1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_USB_H
3#define __LINUX_USB_H
4
5#include <linux/mod_devicetable.h>
6#include <linux/usb/ch9.h>
7
8#define USB_MAJOR			180
9#define USB_DEVICE_MAJOR		189
10
11
12#ifdef __KERNEL__
13
14#include <linux/errno.h>        /* for -ENODEV */
15#include <linux/delay.h>	/* for mdelay() */
16#include <linux/interrupt.h>	/* for in_interrupt() */
17#include <linux/list.h>		/* for struct list_head */
18#include <linux/kref.h>		/* for struct kref */
19#include <linux/device.h>	/* for struct device */
20#include <linux/fs.h>		/* for struct file_operations */
21#include <linux/completion.h>	/* for struct completion */
22#include <linux/sched.h>	/* for current && schedule_timeout */
23#include <linux/mutex.h>	/* for struct mutex */
24#include <linux/pm_runtime.h>	/* for runtime PM */
25
26struct usb_device;
27struct usb_driver;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices.  Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 *  - devices have one (usually) or more configs;
37 *  - configs have one (often) or more interfaces;
38 *  - interfaces have one (usually) or more settings;
39 *  - each interface setting has zero or (usually) more endpoints.
40 *  - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56 *	with one or more transfer descriptors (TDs) per urb
57 * @ep_dev: ep_device for sysfs info
58 * @extra: descriptors following this endpoint in the configuration
59 * @extralen: how many bytes of "extra" are valid
60 * @enabled: URBs may be submitted to this endpoint
61 * @streams: number of USB-3 streams allocated on the endpoint
62 *
63 * USB requests are always queued to a given endpoint, identified by a
64 * descriptor within an active interface in a given USB configuration.
65 */
66struct usb_host_endpoint {
67	struct usb_endpoint_descriptor		desc;
68	struct usb_ss_ep_comp_descriptor	ss_ep_comp;
69	struct usb_ssp_isoc_ep_comp_descriptor	ssp_isoc_ep_comp;
70	struct list_head		urb_list;
71	void				*hcpriv;
72	struct ep_device		*ep_dev;	/* For sysfs info */
73
74	unsigned char *extra;   /* Extra descriptors */
75	int extralen;
76	int enabled;
77	int streams;
78};
79
80/* host-side wrapper for one interface setting's parsed descriptors */
81struct usb_host_interface {
82	struct usb_interface_descriptor	desc;
83
84	int extralen;
85	unsigned char *extra;   /* Extra descriptors */
86
87	/* array of desc.bNumEndpoints endpoints associated with this
88	 * interface setting.  these will be in no particular order.
89	 */
90	struct usb_host_endpoint *endpoint;
91
92	char *string;		/* iInterface string, if present */
93};
94
95enum usb_interface_condition {
96	USB_INTERFACE_UNBOUND = 0,
97	USB_INTERFACE_BINDING,
98	USB_INTERFACE_BOUND,
99	USB_INTERFACE_UNBINDING,
100};
101
102int __must_check
103usb_find_common_endpoints(struct usb_host_interface *alt,
104		struct usb_endpoint_descriptor **bulk_in,
105		struct usb_endpoint_descriptor **bulk_out,
106		struct usb_endpoint_descriptor **int_in,
107		struct usb_endpoint_descriptor **int_out);
108
109int __must_check
110usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
111		struct usb_endpoint_descriptor **bulk_in,
112		struct usb_endpoint_descriptor **bulk_out,
113		struct usb_endpoint_descriptor **int_in,
114		struct usb_endpoint_descriptor **int_out);
115
116static inline int __must_check
117usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
118		struct usb_endpoint_descriptor **bulk_in)
119{
120	return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
121}
122
123static inline int __must_check
124usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
125		struct usb_endpoint_descriptor **bulk_out)
126{
127	return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
128}
129
130static inline int __must_check
131usb_find_int_in_endpoint(struct usb_host_interface *alt,
132		struct usb_endpoint_descriptor **int_in)
133{
134	return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
135}
136
137static inline int __must_check
138usb_find_int_out_endpoint(struct usb_host_interface *alt,
139		struct usb_endpoint_descriptor **int_out)
140{
141	return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
142}
143
144static inline int __must_check
145usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
146		struct usb_endpoint_descriptor **bulk_in)
147{
148	return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
149}
150
151static inline int __must_check
152usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
153		struct usb_endpoint_descriptor **bulk_out)
154{
155	return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
156}
157
158static inline int __must_check
159usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
160		struct usb_endpoint_descriptor **int_in)
161{
162	return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
163}
164
165static inline int __must_check
166usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
167		struct usb_endpoint_descriptor **int_out)
168{
169	return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
170}
171
172enum usb_wireless_status {
173	USB_WIRELESS_STATUS_NA = 0,
174	USB_WIRELESS_STATUS_DISCONNECTED,
175	USB_WIRELESS_STATUS_CONNECTED,
176};
177
178/**
179 * struct usb_interface - what usb device drivers talk to
180 * @altsetting: array of interface structures, one for each alternate
181 *	setting that may be selected.  Each one includes a set of
182 *	endpoint configurations.  They will be in no particular order.
183 * @cur_altsetting: the current altsetting.
184 * @num_altsetting: number of altsettings defined.
185 * @intf_assoc: interface association descriptor
186 * @minor: the minor number assigned to this interface, if this
187 *	interface is bound to a driver that uses the USB major number.
188 *	If this interface does not use the USB major, this field should
189 *	be unused.  The driver should set this value in the probe()
190 *	function of the driver, after it has been assigned a minor
191 *	number from the USB core by calling usb_register_dev().
192 * @condition: binding state of the interface: not bound, binding
193 *	(in probe()), bound to a driver, or unbinding (in disconnect())
194 * @sysfs_files_created: sysfs attributes exist
195 * @ep_devs_created: endpoint child pseudo-devices exist
196 * @unregistering: flag set when the interface is being unregistered
197 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
198 *	capability during autosuspend.
199 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
200 *	has been deferred.
201 * @needs_binding: flag set when the driver should be re-probed or unbound
202 *	following a reset or suspend operation it doesn't support.
203 * @authorized: This allows to (de)authorize individual interfaces instead
204 *	a whole device in contrast to the device authorization.
205 * @wireless_status: if the USB device uses a receiver/emitter combo, whether
206 *	the emitter is connected.
207 * @wireless_status_work: Used for scheduling wireless status changes
208 *	from atomic context.
209 * @dev: driver model's view of this device
210 * @usb_dev: if an interface is bound to the USB major, this will point
211 *	to the sysfs representation for that device.
212 * @reset_ws: Used for scheduling resets from atomic context.
213 * @resetting_device: USB core reset the device, so use alt setting 0 as
214 *	current; needs bandwidth alloc after reset.
215 *
216 * USB device drivers attach to interfaces on a physical device.  Each
217 * interface encapsulates a single high level function, such as feeding
218 * an audio stream to a speaker or reporting a change in a volume control.
219 * Many USB devices only have one interface.  The protocol used to talk to
220 * an interface's endpoints can be defined in a usb "class" specification,
221 * or by a product's vendor.  The (default) control endpoint is part of
222 * every interface, but is never listed among the interface's descriptors.
223 *
224 * The driver that is bound to the interface can use standard driver model
225 * calls such as dev_get_drvdata() on the dev member of this structure.
226 *
227 * Each interface may have alternate settings.  The initial configuration
228 * of a device sets altsetting 0, but the device driver can change
229 * that setting using usb_set_interface().  Alternate settings are often
230 * used to control the use of periodic endpoints, such as by having
231 * different endpoints use different amounts of reserved USB bandwidth.
232 * All standards-conformant USB devices that use isochronous endpoints
233 * will use them in non-default settings.
234 *
235 * The USB specification says that alternate setting numbers must run from
236 * 0 to one less than the total number of alternate settings.  But some
237 * devices manage to mess this up, and the structures aren't necessarily
238 * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
239 * look up an alternate setting in the altsetting array based on its number.
240 */
241struct usb_interface {
242	/* array of alternate settings for this interface,
243	 * stored in no particular order */
244	struct usb_host_interface *altsetting;
245
246	struct usb_host_interface *cur_altsetting;	/* the currently
247					 * active alternate setting */
248	unsigned num_altsetting;	/* number of alternate settings */
249
250	/* If there is an interface association descriptor then it will list
251	 * the associated interfaces */
252	struct usb_interface_assoc_descriptor *intf_assoc;
253
254	int minor;			/* minor number this interface is
255					 * bound to */
256	enum usb_interface_condition condition;		/* state of binding */
257	unsigned sysfs_files_created:1;	/* the sysfs attributes exist */
258	unsigned ep_devs_created:1;	/* endpoint "devices" exist */
259	unsigned unregistering:1;	/* unregistration is in progress */
260	unsigned needs_remote_wakeup:1;	/* driver requires remote wakeup */
261	unsigned needs_altsetting0:1;	/* switch to altsetting 0 is pending */
262	unsigned needs_binding:1;	/* needs delayed unbind/rebind */
263	unsigned resetting_device:1;	/* true: bandwidth alloc after reset */
264	unsigned authorized:1;		/* used for interface authorization */
265	enum usb_wireless_status wireless_status;
266	struct work_struct wireless_status_work;
267
268	struct device dev;		/* interface specific device info */
269	struct device *usb_dev;
270	struct work_struct reset_ws;	/* for resets in atomic context */
271};
272
273#define to_usb_interface(__dev)	container_of_const(__dev, struct usb_interface, dev)
274
275static inline void *usb_get_intfdata(struct usb_interface *intf)
276{
277	return dev_get_drvdata(&intf->dev);
278}
279
280/**
281 * usb_set_intfdata() - associate driver-specific data with an interface
282 * @intf: USB interface
283 * @data: driver data
284 *
285 * Drivers can use this function in their probe() callbacks to associate
286 * driver-specific data with an interface.
287 *
288 * Note that there is generally no need to clear the driver-data pointer even
289 * if some drivers do so for historical or implementation-specific reasons.
290 */
291static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
292{
293	dev_set_drvdata(&intf->dev, data);
294}
295
296struct usb_interface *usb_get_intf(struct usb_interface *intf);
297void usb_put_intf(struct usb_interface *intf);
298
299/* Hard limit */
300#define USB_MAXENDPOINTS	30
301/* this maximum is arbitrary */
302#define USB_MAXINTERFACES	32
303#define USB_MAXIADS		(USB_MAXINTERFACES/2)
304
305bool usb_check_bulk_endpoints(
306		const struct usb_interface *intf, const u8 *ep_addrs);
307bool usb_check_int_endpoints(
308		const struct usb_interface *intf, const u8 *ep_addrs);
309
310/*
311 * USB Resume Timer: Every Host controller driver should drive the resume
312 * signalling on the bus for the amount of time defined by this macro.
313 *
314 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
315 *
316 * Note that the USB Specification states we should drive resume for *at least*
317 * 20 ms, but it doesn't give an upper bound. This creates two possible
318 * situations which we want to avoid:
319 *
320 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
321 * us to fail USB Electrical Tests, thus failing Certification
322 *
323 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
324 * and while we can argue that's against the USB Specification, we don't have
325 * control over which devices a certification laboratory will be using for
326 * certification. If CertLab uses a device which was tested against Windows and
327 * that happens to have relaxed resume signalling rules, we might fall into
328 * situations where we fail interoperability and electrical tests.
329 *
330 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
331 * should cope with both LPJ calibration errors and devices not following every
332 * detail of the USB Specification.
333 */
334#define USB_RESUME_TIMEOUT	40 /* ms */
335
336/**
337 * struct usb_interface_cache - long-term representation of a device interface
338 * @num_altsetting: number of altsettings defined.
339 * @ref: reference counter.
340 * @altsetting: variable-length array of interface structures, one for
341 *	each alternate setting that may be selected.  Each one includes a
342 *	set of endpoint configurations.  They will be in no particular order.
343 *
344 * These structures persist for the lifetime of a usb_device, unlike
345 * struct usb_interface (which persists only as long as its configuration
346 * is installed).  The altsetting arrays can be accessed through these
347 * structures at any time, permitting comparison of configurations and
348 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
349 */
350struct usb_interface_cache {
351	unsigned num_altsetting;	/* number of alternate settings */
352	struct kref ref;		/* reference counter */
353
354	/* variable-length array of alternate settings for this interface,
355	 * stored in no particular order */
356	struct usb_host_interface altsetting[];
357};
358#define	ref_to_usb_interface_cache(r) \
359		container_of(r, struct usb_interface_cache, ref)
360#define	altsetting_to_usb_interface_cache(a) \
361		container_of(a, struct usb_interface_cache, altsetting[0])
362
363/**
364 * struct usb_host_config - representation of a device's configuration
365 * @desc: the device's configuration descriptor.
366 * @string: pointer to the cached version of the iConfiguration string, if
367 *	present for this configuration.
368 * @intf_assoc: list of any interface association descriptors in this config
369 * @interface: array of pointers to usb_interface structures, one for each
370 *	interface in the configuration.  The number of interfaces is stored
371 *	in desc.bNumInterfaces.  These pointers are valid only while the
372 *	configuration is active.
373 * @intf_cache: array of pointers to usb_interface_cache structures, one
374 *	for each interface in the configuration.  These structures exist
375 *	for the entire life of the device.
376 * @extra: pointer to buffer containing all extra descriptors associated
377 *	with this configuration (those preceding the first interface
378 *	descriptor).
379 * @extralen: length of the extra descriptors buffer.
380 *
381 * USB devices may have multiple configurations, but only one can be active
382 * at any time.  Each encapsulates a different operational environment;
383 * for example, a dual-speed device would have separate configurations for
384 * full-speed and high-speed operation.  The number of configurations
385 * available is stored in the device descriptor as bNumConfigurations.
386 *
387 * A configuration can contain multiple interfaces.  Each corresponds to
388 * a different function of the USB device, and all are available whenever
389 * the configuration is active.  The USB standard says that interfaces
390 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
391 * of devices get this wrong.  In addition, the interface array is not
392 * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
393 * look up an interface entry based on its number.
394 *
395 * Device drivers should not attempt to activate configurations.  The choice
396 * of which configuration to install is a policy decision based on such
397 * considerations as available power, functionality provided, and the user's
398 * desires (expressed through userspace tools).  However, drivers can call
399 * usb_reset_configuration() to reinitialize the current configuration and
400 * all its interfaces.
401 */
402struct usb_host_config {
403	struct usb_config_descriptor	desc;
404
405	char *string;		/* iConfiguration string, if present */
406
407	/* List of any Interface Association Descriptors in this
408	 * configuration. */
409	struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
410
411	/* the interfaces associated with this configuration,
412	 * stored in no particular order */
413	struct usb_interface *interface[USB_MAXINTERFACES];
414
415	/* Interface information available even when this is not the
416	 * active configuration */
417	struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
418
419	unsigned char *extra;   /* Extra descriptors */
420	int extralen;
421};
422
423/* USB2.0 and USB3.0 device BOS descriptor set */
424struct usb_host_bos {
425	struct usb_bos_descriptor	*desc;
426
427	struct usb_ext_cap_descriptor	*ext_cap;
428	struct usb_ss_cap_descriptor	*ss_cap;
429	struct usb_ssp_cap_descriptor	*ssp_cap;
430	struct usb_ss_container_id_descriptor	*ss_id;
431	struct usb_ptm_cap_descriptor	*ptm_cap;
432};
433
434int __usb_get_extra_descriptor(char *buffer, unsigned size,
435	unsigned char type, void **ptr, size_t min);
436#define usb_get_extra_descriptor(ifpoint, type, ptr) \
437				__usb_get_extra_descriptor((ifpoint)->extra, \
438				(ifpoint)->extralen, \
439				type, (void **)ptr, sizeof(**(ptr)))
440
441/* ----------------------------------------------------------------------- */
442
443/* USB device number allocation bitmap */
444struct usb_devmap {
445	unsigned long devicemap[128 / (8*sizeof(unsigned long))];
446};
447
448/*
449 * Allocated per bus (tree of devices) we have:
450 */
451struct usb_bus {
452	struct device *controller;	/* host side hardware */
453	struct device *sysdev;		/* as seen from firmware or bus */
454	int busnum;			/* Bus number (in order of reg) */
455	const char *bus_name;		/* stable id (PCI slot_name etc) */
456	u8 uses_pio_for_control;	/*
457					 * Does the host controller use PIO
458					 * for control transfers?
459					 */
460	u8 otg_port;			/* 0, or number of OTG/HNP port */
461	unsigned is_b_host:1;		/* true during some HNP roleswitches */
462	unsigned b_hnp_enable:1;	/* OTG: did A-Host enable HNP? */
463	unsigned no_stop_on_short:1;    /*
464					 * Quirk: some controllers don't stop
465					 * the ep queue on a short transfer
466					 * with the URB_SHORT_NOT_OK flag set.
467					 */
468	unsigned no_sg_constraint:1;	/* no sg constraint */
469	unsigned sg_tablesize;		/* 0 or largest number of sg list entries */
470
471	int devnum_next;		/* Next open device number in
472					 * round-robin allocation */
473	struct mutex devnum_next_mutex; /* devnum_next mutex */
474
475	struct usb_devmap devmap;	/* device address allocation map */
476	struct usb_device *root_hub;	/* Root hub */
477	struct usb_bus *hs_companion;	/* Companion EHCI bus, if any */
478
479	int bandwidth_allocated;	/* on this bus: how much of the time
480					 * reserved for periodic (intr/iso)
481					 * requests is used, on average?
482					 * Units: microseconds/frame.
483					 * Limits: Full/low speed reserve 90%,
484					 * while high speed reserves 80%.
485					 */
486	int bandwidth_int_reqs;		/* number of Interrupt requests */
487	int bandwidth_isoc_reqs;	/* number of Isoc. requests */
488
489	unsigned resuming_ports;	/* bit array: resuming root-hub ports */
490
491#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
492	struct mon_bus *mon_bus;	/* non-null when associated */
493	int monitored;			/* non-zero when monitored */
494#endif
495};
496
497struct usb_dev_state;
498
499/* ----------------------------------------------------------------------- */
500
501struct usb_tt;
502
503enum usb_port_connect_type {
504	USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
505	USB_PORT_CONNECT_TYPE_HOT_PLUG,
506	USB_PORT_CONNECT_TYPE_HARD_WIRED,
507	USB_PORT_NOT_USED,
508};
509
510/*
511 * USB port quirks.
512 */
513
514/* For the given port, prefer the old (faster) enumeration scheme. */
515#define USB_PORT_QUIRK_OLD_SCHEME	BIT(0)
516
517/* Decrease TRSTRCY to 10ms during device enumeration. */
518#define USB_PORT_QUIRK_FAST_ENUM	BIT(1)
519
520/*
521 * USB 2.0 Link Power Management (LPM) parameters.
522 */
523struct usb2_lpm_parameters {
524	/* Best effort service latency indicate how long the host will drive
525	 * resume on an exit from L1.
526	 */
527	unsigned int besl;
528
529	/* Timeout value in microseconds for the L1 inactivity (LPM) timer.
530	 * When the timer counts to zero, the parent hub will initiate a LPM
531	 * transition to L1.
532	 */
533	int timeout;
534};
535
536/*
537 * USB 3.0 Link Power Management (LPM) parameters.
538 *
539 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
540 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
541 * All three are stored in nanoseconds.
542 */
543struct usb3_lpm_parameters {
544	/*
545	 * Maximum exit latency (MEL) for the host to send a packet to the
546	 * device (either a Ping for isoc endpoints, or a data packet for
547	 * interrupt endpoints), the hubs to decode the packet, and for all hubs
548	 * in the path to transition the links to U0.
549	 */
550	unsigned int mel;
551	/*
552	 * Maximum exit latency for a device-initiated LPM transition to bring
553	 * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
554	 * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
555	 */
556	unsigned int pel;
557
558	/*
559	 * The System Exit Latency (SEL) includes PEL, and three other
560	 * latencies.  After a device initiates a U0 transition, it will take
561	 * some time from when the device sends the ERDY to when it will finally
562	 * receive the data packet.  Basically, SEL should be the worse-case
563	 * latency from when a device starts initiating a U0 transition to when
564	 * it will get data.
565	 */
566	unsigned int sel;
567	/*
568	 * The idle timeout value that is currently programmed into the parent
569	 * hub for this device.  When the timer counts to zero, the parent hub
570	 * will initiate an LPM transition to either U1 or U2.
571	 */
572	int timeout;
573};
574
575/**
576 * struct usb_device - kernel's representation of a USB device
577 * @devnum: device number; address on a USB bus
578 * @devpath: device ID string for use in messages (e.g., /port/...)
579 * @route: tree topology hex string for use with xHCI
580 * @state: device state: configured, not attached, etc.
581 * @speed: device speed: high/full/low (or error)
582 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
583 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
584 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
585 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
586 * @ttport: device port on that tt hub
587 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
588 * @parent: our hub, unless we're the root
589 * @bus: bus we're part of
590 * @ep0: endpoint 0 data (default control pipe)
591 * @dev: generic device interface
592 * @descriptor: USB device descriptor
593 * @bos: USB device BOS descriptor set
594 * @config: all of the device's configs
595 * @actconfig: the active configuration
596 * @ep_in: array of IN endpoints
597 * @ep_out: array of OUT endpoints
598 * @rawdescriptors: raw descriptors for each config
599 * @bus_mA: Current available from the bus
600 * @portnum: parent port number (origin 1)
601 * @level: number of USB hub ancestors
602 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
603 * @can_submit: URBs may be submitted
604 * @persist_enabled:  USB_PERSIST enabled for this device
605 * @reset_in_progress: the device is being reset
606 * @have_langid: whether string_langid is valid
607 * @authorized: policy has said we can use it;
608 *	(user space) policy determines if we authorize this device to be
609 *	used or not. By default, wired USB devices are authorized.
610 *	WUSB devices are not, until we authorize them from user space.
611 *	FIXME -- complete doc
612 * @authenticated: Crypto authentication passed
613 * @lpm_capable: device supports LPM
614 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
615 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
616 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
617 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
618 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
619 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
620 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
621 * @string_langid: language ID for strings
622 * @product: iProduct string, if present (static)
623 * @manufacturer: iManufacturer string, if present (static)
624 * @serial: iSerialNumber string, if present (static)
625 * @filelist: usbfs files that are open to this device
626 * @maxchild: number of ports if hub
627 * @quirks: quirks of the whole device
628 * @urbnum: number of URBs submitted for the whole device
629 * @active_duration: total time device is not suspended
630 * @connect_time: time device was first connected
631 * @do_remote_wakeup:  remote wakeup should be enabled
632 * @reset_resume: needs reset instead of resume
633 * @port_is_suspended: the upstream port is suspended (L2 or U3)
634 * @slot_id: Slot ID assigned by xHCI
635 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
636 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
637 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
638 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
639 *	to keep track of the number of functions that require USB 3.0 Link Power
640 *	Management to be disabled for this usb_device.  This count should only
641 *	be manipulated by those functions, with the bandwidth_mutex is held.
642 * @hub_delay: cached value consisting of:
643 *	parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
644 *	Will be used as wValue for SetIsochDelay requests.
645 * @use_generic_driver: ask driver core to reprobe using the generic driver.
646 *
647 * Notes:
648 * Usbcore drivers should not set usbdev->state directly.  Instead use
649 * usb_set_device_state().
650 */
651struct usb_device {
652	int		devnum;
653	char		devpath[16];
654	u32		route;
655	enum usb_device_state	state;
656	enum usb_device_speed	speed;
657	unsigned int		rx_lanes;
658	unsigned int		tx_lanes;
659	enum usb_ssp_rate	ssp_rate;
660
661	struct usb_tt	*tt;
662	int		ttport;
663
664	unsigned int toggle[2];
665
666	struct usb_device *parent;
667	struct usb_bus *bus;
668	struct usb_host_endpoint ep0;
669
670	struct device dev;
671
672	struct usb_device_descriptor descriptor;
673	struct usb_host_bos *bos;
674	struct usb_host_config *config;
675
676	struct usb_host_config *actconfig;
677	struct usb_host_endpoint *ep_in[16];
678	struct usb_host_endpoint *ep_out[16];
679
680	char **rawdescriptors;
681
682	unsigned short bus_mA;
683	u8 portnum;
684	u8 level;
685	u8 devaddr;
686
687	unsigned can_submit:1;
688	unsigned persist_enabled:1;
689	unsigned reset_in_progress:1;
690	unsigned have_langid:1;
691	unsigned authorized:1;
692	unsigned authenticated:1;
693	unsigned lpm_capable:1;
694	unsigned lpm_devinit_allow:1;
695	unsigned usb2_hw_lpm_capable:1;
696	unsigned usb2_hw_lpm_besl_capable:1;
697	unsigned usb2_hw_lpm_enabled:1;
698	unsigned usb2_hw_lpm_allowed:1;
699	unsigned usb3_lpm_u1_enabled:1;
700	unsigned usb3_lpm_u2_enabled:1;
701	int string_langid;
702
703	/* static strings from the device */
704	char *product;
705	char *manufacturer;
706	char *serial;
707
708	struct list_head filelist;
709
710	int maxchild;
711
712	u32 quirks;
713	atomic_t urbnum;
714
715	unsigned long active_duration;
716
717	unsigned long connect_time;
718
719	unsigned do_remote_wakeup:1;
720	unsigned reset_resume:1;
721	unsigned port_is_suspended:1;
722
723	int slot_id;
724	struct usb2_lpm_parameters l1_params;
725	struct usb3_lpm_parameters u1_params;
726	struct usb3_lpm_parameters u2_params;
727	unsigned lpm_disable_count;
728
729	u16 hub_delay;
730	unsigned use_generic_driver:1;
731};
732
733#define to_usb_device(__dev)	container_of_const(__dev, struct usb_device, dev)
734
735static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
736{
737	return to_usb_device(intf->dev.parent);
738}
739static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
740{
741	return to_usb_device((const struct device *)intf->dev.parent);
742}
743
744#define interface_to_usbdev(intf)					\
745	_Generic((intf),						\
746		 const struct usb_interface *: __intf_to_usbdev_const,	\
747		 struct usb_interface *: __intf_to_usbdev)(intf)
748
749extern struct usb_device *usb_get_dev(struct usb_device *dev);
750extern void usb_put_dev(struct usb_device *dev);
751extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
752	int port1);
753
754/**
755 * usb_hub_for_each_child - iterate over all child devices on the hub
756 * @hdev:  USB device belonging to the usb hub
757 * @port1: portnum associated with child device
758 * @child: child device pointer
759 */
760#define usb_hub_for_each_child(hdev, port1, child) \
761	for (port1 = 1,	child =	usb_hub_find_child(hdev, port1); \
762			port1 <= hdev->maxchild; \
763			child = usb_hub_find_child(hdev, ++port1)) \
764		if (!child) continue; else
765
766/* USB device locking */
767#define usb_lock_device(udev)			device_lock(&(udev)->dev)
768#define usb_unlock_device(udev)			device_unlock(&(udev)->dev)
769#define usb_lock_device_interruptible(udev)	device_lock_interruptible(&(udev)->dev)
770#define usb_trylock_device(udev)		device_trylock(&(udev)->dev)
771extern int usb_lock_device_for_reset(struct usb_device *udev,
772				     const struct usb_interface *iface);
773
774/* USB port reset for device reinitialization */
775extern int usb_reset_device(struct usb_device *dev);
776extern void usb_queue_reset_device(struct usb_interface *dev);
777
778extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
779
780#ifdef CONFIG_ACPI
781extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
782	bool enable);
783extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
784extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
785#else
786static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
787	bool enable) { return 0; }
788static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
789	{ return true; }
790static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
791	{ return 0; }
792#endif
793
794/* USB autosuspend and autoresume */
795#ifdef CONFIG_PM
796extern void usb_enable_autosuspend(struct usb_device *udev);
797extern void usb_disable_autosuspend(struct usb_device *udev);
798
799extern int usb_autopm_get_interface(struct usb_interface *intf);
800extern void usb_autopm_put_interface(struct usb_interface *intf);
801extern int usb_autopm_get_interface_async(struct usb_interface *intf);
802extern void usb_autopm_put_interface_async(struct usb_interface *intf);
803extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
804extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
805
806static inline void usb_mark_last_busy(struct usb_device *udev)
807{
808	pm_runtime_mark_last_busy(&udev->dev);
809}
810
811#else
812
813static inline int usb_enable_autosuspend(struct usb_device *udev)
814{ return 0; }
815static inline int usb_disable_autosuspend(struct usb_device *udev)
816{ return 0; }
817
818static inline int usb_autopm_get_interface(struct usb_interface *intf)
819{ return 0; }
820static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
821{ return 0; }
822
823static inline void usb_autopm_put_interface(struct usb_interface *intf)
824{ }
825static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
826{ }
827static inline void usb_autopm_get_interface_no_resume(
828		struct usb_interface *intf)
829{ }
830static inline void usb_autopm_put_interface_no_suspend(
831		struct usb_interface *intf)
832{ }
833static inline void usb_mark_last_busy(struct usb_device *udev)
834{ }
835#endif
836
837extern int usb_disable_lpm(struct usb_device *udev);
838extern void usb_enable_lpm(struct usb_device *udev);
839/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
840extern int usb_unlocked_disable_lpm(struct usb_device *udev);
841extern void usb_unlocked_enable_lpm(struct usb_device *udev);
842
843extern int usb_disable_ltm(struct usb_device *udev);
844extern void usb_enable_ltm(struct usb_device *udev);
845
846static inline bool usb_device_supports_ltm(struct usb_device *udev)
847{
848	if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
849		return false;
850	return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
851}
852
853static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
854{
855	return udev && udev->bus && udev->bus->no_sg_constraint;
856}
857
858
859/*-------------------------------------------------------------------------*/
860
861/* for drivers using iso endpoints */
862extern int usb_get_current_frame_number(struct usb_device *usb_dev);
863
864/* Sets up a group of bulk endpoints to support multiple stream IDs. */
865extern int usb_alloc_streams(struct usb_interface *interface,
866		struct usb_host_endpoint **eps, unsigned int num_eps,
867		unsigned int num_streams, gfp_t mem_flags);
868
869/* Reverts a group of bulk endpoints back to not using stream IDs. */
870extern int usb_free_streams(struct usb_interface *interface,
871		struct usb_host_endpoint **eps, unsigned int num_eps,
872		gfp_t mem_flags);
873
874/* used these for multi-interface device registration */
875extern int usb_driver_claim_interface(struct usb_driver *driver,
876			struct usb_interface *iface, void *data);
877
878/**
879 * usb_interface_claimed - returns true iff an interface is claimed
880 * @iface: the interface being checked
881 *
882 * Return: %true (nonzero) iff the interface is claimed, else %false
883 * (zero).
884 *
885 * Note:
886 * Callers must own the driver model's usb bus readlock.  So driver
887 * probe() entries don't need extra locking, but other call contexts
888 * may need to explicitly claim that lock.
889 *
890 */
891static inline int usb_interface_claimed(struct usb_interface *iface)
892{
893	return (iface->dev.driver != NULL);
894}
895
896extern void usb_driver_release_interface(struct usb_driver *driver,
897			struct usb_interface *iface);
898
899int usb_set_wireless_status(struct usb_interface *iface,
900			enum usb_wireless_status status);
901
902const struct usb_device_id *usb_match_id(struct usb_interface *interface,
903					 const struct usb_device_id *id);
904extern int usb_match_one_id(struct usb_interface *interface,
905			    const struct usb_device_id *id);
906
907extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
908extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
909		int minor);
910extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
911		unsigned ifnum);
912extern struct usb_host_interface *usb_altnum_to_altsetting(
913		const struct usb_interface *intf, unsigned int altnum);
914extern struct usb_host_interface *usb_find_alt_setting(
915		struct usb_host_config *config,
916		unsigned int iface_num,
917		unsigned int alt_num);
918
919/* port claiming functions */
920int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
921		struct usb_dev_state *owner);
922int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
923		struct usb_dev_state *owner);
924
925/**
926 * usb_make_path - returns stable device path in the usb tree
927 * @dev: the device whose path is being constructed
928 * @buf: where to put the string
929 * @size: how big is "buf"?
930 *
931 * Return: Length of the string (> 0) or negative if size was too small.
932 *
933 * Note:
934 * This identifier is intended to be "stable", reflecting physical paths in
935 * hardware such as physical bus addresses for host controllers or ports on
936 * USB hubs.  That makes it stay the same until systems are physically
937 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
938 * controllers.  Adding and removing devices, including virtual root hubs
939 * in host controller driver modules, does not change these path identifiers;
940 * neither does rebooting or re-enumerating.  These are more useful identifiers
941 * than changeable ("unstable") ones like bus numbers or device addresses.
942 *
943 * With a partial exception for devices connected to USB 2.0 root hubs, these
944 * identifiers are also predictable.  So long as the device tree isn't changed,
945 * plugging any USB device into a given hub port always gives it the same path.
946 * Because of the use of "companion" controllers, devices connected to ports on
947 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
948 * high speed, and a different one if they are full or low speed.
949 */
950static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
951{
952	int actual;
953	actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
954			  dev->devpath);
955	return (actual >= (int)size) ? -1 : actual;
956}
957
958/*-------------------------------------------------------------------------*/
959
960#define USB_DEVICE_ID_MATCH_DEVICE \
961		(USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
962#define USB_DEVICE_ID_MATCH_DEV_RANGE \
963		(USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
964#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
965		(USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
966#define USB_DEVICE_ID_MATCH_DEV_INFO \
967		(USB_DEVICE_ID_MATCH_DEV_CLASS | \
968		USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
969		USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
970#define USB_DEVICE_ID_MATCH_INT_INFO \
971		(USB_DEVICE_ID_MATCH_INT_CLASS | \
972		USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
973		USB_DEVICE_ID_MATCH_INT_PROTOCOL)
974
975/**
976 * USB_DEVICE - macro used to describe a specific usb device
977 * @vend: the 16 bit USB Vendor ID
978 * @prod: the 16 bit USB Product ID
979 *
980 * This macro is used to create a struct usb_device_id that matches a
981 * specific device.
982 */
983#define USB_DEVICE(vend, prod) \
984	.match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
985	.idVendor = (vend), \
986	.idProduct = (prod)
987/**
988 * USB_DEVICE_VER - describe a specific usb device with a version range
989 * @vend: the 16 bit USB Vendor ID
990 * @prod: the 16 bit USB Product ID
991 * @lo: the bcdDevice_lo value
992 * @hi: the bcdDevice_hi value
993 *
994 * This macro is used to create a struct usb_device_id that matches a
995 * specific device, with a version range.
996 */
997#define USB_DEVICE_VER(vend, prod, lo, hi) \
998	.match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
999	.idVendor = (vend), \
1000	.idProduct = (prod), \
1001	.bcdDevice_lo = (lo), \
1002	.bcdDevice_hi = (hi)
1003
1004/**
1005 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1006 * @vend: the 16 bit USB Vendor ID
1007 * @prod: the 16 bit USB Product ID
1008 * @cl: bInterfaceClass value
1009 *
1010 * This macro is used to create a struct usb_device_id that matches a
1011 * specific interface class of devices.
1012 */
1013#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1014	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1015		       USB_DEVICE_ID_MATCH_INT_CLASS, \
1016	.idVendor = (vend), \
1017	.idProduct = (prod), \
1018	.bInterfaceClass = (cl)
1019
1020/**
1021 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1022 * @vend: the 16 bit USB Vendor ID
1023 * @prod: the 16 bit USB Product ID
1024 * @pr: bInterfaceProtocol value
1025 *
1026 * This macro is used to create a struct usb_device_id that matches a
1027 * specific interface protocol of devices.
1028 */
1029#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1030	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1031		       USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1032	.idVendor = (vend), \
1033	.idProduct = (prod), \
1034	.bInterfaceProtocol = (pr)
1035
1036/**
1037 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1038 * @vend: the 16 bit USB Vendor ID
1039 * @prod: the 16 bit USB Product ID
1040 * @num: bInterfaceNumber value
1041 *
1042 * This macro is used to create a struct usb_device_id that matches a
1043 * specific interface number of devices.
1044 */
1045#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1046	.match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1047		       USB_DEVICE_ID_MATCH_INT_NUMBER, \
1048	.idVendor = (vend), \
1049	.idProduct = (prod), \
1050	.bInterfaceNumber = (num)
1051
1052/**
1053 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1054 * @cl: bDeviceClass value
1055 * @sc: bDeviceSubClass value
1056 * @pr: bDeviceProtocol value
1057 *
1058 * This macro is used to create a struct usb_device_id that matches a
1059 * specific class of devices.
1060 */
1061#define USB_DEVICE_INFO(cl, sc, pr) \
1062	.match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1063	.bDeviceClass = (cl), \
1064	.bDeviceSubClass = (sc), \
1065	.bDeviceProtocol = (pr)
1066
1067/**
1068 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1069 * @cl: bInterfaceClass value
1070 * @sc: bInterfaceSubClass value
1071 * @pr: bInterfaceProtocol value
1072 *
1073 * This macro is used to create a struct usb_device_id that matches a
1074 * specific class of interfaces.
1075 */
1076#define USB_INTERFACE_INFO(cl, sc, pr) \
1077	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1078	.bInterfaceClass = (cl), \
1079	.bInterfaceSubClass = (sc), \
1080	.bInterfaceProtocol = (pr)
1081
1082/**
1083 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1084 * @vend: the 16 bit USB Vendor ID
1085 * @prod: the 16 bit USB Product ID
1086 * @cl: bInterfaceClass value
1087 * @sc: bInterfaceSubClass value
1088 * @pr: bInterfaceProtocol value
1089 *
1090 * This macro is used to create a struct usb_device_id that matches a
1091 * specific device with a specific class of interfaces.
1092 *
1093 * This is especially useful when explicitly matching devices that have
1094 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1095 */
1096#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1097	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1098		| USB_DEVICE_ID_MATCH_DEVICE, \
1099	.idVendor = (vend), \
1100	.idProduct = (prod), \
1101	.bInterfaceClass = (cl), \
1102	.bInterfaceSubClass = (sc), \
1103	.bInterfaceProtocol = (pr)
1104
1105/**
1106 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1107 * @vend: the 16 bit USB Vendor ID
1108 * @cl: bInterfaceClass value
1109 * @sc: bInterfaceSubClass value
1110 * @pr: bInterfaceProtocol value
1111 *
1112 * This macro is used to create a struct usb_device_id that matches a
1113 * specific vendor with a specific class of interfaces.
1114 *
1115 * This is especially useful when explicitly matching devices that have
1116 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1117 */
1118#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1119	.match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1120		| USB_DEVICE_ID_MATCH_VENDOR, \
1121	.idVendor = (vend), \
1122	.bInterfaceClass = (cl), \
1123	.bInterfaceSubClass = (sc), \
1124	.bInterfaceProtocol = (pr)
1125
1126/* ----------------------------------------------------------------------- */
1127
1128/* Stuff for dynamic usb ids */
1129struct usb_dynids {
1130	spinlock_t lock;
1131	struct list_head list;
1132};
1133
1134struct usb_dynid {
1135	struct list_head node;
1136	struct usb_device_id id;
1137};
1138
1139extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1140				const struct usb_device_id *id_table,
1141				struct device_driver *driver,
1142				const char *buf, size_t count);
1143
1144extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1145
1146/**
1147 * struct usb_driver - identifies USB interface driver to usbcore
1148 * @name: The driver name should be unique among USB drivers,
1149 *	and should normally be the same as the module name.
1150 * @probe: Called to see if the driver is willing to manage a particular
1151 *	interface on a device.  If it is, probe returns zero and uses
1152 *	usb_set_intfdata() to associate driver-specific data with the
1153 *	interface.  It may also use usb_set_interface() to specify the
1154 *	appropriate altsetting.  If unwilling to manage the interface,
1155 *	return -ENODEV, if genuine IO errors occurred, an appropriate
1156 *	negative errno value.
1157 * @disconnect: Called when the interface is no longer accessible, usually
1158 *	because its device has been (or is being) disconnected or the
1159 *	driver module is being unloaded.
1160 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1161 *	the "usbfs" filesystem.  This lets devices provide ways to
1162 *	expose information to user space regardless of where they
1163 *	do (or don't) show up otherwise in the filesystem.
1164 * @suspend: Called when the device is going to be suspended by the
1165 *	system either from system sleep or runtime suspend context. The
1166 *	return value will be ignored in system sleep context, so do NOT
1167 *	try to continue using the device if suspend fails in this case.
1168 *	Instead, let the resume or reset-resume routine recover from
1169 *	the failure.
1170 * @resume: Called when the device is being resumed by the system.
1171 * @reset_resume: Called when the suspended device has been reset instead
1172 *	of being resumed.
1173 * @pre_reset: Called by usb_reset_device() when the device is about to be
1174 *	reset.  This routine must not return until the driver has no active
1175 *	URBs for the device, and no more URBs may be submitted until the
1176 *	post_reset method is called.
1177 * @post_reset: Called by usb_reset_device() after the device
1178 *	has been reset
1179 * @id_table: USB drivers use ID table to support hotplugging.
1180 *	Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1181 *	or your driver's probe function will never get called.
1182 * @dev_groups: Attributes attached to the device that will be created once it
1183 *	is bound to the driver.
1184 * @dynids: used internally to hold the list of dynamically added device
1185 *	ids for this driver.
1186 * @driver: The driver-model core driver structure.
1187 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1188 *	added to this driver by preventing the sysfs file from being created.
1189 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1190 *	for interfaces bound to this driver.
1191 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1192 *	endpoints before calling the driver's disconnect method.
1193 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1194 *	to initiate lower power link state transitions when an idle timeout
1195 *	occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1196 *
1197 * USB interface drivers must provide a name, probe() and disconnect()
1198 * methods, and an id_table.  Other driver fields are optional.
1199 *
1200 * The id_table is used in hotplugging.  It holds a set of descriptors,
1201 * and specialized data may be associated with each entry.  That table
1202 * is used by both user and kernel mode hotplugging support.
1203 *
1204 * The probe() and disconnect() methods are called in a context where
1205 * they can sleep, but they should avoid abusing the privilege.  Most
1206 * work to connect to a device should be done when the device is opened,
1207 * and undone at the last close.  The disconnect code needs to address
1208 * concurrency issues with respect to open() and close() methods, as
1209 * well as forcing all pending I/O requests to complete (by unlinking
1210 * them as necessary, and blocking until the unlinks complete).
1211 */
1212struct usb_driver {
1213	const char *name;
1214
1215	int (*probe) (struct usb_interface *intf,
1216		      const struct usb_device_id *id);
1217
1218	void (*disconnect) (struct usb_interface *intf);
1219
1220	int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1221			void *buf);
1222
1223	int (*suspend) (struct usb_interface *intf, pm_message_t message);
1224	int (*resume) (struct usb_interface *intf);
1225	int (*reset_resume)(struct usb_interface *intf);
1226
1227	int (*pre_reset)(struct usb_interface *intf);
1228	int (*post_reset)(struct usb_interface *intf);
1229
1230	const struct usb_device_id *id_table;
1231	const struct attribute_group **dev_groups;
1232
1233	struct usb_dynids dynids;
1234	struct device_driver driver;
1235	unsigned int no_dynamic_id:1;
1236	unsigned int supports_autosuspend:1;
1237	unsigned int disable_hub_initiated_lpm:1;
1238	unsigned int soft_unbind:1;
1239};
1240#define	to_usb_driver(d) container_of(d, struct usb_driver, driver)
1241
1242/**
1243 * struct usb_device_driver - identifies USB device driver to usbcore
1244 * @name: The driver name should be unique among USB drivers,
1245 *	and should normally be the same as the module name.
1246 * @match: If set, used for better device/driver matching.
1247 * @probe: Called to see if the driver is willing to manage a particular
1248 *	device.  If it is, probe returns zero and uses dev_set_drvdata()
1249 *	to associate driver-specific data with the device.  If unwilling
1250 *	to manage the device, return a negative errno value.
1251 * @disconnect: Called when the device is no longer accessible, usually
1252 *	because it has been (or is being) disconnected or the driver's
1253 *	module is being unloaded.
1254 * @suspend: Called when the device is going to be suspended by the system.
1255 * @resume: Called when the device is being resumed by the system.
1256 * @choose_configuration: If non-NULL, called instead of the default
1257 *	usb_choose_configuration(). If this returns an error then we'll go
1258 *	on to call the normal usb_choose_configuration().
1259 * @dev_groups: Attributes attached to the device that will be created once it
1260 *	is bound to the driver.
1261 * @driver: The driver-model core driver structure.
1262 * @id_table: used with @match() to select better matching driver at
1263 * 	probe() time.
1264 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1265 *	for devices bound to this driver.
1266 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1267 *	resume and suspend functions will be called in addition to the driver's
1268 *	own, so this part of the setup does not need to be replicated.
1269 *
1270 * USB drivers must provide all the fields listed above except driver,
1271 * match, and id_table.
1272 */
1273struct usb_device_driver {
1274	const char *name;
1275
1276	bool (*match) (struct usb_device *udev);
1277	int (*probe) (struct usb_device *udev);
1278	void (*disconnect) (struct usb_device *udev);
1279
1280	int (*suspend) (struct usb_device *udev, pm_message_t message);
1281	int (*resume) (struct usb_device *udev, pm_message_t message);
1282
1283	int (*choose_configuration) (struct usb_device *udev);
1284
1285	const struct attribute_group **dev_groups;
1286	struct device_driver driver;
1287	const struct usb_device_id *id_table;
1288	unsigned int supports_autosuspend:1;
1289	unsigned int generic_subclass:1;
1290};
1291#define	to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1292		driver)
1293
1294/**
1295 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1296 * @name: the usb class device name for this driver.  Will show up in sysfs.
1297 * @devnode: Callback to provide a naming hint for a possible
1298 *	device node to create.
1299 * @fops: pointer to the struct file_operations of this driver.
1300 * @minor_base: the start of the minor range for this driver.
1301 *
1302 * This structure is used for the usb_register_dev() and
1303 * usb_deregister_dev() functions, to consolidate a number of the
1304 * parameters used for them.
1305 */
1306struct usb_class_driver {
1307	char *name;
1308	char *(*devnode)(const struct device *dev, umode_t *mode);
1309	const struct file_operations *fops;
1310	int minor_base;
1311};
1312
1313/*
1314 * use these in module_init()/module_exit()
1315 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1316 */
1317extern int usb_register_driver(struct usb_driver *, struct module *,
1318			       const char *);
1319
1320/* use a define to avoid include chaining to get THIS_MODULE & friends */
1321#define usb_register(driver) \
1322	usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1323
1324extern void usb_deregister(struct usb_driver *);
1325
1326/**
1327 * module_usb_driver() - Helper macro for registering a USB driver
1328 * @__usb_driver: usb_driver struct
1329 *
1330 * Helper macro for USB drivers which do not do anything special in module
1331 * init/exit. This eliminates a lot of boilerplate. Each module may only
1332 * use this macro once, and calling it replaces module_init() and module_exit()
1333 */
1334#define module_usb_driver(__usb_driver) \
1335	module_driver(__usb_driver, usb_register, \
1336		       usb_deregister)
1337
1338extern int usb_register_device_driver(struct usb_device_driver *,
1339			struct module *);
1340extern void usb_deregister_device_driver(struct usb_device_driver *);
1341
1342extern int usb_register_dev(struct usb_interface *intf,
1343			    struct usb_class_driver *class_driver);
1344extern void usb_deregister_dev(struct usb_interface *intf,
1345			       struct usb_class_driver *class_driver);
1346
1347extern int usb_disabled(void);
1348
1349/* ----------------------------------------------------------------------- */
1350
1351/*
1352 * URB support, for asynchronous request completions
1353 */
1354
1355/*
1356 * urb->transfer_flags:
1357 *
1358 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1359 */
1360#define URB_SHORT_NOT_OK	0x0001	/* report short reads as errors */
1361#define URB_ISO_ASAP		0x0002	/* iso-only; use the first unexpired
1362					 * slot in the schedule */
1363#define URB_NO_TRANSFER_DMA_MAP	0x0004	/* urb->transfer_dma valid on submit */
1364#define URB_ZERO_PACKET		0x0040	/* Finish bulk OUT with short packet */
1365#define URB_NO_INTERRUPT	0x0080	/* HINT: no non-error interrupt
1366					 * needed */
1367#define URB_FREE_BUFFER		0x0100	/* Free transfer buffer with the URB */
1368
1369/* The following flags are used internally by usbcore and HCDs */
1370#define URB_DIR_IN		0x0200	/* Transfer from device to host */
1371#define URB_DIR_OUT		0
1372#define URB_DIR_MASK		URB_DIR_IN
1373
1374#define URB_DMA_MAP_SINGLE	0x00010000	/* Non-scatter-gather mapping */
1375#define URB_DMA_MAP_PAGE	0x00020000	/* HCD-unsupported S-G */
1376#define URB_DMA_MAP_SG		0x00040000	/* HCD-supported S-G */
1377#define URB_MAP_LOCAL		0x00080000	/* HCD-local-memory mapping */
1378#define URB_SETUP_MAP_SINGLE	0x00100000	/* Setup packet DMA mapped */
1379#define URB_SETUP_MAP_LOCAL	0x00200000	/* HCD-local setup packet */
1380#define URB_DMA_SG_COMBINED	0x00400000	/* S-G entries were combined */
1381#define URB_ALIGNED_TEMP_BUFFER	0x00800000	/* Temp buffer was alloc'd */
1382
1383struct usb_iso_packet_descriptor {
1384	unsigned int offset;
1385	unsigned int length;		/* expected length */
1386	unsigned int actual_length;
1387	int status;
1388};
1389
1390struct urb;
1391
1392struct usb_anchor {
1393	struct list_head urb_list;
1394	wait_queue_head_t wait;
1395	spinlock_t lock;
1396	atomic_t suspend_wakeups;
1397	unsigned int poisoned:1;
1398};
1399
1400static inline void init_usb_anchor(struct usb_anchor *anchor)
1401{
1402	memset(anchor, 0, sizeof(*anchor));
1403	INIT_LIST_HEAD(&anchor->urb_list);
1404	init_waitqueue_head(&anchor->wait);
1405	spin_lock_init(&anchor->lock);
1406}
1407
1408typedef void (*usb_complete_t)(struct urb *);
1409
1410/**
1411 * struct urb - USB Request Block
1412 * @urb_list: For use by current owner of the URB.
1413 * @anchor_list: membership in the list of an anchor
1414 * @anchor: to anchor URBs to a common mooring
1415 * @ep: Points to the endpoint's data structure.  Will eventually
1416 *	replace @pipe.
1417 * @pipe: Holds endpoint number, direction, type, and more.
1418 *	Create these values with the eight macros available;
1419 *	usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1420 *	(control), "bulk", "int" (interrupt), or "iso" (isochronous).
1421 *	For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1422 *	numbers range from zero to fifteen.  Note that "in" endpoint two
1423 *	is a different endpoint (and pipe) from "out" endpoint two.
1424 *	The current configuration controls the existence, type, and
1425 *	maximum packet size of any given endpoint.
1426 * @stream_id: the endpoint's stream ID for bulk streams
1427 * @dev: Identifies the USB device to perform the request.
1428 * @status: This is read in non-iso completion functions to get the
1429 *	status of the particular request.  ISO requests only use it
1430 *	to tell whether the URB was unlinked; detailed status for
1431 *	each frame is in the fields of the iso_frame-desc.
1432 * @transfer_flags: A variety of flags may be used to affect how URB
1433 *	submission, unlinking, or operation are handled.  Different
1434 *	kinds of URB can use different flags.
1435 * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1436 *	request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1437 *	(however, do not leave garbage in transfer_buffer even then).
1438 *	This buffer must be suitable for DMA; allocate it with
1439 *	kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1440 *	of this buffer will be modified.  This buffer is used for the data
1441 *	stage of control transfers.
1442 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1443 *	the device driver is saying that it provided this DMA address,
1444 *	which the host controller driver should use in preference to the
1445 *	transfer_buffer.
1446 * @sg: scatter gather buffer list, the buffer size of each element in
1447 * 	the list (except the last) must be divisible by the endpoint's
1448 * 	max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1449 * @num_mapped_sgs: (internal) number of mapped sg entries
1450 * @num_sgs: number of entries in the sg list
1451 * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1452 *	be broken up into chunks according to the current maximum packet
1453 *	size for the endpoint, which is a function of the configuration
1454 *	and is encoded in the pipe.  When the length is zero, neither
1455 *	transfer_buffer nor transfer_dma is used.
1456 * @actual_length: This is read in non-iso completion functions, and
1457 *	it tells how many bytes (out of transfer_buffer_length) were
1458 *	transferred.  It will normally be the same as requested, unless
1459 *	either an error was reported or a short read was performed.
1460 *	The URB_SHORT_NOT_OK transfer flag may be used to make such
1461 *	short reads be reported as errors.
1462 * @setup_packet: Only used for control transfers, this points to eight bytes
1463 *	of setup data.  Control transfers always start by sending this data
1464 *	to the device.  Then transfer_buffer is read or written, if needed.
1465 * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1466 *	this field; setup_packet must point to a valid buffer.
1467 * @start_frame: Returns the initial frame for isochronous transfers.
1468 * @number_of_packets: Lists the number of ISO transfer buffers.
1469 * @interval: Specifies the polling interval for interrupt or isochronous
1470 *	transfers.  The units are frames (milliseconds) for full and low
1471 *	speed devices, and microframes (1/8 millisecond) for highspeed
1472 *	and SuperSpeed devices.
1473 * @error_count: Returns the number of ISO transfers that reported errors.
1474 * @context: For use in completion functions.  This normally points to
1475 *	request-specific driver context.
1476 * @complete: Completion handler. This URB is passed as the parameter to the
1477 *	completion function.  The completion function may then do what
1478 *	it likes with the URB, including resubmitting or freeing it.
1479 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1480 *	collect the transfer status for each buffer.
1481 *
1482 * This structure identifies USB transfer requests.  URBs must be allocated by
1483 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1484 * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1485 * are submitted using usb_submit_urb(), and pending requests may be canceled
1486 * using usb_unlink_urb() or usb_kill_urb().
1487 *
1488 * Data Transfer Buffers:
1489 *
1490 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1491 * taken from the general page pool.  That is provided by transfer_buffer
1492 * (control requests also use setup_packet), and host controller drivers
1493 * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1494 * mapping operations can be expensive on some platforms (perhaps using a dma
1495 * bounce buffer or talking to an IOMMU),
1496 * although they're cheap on commodity x86 and ppc hardware.
1497 *
1498 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1499 * which tells the host controller driver that no such mapping is needed for
1500 * the transfer_buffer since
1501 * the device driver is DMA-aware.  For example, a device driver might
1502 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1503 * When this transfer flag is provided, host controller drivers will
1504 * attempt to use the dma address found in the transfer_dma
1505 * field rather than determining a dma address themselves.
1506 *
1507 * Note that transfer_buffer must still be set if the controller
1508 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1509 * to root hub. If you have to transfer between highmem zone and the device
1510 * on such controller, create a bounce buffer or bail out with an error.
1511 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1512 * capable, assign NULL to it, so that usbmon knows not to use the value.
1513 * The setup_packet must always be set, so it cannot be located in highmem.
1514 *
1515 * Initialization:
1516 *
1517 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1518 * zero), and complete fields.  All URBs must also initialize
1519 * transfer_buffer and transfer_buffer_length.  They may provide the
1520 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1521 * to be treated as errors; that flag is invalid for write requests.
1522 *
1523 * Bulk URBs may
1524 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1525 * should always terminate with a short packet, even if it means adding an
1526 * extra zero length packet.
1527 *
1528 * Control URBs must provide a valid pointer in the setup_packet field.
1529 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1530 * beforehand.
1531 *
1532 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1533 * or, for highspeed devices, 125 microsecond units)
1534 * to poll for transfers.  After the URB has been submitted, the interval
1535 * field reflects how the transfer was actually scheduled.
1536 * The polling interval may be more frequent than requested.
1537 * For example, some controllers have a maximum interval of 32 milliseconds,
1538 * while others support intervals of up to 1024 milliseconds.
1539 * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1540 * endpoints, as well as high speed interrupt endpoints, the encoding of
1541 * the transfer interval in the endpoint descriptor is logarithmic.
1542 * Device drivers must convert that value to linear units themselves.)
1543 *
1544 * If an isochronous endpoint queue isn't already running, the host
1545 * controller will schedule a new URB to start as soon as bandwidth
1546 * utilization allows.  If the queue is running then a new URB will be
1547 * scheduled to start in the first transfer slot following the end of the
1548 * preceding URB, if that slot has not already expired.  If the slot has
1549 * expired (which can happen when IRQ delivery is delayed for a long time),
1550 * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1551 * is clear then the URB will be scheduled to start in the expired slot,
1552 * implying that some of its packets will not be transferred; if the flag
1553 * is set then the URB will be scheduled in the first unexpired slot,
1554 * breaking the queue's synchronization.  Upon URB completion, the
1555 * start_frame field will be set to the (micro)frame number in which the
1556 * transfer was scheduled.  Ranges for frame counter values are HC-specific
1557 * and can go from as low as 256 to as high as 65536 frames.
1558 *
1559 * Isochronous URBs have a different data transfer model, in part because
1560 * the quality of service is only "best effort".  Callers provide specially
1561 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1562 * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1563 * URBs are normally queued, submitted by drivers to arrange that
1564 * transfers are at least double buffered, and then explicitly resubmitted
1565 * in completion handlers, so
1566 * that data (such as audio or video) streams at as constant a rate as the
1567 * host controller scheduler can support.
1568 *
1569 * Completion Callbacks:
1570 *
1571 * The completion callback is made in_interrupt(), and one of the first
1572 * things that a completion handler should do is check the status field.
1573 * The status field is provided for all URBs.  It is used to report
1574 * unlinked URBs, and status for all non-ISO transfers.  It should not
1575 * be examined before the URB is returned to the completion handler.
1576 *
1577 * The context field is normally used to link URBs back to the relevant
1578 * driver or request state.
1579 *
1580 * When the completion callback is invoked for non-isochronous URBs, the
1581 * actual_length field tells how many bytes were transferred.  This field
1582 * is updated even when the URB terminated with an error or was unlinked.
1583 *
1584 * ISO transfer status is reported in the status and actual_length fields
1585 * of the iso_frame_desc array, and the number of errors is reported in
1586 * error_count.  Completion callbacks for ISO transfers will normally
1587 * (re)submit URBs to ensure a constant transfer rate.
1588 *
1589 * Note that even fields marked "public" should not be touched by the driver
1590 * when the urb is owned by the hcd, that is, since the call to
1591 * usb_submit_urb() till the entry into the completion routine.
1592 */
1593struct urb {
1594	/* private: usb core and host controller only fields in the urb */
1595	struct kref kref;		/* reference count of the URB */
1596	int unlinked;			/* unlink error code */
1597	void *hcpriv;			/* private data for host controller */
1598	atomic_t use_count;		/* concurrent submissions counter */
1599	atomic_t reject;		/* submissions will fail */
1600
1601	/* public: documented fields in the urb that can be used by drivers */
1602	struct list_head urb_list;	/* list head for use by the urb's
1603					 * current owner */
1604	struct list_head anchor_list;	/* the URB may be anchored */
1605	struct usb_anchor *anchor;
1606	struct usb_device *dev;		/* (in) pointer to associated device */
1607	struct usb_host_endpoint *ep;	/* (internal) pointer to endpoint */
1608	unsigned int pipe;		/* (in) pipe information */
1609	unsigned int stream_id;		/* (in) stream ID */
1610	int status;			/* (return) non-ISO status */
1611	unsigned int transfer_flags;	/* (in) URB_SHORT_NOT_OK | ...*/
1612	void *transfer_buffer;		/* (in) associated data buffer */
1613	dma_addr_t transfer_dma;	/* (in) dma addr for transfer_buffer */
1614	struct scatterlist *sg;		/* (in) scatter gather buffer list */
1615	int num_mapped_sgs;		/* (internal) mapped sg entries */
1616	int num_sgs;			/* (in) number of entries in the sg list */
1617	u32 transfer_buffer_length;	/* (in) data buffer length */
1618	u32 actual_length;		/* (return) actual transfer length */
1619	unsigned char *setup_packet;	/* (in) setup packet (control only) */
1620	dma_addr_t setup_dma;		/* (in) dma addr for setup_packet */
1621	int start_frame;		/* (modify) start frame (ISO) */
1622	int number_of_packets;		/* (in) number of ISO packets */
1623	int interval;			/* (modify) transfer interval
1624					 * (INT/ISO) */
1625	int error_count;		/* (return) number of ISO errors */
1626	void *context;			/* (in) context for completion */
1627	usb_complete_t complete;	/* (in) completion routine */
1628	struct usb_iso_packet_descriptor iso_frame_desc[];
1629					/* (in) ISO ONLY */
1630};
1631
1632/* ----------------------------------------------------------------------- */
1633
1634/**
1635 * usb_fill_control_urb - initializes a control urb
1636 * @urb: pointer to the urb to initialize.
1637 * @dev: pointer to the struct usb_device for this urb.
1638 * @pipe: the endpoint pipe
1639 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1640 *	suitable for DMA.
1641 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1642 *	suitable for DMA.
1643 * @buffer_length: length of the transfer buffer
1644 * @complete_fn: pointer to the usb_complete_t function
1645 * @context: what to set the urb context to.
1646 *
1647 * Initializes a control urb with the proper information needed to submit
1648 * it to a device.
1649 *
1650 * The transfer buffer and the setup_packet buffer will most likely be filled
1651 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1652 * allocating it via kmalloc() or equivalent, even for very small buffers.
1653 * If the buffers are embedded in a bigger structure, there is a risk that
1654 * the buffer itself, the previous fields and/or the next fields are corrupted
1655 * due to cache incoherencies; or slowed down if they are evicted from the
1656 * cache. For more information, check &struct urb.
1657 *
1658 */
1659static inline void usb_fill_control_urb(struct urb *urb,
1660					struct usb_device *dev,
1661					unsigned int pipe,
1662					unsigned char *setup_packet,
1663					void *transfer_buffer,
1664					int buffer_length,
1665					usb_complete_t complete_fn,
1666					void *context)
1667{
1668	urb->dev = dev;
1669	urb->pipe = pipe;
1670	urb->setup_packet = setup_packet;
1671	urb->transfer_buffer = transfer_buffer;
1672	urb->transfer_buffer_length = buffer_length;
1673	urb->complete = complete_fn;
1674	urb->context = context;
1675}
1676
1677/**
1678 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1679 * @urb: pointer to the urb to initialize.
1680 * @dev: pointer to the struct usb_device for this urb.
1681 * @pipe: the endpoint pipe
1682 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1683 *	suitable for DMA.
1684 * @buffer_length: length of the transfer buffer
1685 * @complete_fn: pointer to the usb_complete_t function
1686 * @context: what to set the urb context to.
1687 *
1688 * Initializes a bulk urb with the proper information needed to submit it
1689 * to a device.
1690 *
1691 * Refer to usb_fill_control_urb() for a description of the requirements for
1692 * transfer_buffer.
1693 */
1694static inline void usb_fill_bulk_urb(struct urb *urb,
1695				     struct usb_device *dev,
1696				     unsigned int pipe,
1697				     void *transfer_buffer,
1698				     int buffer_length,
1699				     usb_complete_t complete_fn,
1700				     void *context)
1701{
1702	urb->dev = dev;
1703	urb->pipe = pipe;
1704	urb->transfer_buffer = transfer_buffer;
1705	urb->transfer_buffer_length = buffer_length;
1706	urb->complete = complete_fn;
1707	urb->context = context;
1708}
1709
1710/**
1711 * usb_fill_int_urb - macro to help initialize a interrupt urb
1712 * @urb: pointer to the urb to initialize.
1713 * @dev: pointer to the struct usb_device for this urb.
1714 * @pipe: the endpoint pipe
1715 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1716 *	suitable for DMA.
1717 * @buffer_length: length of the transfer buffer
1718 * @complete_fn: pointer to the usb_complete_t function
1719 * @context: what to set the urb context to.
1720 * @interval: what to set the urb interval to, encoded like
1721 *	the endpoint descriptor's bInterval value.
1722 *
1723 * Initializes a interrupt urb with the proper information needed to submit
1724 * it to a device.
1725 *
1726 * Refer to usb_fill_control_urb() for a description of the requirements for
1727 * transfer_buffer.
1728 *
1729 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1730 * encoding of the endpoint interval, and express polling intervals in
1731 * microframes (eight per millisecond) rather than in frames (one per
1732 * millisecond).
1733 */
1734static inline void usb_fill_int_urb(struct urb *urb,
1735				    struct usb_device *dev,
1736				    unsigned int pipe,
1737				    void *transfer_buffer,
1738				    int buffer_length,
1739				    usb_complete_t complete_fn,
1740				    void *context,
1741				    int interval)
1742{
1743	urb->dev = dev;
1744	urb->pipe = pipe;
1745	urb->transfer_buffer = transfer_buffer;
1746	urb->transfer_buffer_length = buffer_length;
1747	urb->complete = complete_fn;
1748	urb->context = context;
1749
1750	if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1751		/* make sure interval is within allowed range */
1752		interval = clamp(interval, 1, 16);
1753
1754		urb->interval = 1 << (interval - 1);
1755	} else {
1756		urb->interval = interval;
1757	}
1758
1759	urb->start_frame = -1;
1760}
1761
1762extern void usb_init_urb(struct urb *urb);
1763extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1764extern void usb_free_urb(struct urb *urb);
1765#define usb_put_urb usb_free_urb
1766extern struct urb *usb_get_urb(struct urb *urb);
1767extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1768extern int usb_unlink_urb(struct urb *urb);
1769extern void usb_kill_urb(struct urb *urb);
1770extern void usb_poison_urb(struct urb *urb);
1771extern void usb_unpoison_urb(struct urb *urb);
1772extern void usb_block_urb(struct urb *urb);
1773extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1774extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1775extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1776extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1777extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1778extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1779extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1780extern void usb_unanchor_urb(struct urb *urb);
1781extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1782					 unsigned int timeout);
1783extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1784extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1785extern int usb_anchor_empty(struct usb_anchor *anchor);
1786
1787#define usb_unblock_urb	usb_unpoison_urb
1788
1789/**
1790 * usb_urb_dir_in - check if an URB describes an IN transfer
1791 * @urb: URB to be checked
1792 *
1793 * Return: 1 if @urb describes an IN transfer (device-to-host),
1794 * otherwise 0.
1795 */
1796static inline int usb_urb_dir_in(struct urb *urb)
1797{
1798	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1799}
1800
1801/**
1802 * usb_urb_dir_out - check if an URB describes an OUT transfer
1803 * @urb: URB to be checked
1804 *
1805 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1806 * otherwise 0.
1807 */
1808static inline int usb_urb_dir_out(struct urb *urb)
1809{
1810	return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1811}
1812
1813int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1814int usb_urb_ep_type_check(const struct urb *urb);
1815
1816void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1817	gfp_t mem_flags, dma_addr_t *dma);
1818void usb_free_coherent(struct usb_device *dev, size_t size,
1819	void *addr, dma_addr_t dma);
1820
1821/*-------------------------------------------------------------------*
1822 *                         SYNCHRONOUS CALL SUPPORT                  *
1823 *-------------------------------------------------------------------*/
1824
1825extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1826	__u8 request, __u8 requesttype, __u16 value, __u16 index,
1827	void *data, __u16 size, int timeout);
1828extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1829	void *data, int len, int *actual_length, int timeout);
1830extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1831	void *data, int len, int *actual_length,
1832	int timeout);
1833
1834/* wrappers around usb_control_msg() for the most common standard requests */
1835int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1836			 __u8 requesttype, __u16 value, __u16 index,
1837			 const void *data, __u16 size, int timeout,
1838			 gfp_t memflags);
1839int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1840			 __u8 requesttype, __u16 value, __u16 index,
1841			 void *data, __u16 size, int timeout,
1842			 gfp_t memflags);
1843extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1844	unsigned char descindex, void *buf, int size);
1845extern int usb_get_status(struct usb_device *dev,
1846	int recip, int type, int target, void *data);
1847
1848static inline int usb_get_std_status(struct usb_device *dev,
1849	int recip, int target, void *data)
1850{
1851	return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1852		data);
1853}
1854
1855static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1856{
1857	return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1858		0, data);
1859}
1860
1861extern int usb_string(struct usb_device *dev, int index,
1862	char *buf, size_t size);
1863extern char *usb_cache_string(struct usb_device *udev, int index);
1864
1865/* wrappers that also update important state inside usbcore */
1866extern int usb_clear_halt(struct usb_device *dev, int pipe);
1867extern int usb_reset_configuration(struct usb_device *dev);
1868extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1869extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1870
1871/* this request isn't really synchronous, but it belongs with the others */
1872extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1873
1874/* choose and set configuration for device */
1875extern int usb_choose_configuration(struct usb_device *udev);
1876extern int usb_set_configuration(struct usb_device *dev, int configuration);
1877
1878/*
1879 * timeouts, in milliseconds, used for sending/receiving control messages
1880 * they typically complete within a few frames (msec) after they're issued
1881 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1882 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1883 */
1884#define USB_CTRL_GET_TIMEOUT	5000
1885#define USB_CTRL_SET_TIMEOUT	5000
1886
1887
1888/**
1889 * struct usb_sg_request - support for scatter/gather I/O
1890 * @status: zero indicates success, else negative errno
1891 * @bytes: counts bytes transferred.
1892 *
1893 * These requests are initialized using usb_sg_init(), and then are used
1894 * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1895 * members of the request object aren't for driver access.
1896 *
1897 * The status and bytecount values are valid only after usb_sg_wait()
1898 * returns.  If the status is zero, then the bytecount matches the total
1899 * from the request.
1900 *
1901 * After an error completion, drivers may need to clear a halt condition
1902 * on the endpoint.
1903 */
1904struct usb_sg_request {
1905	int			status;
1906	size_t			bytes;
1907
1908	/* private:
1909	 * members below are private to usbcore,
1910	 * and are not provided for driver access!
1911	 */
1912	spinlock_t		lock;
1913
1914	struct usb_device	*dev;
1915	int			pipe;
1916
1917	int			entries;
1918	struct urb		**urbs;
1919
1920	int			count;
1921	struct completion	complete;
1922};
1923
1924int usb_sg_init(
1925	struct usb_sg_request	*io,
1926	struct usb_device	*dev,
1927	unsigned		pipe,
1928	unsigned		period,
1929	struct scatterlist	*sg,
1930	int			nents,
1931	size_t			length,
1932	gfp_t			mem_flags
1933);
1934void usb_sg_cancel(struct usb_sg_request *io);
1935void usb_sg_wait(struct usb_sg_request *io);
1936
1937
1938/* ----------------------------------------------------------------------- */
1939
1940/*
1941 * For various legacy reasons, Linux has a small cookie that's paired with
1942 * a struct usb_device to identify an endpoint queue.  Queue characteristics
1943 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1944 * an unsigned int encoded as:
1945 *
1946 *  - direction:	bit 7		(0 = Host-to-Device [Out],
1947 *					 1 = Device-to-Host [In] ...
1948 *					like endpoint bEndpointAddress)
1949 *  - device address:	bits 8-14       ... bit positions known to uhci-hcd
1950 *  - endpoint:		bits 15-18      ... bit positions known to uhci-hcd
1951 *  - pipe type:	bits 30-31	(00 = isochronous, 01 = interrupt,
1952 *					 10 = control, 11 = bulk)
1953 *
1954 * Given the device address and endpoint descriptor, pipes are redundant.
1955 */
1956
1957/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1958/* (yet ... they're the values used by usbfs) */
1959#define PIPE_ISOCHRONOUS		0
1960#define PIPE_INTERRUPT			1
1961#define PIPE_CONTROL			2
1962#define PIPE_BULK			3
1963
1964#define usb_pipein(pipe)	((pipe) & USB_DIR_IN)
1965#define usb_pipeout(pipe)	(!usb_pipein(pipe))
1966
1967#define usb_pipedevice(pipe)	(((pipe) >> 8) & 0x7f)
1968#define usb_pipeendpoint(pipe)	(((pipe) >> 15) & 0xf)
1969
1970#define usb_pipetype(pipe)	(((pipe) >> 30) & 3)
1971#define usb_pipeisoc(pipe)	(usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1972#define usb_pipeint(pipe)	(usb_pipetype((pipe)) == PIPE_INTERRUPT)
1973#define usb_pipecontrol(pipe)	(usb_pipetype((pipe)) == PIPE_CONTROL)
1974#define usb_pipebulk(pipe)	(usb_pipetype((pipe)) == PIPE_BULK)
1975
1976static inline unsigned int __create_pipe(struct usb_device *dev,
1977		unsigned int endpoint)
1978{
1979	return (dev->devnum << 8) | (endpoint << 15);
1980}
1981
1982/* Create various pipes... */
1983#define usb_sndctrlpipe(dev, endpoint)	\
1984	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1985#define usb_rcvctrlpipe(dev, endpoint)	\
1986	((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1987#define usb_sndisocpipe(dev, endpoint)	\
1988	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1989#define usb_rcvisocpipe(dev, endpoint)	\
1990	((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1991#define usb_sndbulkpipe(dev, endpoint)	\
1992	((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1993#define usb_rcvbulkpipe(dev, endpoint)	\
1994	((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1995#define usb_sndintpipe(dev, endpoint)	\
1996	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1997#define usb_rcvintpipe(dev, endpoint)	\
1998	((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1999
2000static inline struct usb_host_endpoint *
2001usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2002{
2003	struct usb_host_endpoint **eps;
2004	eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2005	return eps[usb_pipeendpoint(pipe)];
2006}
2007
2008static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2009{
2010	struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2011
2012	if (!ep)
2013		return 0;
2014
2015	/* NOTE:  only 0x07ff bits are for packet size... */
2016	return usb_endpoint_maxp(&ep->desc);
2017}
2018
2019/* translate USB error codes to codes user space understands */
2020static inline int usb_translate_errors(int error_code)
2021{
2022	switch (error_code) {
2023	case 0:
2024	case -ENOMEM:
2025	case -ENODEV:
2026	case -EOPNOTSUPP:
2027		return error_code;
2028	default:
2029		return -EIO;
2030	}
2031}
2032
2033/* Events from the usb core */
2034#define USB_DEVICE_ADD		0x0001
2035#define USB_DEVICE_REMOVE	0x0002
2036#define USB_BUS_ADD		0x0003
2037#define USB_BUS_REMOVE		0x0004
2038extern void usb_register_notify(struct notifier_block *nb);
2039extern void usb_unregister_notify(struct notifier_block *nb);
2040
2041/* debugfs stuff */
2042extern struct dentry *usb_debug_root;
2043
2044/* LED triggers */
2045enum usb_led_event {
2046	USB_LED_EVENT_HOST = 0,
2047	USB_LED_EVENT_GADGET = 1,
2048};
2049
2050#ifdef CONFIG_USB_LED_TRIG
2051extern void usb_led_activity(enum usb_led_event ev);
2052#else
2053static inline void usb_led_activity(enum usb_led_event ev) {}
2054#endif
2055
2056#endif  /* __KERNEL__ */
2057
2058#endif
2059