1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author:
7 *	Peter Pan <peterpandong@micron.com>
8 *	Boris Brezillon <boris.brezillon@bootlin.com>
9 */
10
11#ifndef __LINUX_SPI_MEM_H
12#define __LINUX_SPI_MEM_H
13
14#include <linux/spi/spi.h>
15
16#define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
17	{							\
18		.buswidth = __buswidth,				\
19		.opcode = __opcode,				\
20		.nbytes = 1,					\
21	}
22
23#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
24	{							\
25		.nbytes = __nbytes,				\
26		.val = __val,					\
27		.buswidth = __buswidth,				\
28	}
29
30#define SPI_MEM_OP_NO_ADDR	{ }
31
32#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
33	{							\
34		.nbytes = __nbytes,				\
35		.buswidth = __buswidth,				\
36	}
37
38#define SPI_MEM_OP_NO_DUMMY	{ }
39
40#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
41	{							\
42		.dir = SPI_MEM_DATA_IN,				\
43		.nbytes = __nbytes,				\
44		.buf.in = __buf,				\
45		.buswidth = __buswidth,				\
46	}
47
48#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
49	{							\
50		.dir = SPI_MEM_DATA_OUT,			\
51		.nbytes = __nbytes,				\
52		.buf.out = __buf,				\
53		.buswidth = __buswidth,				\
54	}
55
56#define SPI_MEM_OP_NO_DATA	{ }
57
58/**
59 * enum spi_mem_data_dir - describes the direction of a SPI memory data
60 *			   transfer from the controller perspective
61 * @SPI_MEM_NO_DATA: no data transferred
62 * @SPI_MEM_DATA_IN: data coming from the SPI memory
63 * @SPI_MEM_DATA_OUT: data sent to the SPI memory
64 */
65enum spi_mem_data_dir {
66	SPI_MEM_NO_DATA,
67	SPI_MEM_DATA_IN,
68	SPI_MEM_DATA_OUT,
69};
70
71/**
72 * struct spi_mem_op - describes a SPI memory operation
73 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
74 *		sent MSB-first.
75 * @cmd.buswidth: number of IO lines used to transmit the command
76 * @cmd.opcode: operation opcode
77 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
78 * @addr.nbytes: number of address bytes to send. Can be zero if the operation
79 *		 does not need to send an address
80 * @addr.buswidth: number of IO lines used to transmit the address cycles
81 * @addr.dtr: whether the address should be sent in DTR mode or not
82 * @addr.val: address value. This value is always sent MSB first on the bus.
83 *	      Note that only @addr.nbytes are taken into account in this
84 *	      address value, so users should make sure the value fits in the
85 *	      assigned number of bytes.
86 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
87 *		  be zero if the operation does not require dummy bytes
88 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
89 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
90 * @data.buswidth: number of IO lanes used to send/receive the data
91 * @data.dtr: whether the data should be sent in DTR mode or not
92 * @data.ecc: whether error correction is required or not
93 * @data.dir: direction of the transfer
94 * @data.nbytes: number of data bytes to send/receive. Can be zero if the
95 *		 operation does not involve transferring data
96 * @data.buf.in: input buffer (must be DMA-able)
97 * @data.buf.out: output buffer (must be DMA-able)
98 */
99struct spi_mem_op {
100	struct {
101		u8 nbytes;
102		u8 buswidth;
103		u8 dtr : 1;
104		u8 __pad : 7;
105		u16 opcode;
106	} cmd;
107
108	struct {
109		u8 nbytes;
110		u8 buswidth;
111		u8 dtr : 1;
112		u8 __pad : 7;
113		u64 val;
114	} addr;
115
116	struct {
117		u8 nbytes;
118		u8 buswidth;
119		u8 dtr : 1;
120		u8 __pad : 7;
121	} dummy;
122
123	struct {
124		u8 buswidth;
125		u8 dtr : 1;
126		u8 ecc : 1;
127		u8 __pad : 6;
128		enum spi_mem_data_dir dir;
129		unsigned int nbytes;
130		union {
131			void *in;
132			const void *out;
133		} buf;
134	} data;
135};
136
137#define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
138	{							\
139		.cmd = __cmd,					\
140		.addr = __addr,					\
141		.dummy = __dummy,				\
142		.data = __data,					\
143	}
144
145/**
146 * struct spi_mem_dirmap_info - Direct mapping information
147 * @op_tmpl: operation template that should be used by the direct mapping when
148 *	     the memory device is accessed
149 * @offset: absolute offset this direct mapping is pointing to
150 * @length: length in byte of this direct mapping
151 *
152 * These information are used by the controller specific implementation to know
153 * the portion of memory that is directly mapped and the spi_mem_op that should
154 * be used to access the device.
155 * A direct mapping is only valid for one direction (read or write) and this
156 * direction is directly encoded in the ->op_tmpl.data.dir field.
157 */
158struct spi_mem_dirmap_info {
159	struct spi_mem_op op_tmpl;
160	u64 offset;
161	u64 length;
162};
163
164/**
165 * struct spi_mem_dirmap_desc - Direct mapping descriptor
166 * @mem: the SPI memory device this direct mapping is attached to
167 * @info: information passed at direct mapping creation time
168 * @nodirmap: set to 1 if the SPI controller does not implement
169 *	      ->mem_ops->dirmap_create() or when this function returned an
170 *	      error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
171 *	      calls will use spi_mem_exec_op() to access the memory. This is a
172 *	      degraded mode that allows spi_mem drivers to use the same code
173 *	      no matter whether the controller supports direct mapping or not
174 * @priv: field pointing to controller specific data
175 *
176 * Common part of a direct mapping descriptor. This object is created by
177 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
178 * can create/attach direct mapping resources to the descriptor in the ->priv
179 * field.
180 */
181struct spi_mem_dirmap_desc {
182	struct spi_mem *mem;
183	struct spi_mem_dirmap_info info;
184	unsigned int nodirmap;
185	void *priv;
186};
187
188/**
189 * struct spi_mem - describes a SPI memory device
190 * @spi: the underlying SPI device
191 * @drvpriv: spi_mem_driver private data
192 * @name: name of the SPI memory device
193 *
194 * Extra information that describe the SPI memory device and may be needed by
195 * the controller to properly handle this device should be placed here.
196 *
197 * One example would be the device size since some controller expose their SPI
198 * mem devices through a io-mapped region.
199 */
200struct spi_mem {
201	struct spi_device *spi;
202	void *drvpriv;
203	const char *name;
204};
205
206/**
207 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
208 *				  device
209 * @mem: memory device
210 * @data: data to attach to the memory device
211 */
212static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
213{
214	mem->drvpriv = data;
215}
216
217/**
218 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
219 *				  device
220 * @mem: memory device
221 *
222 * Return: the data attached to the mem device.
223 */
224static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
225{
226	return mem->drvpriv;
227}
228
229/**
230 * struct spi_controller_mem_ops - SPI memory operations
231 * @adjust_op_size: shrink the data xfer of an operation to match controller's
232 *		    limitations (can be alignment or max RX/TX size
233 *		    limitations)
234 * @supports_op: check if an operation is supported by the controller
235 * @exec_op: execute a SPI memory operation
236 *           not all driver provides supports_op(), so it can return -EOPNOTSUPP
237 *           if the op is not supported by the driver/controller
238 * @get_name: get a custom name for the SPI mem device from the controller.
239 *	      This might be needed if the controller driver has been ported
240 *	      to use the SPI mem layer and a custom name is used to keep
241 *	      mtdparts compatible.
242 *	      Note that if the implementation of this function allocates memory
243 *	      dynamically, then it should do so with devm_xxx(), as we don't
244 *	      have a ->free_name() function.
245 * @dirmap_create: create a direct mapping descriptor that can later be used to
246 *		   access the memory device. This method is optional
247 * @dirmap_destroy: destroy a memory descriptor previous created by
248 *		    ->dirmap_create()
249 * @dirmap_read: read data from the memory device using the direct mapping
250 *		 created by ->dirmap_create(). The function can return less
251 *		 data than requested (for example when the request is crossing
252 *		 the currently mapped area), and the caller of
253 *		 spi_mem_dirmap_read() is responsible for calling it again in
254 *		 this case.
255 * @dirmap_write: write data to the memory device using the direct mapping
256 *		  created by ->dirmap_create(). The function can return less
257 *		  data than requested (for example when the request is crossing
258 *		  the currently mapped area), and the caller of
259 *		  spi_mem_dirmap_write() is responsible for calling it again in
260 *		  this case.
261 * @poll_status: poll memory device status until (status & mask) == match or
262 *               when the timeout has expired. It fills the data buffer with
263 *               the last status value.
264 *
265 * This interface should be implemented by SPI controllers providing an
266 * high-level interface to execute SPI memory operation, which is usually the
267 * case for QSPI controllers.
268 *
269 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
270 * mapping from the CPU because doing that can stall the CPU waiting for the
271 * SPI mem transaction to finish, and this will make real-time maintainers
272 * unhappy and might make your system less reactive. Instead, drivers should
273 * use DMA to access this direct mapping.
274 */
275struct spi_controller_mem_ops {
276	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
277	bool (*supports_op)(struct spi_mem *mem,
278			    const struct spi_mem_op *op);
279	int (*exec_op)(struct spi_mem *mem,
280		       const struct spi_mem_op *op);
281	const char *(*get_name)(struct spi_mem *mem);
282	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
283	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
284	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
285			       u64 offs, size_t len, void *buf);
286	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
287				u64 offs, size_t len, const void *buf);
288	int (*poll_status)(struct spi_mem *mem,
289			   const struct spi_mem_op *op,
290			   u16 mask, u16 match,
291			   unsigned long initial_delay_us,
292			   unsigned long polling_rate_us,
293			   unsigned long timeout_ms);
294};
295
296/**
297 * struct spi_controller_mem_caps - SPI memory controller capabilities
298 * @dtr: Supports DTR operations
299 * @ecc: Supports operations with error correction
300 */
301struct spi_controller_mem_caps {
302	bool dtr;
303	bool ecc;
304};
305
306#define spi_mem_controller_is_capable(ctlr, cap)	\
307	((ctlr)->mem_caps && (ctlr)->mem_caps->cap)
308
309/**
310 * struct spi_mem_driver - SPI memory driver
311 * @spidrv: inherit from a SPI driver
312 * @probe: probe a SPI memory. Usually where detection/initialization takes
313 *	   place
314 * @remove: remove a SPI memory
315 * @shutdown: take appropriate action when the system is shutdown
316 *
317 * This is just a thin wrapper around a spi_driver. The core takes care of
318 * allocating the spi_mem object and forwarding the probe/remove/shutdown
319 * request to the spi_mem_driver. The reason we use this wrapper is because
320 * we might have to stuff more information into the spi_mem struct to let
321 * SPI controllers know more about the SPI memory they interact with, and
322 * having this intermediate layer allows us to do that without adding more
323 * useless fields to the spi_device object.
324 */
325struct spi_mem_driver {
326	struct spi_driver spidrv;
327	int (*probe)(struct spi_mem *mem);
328	int (*remove)(struct spi_mem *mem);
329	void (*shutdown)(struct spi_mem *mem);
330};
331
332#if IS_ENABLED(CONFIG_SPI_MEM)
333int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
334				       const struct spi_mem_op *op,
335				       struct sg_table *sg);
336
337void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
338					  const struct spi_mem_op *op,
339					  struct sg_table *sg);
340
341bool spi_mem_default_supports_op(struct spi_mem *mem,
342				 const struct spi_mem_op *op);
343#else
344static inline int
345spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
346				   const struct spi_mem_op *op,
347				   struct sg_table *sg)
348{
349	return -ENOTSUPP;
350}
351
352static inline void
353spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
354				     const struct spi_mem_op *op,
355				     struct sg_table *sg)
356{
357}
358
359static inline
360bool spi_mem_default_supports_op(struct spi_mem *mem,
361				 const struct spi_mem_op *op)
362{
363	return false;
364}
365#endif /* CONFIG_SPI_MEM */
366
367int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
368
369bool spi_mem_supports_op(struct spi_mem *mem,
370			 const struct spi_mem_op *op);
371
372int spi_mem_exec_op(struct spi_mem *mem,
373		    const struct spi_mem_op *op);
374
375const char *spi_mem_get_name(struct spi_mem *mem);
376
377struct spi_mem_dirmap_desc *
378spi_mem_dirmap_create(struct spi_mem *mem,
379		      const struct spi_mem_dirmap_info *info);
380void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
381ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
382			    u64 offs, size_t len, void *buf);
383ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
384			     u64 offs, size_t len, const void *buf);
385struct spi_mem_dirmap_desc *
386devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
387			   const struct spi_mem_dirmap_info *info);
388void devm_spi_mem_dirmap_destroy(struct device *dev,
389				 struct spi_mem_dirmap_desc *desc);
390
391int spi_mem_poll_status(struct spi_mem *mem,
392			const struct spi_mem_op *op,
393			u16 mask, u16 match,
394			unsigned long initial_delay_us,
395			unsigned long polling_delay_us,
396			u16 timeout_ms);
397
398int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
399				       struct module *owner);
400
401void spi_mem_driver_unregister(struct spi_mem_driver *drv);
402
403#define spi_mem_driver_register(__drv)                                  \
404	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
405
406#define module_spi_mem_driver(__drv)                                    \
407	module_driver(__drv, spi_mem_driver_register,                   \
408		      spi_mem_driver_unregister)
409
410#endif /* __LINUX_SPI_MEM_H */
411