
2868 * not depend upon such differences.
2869 */
2870#define _SK_MEM_PACKETS		256
2871#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2872#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2873#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2874
2875extern __u32 sysctl_wmem_max;
2876extern __u32 sysctl_rmem_max;
2877
2878extern int sysctl_tstamp_allow_data;
2879
2880extern __u32 sysctl_wmem_default;
2881extern __u32 sysctl_rmem_default;
2882
2883#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2884DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2885
2886static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2887{
2888	/* Does this proto have per netns sysctl_wmem ? */
2889	if (proto->sysctl_wmem_offset)
2890		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2891
2892	return READ_ONCE(*proto->sysctl_wmem);
2893}
2894
2895static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2896{
2897	/* Does this proto have per netns sysctl_rmem ? */
2898	if (proto->sysctl_rmem_offset)
2899		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2900
2901	return READ_ONCE(*proto->sysctl_rmem);
2902}
2903
2904/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2905 * Some wifi drivers need to tweak it to get more chunks.
2906 * They can use this helper from their ndo_start_xmit()
2907 */
2908static inline void sk_pacing_shift_update(struct sock *sk, int val)
2909{
2910	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2911		return;
2912	WRITE_ONCE(sk->sk_pacing_shift, val);
2913}
2914
2915/* if a socket is bound to a device, check that the given device
2916 * index is either the same or that the socket is bound to an L3
2917 * master device and the given device index is also enslaved to
2918 * that L3 master
2919 */
2920static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2921{
2922	int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2923	int mdif;
2924
2925	if (!bound_dev_if || bound_dev_if == dif)
2926		return true;
2927
2928	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2929	if (mdif && mdif == bound_dev_if)
2930		return true;
2931
2932	return false;
2933}
2934
2935void sock_def_readable(struct sock *sk);
2936
2937int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2938void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2939int sock_set_timestamping(struct sock *sk, int optname,
2940			  struct so_timestamping timestamping);
2941
2942void sock_enable_timestamps(struct sock *sk);
2943void sock_no_linger(struct sock *sk);
2944void sock_set_keepalive(struct sock *sk);
2945void sock_set_priority(struct sock *sk, u32 priority);
2946void sock_set_rcvbuf(struct sock *sk, int val);
2947void sock_set_mark(struct sock *sk, u32 val);
2948void sock_set_reuseaddr(struct sock *sk);
2949void sock_set_reuseport(struct sock *sk);
2950void sock_set_sndtimeo(struct sock *sk, s64 secs);
2951
2952int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2953
2954int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2955int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2956			   sockptr_t optval, int optlen, bool old_timeval);
2957
2958int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2959		     void __user *arg, void *karg, size_t size);
2960int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
2961static inline bool sk_is_readable(struct sock *sk)
2962{
2963	if (sk->sk_prot->sock_is_readable)
2964		return sk->sk_prot->sock_is_readable(sk);
2965	return false;
2966}
2967#endif	/* _SOCK_H */
2968