1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 *	Definitions for the 'struct sk_buff' memory handlers.
4 *
5 *	Authors:
6 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7 *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <net/checksum.h>
27#include <linux/rcupdate.h>
28#include <linux/dma-mapping.h>
29#include <linux/netdev_features.h>
30#include <net/flow_dissector.h>
31#include <linux/in6.h>
32#include <linux/if_packet.h>
33#include <linux/llist.h>
34#include <net/flow.h>
35#if IS_ENABLED(CONFIG_NF_CONNTRACK)
36#include <linux/netfilter/nf_conntrack_common.h>
37#endif
38#include <net/net_debug.h>
39#include <net/dropreason-core.h>
40#include <net/netmem.h>
41
42/**
43 * DOC: skb checksums
44 *
45 * The interface for checksum offload between the stack and networking drivers
46 * is as follows...
47 *
48 * IP checksum related features
49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
54 * to its device.
55 *
56 * .. flat-table:: Checksum related device features
57 *   :widths: 1 10
58 *
59 *   * - %NETIF_F_HW_CSUM
60 *     - The driver (or its device) is able to compute one
61 *	 IP (one's complement) checksum for any combination
62 *	 of protocols or protocol layering. The checksum is
63 *	 computed and set in a packet per the CHECKSUM_PARTIAL
64 *	 interface (see below).
65 *
66 *   * - %NETIF_F_IP_CSUM
67 *     - Driver (device) is only able to checksum plain
68 *	 TCP or UDP packets over IPv4. These are specifically
69 *	 unencapsulated packets of the form IPv4|TCP or
70 *	 IPv4|UDP where the Protocol field in the IPv4 header
71 *	 is TCP or UDP. The IPv4 header may contain IP options.
72 *	 This feature cannot be set in features for a device
73 *	 with NETIF_F_HW_CSUM also set. This feature is being
74 *	 DEPRECATED (see below).
75 *
76 *   * - %NETIF_F_IPV6_CSUM
77 *     - Driver (device) is only able to checksum plain
78 *	 TCP or UDP packets over IPv6. These are specifically
79 *	 unencapsulated packets of the form IPv6|TCP or
80 *	 IPv6|UDP where the Next Header field in the IPv6
81 *	 header is either TCP or UDP. IPv6 extension headers
82 *	 are not supported with this feature. This feature
83 *	 cannot be set in features for a device with
84 *	 NETIF_F_HW_CSUM also set. This feature is being
85 *	 DEPRECATED (see below).
86 *
87 *   * - %NETIF_F_RXCSUM
88 *     - Driver (device) performs receive checksum offload.
89 *	 This flag is only used to disable the RX checksum
90 *	 feature for a device. The stack will accept receive
91 *	 checksum indication in packets received on a device
92 *	 regardless of whether NETIF_F_RXCSUM is set.
93 *
94 * Checksumming of received packets by device
95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 *
97 * Indication of checksum verification is set in &sk_buff.ip_summed.
98 * Possible values are:
99 *
100 * - %CHECKSUM_NONE
101 *
102 *   Device did not checksum this packet e.g. due to lack of capabilities.
103 *   The packet contains full (though not verified) checksum in packet but
104 *   not in skb->csum. Thus, skb->csum is undefined in this case.
105 *
106 * - %CHECKSUM_UNNECESSARY
107 *
108 *   The hardware you're dealing with doesn't calculate the full checksum
109 *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110 *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111 *   if their checksums are okay. &sk_buff.csum is still undefined in this case
112 *   though. A driver or device must never modify the checksum field in the
113 *   packet even if checksum is verified.
114 *
115 *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
116 *
117 *     - TCP: IPv6 and IPv4.
118 *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
120 *       may perform further validation in this case.
121 *     - GRE: only if the checksum is present in the header.
122 *     - SCTP: indicates the CRC in SCTP header has been validated.
123 *     - FCOE: indicates the CRC in FC frame has been validated.
124 *
125 *   &sk_buff.csum_level indicates the number of consecutive checksums found in
126 *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128 *   and a device is able to verify the checksums for UDP (possibly zero),
129 *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130 *   two. If the device were only able to verify the UDP checksum and not
131 *   GRE, either because it doesn't support GRE checksum or because GRE
132 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133 *   not considered in this case).
134 *
135 * - %CHECKSUM_COMPLETE
136 *
137 *   This is the most generic way. The device supplied checksum of the _whole_
138 *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139 *   hardware doesn't need to parse L3/L4 headers to implement this.
140 *
141 *   Notes:
142 *
143 *   - Even if device supports only some protocols, but is able to produce
144 *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145 *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146 *
147 * - %CHECKSUM_PARTIAL
148 *
149 *   A checksum is set up to be offloaded to a device as described in the
150 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
151 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
152 *   on the same host, or it may be set in the input path in GRO or remote
153 *   checksum offload. For the purposes of checksum verification, the checksum
154 *   referred to by skb->csum_start + skb->csum_offset and any preceding
155 *   checksums in the packet are considered verified. Any checksums in the
156 *   packet that are after the checksum being offloaded are not considered to
157 *   be verified.
158 *
159 * Checksumming on transmit for non-GSO
160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161 *
162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163 * Values are:
164 *
165 * - %CHECKSUM_PARTIAL
166 *
167 *   The driver is required to checksum the packet as seen by hard_start_xmit()
168 *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
169 *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
170 *   A driver may verify that the
171 *   csum_start and csum_offset values are valid values given the length and
172 *   offset of the packet, but it should not attempt to validate that the
173 *   checksum refers to a legitimate transport layer checksum -- it is the
174 *   purview of the stack to validate that csum_start and csum_offset are set
175 *   correctly.
176 *
177 *   When the stack requests checksum offload for a packet, the driver MUST
178 *   ensure that the checksum is set correctly. A driver can either offload the
179 *   checksum calculation to the device, or call skb_checksum_help (in the case
180 *   that the device does not support offload for a particular checksum).
181 *
182 *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183 *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184 *   checksum offload capability.
185 *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186 *   on network device checksumming capabilities: if a packet does not match
187 *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188 *   &sk_buff.csum_not_inet, see :ref:`crc`)
189 *   is called to resolve the checksum.
190 *
191 * - %CHECKSUM_NONE
192 *
193 *   The skb was already checksummed by the protocol, or a checksum is not
194 *   required.
195 *
196 * - %CHECKSUM_UNNECESSARY
197 *
198 *   This has the same meaning as CHECKSUM_NONE for checksum offload on
199 *   output.
200 *
201 * - %CHECKSUM_COMPLETE
202 *
203 *   Not used in checksum output. If a driver observes a packet with this value
204 *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205 *
206 * .. _crc:
207 *
208 * Non-IP checksum (CRC) offloads
209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210 *
211 * .. flat-table::
212 *   :widths: 1 10
213 *
214 *   * - %NETIF_F_SCTP_CRC
215 *     - This feature indicates that a device is capable of
216 *	 offloading the SCTP CRC in a packet. To perform this offload the stack
217 *	 will set csum_start and csum_offset accordingly, set ip_summed to
218 *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219 *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220 *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
221 *	 must verify which offload is configured for a packet by testing the
222 *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223 *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224 *
225 *   * - %NETIF_F_FCOE_CRC
226 *     - This feature indicates that a device is capable of offloading the FCOE
227 *	 CRC in a packet. To perform this offload the stack will set ip_summed
228 *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229 *	 accordingly. Note that there is no indication in the skbuff that the
230 *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231 *	 both IP checksum offload and FCOE CRC offload must verify which offload
232 *	 is configured for a packet, presumably by inspecting packet headers.
233 *
234 * Checksumming on output with GSO
235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236 *
237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240 * part of the GSO operation is implied. If a checksum is being offloaded
241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242 * csum_offset are set to refer to the outermost checksum being offloaded
243 * (two offloaded checksums are possible with UDP encapsulation).
244 */
245
246/* Don't change this without changing skb_csum_unnecessary! */
247#define CHECKSUM_NONE		0
248#define CHECKSUM_UNNECESSARY	1
249#define CHECKSUM_COMPLETE	2
250#define CHECKSUM_PARTIAL	3
251
252/* Maximum value in skb->csum_level */
253#define SKB_MAX_CSUM_LEVEL	3
254
255#define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
256#define SKB_WITH_OVERHEAD(X)	\
257	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258
259/* For X bytes available in skb->head, what is the minimal
260 * allocation needed, knowing struct skb_shared_info needs
261 * to be aligned.
262 */
263#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265
266#define SKB_MAX_ORDER(X, ORDER) \
267	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268#define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
269#define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
270
271/* return minimum truesize of one skb containing X bytes of data */
272#define SKB_TRUESIZE(X) ((X) +						\
273			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
274			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275
276struct ahash_request;
277struct net_device;
278struct scatterlist;
279struct pipe_inode_info;
280struct iov_iter;
281struct napi_struct;
282struct bpf_prog;
283union bpf_attr;
284struct skb_ext;
285struct ts_config;
286
287#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288struct nf_bridge_info {
289	enum {
290		BRNF_PROTO_UNCHANGED,
291		BRNF_PROTO_8021Q,
292		BRNF_PROTO_PPPOE
293	} orig_proto:8;
294	u8			pkt_otherhost:1;
295	u8			in_prerouting:1;
296	u8			bridged_dnat:1;
297	u8			sabotage_in_done:1;
298	__u16			frag_max_size;
299	int			physinif;
300
301	/* always valid & non-NULL from FORWARD on, for physdev match */
302	struct net_device	*physoutdev;
303	union {
304		/* prerouting: detect dnat in orig/reply direction */
305		__be32          ipv4_daddr;
306		struct in6_addr ipv6_daddr;
307
308		/* after prerouting + nat detected: store original source
309		 * mac since neigh resolution overwrites it, only used while
310		 * skb is out in neigh layer.
311		 */
312		char neigh_header[8];
313	};
314};
315#endif
316
317#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318/* Chain in tc_skb_ext will be used to share the tc chain with
319 * ovs recirc_id. It will be set to the current chain by tc
320 * and read by ovs to recirc_id.
321 */
322struct tc_skb_ext {
323	union {
324		u64 act_miss_cookie;
325		__u32 chain;
326	};
327	__u16 mru;
328	__u16 zone;
329	u8 post_ct:1;
330	u8 post_ct_snat:1;
331	u8 post_ct_dnat:1;
332	u8 act_miss:1; /* Set if act_miss_cookie is used */
333	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334};
335#endif
336
337struct sk_buff_head {
338	/* These two members must be first to match sk_buff. */
339	struct_group_tagged(sk_buff_list, list,
340		struct sk_buff	*next;
341		struct sk_buff	*prev;
342	);
343
344	__u32		qlen;
345	spinlock_t	lock;
346};
347
348struct sk_buff;
349
350#ifndef CONFIG_MAX_SKB_FRAGS
351# define CONFIG_MAX_SKB_FRAGS 17
352#endif
353
354#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355
356extern int sysctl_max_skb_frags;
357
358/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359 * segment using its current segmentation instead.
360 */
361#define GSO_BY_FRAGS	0xFFFF
362
363typedef struct skb_frag {
364	netmem_ref netmem;
365	unsigned int len;
366	unsigned int offset;
367} skb_frag_t;
368
369/**
370 * skb_frag_size() - Returns the size of a skb fragment
371 * @frag: skb fragment
372 */
373static inline unsigned int skb_frag_size(const skb_frag_t *frag)
374{
375	return frag->len;
376}
377
378/**
379 * skb_frag_size_set() - Sets the size of a skb fragment
380 * @frag: skb fragment
381 * @size: size of fragment
382 */
383static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
384{
385	frag->len = size;
386}
387
388/**
389 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
390 * @frag: skb fragment
391 * @delta: value to add
392 */
393static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
394{
395	frag->len += delta;
396}
397
398/**
399 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
400 * @frag: skb fragment
401 * @delta: value to subtract
402 */
403static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
404{
405	frag->len -= delta;
406}
407
408/**
409 * skb_frag_must_loop - Test if %p is a high memory page
410 * @p: fragment's page
411 */
412static inline bool skb_frag_must_loop(struct page *p)
413{
414#if defined(CONFIG_HIGHMEM)
415	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
416		return true;
417#endif
418	return false;
419}
420
421/**
422 *	skb_frag_foreach_page - loop over pages in a fragment
423 *
424 *	@f:		skb frag to operate on
425 *	@f_off:		offset from start of f->netmem
426 *	@f_len:		length from f_off to loop over
427 *	@p:		(temp var) current page
428 *	@p_off:		(temp var) offset from start of current page,
429 *	                           non-zero only on first page.
430 *	@p_len:		(temp var) length in current page,
431 *				   < PAGE_SIZE only on first and last page.
432 *	@copied:	(temp var) length so far, excluding current p_len.
433 *
434 *	A fragment can hold a compound page, in which case per-page
435 *	operations, notably kmap_atomic, must be called for each
436 *	regular page.
437 */
438#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
439	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
440	     p_off = (f_off) & (PAGE_SIZE - 1),				\
441	     p_len = skb_frag_must_loop(p) ?				\
442	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
443	     copied = 0;						\
444	     copied < f_len;						\
445	     copied += p_len, p++, p_off = 0,				\
446	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
447
448/**
449 * struct skb_shared_hwtstamps - hardware time stamps
450 * @hwtstamp:		hardware time stamp transformed into duration
451 *			since arbitrary point in time
452 * @netdev_data:	address/cookie of network device driver used as
453 *			reference to actual hardware time stamp
454 *
455 * Software time stamps generated by ktime_get_real() are stored in
456 * skb->tstamp.
457 *
458 * hwtstamps can only be compared against other hwtstamps from
459 * the same device.
460 *
461 * This structure is attached to packets as part of the
462 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
463 */
464struct skb_shared_hwtstamps {
465	union {
466		ktime_t	hwtstamp;
467		void *netdev_data;
468	};
469};
470
471/* Definitions for tx_flags in struct skb_shared_info */
472enum {
473	/* generate hardware time stamp */
474	SKBTX_HW_TSTAMP = 1 << 0,
475
476	/* generate software time stamp when queueing packet to NIC */
477	SKBTX_SW_TSTAMP = 1 << 1,
478
479	/* device driver is going to provide hardware time stamp */
480	SKBTX_IN_PROGRESS = 1 << 2,
481
482	/* generate hardware time stamp based on cycles if supported */
483	SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
484
485	/* generate wifi status information (where possible) */
486	SKBTX_WIFI_STATUS = 1 << 4,
487
488	/* determine hardware time stamp based on time or cycles */
489	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
490
491	/* generate software time stamp when entering packet scheduling */
492	SKBTX_SCHED_TSTAMP = 1 << 6,
493};
494
495#define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
496				 SKBTX_SCHED_TSTAMP)
497#define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
498				 SKBTX_HW_TSTAMP_USE_CYCLES | \
499				 SKBTX_ANY_SW_TSTAMP)
500
501/* Definitions for flags in struct skb_shared_info */
502enum {
503	/* use zcopy routines */
504	SKBFL_ZEROCOPY_ENABLE = BIT(0),
505
506	/* This indicates at least one fragment might be overwritten
507	 * (as in vmsplice(), sendfile() ...)
508	 * If we need to compute a TX checksum, we'll need to copy
509	 * all frags to avoid possible bad checksum
510	 */
511	SKBFL_SHARED_FRAG = BIT(1),
512
513	/* segment contains only zerocopy data and should not be
514	 * charged to the kernel memory.
515	 */
516	SKBFL_PURE_ZEROCOPY = BIT(2),
517
518	SKBFL_DONT_ORPHAN = BIT(3),
519
520	/* page references are managed by the ubuf_info, so it's safe to
521	 * use frags only up until ubuf_info is released
522	 */
523	SKBFL_MANAGED_FRAG_REFS = BIT(4),
524};
525
526#define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
527#define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
528				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
529
530/*
531 * The callback notifies userspace to release buffers when skb DMA is done in
532 * lower device, the skb last reference should be 0 when calling this.
533 * The zerocopy_success argument is true if zero copy transmit occurred,
534 * false on data copy or out of memory error caused by data copy attempt.
535 * The ctx field is used to track device context.
536 * The desc field is used to track userspace buffer index.
537 */
538struct ubuf_info {
539	void (*callback)(struct sk_buff *, struct ubuf_info *,
540			 bool zerocopy_success);
541	refcount_t refcnt;
542	u8 flags;
543};
544
545struct ubuf_info_msgzc {
546	struct ubuf_info ubuf;
547
548	union {
549		struct {
550			unsigned long desc;
551			void *ctx;
552		};
553		struct {
554			u32 id;
555			u16 len;
556			u16 zerocopy:1;
557			u32 bytelen;
558		};
559	};
560
561	struct mmpin {
562		struct user_struct *user;
563		unsigned int num_pg;
564	} mmp;
565};
566
567#define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
568#define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
569					     ubuf)
570
571int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
572void mm_unaccount_pinned_pages(struct mmpin *mmp);
573
574/* Preserve some data across TX submission and completion.
575 *
576 * Note, this state is stored in the driver. Extending the layout
577 * might need some special care.
578 */
579struct xsk_tx_metadata_compl {
580	__u64 *tx_timestamp;
581};
582
583/* This data is invariant across clones and lives at
584 * the end of the header data, ie. at skb->end.
585 */
586struct skb_shared_info {
587	__u8		flags;
588	__u8		meta_len;
589	__u8		nr_frags;
590	__u8		tx_flags;
591	unsigned short	gso_size;
592	/* Warning: this field is not always filled in (UFO)! */
593	unsigned short	gso_segs;
594	struct sk_buff	*frag_list;
595	union {
596		struct skb_shared_hwtstamps hwtstamps;
597		struct xsk_tx_metadata_compl xsk_meta;
598	};
599	unsigned int	gso_type;
600	u32		tskey;
601
602	/*
603	 * Warning : all fields before dataref are cleared in __alloc_skb()
604	 */
605	atomic_t	dataref;
606	unsigned int	xdp_frags_size;
607
608	/* Intermediate layers must ensure that destructor_arg
609	 * remains valid until skb destructor */
610	void *		destructor_arg;
611
612	/* must be last field, see pskb_expand_head() */
613	skb_frag_t	frags[MAX_SKB_FRAGS];
614};
615
616/**
617 * DOC: dataref and headerless skbs
618 *
619 * Transport layers send out clones of payload skbs they hold for
620 * retransmissions. To allow lower layers of the stack to prepend their headers
621 * we split &skb_shared_info.dataref into two halves.
622 * The lower 16 bits count the overall number of references.
623 * The higher 16 bits indicate how many of the references are payload-only.
624 * skb_header_cloned() checks if skb is allowed to add / write the headers.
625 *
626 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
627 * (via __skb_header_release()). Any clone created from marked skb will get
628 * &sk_buff.hdr_len populated with the available headroom.
629 * If there's the only clone in existence it's able to modify the headroom
630 * at will. The sequence of calls inside the transport layer is::
631 *
632 *  <alloc skb>
633 *  skb_reserve()
634 *  __skb_header_release()
635 *  skb_clone()
636 *  // send the clone down the stack
637 *
638 * This is not a very generic construct and it depends on the transport layers
639 * doing the right thing. In practice there's usually only one payload-only skb.
640 * Having multiple payload-only skbs with different lengths of hdr_len is not
641 * possible. The payload-only skbs should never leave their owner.
642 */
643#define SKB_DATAREF_SHIFT 16
644#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
645
646
647enum {
648	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
649	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
650	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
651};
652
653enum {
654	SKB_GSO_TCPV4 = 1 << 0,
655
656	/* This indicates the skb is from an untrusted source. */
657	SKB_GSO_DODGY = 1 << 1,
658
659	/* This indicates the tcp segment has CWR set. */
660	SKB_GSO_TCP_ECN = 1 << 2,
661
662	SKB_GSO_TCP_FIXEDID = 1 << 3,
663
664	SKB_GSO_TCPV6 = 1 << 4,
665
666	SKB_GSO_FCOE = 1 << 5,
667
668	SKB_GSO_GRE = 1 << 6,
669
670	SKB_GSO_GRE_CSUM = 1 << 7,
671
672	SKB_GSO_IPXIP4 = 1 << 8,
673
674	SKB_GSO_IPXIP6 = 1 << 9,
675
676	SKB_GSO_UDP_TUNNEL = 1 << 10,
677
678	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
679
680	SKB_GSO_PARTIAL = 1 << 12,
681
682	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
683
684	SKB_GSO_SCTP = 1 << 14,
685
686	SKB_GSO_ESP = 1 << 15,
687
688	SKB_GSO_UDP = 1 << 16,
689
690	SKB_GSO_UDP_L4 = 1 << 17,
691
692	SKB_GSO_FRAGLIST = 1 << 18,
693};
694
695#if BITS_PER_LONG > 32
696#define NET_SKBUFF_DATA_USES_OFFSET 1
697#endif
698
699#ifdef NET_SKBUFF_DATA_USES_OFFSET
700typedef unsigned int sk_buff_data_t;
701#else
702typedef unsigned char *sk_buff_data_t;
703#endif
704
705/**
706 * DOC: Basic sk_buff geometry
707 *
708 * struct sk_buff itself is a metadata structure and does not hold any packet
709 * data. All the data is held in associated buffers.
710 *
711 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
712 * into two parts:
713 *
714 *  - data buffer, containing headers and sometimes payload;
715 *    this is the part of the skb operated on by the common helpers
716 *    such as skb_put() or skb_pull();
717 *  - shared info (struct skb_shared_info) which holds an array of pointers
718 *    to read-only data in the (page, offset, length) format.
719 *
720 * Optionally &skb_shared_info.frag_list may point to another skb.
721 *
722 * Basic diagram may look like this::
723 *
724 *                                  ---------------
725 *                                 | sk_buff       |
726 *                                  ---------------
727 *     ,---------------------------  + head
728 *    /          ,-----------------  + data
729 *   /          /      ,-----------  + tail
730 *  |          |      |            , + end
731 *  |          |      |           |
732 *  v          v      v           v
733 *   -----------------------------------------------
734 *  | headroom | data |  tailroom | skb_shared_info |
735 *   -----------------------------------------------
736 *                                 + [page frag]
737 *                                 + [page frag]
738 *                                 + [page frag]
739 *                                 + [page frag]       ---------
740 *                                 + frag_list    --> | sk_buff |
741 *                                                     ---------
742 *
743 */
744
745/**
746 *	struct sk_buff - socket buffer
747 *	@next: Next buffer in list
748 *	@prev: Previous buffer in list
749 *	@tstamp: Time we arrived/left
750 *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
751 *		for retransmit timer
752 *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
753 *	@list: queue head
754 *	@ll_node: anchor in an llist (eg socket defer_list)
755 *	@sk: Socket we are owned by
756 *	@dev: Device we arrived on/are leaving by
757 *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
758 *	@cb: Control buffer. Free for use by every layer. Put private vars here
759 *	@_skb_refdst: destination entry (with norefcount bit)
760 *	@len: Length of actual data
761 *	@data_len: Data length
762 *	@mac_len: Length of link layer header
763 *	@hdr_len: writable header length of cloned skb
764 *	@csum: Checksum (must include start/offset pair)
765 *	@csum_start: Offset from skb->head where checksumming should start
766 *	@csum_offset: Offset from csum_start where checksum should be stored
767 *	@priority: Packet queueing priority
768 *	@ignore_df: allow local fragmentation
769 *	@cloned: Head may be cloned (check refcnt to be sure)
770 *	@ip_summed: Driver fed us an IP checksum
771 *	@nohdr: Payload reference only, must not modify header
772 *	@pkt_type: Packet class
773 *	@fclone: skbuff clone status
774 *	@ipvs_property: skbuff is owned by ipvs
775 *	@inner_protocol_type: whether the inner protocol is
776 *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
777 *	@remcsum_offload: remote checksum offload is enabled
778 *	@offload_fwd_mark: Packet was L2-forwarded in hardware
779 *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
780 *	@tc_skip_classify: do not classify packet. set by IFB device
781 *	@tc_at_ingress: used within tc_classify to distinguish in/egress
782 *	@redirected: packet was redirected by packet classifier
783 *	@from_ingress: packet was redirected from the ingress path
784 *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
785 *	@peeked: this packet has been seen already, so stats have been
786 *		done for it, don't do them again
787 *	@nf_trace: netfilter packet trace flag
788 *	@protocol: Packet protocol from driver
789 *	@destructor: Destruct function
790 *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
791 *	@_sk_redir: socket redirection information for skmsg
792 *	@_nfct: Associated connection, if any (with nfctinfo bits)
793 *	@skb_iif: ifindex of device we arrived on
794 *	@tc_index: Traffic control index
795 *	@hash: the packet hash
796 *	@queue_mapping: Queue mapping for multiqueue devices
797 *	@head_frag: skb was allocated from page fragments,
798 *		not allocated by kmalloc() or vmalloc().
799 *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
800 *	@pp_recycle: mark the packet for recycling instead of freeing (implies
801 *		page_pool support on driver)
802 *	@active_extensions: active extensions (skb_ext_id types)
803 *	@ndisc_nodetype: router type (from link layer)
804 *	@ooo_okay: allow the mapping of a socket to a queue to be changed
805 *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
806 *		ports.
807 *	@sw_hash: indicates hash was computed in software stack
808 *	@wifi_acked_valid: wifi_acked was set
809 *	@wifi_acked: whether frame was acked on wifi or not
810 *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
811 *	@encapsulation: indicates the inner headers in the skbuff are valid
812 *	@encap_hdr_csum: software checksum is needed
813 *	@csum_valid: checksum is already valid
814 *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
815 *	@csum_complete_sw: checksum was completed by software
816 *	@csum_level: indicates the number of consecutive checksums found in
817 *		the packet minus one that have been verified as
818 *		CHECKSUM_UNNECESSARY (max 3)
819 *	@dst_pending_confirm: need to confirm neighbour
820 *	@decrypted: Decrypted SKB
821 *	@slow_gro: state present at GRO time, slower prepare step required
822 *	@mono_delivery_time: When set, skb->tstamp has the
823 *		delivery_time in mono clock base (i.e. EDT).  Otherwise, the
824 *		skb->tstamp has the (rcv) timestamp at ingress and
825 *		delivery_time at egress.
826 *	@napi_id: id of the NAPI struct this skb came from
827 *	@sender_cpu: (aka @napi_id) source CPU in XPS
828 *	@alloc_cpu: CPU which did the skb allocation.
829 *	@secmark: security marking
830 *	@mark: Generic packet mark
831 *	@reserved_tailroom: (aka @mark) number of bytes of free space available
832 *		at the tail of an sk_buff
833 *	@vlan_all: vlan fields (proto & tci)
834 *	@vlan_proto: vlan encapsulation protocol
835 *	@vlan_tci: vlan tag control information
836 *	@inner_protocol: Protocol (encapsulation)
837 *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
838 *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
839 *	@inner_transport_header: Inner transport layer header (encapsulation)
840 *	@inner_network_header: Network layer header (encapsulation)
841 *	@inner_mac_header: Link layer header (encapsulation)
842 *	@transport_header: Transport layer header
843 *	@network_header: Network layer header
844 *	@mac_header: Link layer header
845 *	@kcov_handle: KCOV remote handle for remote coverage collection
846 *	@tail: Tail pointer
847 *	@end: End pointer
848 *	@head: Head of buffer
849 *	@data: Data head pointer
850 *	@truesize: Buffer size
851 *	@users: User count - see {datagram,tcp}.c
852 *	@extensions: allocated extensions, valid if active_extensions is nonzero
853 */
854
855struct sk_buff {
856	union {
857		struct {
858			/* These two members must be first to match sk_buff_head. */
859			struct sk_buff		*next;
860			struct sk_buff		*prev;
861
862			union {
863				struct net_device	*dev;
864				/* Some protocols might use this space to store information,
865				 * while device pointer would be NULL.
866				 * UDP receive path is one user.
867				 */
868				unsigned long		dev_scratch;
869			};
870		};
871		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
872		struct list_head	list;
873		struct llist_node	ll_node;
874	};
875
876	struct sock		*sk;
877
878	union {
879		ktime_t		tstamp;
880		u64		skb_mstamp_ns; /* earliest departure time */
881	};
882	/*
883	 * This is the control buffer. It is free to use for every
884	 * layer. Please put your private variables there. If you
885	 * want to keep them across layers you have to do a skb_clone()
886	 * first. This is owned by whoever has the skb queued ATM.
887	 */
888	char			cb[48] __aligned(8);
889
890	union {
891		struct {
892			unsigned long	_skb_refdst;
893			void		(*destructor)(struct sk_buff *skb);
894		};
895		struct list_head	tcp_tsorted_anchor;
896#ifdef CONFIG_NET_SOCK_MSG
897		unsigned long		_sk_redir;
898#endif
899	};
900
901#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
902	unsigned long		 _nfct;
903#endif
904	unsigned int		len,
905				data_len;
906	__u16			mac_len,
907				hdr_len;
908
909	/* Following fields are _not_ copied in __copy_skb_header()
910	 * Note that queue_mapping is here mostly to fill a hole.
911	 */
912	__u16			queue_mapping;
913
914/* if you move cloned around you also must adapt those constants */
915#ifdef __BIG_ENDIAN_BITFIELD
916#define CLONED_MASK	(1 << 7)
917#else
918#define CLONED_MASK	1
919#endif
920#define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
921
922	/* private: */
923	__u8			__cloned_offset[0];
924	/* public: */
925	__u8			cloned:1,
926				nohdr:1,
927				fclone:2,
928				peeked:1,
929				head_frag:1,
930				pfmemalloc:1,
931				pp_recycle:1; /* page_pool recycle indicator */
932#ifdef CONFIG_SKB_EXTENSIONS
933	__u8			active_extensions;
934#endif
935
936	/* Fields enclosed in headers group are copied
937	 * using a single memcpy() in __copy_skb_header()
938	 */
939	struct_group(headers,
940
941	/* private: */
942	__u8			__pkt_type_offset[0];
943	/* public: */
944	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
945	__u8			ignore_df:1;
946	__u8			dst_pending_confirm:1;
947	__u8			ip_summed:2;
948	__u8			ooo_okay:1;
949
950	/* private: */
951	__u8			__mono_tc_offset[0];
952	/* public: */
953	__u8			mono_delivery_time:1;	/* See SKB_MONO_DELIVERY_TIME_MASK */
954#ifdef CONFIG_NET_XGRESS
955	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
956	__u8			tc_skip_classify:1;
957#endif
958	__u8			remcsum_offload:1;
959	__u8			csum_complete_sw:1;
960	__u8			csum_level:2;
961	__u8			inner_protocol_type:1;
962
963	__u8			l4_hash:1;
964	__u8			sw_hash:1;
965#ifdef CONFIG_WIRELESS
966	__u8			wifi_acked_valid:1;
967	__u8			wifi_acked:1;
968#endif
969	__u8			no_fcs:1;
970	/* Indicates the inner headers are valid in the skbuff. */
971	__u8			encapsulation:1;
972	__u8			encap_hdr_csum:1;
973	__u8			csum_valid:1;
974#ifdef CONFIG_IPV6_NDISC_NODETYPE
975	__u8			ndisc_nodetype:2;
976#endif
977
978#if IS_ENABLED(CONFIG_IP_VS)
979	__u8			ipvs_property:1;
980#endif
981#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
982	__u8			nf_trace:1;
983#endif
984#ifdef CONFIG_NET_SWITCHDEV
985	__u8			offload_fwd_mark:1;
986	__u8			offload_l3_fwd_mark:1;
987#endif
988	__u8			redirected:1;
989#ifdef CONFIG_NET_REDIRECT
990	__u8			from_ingress:1;
991#endif
992#ifdef CONFIG_NETFILTER_SKIP_EGRESS
993	__u8			nf_skip_egress:1;
994#endif
995#ifdef CONFIG_TLS_DEVICE
996	__u8			decrypted:1;
997#endif
998	__u8			slow_gro:1;
999#if IS_ENABLED(CONFIG_IP_SCTP)
1000	__u8			csum_not_inet:1;
1001#endif
1002
1003#if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1004	__u16			tc_index;	/* traffic control index */
1005#endif
1006
1007	u16			alloc_cpu;
1008
1009	union {
1010		__wsum		csum;
1011		struct {
1012			__u16	csum_start;
1013			__u16	csum_offset;
1014		};
1015	};
1016	__u32			priority;
1017	int			skb_iif;
1018	__u32			hash;
1019	union {
1020		u32		vlan_all;
1021		struct {
1022			__be16	vlan_proto;
1023			__u16	vlan_tci;
1024		};
1025	};
1026#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1027	union {
1028		unsigned int	napi_id;
1029		unsigned int	sender_cpu;
1030	};
1031#endif
1032#ifdef CONFIG_NETWORK_SECMARK
1033	__u32		secmark;
1034#endif
1035
1036	union {
1037		__u32		mark;
1038		__u32		reserved_tailroom;
1039	};
1040
1041	union {
1042		__be16		inner_protocol;
1043		__u8		inner_ipproto;
1044	};
1045
1046	__u16			inner_transport_header;
1047	__u16			inner_network_header;
1048	__u16			inner_mac_header;
1049
1050	__be16			protocol;
1051	__u16			transport_header;
1052	__u16			network_header;
1053	__u16			mac_header;
1054
1055#ifdef CONFIG_KCOV
1056	u64			kcov_handle;
1057#endif
1058
1059	); /* end headers group */
1060
1061	/* These elements must be at the end, see alloc_skb() for details.  */
1062	sk_buff_data_t		tail;
1063	sk_buff_data_t		end;
1064	unsigned char		*head,
1065				*data;
1066	unsigned int		truesize;
1067	refcount_t		users;
1068
1069#ifdef CONFIG_SKB_EXTENSIONS
1070	/* only usable after checking ->active_extensions != 0 */
1071	struct skb_ext		*extensions;
1072#endif
1073};
1074
1075/* if you move pkt_type around you also must adapt those constants */
1076#ifdef __BIG_ENDIAN_BITFIELD
1077#define PKT_TYPE_MAX	(7 << 5)
1078#else
1079#define PKT_TYPE_MAX	7
1080#endif
1081#define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1082
1083/* if you move tc_at_ingress or mono_delivery_time
1084 * around, you also must adapt these constants.
1085 */
1086#ifdef __BIG_ENDIAN_BITFIELD
1087#define SKB_MONO_DELIVERY_TIME_MASK	(1 << 7)
1088#define TC_AT_INGRESS_MASK		(1 << 6)
1089#else
1090#define SKB_MONO_DELIVERY_TIME_MASK	(1 << 0)
1091#define TC_AT_INGRESS_MASK		(1 << 1)
1092#endif
1093#define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1094
1095#ifdef __KERNEL__
1096/*
1097 *	Handling routines are only of interest to the kernel
1098 */
1099
1100#define SKB_ALLOC_FCLONE	0x01
1101#define SKB_ALLOC_RX		0x02
1102#define SKB_ALLOC_NAPI		0x04
1103
1104/**
1105 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1106 * @skb: buffer
1107 */
1108static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1109{
1110	return unlikely(skb->pfmemalloc);
1111}
1112
1113/*
1114 * skb might have a dst pointer attached, refcounted or not.
1115 * _skb_refdst low order bit is set if refcount was _not_ taken
1116 */
1117#define SKB_DST_NOREF	1UL
1118#define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1119
1120/**
1121 * skb_dst - returns skb dst_entry
1122 * @skb: buffer
1123 *
1124 * Returns skb dst_entry, regardless of reference taken or not.
1125 */
1126static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1127{
1128	/* If refdst was not refcounted, check we still are in a
1129	 * rcu_read_lock section
1130	 */
1131	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1132		!rcu_read_lock_held() &&
1133		!rcu_read_lock_bh_held());
1134	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1135}
1136
1137/**
1138 * skb_dst_set - sets skb dst
1139 * @skb: buffer
1140 * @dst: dst entry
1141 *
1142 * Sets skb dst, assuming a reference was taken on dst and should
1143 * be released by skb_dst_drop()
1144 */
1145static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1146{
1147	skb->slow_gro |= !!dst;
1148	skb->_skb_refdst = (unsigned long)dst;
1149}
1150
1151/**
1152 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1153 * @skb: buffer
1154 * @dst: dst entry
1155 *
1156 * Sets skb dst, assuming a reference was not taken on dst.
1157 * If dst entry is cached, we do not take reference and dst_release
1158 * will be avoided by refdst_drop. If dst entry is not cached, we take
1159 * reference, so that last dst_release can destroy the dst immediately.
1160 */
1161static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1162{
1163	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1164	skb->slow_gro |= !!dst;
1165	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1166}
1167
1168/**
1169 * skb_dst_is_noref - Test if skb dst isn't refcounted
1170 * @skb: buffer
1171 */
1172static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1173{
1174	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1175}
1176
1177/**
1178 * skb_rtable - Returns the skb &rtable
1179 * @skb: buffer
1180 */
1181static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1182{
1183	return (struct rtable *)skb_dst(skb);
1184}
1185
1186/* For mangling skb->pkt_type from user space side from applications
1187 * such as nft, tc, etc, we only allow a conservative subset of
1188 * possible pkt_types to be set.
1189*/
1190static inline bool skb_pkt_type_ok(u32 ptype)
1191{
1192	return ptype <= PACKET_OTHERHOST;
1193}
1194
1195/**
1196 * skb_napi_id - Returns the skb's NAPI id
1197 * @skb: buffer
1198 */
1199static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1200{
1201#ifdef CONFIG_NET_RX_BUSY_POLL
1202	return skb->napi_id;
1203#else
1204	return 0;
1205#endif
1206}
1207
1208static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1209{
1210#ifdef CONFIG_WIRELESS
1211	return skb->wifi_acked_valid;
1212#else
1213	return 0;
1214#endif
1215}
1216
1217/**
1218 * skb_unref - decrement the skb's reference count
1219 * @skb: buffer
1220 *
1221 * Returns true if we can free the skb.
1222 */
1223static inline bool skb_unref(struct sk_buff *skb)
1224{
1225	if (unlikely(!skb))
1226		return false;
1227	if (likely(refcount_read(&skb->users) == 1))
1228		smp_rmb();
1229	else if (likely(!refcount_dec_and_test(&skb->users)))
1230		return false;
1231
1232	return true;
1233}
1234
1235static inline bool skb_data_unref(const struct sk_buff *skb,
1236				  struct skb_shared_info *shinfo)
1237{
1238	int bias;
1239
1240	if (!skb->cloned)
1241		return true;
1242
1243	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1244
1245	if (atomic_read(&shinfo->dataref) == bias)
1246		smp_rmb();
1247	else if (atomic_sub_return(bias, &shinfo->dataref))
1248		return false;
1249
1250	return true;
1251}
1252
1253void __fix_address
1254kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1255
1256/**
1257 *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1258 *	@skb: buffer to free
1259 */
1260static inline void kfree_skb(struct sk_buff *skb)
1261{
1262	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1263}
1264
1265void skb_release_head_state(struct sk_buff *skb);
1266void kfree_skb_list_reason(struct sk_buff *segs,
1267			   enum skb_drop_reason reason);
1268void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1269void skb_tx_error(struct sk_buff *skb);
1270
1271static inline void kfree_skb_list(struct sk_buff *segs)
1272{
1273	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1274}
1275
1276#ifdef CONFIG_TRACEPOINTS
1277void consume_skb(struct sk_buff *skb);
1278#else
1279static inline void consume_skb(struct sk_buff *skb)
1280{
1281	return kfree_skb(skb);
1282}
1283#endif
1284
1285void __consume_stateless_skb(struct sk_buff *skb);
1286void  __kfree_skb(struct sk_buff *skb);
1287
1288void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1289bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1290		      bool *fragstolen, int *delta_truesize);
1291
1292struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1293			    int node);
1294struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1295struct sk_buff *build_skb(void *data, unsigned int frag_size);
1296struct sk_buff *build_skb_around(struct sk_buff *skb,
1297				 void *data, unsigned int frag_size);
1298void skb_attempt_defer_free(struct sk_buff *skb);
1299
1300struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1301struct sk_buff *slab_build_skb(void *data);
1302
1303/**
1304 * alloc_skb - allocate a network buffer
1305 * @size: size to allocate
1306 * @priority: allocation mask
1307 *
1308 * This function is a convenient wrapper around __alloc_skb().
1309 */
1310static inline struct sk_buff *alloc_skb(unsigned int size,
1311					gfp_t priority)
1312{
1313	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1314}
1315
1316struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1317				     unsigned long data_len,
1318				     int max_page_order,
1319				     int *errcode,
1320				     gfp_t gfp_mask);
1321struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1322
1323/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1324struct sk_buff_fclones {
1325	struct sk_buff	skb1;
1326
1327	struct sk_buff	skb2;
1328
1329	refcount_t	fclone_ref;
1330};
1331
1332/**
1333 *	skb_fclone_busy - check if fclone is busy
1334 *	@sk: socket
1335 *	@skb: buffer
1336 *
1337 * Returns true if skb is a fast clone, and its clone is not freed.
1338 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1339 * so we also check that didn't happen.
1340 */
1341static inline bool skb_fclone_busy(const struct sock *sk,
1342				   const struct sk_buff *skb)
1343{
1344	const struct sk_buff_fclones *fclones;
1345
1346	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1347
1348	return skb->fclone == SKB_FCLONE_ORIG &&
1349	       refcount_read(&fclones->fclone_ref) > 1 &&
1350	       READ_ONCE(fclones->skb2.sk) == sk;
1351}
1352
1353/**
1354 * alloc_skb_fclone - allocate a network buffer from fclone cache
1355 * @size: size to allocate
1356 * @priority: allocation mask
1357 *
1358 * This function is a convenient wrapper around __alloc_skb().
1359 */
1360static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1361					       gfp_t priority)
1362{
1363	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1364}
1365
1366struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1367void skb_headers_offset_update(struct sk_buff *skb, int off);
1368int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1369struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1370void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1371struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1372struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1373				   gfp_t gfp_mask, bool fclone);
1374static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1375					  gfp_t gfp_mask)
1376{
1377	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1378}
1379
1380int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1381struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1382				     unsigned int headroom);
1383struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1384struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1385				int newtailroom, gfp_t priority);
1386int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1387				     int offset, int len);
1388int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1389			      int offset, int len);
1390int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1391int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1392
1393/**
1394 *	skb_pad			-	zero pad the tail of an skb
1395 *	@skb: buffer to pad
1396 *	@pad: space to pad
1397 *
1398 *	Ensure that a buffer is followed by a padding area that is zero
1399 *	filled. Used by network drivers which may DMA or transfer data
1400 *	beyond the buffer end onto the wire.
1401 *
1402 *	May return error in out of memory cases. The skb is freed on error.
1403 */
1404static inline int skb_pad(struct sk_buff *skb, int pad)
1405{
1406	return __skb_pad(skb, pad, true);
1407}
1408#define dev_kfree_skb(a)	consume_skb(a)
1409
1410int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1411			 int offset, size_t size, size_t max_frags);
1412
1413struct skb_seq_state {
1414	__u32		lower_offset;
1415	__u32		upper_offset;
1416	__u32		frag_idx;
1417	__u32		stepped_offset;
1418	struct sk_buff	*root_skb;
1419	struct sk_buff	*cur_skb;
1420	__u8		*frag_data;
1421	__u32		frag_off;
1422};
1423
1424void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1425			  unsigned int to, struct skb_seq_state *st);
1426unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1427			  struct skb_seq_state *st);
1428void skb_abort_seq_read(struct skb_seq_state *st);
1429
1430unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1431			   unsigned int to, struct ts_config *config);
1432
1433/*
1434 * Packet hash types specify the type of hash in skb_set_hash.
1435 *
1436 * Hash types refer to the protocol layer addresses which are used to
1437 * construct a packet's hash. The hashes are used to differentiate or identify
1438 * flows of the protocol layer for the hash type. Hash types are either
1439 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1440 *
1441 * Properties of hashes:
1442 *
1443 * 1) Two packets in different flows have different hash values
1444 * 2) Two packets in the same flow should have the same hash value
1445 *
1446 * A hash at a higher layer is considered to be more specific. A driver should
1447 * set the most specific hash possible.
1448 *
1449 * A driver cannot indicate a more specific hash than the layer at which a hash
1450 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1451 *
1452 * A driver may indicate a hash level which is less specific than the
1453 * actual layer the hash was computed on. For instance, a hash computed
1454 * at L4 may be considered an L3 hash. This should only be done if the
1455 * driver can't unambiguously determine that the HW computed the hash at
1456 * the higher layer. Note that the "should" in the second property above
1457 * permits this.
1458 */
1459enum pkt_hash_types {
1460	PKT_HASH_TYPE_NONE,	/* Undefined type */
1461	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1462	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1463	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1464};
1465
1466static inline void skb_clear_hash(struct sk_buff *skb)
1467{
1468	skb->hash = 0;
1469	skb->sw_hash = 0;
1470	skb->l4_hash = 0;
1471}
1472
1473static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1474{
1475	if (!skb->l4_hash)
1476		skb_clear_hash(skb);
1477}
1478
1479static inline void
1480__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1481{
1482	skb->l4_hash = is_l4;
1483	skb->sw_hash = is_sw;
1484	skb->hash = hash;
1485}
1486
1487static inline void
1488skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1489{
1490	/* Used by drivers to set hash from HW */
1491	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1492}
1493
1494static inline void
1495__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1496{
1497	__skb_set_hash(skb, hash, true, is_l4);
1498}
1499
1500void __skb_get_hash(struct sk_buff *skb);
1501u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1502u32 skb_get_poff(const struct sk_buff *skb);
1503u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1504		   const struct flow_keys_basic *keys, int hlen);
1505__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1506			    const void *data, int hlen_proto);
1507
1508static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1509					int thoff, u8 ip_proto)
1510{
1511	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1512}
1513
1514void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1515			     const struct flow_dissector_key *key,
1516			     unsigned int key_count);
1517
1518struct bpf_flow_dissector;
1519u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1520		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1521
1522bool __skb_flow_dissect(const struct net *net,
1523			const struct sk_buff *skb,
1524			struct flow_dissector *flow_dissector,
1525			void *target_container, const void *data,
1526			__be16 proto, int nhoff, int hlen, unsigned int flags);
1527
1528static inline bool skb_flow_dissect(const struct sk_buff *skb,
1529				    struct flow_dissector *flow_dissector,
1530				    void *target_container, unsigned int flags)
1531{
1532	return __skb_flow_dissect(NULL, skb, flow_dissector,
1533				  target_container, NULL, 0, 0, 0, flags);
1534}
1535
1536static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1537					      struct flow_keys *flow,
1538					      unsigned int flags)
1539{
1540	memset(flow, 0, sizeof(*flow));
1541	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1542				  flow, NULL, 0, 0, 0, flags);
1543}
1544
1545static inline bool
1546skb_flow_dissect_flow_keys_basic(const struct net *net,
1547				 const struct sk_buff *skb,
1548				 struct flow_keys_basic *flow,
1549				 const void *data, __be16 proto,
1550				 int nhoff, int hlen, unsigned int flags)
1551{
1552	memset(flow, 0, sizeof(*flow));
1553	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1554				  data, proto, nhoff, hlen, flags);
1555}
1556
1557void skb_flow_dissect_meta(const struct sk_buff *skb,
1558			   struct flow_dissector *flow_dissector,
1559			   void *target_container);
1560
1561/* Gets a skb connection tracking info, ctinfo map should be a
1562 * map of mapsize to translate enum ip_conntrack_info states
1563 * to user states.
1564 */
1565void
1566skb_flow_dissect_ct(const struct sk_buff *skb,
1567		    struct flow_dissector *flow_dissector,
1568		    void *target_container,
1569		    u16 *ctinfo_map, size_t mapsize,
1570		    bool post_ct, u16 zone);
1571void
1572skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1573			     struct flow_dissector *flow_dissector,
1574			     void *target_container);
1575
1576void skb_flow_dissect_hash(const struct sk_buff *skb,
1577			   struct flow_dissector *flow_dissector,
1578			   void *target_container);
1579
1580static inline __u32 skb_get_hash(struct sk_buff *skb)
1581{
1582	if (!skb->l4_hash && !skb->sw_hash)
1583		__skb_get_hash(skb);
1584
1585	return skb->hash;
1586}
1587
1588static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1589{
1590	if (!skb->l4_hash && !skb->sw_hash) {
1591		struct flow_keys keys;
1592		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1593
1594		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1595	}
1596
1597	return skb->hash;
1598}
1599
1600__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1601			   const siphash_key_t *perturb);
1602
1603static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1604{
1605	return skb->hash;
1606}
1607
1608static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1609{
1610	to->hash = from->hash;
1611	to->sw_hash = from->sw_hash;
1612	to->l4_hash = from->l4_hash;
1613};
1614
1615static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1616				    const struct sk_buff *skb2)
1617{
1618#ifdef CONFIG_TLS_DEVICE
1619	return skb2->decrypted - skb1->decrypted;
1620#else
1621	return 0;
1622#endif
1623}
1624
1625static inline void skb_copy_decrypted(struct sk_buff *to,
1626				      const struct sk_buff *from)
1627{
1628#ifdef CONFIG_TLS_DEVICE
1629	to->decrypted = from->decrypted;
1630#endif
1631}
1632
1633#ifdef NET_SKBUFF_DATA_USES_OFFSET
1634static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1635{
1636	return skb->head + skb->end;
1637}
1638
1639static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1640{
1641	return skb->end;
1642}
1643
1644static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1645{
1646	skb->end = offset;
1647}
1648#else
1649static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1650{
1651	return skb->end;
1652}
1653
1654static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1655{
1656	return skb->end - skb->head;
1657}
1658
1659static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1660{
1661	skb->end = skb->head + offset;
1662}
1663#endif
1664
1665struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1666				       struct ubuf_info *uarg);
1667
1668void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1669
1670void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1671			   bool success);
1672
1673int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1674			    struct sk_buff *skb, struct iov_iter *from,
1675			    size_t length);
1676
1677static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1678					  struct msghdr *msg, int len)
1679{
1680	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1681}
1682
1683int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1684			     struct msghdr *msg, int len,
1685			     struct ubuf_info *uarg);
1686
1687/* Internal */
1688#define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1689
1690static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1691{
1692	return &skb_shinfo(skb)->hwtstamps;
1693}
1694
1695static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1696{
1697	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1698
1699	return is_zcopy ? skb_uarg(skb) : NULL;
1700}
1701
1702static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1703{
1704	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1705}
1706
1707static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1708{
1709	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1710}
1711
1712static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1713				       const struct sk_buff *skb2)
1714{
1715	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1716}
1717
1718static inline void net_zcopy_get(struct ubuf_info *uarg)
1719{
1720	refcount_inc(&uarg->refcnt);
1721}
1722
1723static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1724{
1725	skb_shinfo(skb)->destructor_arg = uarg;
1726	skb_shinfo(skb)->flags |= uarg->flags;
1727}
1728
1729static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1730				 bool *have_ref)
1731{
1732	if (skb && uarg && !skb_zcopy(skb)) {
1733		if (unlikely(have_ref && *have_ref))
1734			*have_ref = false;
1735		else
1736			net_zcopy_get(uarg);
1737		skb_zcopy_init(skb, uarg);
1738	}
1739}
1740
1741static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1742{
1743	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1744	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1745}
1746
1747static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1748{
1749	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1750}
1751
1752static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1753{
1754	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1755}
1756
1757static inline void net_zcopy_put(struct ubuf_info *uarg)
1758{
1759	if (uarg)
1760		uarg->callback(NULL, uarg, true);
1761}
1762
1763static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1764{
1765	if (uarg) {
1766		if (uarg->callback == msg_zerocopy_callback)
1767			msg_zerocopy_put_abort(uarg, have_uref);
1768		else if (have_uref)
1769			net_zcopy_put(uarg);
1770	}
1771}
1772
1773/* Release a reference on a zerocopy structure */
1774static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1775{
1776	struct ubuf_info *uarg = skb_zcopy(skb);
1777
1778	if (uarg) {
1779		if (!skb_zcopy_is_nouarg(skb))
1780			uarg->callback(skb, uarg, zerocopy_success);
1781
1782		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1783	}
1784}
1785
1786void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1787
1788static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1789{
1790	if (unlikely(skb_zcopy_managed(skb)))
1791		__skb_zcopy_downgrade_managed(skb);
1792}
1793
1794static inline void skb_mark_not_on_list(struct sk_buff *skb)
1795{
1796	skb->next = NULL;
1797}
1798
1799static inline void skb_poison_list(struct sk_buff *skb)
1800{
1801#ifdef CONFIG_DEBUG_NET
1802	skb->next = SKB_LIST_POISON_NEXT;
1803#endif
1804}
1805
1806/* Iterate through singly-linked GSO fragments of an skb. */
1807#define skb_list_walk_safe(first, skb, next_skb)                               \
1808	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1809	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1810
1811static inline void skb_list_del_init(struct sk_buff *skb)
1812{
1813	__list_del_entry(&skb->list);
1814	skb_mark_not_on_list(skb);
1815}
1816
1817/**
1818 *	skb_queue_empty - check if a queue is empty
1819 *	@list: queue head
1820 *
1821 *	Returns true if the queue is empty, false otherwise.
1822 */
1823static inline int skb_queue_empty(const struct sk_buff_head *list)
1824{
1825	return list->next == (const struct sk_buff *) list;
1826}
1827
1828/**
1829 *	skb_queue_empty_lockless - check if a queue is empty
1830 *	@list: queue head
1831 *
1832 *	Returns true if the queue is empty, false otherwise.
1833 *	This variant can be used in lockless contexts.
1834 */
1835static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1836{
1837	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1838}
1839
1840
1841/**
1842 *	skb_queue_is_last - check if skb is the last entry in the queue
1843 *	@list: queue head
1844 *	@skb: buffer
1845 *
1846 *	Returns true if @skb is the last buffer on the list.
1847 */
1848static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1849				     const struct sk_buff *skb)
1850{
1851	return skb->next == (const struct sk_buff *) list;
1852}
1853
1854/**
1855 *	skb_queue_is_first - check if skb is the first entry in the queue
1856 *	@list: queue head
1857 *	@skb: buffer
1858 *
1859 *	Returns true if @skb is the first buffer on the list.
1860 */
1861static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1862				      const struct sk_buff *skb)
1863{
1864	return skb->prev == (const struct sk_buff *) list;
1865}
1866
1867/**
1868 *	skb_queue_next - return the next packet in the queue
1869 *	@list: queue head
1870 *	@skb: current buffer
1871 *
1872 *	Return the next packet in @list after @skb.  It is only valid to
1873 *	call this if skb_queue_is_last() evaluates to false.
1874 */
1875static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1876					     const struct sk_buff *skb)
1877{
1878	/* This BUG_ON may seem severe, but if we just return then we
1879	 * are going to dereference garbage.
1880	 */
1881	BUG_ON(skb_queue_is_last(list, skb));
1882	return skb->next;
1883}
1884
1885/**
1886 *	skb_queue_prev - return the prev packet in the queue
1887 *	@list: queue head
1888 *	@skb: current buffer
1889 *
1890 *	Return the prev packet in @list before @skb.  It is only valid to
1891 *	call this if skb_queue_is_first() evaluates to false.
1892 */
1893static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1894					     const struct sk_buff *skb)
1895{
1896	/* This BUG_ON may seem severe, but if we just return then we
1897	 * are going to dereference garbage.
1898	 */
1899	BUG_ON(skb_queue_is_first(list, skb));
1900	return skb->prev;
1901}
1902
1903/**
1904 *	skb_get - reference buffer
1905 *	@skb: buffer to reference
1906 *
1907 *	Makes another reference to a socket buffer and returns a pointer
1908 *	to the buffer.
1909 */
1910static inline struct sk_buff *skb_get(struct sk_buff *skb)
1911{
1912	refcount_inc(&skb->users);
1913	return skb;
1914}
1915
1916/*
1917 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1918 */
1919
1920/**
1921 *	skb_cloned - is the buffer a clone
1922 *	@skb: buffer to check
1923 *
1924 *	Returns true if the buffer was generated with skb_clone() and is
1925 *	one of multiple shared copies of the buffer. Cloned buffers are
1926 *	shared data so must not be written to under normal circumstances.
1927 */
1928static inline int skb_cloned(const struct sk_buff *skb)
1929{
1930	return skb->cloned &&
1931	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1932}
1933
1934static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1935{
1936	might_sleep_if(gfpflags_allow_blocking(pri));
1937
1938	if (skb_cloned(skb))
1939		return pskb_expand_head(skb, 0, 0, pri);
1940
1941	return 0;
1942}
1943
1944/* This variant of skb_unclone() makes sure skb->truesize
1945 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1946 *
1947 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1948 * when various debugging features are in place.
1949 */
1950int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1951static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1952{
1953	might_sleep_if(gfpflags_allow_blocking(pri));
1954
1955	if (skb_cloned(skb))
1956		return __skb_unclone_keeptruesize(skb, pri);
1957	return 0;
1958}
1959
1960/**
1961 *	skb_header_cloned - is the header a clone
1962 *	@skb: buffer to check
1963 *
1964 *	Returns true if modifying the header part of the buffer requires
1965 *	the data to be copied.
1966 */
1967static inline int skb_header_cloned(const struct sk_buff *skb)
1968{
1969	int dataref;
1970
1971	if (!skb->cloned)
1972		return 0;
1973
1974	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1975	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1976	return dataref != 1;
1977}
1978
1979static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1980{
1981	might_sleep_if(gfpflags_allow_blocking(pri));
1982
1983	if (skb_header_cloned(skb))
1984		return pskb_expand_head(skb, 0, 0, pri);
1985
1986	return 0;
1987}
1988
1989/**
1990 * __skb_header_release() - allow clones to use the headroom
1991 * @skb: buffer to operate on
1992 *
1993 * See "DOC: dataref and headerless skbs".
1994 */
1995static inline void __skb_header_release(struct sk_buff *skb)
1996{
1997	skb->nohdr = 1;
1998	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1999}
2000
2001
2002/**
2003 *	skb_shared - is the buffer shared
2004 *	@skb: buffer to check
2005 *
2006 *	Returns true if more than one person has a reference to this
2007 *	buffer.
2008 */
2009static inline int skb_shared(const struct sk_buff *skb)
2010{
2011	return refcount_read(&skb->users) != 1;
2012}
2013
2014/**
2015 *	skb_share_check - check if buffer is shared and if so clone it
2016 *	@skb: buffer to check
2017 *	@pri: priority for memory allocation
2018 *
2019 *	If the buffer is shared the buffer is cloned and the old copy
2020 *	drops a reference. A new clone with a single reference is returned.
2021 *	If the buffer is not shared the original buffer is returned. When
2022 *	being called from interrupt status or with spinlocks held pri must
2023 *	be GFP_ATOMIC.
2024 *
2025 *	NULL is returned on a memory allocation failure.
2026 */
2027static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2028{
2029	might_sleep_if(gfpflags_allow_blocking(pri));
2030	if (skb_shared(skb)) {
2031		struct sk_buff *nskb = skb_clone(skb, pri);
2032
2033		if (likely(nskb))
2034			consume_skb(skb);
2035		else
2036			kfree_skb(skb);
2037		skb = nskb;
2038	}
2039	return skb;
2040}
2041
2042/*
2043 *	Copy shared buffers into a new sk_buff. We effectively do COW on
2044 *	packets to handle cases where we have a local reader and forward
2045 *	and a couple of other messy ones. The normal one is tcpdumping
2046 *	a packet that's being forwarded.
2047 */
2048
2049/**
2050 *	skb_unshare - make a copy of a shared buffer
2051 *	@skb: buffer to check
2052 *	@pri: priority for memory allocation
2053 *
2054 *	If the socket buffer is a clone then this function creates a new
2055 *	copy of the data, drops a reference count on the old copy and returns
2056 *	the new copy with the reference count at 1. If the buffer is not a clone
2057 *	the original buffer is returned. When called with a spinlock held or
2058 *	from interrupt state @pri must be %GFP_ATOMIC
2059 *
2060 *	%NULL is returned on a memory allocation failure.
2061 */
2062static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2063					  gfp_t pri)
2064{
2065	might_sleep_if(gfpflags_allow_blocking(pri));
2066	if (skb_cloned(skb)) {
2067		struct sk_buff *nskb = skb_copy(skb, pri);
2068
2069		/* Free our shared copy */
2070		if (likely(nskb))
2071			consume_skb(skb);
2072		else
2073			kfree_skb(skb);
2074		skb = nskb;
2075	}
2076	return skb;
2077}
2078
2079/**
2080 *	skb_peek - peek at the head of an &sk_buff_head
2081 *	@list_: list to peek at
2082 *
2083 *	Peek an &sk_buff. Unlike most other operations you _MUST_
2084 *	be careful with this one. A peek leaves the buffer on the
2085 *	list and someone else may run off with it. You must hold
2086 *	the appropriate locks or have a private queue to do this.
2087 *
2088 *	Returns %NULL for an empty list or a pointer to the head element.
2089 *	The reference count is not incremented and the reference is therefore
2090 *	volatile. Use with caution.
2091 */
2092static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2093{
2094	struct sk_buff *skb = list_->next;
2095
2096	if (skb == (struct sk_buff *)list_)
2097		skb = NULL;
2098	return skb;
2099}
2100
2101/**
2102 *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2103 *	@list_: list to peek at
2104 *
2105 *	Like skb_peek(), but the caller knows that the list is not empty.
2106 */
2107static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2108{
2109	return list_->next;
2110}
2111
2112/**
2113 *	skb_peek_next - peek skb following the given one from a queue
2114 *	@skb: skb to start from
2115 *	@list_: list to peek at
2116 *
2117 *	Returns %NULL when the end of the list is met or a pointer to the
2118 *	next element. The reference count is not incremented and the
2119 *	reference is therefore volatile. Use with caution.
2120 */
2121static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2122		const struct sk_buff_head *list_)
2123{
2124	struct sk_buff *next = skb->next;
2125
2126	if (next == (struct sk_buff *)list_)
2127		next = NULL;
2128	return next;
2129}
2130
2131/**
2132 *	skb_peek_tail - peek at the tail of an &sk_buff_head
2133 *	@list_: list to peek at
2134 *
2135 *	Peek an &sk_buff. Unlike most other operations you _MUST_
2136 *	be careful with this one. A peek leaves the buffer on the
2137 *	list and someone else may run off with it. You must hold
2138 *	the appropriate locks or have a private queue to do this.
2139 *
2140 *	Returns %NULL for an empty list or a pointer to the tail element.
2141 *	The reference count is not incremented and the reference is therefore
2142 *	volatile. Use with caution.
2143 */
2144static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2145{
2146	struct sk_buff *skb = READ_ONCE(list_->prev);
2147
2148	if (skb == (struct sk_buff *)list_)
2149		skb = NULL;
2150	return skb;
2151
2152}
2153
2154/**
2155 *	skb_queue_len	- get queue length
2156 *	@list_: list to measure
2157 *
2158 *	Return the length of an &sk_buff queue.
2159 */
2160static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2161{
2162	return list_->qlen;
2163}
2164
2165/**
2166 *	skb_queue_len_lockless	- get queue length
2167 *	@list_: list to measure
2168 *
2169 *	Return the length of an &sk_buff queue.
2170 *	This variant can be used in lockless contexts.
2171 */
2172static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2173{
2174	return READ_ONCE(list_->qlen);
2175}
2176
2177/**
2178 *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2179 *	@list: queue to initialize
2180 *
2181 *	This initializes only the list and queue length aspects of
2182 *	an sk_buff_head object.  This allows to initialize the list
2183 *	aspects of an sk_buff_head without reinitializing things like
2184 *	the spinlock.  It can also be used for on-stack sk_buff_head
2185 *	objects where the spinlock is known to not be used.
2186 */
2187static inline void __skb_queue_head_init(struct sk_buff_head *list)
2188{
2189	list->prev = list->next = (struct sk_buff *)list;
2190	list->qlen = 0;
2191}
2192
2193/*
2194 * This function creates a split out lock class for each invocation;
2195 * this is needed for now since a whole lot of users of the skb-queue
2196 * infrastructure in drivers have different locking usage (in hardirq)
2197 * than the networking core (in softirq only). In the long run either the
2198 * network layer or drivers should need annotation to consolidate the
2199 * main types of usage into 3 classes.
2200 */
2201static inline void skb_queue_head_init(struct sk_buff_head *list)
2202{
2203	spin_lock_init(&list->lock);
2204	__skb_queue_head_init(list);
2205}
2206
2207static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2208		struct lock_class_key *class)
2209{
2210	skb_queue_head_init(list);
2211	lockdep_set_class(&list->lock, class);
2212}
2213
2214/*
2215 *	Insert an sk_buff on a list.
2216 *
2217 *	The "__skb_xxxx()" functions are the non-atomic ones that
2218 *	can only be called with interrupts disabled.
2219 */
2220static inline void __skb_insert(struct sk_buff *newsk,
2221				struct sk_buff *prev, struct sk_buff *next,
2222				struct sk_buff_head *list)
2223{
2224	/* See skb_queue_empty_lockless() and skb_peek_tail()
2225	 * for the opposite READ_ONCE()
2226	 */
2227	WRITE_ONCE(newsk->next, next);
2228	WRITE_ONCE(newsk->prev, prev);
2229	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2230	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2231	WRITE_ONCE(list->qlen, list->qlen + 1);
2232}
2233
2234static inline void __skb_queue_splice(const struct sk_buff_head *list,
2235				      struct sk_buff *prev,
2236				      struct sk_buff *next)
2237{
2238	struct sk_buff *first = list->next;
2239	struct sk_buff *last = list->prev;
2240
2241	WRITE_ONCE(first->prev, prev);
2242	WRITE_ONCE(prev->next, first);
2243
2244	WRITE_ONCE(last->next, next);
2245	WRITE_ONCE(next->prev, last);
2246}
2247
2248/**
2249 *	skb_queue_splice - join two skb lists, this is designed for stacks
2250 *	@list: the new list to add
2251 *	@head: the place to add it in the first list
2252 */
2253static inline void skb_queue_splice(const struct sk_buff_head *list,
2254				    struct sk_buff_head *head)
2255{
2256	if (!skb_queue_empty(list)) {
2257		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2258		head->qlen += list->qlen;
2259	}
2260}
2261
2262/**
2263 *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2264 *	@list: the new list to add
2265 *	@head: the place to add it in the first list
2266 *
2267 *	The list at @list is reinitialised
2268 */
2269static inline void skb_queue_splice_init(struct sk_buff_head *list,
2270					 struct sk_buff_head *head)
2271{
2272	if (!skb_queue_empty(list)) {
2273		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2274		head->qlen += list->qlen;
2275		__skb_queue_head_init(list);
2276	}
2277}
2278
2279/**
2280 *	skb_queue_splice_tail - join two skb lists, each list being a queue
2281 *	@list: the new list to add
2282 *	@head: the place to add it in the first list
2283 */
2284static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2285					 struct sk_buff_head *head)
2286{
2287	if (!skb_queue_empty(list)) {
2288		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2289		head->qlen += list->qlen;
2290	}
2291}
2292
2293/**
2294 *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2295 *	@list: the new list to add
2296 *	@head: the place to add it in the first list
2297 *
2298 *	Each of the lists is a queue.
2299 *	The list at @list is reinitialised
2300 */
2301static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2302					      struct sk_buff_head *head)
2303{
2304	if (!skb_queue_empty(list)) {
2305		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2306		head->qlen += list->qlen;
2307		__skb_queue_head_init(list);
2308	}
2309}
2310
2311/**
2312 *	__skb_queue_after - queue a buffer at the list head
2313 *	@list: list to use
2314 *	@prev: place after this buffer
2315 *	@newsk: buffer to queue
2316 *
2317 *	Queue a buffer int the middle of a list. This function takes no locks
2318 *	and you must therefore hold required locks before calling it.
2319 *
2320 *	A buffer cannot be placed on two lists at the same time.
2321 */
2322static inline void __skb_queue_after(struct sk_buff_head *list,
2323				     struct sk_buff *prev,
2324				     struct sk_buff *newsk)
2325{
2326	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2327}
2328
2329void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2330		struct sk_buff_head *list);
2331
2332static inline void __skb_queue_before(struct sk_buff_head *list,
2333				      struct sk_buff *next,
2334				      struct sk_buff *newsk)
2335{
2336	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2337}
2338
2339/**
2340 *	__skb_queue_head - queue a buffer at the list head
2341 *	@list: list to use
2342 *	@newsk: buffer to queue
2343 *
2344 *	Queue a buffer at the start of a list. This function takes no locks
2345 *	and you must therefore hold required locks before calling it.
2346 *
2347 *	A buffer cannot be placed on two lists at the same time.
2348 */
2349static inline void __skb_queue_head(struct sk_buff_head *list,
2350				    struct sk_buff *newsk)
2351{
2352	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2353}
2354void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2355
2356/**
2357 *	__skb_queue_tail - queue a buffer at the list tail
2358 *	@list: list to use
2359 *	@newsk: buffer to queue
2360 *
2361 *	Queue a buffer at the end of a list. This function takes no locks
2362 *	and you must therefore hold required locks before calling it.
2363 *
2364 *	A buffer cannot be placed on two lists at the same time.
2365 */
2366static inline void __skb_queue_tail(struct sk_buff_head *list,
2367				   struct sk_buff *newsk)
2368{
2369	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2370}
2371void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2372
2373/*
2374 * remove sk_buff from list. _Must_ be called atomically, and with
2375 * the list known..
2376 */
2377void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2378static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2379{
2380	struct sk_buff *next, *prev;
2381
2382	WRITE_ONCE(list->qlen, list->qlen - 1);
2383	next	   = skb->next;
2384	prev	   = skb->prev;
2385	skb->next  = skb->prev = NULL;
2386	WRITE_ONCE(next->prev, prev);
2387	WRITE_ONCE(prev->next, next);
2388}
2389
2390/**
2391 *	__skb_dequeue - remove from the head of the queue
2392 *	@list: list to dequeue from
2393 *
2394 *	Remove the head of the list. This function does not take any locks
2395 *	so must be used with appropriate locks held only. The head item is
2396 *	returned or %NULL if the list is empty.
2397 */
2398static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2399{
2400	struct sk_buff *skb = skb_peek(list);
2401	if (skb)
2402		__skb_unlink(skb, list);
2403	return skb;
2404}
2405struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2406
2407/**
2408 *	__skb_dequeue_tail - remove from the tail of the queue
2409 *	@list: list to dequeue from
2410 *
2411 *	Remove the tail of the list. This function does not take any locks
2412 *	so must be used with appropriate locks held only. The tail item is
2413 *	returned or %NULL if the list is empty.
2414 */
2415static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2416{
2417	struct sk_buff *skb = skb_peek_tail(list);
2418	if (skb)
2419		__skb_unlink(skb, list);
2420	return skb;
2421}
2422struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2423
2424
2425static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2426{
2427	return skb->data_len;
2428}
2429
2430static inline unsigned int skb_headlen(const struct sk_buff *skb)
2431{
2432	return skb->len - skb->data_len;
2433}
2434
2435static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2436{
2437	unsigned int i, len = 0;
2438
2439	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2440		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2441	return len;
2442}
2443
2444static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2445{
2446	return skb_headlen(skb) + __skb_pagelen(skb);
2447}
2448
2449static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2450					     netmem_ref netmem, int off,
2451					     int size)
2452{
2453	frag->netmem = netmem;
2454	frag->offset = off;
2455	skb_frag_size_set(frag, size);
2456}
2457
2458static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2459					   struct page *page,
2460					   int off, int size)
2461{
2462	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2463}
2464
2465static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2466						int i, netmem_ref netmem,
2467						int off, int size)
2468{
2469	skb_frag_t *frag = &shinfo->frags[i];
2470
2471	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2472}
2473
2474static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2475					      int i, struct page *page,
2476					      int off, int size)
2477{
2478	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2479				     size);
2480}
2481
2482/**
2483 * skb_len_add - adds a number to len fields of skb
2484 * @skb: buffer to add len to
2485 * @delta: number of bytes to add
2486 */
2487static inline void skb_len_add(struct sk_buff *skb, int delta)
2488{
2489	skb->len += delta;
2490	skb->data_len += delta;
2491	skb->truesize += delta;
2492}
2493
2494/**
2495 * __skb_fill_netmem_desc - initialise a fragment in an skb
2496 * @skb: buffer containing fragment to be initialised
2497 * @i: fragment index to initialise
2498 * @netmem: the netmem to use for this fragment
2499 * @off: the offset to the data with @page
2500 * @size: the length of the data
2501 *
2502 * Initialises the @i'th fragment of @skb to point to &size bytes at
2503 * offset @off within @page.
2504 *
2505 * Does not take any additional reference on the fragment.
2506 */
2507static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2508					  netmem_ref netmem, int off, int size)
2509{
2510	struct page *page = netmem_to_page(netmem);
2511
2512	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2513
2514	/* Propagate page pfmemalloc to the skb if we can. The problem is
2515	 * that not all callers have unique ownership of the page but rely
2516	 * on page_is_pfmemalloc doing the right thing(tm).
2517	 */
2518	page = compound_head(page);
2519	if (page_is_pfmemalloc(page))
2520		skb->pfmemalloc = true;
2521}
2522
2523static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2524					struct page *page, int off, int size)
2525{
2526	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2527}
2528
2529static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2530					netmem_ref netmem, int off, int size)
2531{
2532	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2533	skb_shinfo(skb)->nr_frags = i + 1;
2534}
2535
2536/**
2537 * skb_fill_page_desc - initialise a paged fragment in an skb
2538 * @skb: buffer containing fragment to be initialised
2539 * @i: paged fragment index to initialise
2540 * @page: the page to use for this fragment
2541 * @off: the offset to the data with @page
2542 * @size: the length of the data
2543 *
2544 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2545 * @skb to point to @size bytes at offset @off within @page. In
2546 * addition updates @skb such that @i is the last fragment.
2547 *
2548 * Does not take any additional reference on the fragment.
2549 */
2550static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2551				      struct page *page, int off, int size)
2552{
2553	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2554}
2555
2556/**
2557 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2558 * @skb: buffer containing fragment to be initialised
2559 * @i: paged fragment index to initialise
2560 * @page: the page to use for this fragment
2561 * @off: the offset to the data with @page
2562 * @size: the length of the data
2563 *
2564 * Variant of skb_fill_page_desc() which does not deal with
2565 * pfmemalloc, if page is not owned by us.
2566 */
2567static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2568					    struct page *page, int off,
2569					    int size)
2570{
2571	struct skb_shared_info *shinfo = skb_shinfo(skb);
2572
2573	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2574	shinfo->nr_frags = i + 1;
2575}
2576
2577void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2578			    int off, int size, unsigned int truesize);
2579
2580static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2581				   struct page *page, int off, int size,
2582				   unsigned int truesize)
2583{
2584	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2585			       truesize);
2586}
2587
2588void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2589			  unsigned int truesize);
2590
2591#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2592
2593#ifdef NET_SKBUFF_DATA_USES_OFFSET
2594static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2595{
2596	return skb->head + skb->tail;
2597}
2598
2599static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2600{
2601	skb->tail = skb->data - skb->head;
2602}
2603
2604static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2605{
2606	skb_reset_tail_pointer(skb);
2607	skb->tail += offset;
2608}
2609
2610#else /* NET_SKBUFF_DATA_USES_OFFSET */
2611static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2612{
2613	return skb->tail;
2614}
2615
2616static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2617{
2618	skb->tail = skb->data;
2619}
2620
2621static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2622{
2623	skb->tail = skb->data + offset;
2624}
2625
2626#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2627
2628static inline void skb_assert_len(struct sk_buff *skb)
2629{
2630#ifdef CONFIG_DEBUG_NET
2631	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2632		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2633#endif /* CONFIG_DEBUG_NET */
2634}
2635
2636/*
2637 *	Add data to an sk_buff
2638 */
2639void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2640void *skb_put(struct sk_buff *skb, unsigned int len);
2641static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2642{
2643	void *tmp = skb_tail_pointer(skb);
2644	SKB_LINEAR_ASSERT(skb);
2645	skb->tail += len;
2646	skb->len  += len;
2647	return tmp;
2648}
2649
2650static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2651{
2652	void *tmp = __skb_put(skb, len);
2653
2654	memset(tmp, 0, len);
2655	return tmp;
2656}
2657
2658static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2659				   unsigned int len)
2660{
2661	void *tmp = __skb_put(skb, len);
2662
2663	memcpy(tmp, data, len);
2664	return tmp;
2665}
2666
2667static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2668{
2669	*(u8 *)__skb_put(skb, 1) = val;
2670}
2671
2672static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2673{
2674	void *tmp = skb_put(skb, len);
2675
2676	memset(tmp, 0, len);
2677
2678	return tmp;
2679}
2680
2681static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2682				 unsigned int len)
2683{
2684	void *tmp = skb_put(skb, len);
2685
2686	memcpy(tmp, data, len);
2687
2688	return tmp;
2689}
2690
2691static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2692{
2693	*(u8 *)skb_put(skb, 1) = val;
2694}
2695
2696void *skb_push(struct sk_buff *skb, unsigned int len);
2697static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2698{
2699	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2700
2701	skb->data -= len;
2702	skb->len  += len;
2703	return skb->data;
2704}
2705
2706void *skb_pull(struct sk_buff *skb, unsigned int len);
2707static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2708{
2709	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2710
2711	skb->len -= len;
2712	if (unlikely(skb->len < skb->data_len)) {
2713#if defined(CONFIG_DEBUG_NET)
2714		skb->len += len;
2715		pr_err("__skb_pull(len=%u)\n", len);
2716		skb_dump(KERN_ERR, skb, false);
2717#endif
2718		BUG();
2719	}
2720	return skb->data += len;
2721}
2722
2723static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2724{
2725	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2726}
2727
2728void *skb_pull_data(struct sk_buff *skb, size_t len);
2729
2730void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2731
2732static inline enum skb_drop_reason
2733pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2734{
2735	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2736
2737	if (likely(len <= skb_headlen(skb)))
2738		return SKB_NOT_DROPPED_YET;
2739
2740	if (unlikely(len > skb->len))
2741		return SKB_DROP_REASON_PKT_TOO_SMALL;
2742
2743	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2744		return SKB_DROP_REASON_NOMEM;
2745
2746	return SKB_NOT_DROPPED_YET;
2747}
2748
2749static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2750{
2751	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2752}
2753
2754static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2755{
2756	if (!pskb_may_pull(skb, len))
2757		return NULL;
2758
2759	skb->len -= len;
2760	return skb->data += len;
2761}
2762
2763void skb_condense(struct sk_buff *skb);
2764
2765/**
2766 *	skb_headroom - bytes at buffer head
2767 *	@skb: buffer to check
2768 *
2769 *	Return the number of bytes of free space at the head of an &sk_buff.
2770 */
2771static inline unsigned int skb_headroom(const struct sk_buff *skb)
2772{
2773	return skb->data - skb->head;
2774}
2775
2776/**
2777 *	skb_tailroom - bytes at buffer end
2778 *	@skb: buffer to check
2779 *
2780 *	Return the number of bytes of free space at the tail of an sk_buff
2781 */
2782static inline int skb_tailroom(const struct sk_buff *skb)
2783{
2784	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2785}
2786
2787/**
2788 *	skb_availroom - bytes at buffer end
2789 *	@skb: buffer to check
2790 *
2791 *	Return the number of bytes of free space at the tail of an sk_buff
2792 *	allocated by sk_stream_alloc()
2793 */
2794static inline int skb_availroom(const struct sk_buff *skb)
2795{
2796	if (skb_is_nonlinear(skb))
2797		return 0;
2798
2799	return skb->end - skb->tail - skb->reserved_tailroom;
2800}
2801
2802/**
2803 *	skb_reserve - adjust headroom
2804 *	@skb: buffer to alter
2805 *	@len: bytes to move
2806 *
2807 *	Increase the headroom of an empty &sk_buff by reducing the tail
2808 *	room. This is only allowed for an empty buffer.
2809 */
2810static inline void skb_reserve(struct sk_buff *skb, int len)
2811{
2812	skb->data += len;
2813	skb->tail += len;
2814}
2815
2816/**
2817 *	skb_tailroom_reserve - adjust reserved_tailroom
2818 *	@skb: buffer to alter
2819 *	@mtu: maximum amount of headlen permitted
2820 *	@needed_tailroom: minimum amount of reserved_tailroom
2821 *
2822 *	Set reserved_tailroom so that headlen can be as large as possible but
2823 *	not larger than mtu and tailroom cannot be smaller than
2824 *	needed_tailroom.
2825 *	The required headroom should already have been reserved before using
2826 *	this function.
2827 */
2828static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2829					unsigned int needed_tailroom)
2830{
2831	SKB_LINEAR_ASSERT(skb);
2832	if (mtu < skb_tailroom(skb) - needed_tailroom)
2833		/* use at most mtu */
2834		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2835	else
2836		/* use up to all available space */
2837		skb->reserved_tailroom = needed_tailroom;
2838}
2839
2840#define ENCAP_TYPE_ETHER	0
2841#define ENCAP_TYPE_IPPROTO	1
2842
2843static inline void skb_set_inner_protocol(struct sk_buff *skb,
2844					  __be16 protocol)
2845{
2846	skb->inner_protocol = protocol;
2847	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2848}
2849
2850static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2851					 __u8 ipproto)
2852{
2853	skb->inner_ipproto = ipproto;
2854	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2855}
2856
2857static inline void skb_reset_inner_headers(struct sk_buff *skb)
2858{
2859	skb->inner_mac_header = skb->mac_header;
2860	skb->inner_network_header = skb->network_header;
2861	skb->inner_transport_header = skb->transport_header;
2862}
2863
2864static inline void skb_reset_mac_len(struct sk_buff *skb)
2865{
2866	skb->mac_len = skb->network_header - skb->mac_header;
2867}
2868
2869static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2870							*skb)
2871{
2872	return skb->head + skb->inner_transport_header;
2873}
2874
2875static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2876{
2877	return skb_inner_transport_header(skb) - skb->data;
2878}
2879
2880static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2881{
2882	skb->inner_transport_header = skb->data - skb->head;
2883}
2884
2885static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2886						   const int offset)
2887{
2888	skb_reset_inner_transport_header(skb);
2889	skb->inner_transport_header += offset;
2890}
2891
2892static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2893{
2894	return skb->head + skb->inner_network_header;
2895}
2896
2897static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2898{
2899	skb->inner_network_header = skb->data - skb->head;
2900}
2901
2902static inline void skb_set_inner_network_header(struct sk_buff *skb,
2903						const int offset)
2904{
2905	skb_reset_inner_network_header(skb);
2906	skb->inner_network_header += offset;
2907}
2908
2909static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2910{
2911	return skb->inner_network_header > 0;
2912}
2913
2914static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2915{
2916	return skb->head + skb->inner_mac_header;
2917}
2918
2919static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2920{
2921	skb->inner_mac_header = skb->data - skb->head;
2922}
2923
2924static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2925					    const int offset)
2926{
2927	skb_reset_inner_mac_header(skb);
2928	skb->inner_mac_header += offset;
2929}
2930static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2931{
2932	return skb->transport_header != (typeof(skb->transport_header))~0U;
2933}
2934
2935static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2936{
2937	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2938	return skb->head + skb->transport_header;
2939}
2940
2941static inline void skb_reset_transport_header(struct sk_buff *skb)
2942{
2943	skb->transport_header = skb->data - skb->head;
2944}
2945
2946static inline void skb_set_transport_header(struct sk_buff *skb,
2947					    const int offset)
2948{
2949	skb_reset_transport_header(skb);
2950	skb->transport_header += offset;
2951}
2952
2953static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2954{
2955	return skb->head + skb->network_header;
2956}
2957
2958static inline void skb_reset_network_header(struct sk_buff *skb)
2959{
2960	skb->network_header = skb->data - skb->head;
2961}
2962
2963static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2964{
2965	skb_reset_network_header(skb);
2966	skb->network_header += offset;
2967}
2968
2969static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2970{
2971	return skb->mac_header != (typeof(skb->mac_header))~0U;
2972}
2973
2974static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2975{
2976	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2977	return skb->head + skb->mac_header;
2978}
2979
2980static inline int skb_mac_offset(const struct sk_buff *skb)
2981{
2982	return skb_mac_header(skb) - skb->data;
2983}
2984
2985static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2986{
2987	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2988	return skb->network_header - skb->mac_header;
2989}
2990
2991static inline void skb_unset_mac_header(struct sk_buff *skb)
2992{
2993	skb->mac_header = (typeof(skb->mac_header))~0U;
2994}
2995
2996static inline void skb_reset_mac_header(struct sk_buff *skb)
2997{
2998	skb->mac_header = skb->data - skb->head;
2999}
3000
3001static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3002{
3003	skb_reset_mac_header(skb);
3004	skb->mac_header += offset;
3005}
3006
3007static inline void skb_pop_mac_header(struct sk_buff *skb)
3008{
3009	skb->mac_header = skb->network_header;
3010}
3011
3012static inline void skb_probe_transport_header(struct sk_buff *skb)
3013{
3014	struct flow_keys_basic keys;
3015
3016	if (skb_transport_header_was_set(skb))
3017		return;
3018
3019	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3020					     NULL, 0, 0, 0, 0))
3021		skb_set_transport_header(skb, keys.control.thoff);
3022}
3023
3024static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3025{
3026	if (skb_mac_header_was_set(skb)) {
3027		const unsigned char *old_mac = skb_mac_header(skb);
3028
3029		skb_set_mac_header(skb, -skb->mac_len);
3030		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3031	}
3032}
3033
3034static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3035{
3036	return skb->csum_start - skb_headroom(skb);
3037}
3038
3039static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3040{
3041	return skb->head + skb->csum_start;
3042}
3043
3044static inline int skb_transport_offset(const struct sk_buff *skb)
3045{
3046	return skb_transport_header(skb) - skb->data;
3047}
3048
3049static inline u32 skb_network_header_len(const struct sk_buff *skb)
3050{
3051	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3052	return skb->transport_header - skb->network_header;
3053}
3054
3055static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3056{
3057	return skb->inner_transport_header - skb->inner_network_header;
3058}
3059
3060static inline int skb_network_offset(const struct sk_buff *skb)
3061{
3062	return skb_network_header(skb) - skb->data;
3063}
3064
3065static inline int skb_inner_network_offset(const struct sk_buff *skb)
3066{
3067	return skb_inner_network_header(skb) - skb->data;
3068}
3069
3070static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3071{
3072	return pskb_may_pull(skb, skb_network_offset(skb) + len);
3073}
3074
3075/*
3076 * CPUs often take a performance hit when accessing unaligned memory
3077 * locations. The actual performance hit varies, it can be small if the
3078 * hardware handles it or large if we have to take an exception and fix it
3079 * in software.
3080 *
3081 * Since an ethernet header is 14 bytes network drivers often end up with
3082 * the IP header at an unaligned offset. The IP header can be aligned by
3083 * shifting the start of the packet by 2 bytes. Drivers should do this
3084 * with:
3085 *
3086 * skb_reserve(skb, NET_IP_ALIGN);
3087 *
3088 * The downside to this alignment of the IP header is that the DMA is now
3089 * unaligned. On some architectures the cost of an unaligned DMA is high
3090 * and this cost outweighs the gains made by aligning the IP header.
3091 *
3092 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3093 * to be overridden.
3094 */
3095#ifndef NET_IP_ALIGN
3096#define NET_IP_ALIGN	2
3097#endif
3098
3099/*
3100 * The networking layer reserves some headroom in skb data (via
3101 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3102 * the header has to grow. In the default case, if the header has to grow
3103 * 32 bytes or less we avoid the reallocation.
3104 *
3105 * Unfortunately this headroom changes the DMA alignment of the resulting
3106 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3107 * on some architectures. An architecture can override this value,
3108 * perhaps setting it to a cacheline in size (since that will maintain
3109 * cacheline alignment of the DMA). It must be a power of 2.
3110 *
3111 * Various parts of the networking layer expect at least 32 bytes of
3112 * headroom, you should not reduce this.
3113 *
3114 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3115 * to reduce average number of cache lines per packet.
3116 * get_rps_cpu() for example only access one 64 bytes aligned block :
3117 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3118 */
3119#ifndef NET_SKB_PAD
3120#define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3121#endif
3122
3123int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3124
3125static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3126{
3127	if (WARN_ON(skb_is_nonlinear(skb)))
3128		return;
3129	skb->len = len;
3130	skb_set_tail_pointer(skb, len);
3131}
3132
3133static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3134{
3135	__skb_set_length(skb, len);
3136}
3137
3138void skb_trim(struct sk_buff *skb, unsigned int len);
3139
3140static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3141{
3142	if (skb->data_len)
3143		return ___pskb_trim(skb, len);
3144	__skb_trim(skb, len);
3145	return 0;
3146}
3147
3148static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3149{
3150	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3151}
3152
3153/**
3154 *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3155 *	@skb: buffer to alter
3156 *	@len: new length
3157 *
3158 *	This is identical to pskb_trim except that the caller knows that
3159 *	the skb is not cloned so we should never get an error due to out-
3160 *	of-memory.
3161 */
3162static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3163{
3164	int err = pskb_trim(skb, len);
3165	BUG_ON(err);
3166}
3167
3168static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3169{
3170	unsigned int diff = len - skb->len;
3171
3172	if (skb_tailroom(skb) < diff) {
3173		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3174					   GFP_ATOMIC);
3175		if (ret)
3176			return ret;
3177	}
3178	__skb_set_length(skb, len);
3179	return 0;
3180}
3181
3182/**
3183 *	skb_orphan - orphan a buffer
3184 *	@skb: buffer to orphan
3185 *
3186 *	If a buffer currently has an owner then we call the owner's
3187 *	destructor function and make the @skb unowned. The buffer continues
3188 *	to exist but is no longer charged to its former owner.
3189 */
3190static inline void skb_orphan(struct sk_buff *skb)
3191{
3192	if (skb->destructor) {
3193		skb->destructor(skb);
3194		skb->destructor = NULL;
3195		skb->sk		= NULL;
3196	} else {
3197		BUG_ON(skb->sk);
3198	}
3199}
3200
3201/**
3202 *	skb_orphan_frags - orphan the frags contained in a buffer
3203 *	@skb: buffer to orphan frags from
3204 *	@gfp_mask: allocation mask for replacement pages
3205 *
3206 *	For each frag in the SKB which needs a destructor (i.e. has an
3207 *	owner) create a copy of that frag and release the original
3208 *	page by calling the destructor.
3209 */
3210static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3211{
3212	if (likely(!skb_zcopy(skb)))
3213		return 0;
3214	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3215		return 0;
3216	return skb_copy_ubufs(skb, gfp_mask);
3217}
3218
3219/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3220static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3221{
3222	if (likely(!skb_zcopy(skb)))
3223		return 0;
3224	return skb_copy_ubufs(skb, gfp_mask);
3225}
3226
3227/**
3228 *	__skb_queue_purge_reason - empty a list
3229 *	@list: list to empty
3230 *	@reason: drop reason
3231 *
3232 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3233 *	the list and one reference dropped. This function does not take the
3234 *	list lock and the caller must hold the relevant locks to use it.
3235 */
3236static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3237					    enum skb_drop_reason reason)
3238{
3239	struct sk_buff *skb;
3240
3241	while ((skb = __skb_dequeue(list)) != NULL)
3242		kfree_skb_reason(skb, reason);
3243}
3244
3245static inline void __skb_queue_purge(struct sk_buff_head *list)
3246{
3247	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3248}
3249
3250void skb_queue_purge_reason(struct sk_buff_head *list,
3251			    enum skb_drop_reason reason);
3252
3253static inline void skb_queue_purge(struct sk_buff_head *list)
3254{
3255	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3256}
3257
3258unsigned int skb_rbtree_purge(struct rb_root *root);
3259void skb_errqueue_purge(struct sk_buff_head *list);
3260
3261void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3262
3263/**
3264 * netdev_alloc_frag - allocate a page fragment
3265 * @fragsz: fragment size
3266 *
3267 * Allocates a frag from a page for receive buffer.
3268 * Uses GFP_ATOMIC allocations.
3269 */
3270static inline void *netdev_alloc_frag(unsigned int fragsz)
3271{
3272	return __netdev_alloc_frag_align(fragsz, ~0u);
3273}
3274
3275static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3276					    unsigned int align)
3277{
3278	WARN_ON_ONCE(!is_power_of_2(align));
3279	return __netdev_alloc_frag_align(fragsz, -align);
3280}
3281
3282struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3283				   gfp_t gfp_mask);
3284
3285/**
3286 *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3287 *	@dev: network device to receive on
3288 *	@length: length to allocate
3289 *
3290 *	Allocate a new &sk_buff and assign it a usage count of one. The
3291 *	buffer has unspecified headroom built in. Users should allocate
3292 *	the headroom they think they need without accounting for the
3293 *	built in space. The built in space is used for optimisations.
3294 *
3295 *	%NULL is returned if there is no free memory. Although this function
3296 *	allocates memory it can be called from an interrupt.
3297 */
3298static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3299					       unsigned int length)
3300{
3301	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3302}
3303
3304/* legacy helper around __netdev_alloc_skb() */
3305static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3306					      gfp_t gfp_mask)
3307{
3308	return __netdev_alloc_skb(NULL, length, gfp_mask);
3309}
3310
3311/* legacy helper around netdev_alloc_skb() */
3312static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3313{
3314	return netdev_alloc_skb(NULL, length);
3315}
3316
3317
3318static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3319		unsigned int length, gfp_t gfp)
3320{
3321	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3322
3323	if (NET_IP_ALIGN && skb)
3324		skb_reserve(skb, NET_IP_ALIGN);
3325	return skb;
3326}
3327
3328static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3329		unsigned int length)
3330{
3331	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3332}
3333
3334static inline void skb_free_frag(void *addr)
3335{
3336	page_frag_free(addr);
3337}
3338
3339void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3340
3341static inline void *napi_alloc_frag(unsigned int fragsz)
3342{
3343	return __napi_alloc_frag_align(fragsz, ~0u);
3344}
3345
3346static inline void *napi_alloc_frag_align(unsigned int fragsz,
3347					  unsigned int align)
3348{
3349	WARN_ON_ONCE(!is_power_of_2(align));
3350	return __napi_alloc_frag_align(fragsz, -align);
3351}
3352
3353struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3354				 unsigned int length, gfp_t gfp_mask);
3355static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3356					     unsigned int length)
3357{
3358	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3359}
3360void napi_consume_skb(struct sk_buff *skb, int budget);
3361
3362void napi_skb_free_stolen_head(struct sk_buff *skb);
3363void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3364
3365/**
3366 * __dev_alloc_pages - allocate page for network Rx
3367 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3368 * @order: size of the allocation
3369 *
3370 * Allocate a new page.
3371 *
3372 * %NULL is returned if there is no free memory.
3373*/
3374static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3375					     unsigned int order)
3376{
3377	/* This piece of code contains several assumptions.
3378	 * 1.  This is for device Rx, therefore a cold page is preferred.
3379	 * 2.  The expectation is the user wants a compound page.
3380	 * 3.  If requesting a order 0 page it will not be compound
3381	 *     due to the check to see if order has a value in prep_new_page
3382	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3383	 *     code in gfp_to_alloc_flags that should be enforcing this.
3384	 */
3385	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3386
3387	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3388}
3389
3390static inline struct page *dev_alloc_pages(unsigned int order)
3391{
3392	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3393}
3394
3395/**
3396 * __dev_alloc_page - allocate a page for network Rx
3397 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3398 *
3399 * Allocate a new page.
3400 *
3401 * %NULL is returned if there is no free memory.
3402 */
3403static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3404{
3405	return __dev_alloc_pages(gfp_mask, 0);
3406}
3407
3408static inline struct page *dev_alloc_page(void)
3409{
3410	return dev_alloc_pages(0);
3411}
3412
3413/**
3414 * dev_page_is_reusable - check whether a page can be reused for network Rx
3415 * @page: the page to test
3416 *
3417 * A page shouldn't be considered for reusing/recycling if it was allocated
3418 * under memory pressure or at a distant memory node.
3419 *
3420 * Returns false if this page should be returned to page allocator, true
3421 * otherwise.
3422 */
3423static inline bool dev_page_is_reusable(const struct page *page)
3424{
3425	return likely(page_to_nid(page) == numa_mem_id() &&
3426		      !page_is_pfmemalloc(page));
3427}
3428
3429/**
3430 *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3431 *	@page: The page that was allocated from skb_alloc_page
3432 *	@skb: The skb that may need pfmemalloc set
3433 */
3434static inline void skb_propagate_pfmemalloc(const struct page *page,
3435					    struct sk_buff *skb)
3436{
3437	if (page_is_pfmemalloc(page))
3438		skb->pfmemalloc = true;
3439}
3440
3441/**
3442 * skb_frag_off() - Returns the offset of a skb fragment
3443 * @frag: the paged fragment
3444 */
3445static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3446{
3447	return frag->offset;
3448}
3449
3450/**
3451 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3452 * @frag: skb fragment
3453 * @delta: value to add
3454 */
3455static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3456{
3457	frag->offset += delta;
3458}
3459
3460/**
3461 * skb_frag_off_set() - Sets the offset of a skb fragment
3462 * @frag: skb fragment
3463 * @offset: offset of fragment
3464 */
3465static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3466{
3467	frag->offset = offset;
3468}
3469
3470/**
3471 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3472 * @fragto: skb fragment where offset is set
3473 * @fragfrom: skb fragment offset is copied from
3474 */
3475static inline void skb_frag_off_copy(skb_frag_t *fragto,
3476				     const skb_frag_t *fragfrom)
3477{
3478	fragto->offset = fragfrom->offset;
3479}
3480
3481/**
3482 * skb_frag_page - retrieve the page referred to by a paged fragment
3483 * @frag: the paged fragment
3484 *
3485 * Returns the &struct page associated with @frag.
3486 */
3487static inline struct page *skb_frag_page(const skb_frag_t *frag)
3488{
3489	return netmem_to_page(frag->netmem);
3490}
3491
3492/**
3493 * __skb_frag_ref - take an addition reference on a paged fragment.
3494 * @frag: the paged fragment
3495 *
3496 * Takes an additional reference on the paged fragment @frag.
3497 */
3498static inline void __skb_frag_ref(skb_frag_t *frag)
3499{
3500	get_page(skb_frag_page(frag));
3501}
3502
3503/**
3504 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3505 * @skb: the buffer
3506 * @f: the fragment offset.
3507 *
3508 * Takes an additional reference on the @f'th paged fragment of @skb.
3509 */
3510static inline void skb_frag_ref(struct sk_buff *skb, int f)
3511{
3512	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3513}
3514
3515int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3516		    unsigned int headroom);
3517int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3518			 struct bpf_prog *prog);
3519bool napi_pp_put_page(struct page *page, bool napi_safe);
3520
3521static inline void
3522skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe)
3523{
3524#ifdef CONFIG_PAGE_POOL
3525	if (skb->pp_recycle && napi_pp_put_page(page, napi_safe))
3526		return;
3527#endif
3528	put_page(page);
3529}
3530
3531static inline void
3532napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3533{
3534	struct page *page = skb_frag_page(frag);
3535
3536#ifdef CONFIG_PAGE_POOL
3537	if (recycle && napi_pp_put_page(page, napi_safe))
3538		return;
3539#endif
3540	put_page(page);
3541}
3542
3543/**
3544 * __skb_frag_unref - release a reference on a paged fragment.
3545 * @frag: the paged fragment
3546 * @recycle: recycle the page if allocated via page_pool
3547 *
3548 * Releases a reference on the paged fragment @frag
3549 * or recycles the page via the page_pool API.
3550 */
3551static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3552{
3553	napi_frag_unref(frag, recycle, false);
3554}
3555
3556/**
3557 * skb_frag_unref - release a reference on a paged fragment of an skb.
3558 * @skb: the buffer
3559 * @f: the fragment offset
3560 *
3561 * Releases a reference on the @f'th paged fragment of @skb.
3562 */
3563static inline void skb_frag_unref(struct sk_buff *skb, int f)
3564{
3565	struct skb_shared_info *shinfo = skb_shinfo(skb);
3566
3567	if (!skb_zcopy_managed(skb))
3568		__skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3569}
3570
3571/**
3572 * skb_frag_address - gets the address of the data contained in a paged fragment
3573 * @frag: the paged fragment buffer
3574 *
3575 * Returns the address of the data within @frag. The page must already
3576 * be mapped.
3577 */
3578static inline void *skb_frag_address(const skb_frag_t *frag)
3579{
3580	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3581}
3582
3583/**
3584 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3585 * @frag: the paged fragment buffer
3586 *
3587 * Returns the address of the data within @frag. Checks that the page
3588 * is mapped and returns %NULL otherwise.
3589 */
3590static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3591{
3592	void *ptr = page_address(skb_frag_page(frag));
3593	if (unlikely(!ptr))
3594		return NULL;
3595
3596	return ptr + skb_frag_off(frag);
3597}
3598
3599/**
3600 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3601 * @fragto: skb fragment where page is set
3602 * @fragfrom: skb fragment page is copied from
3603 */
3604static inline void skb_frag_page_copy(skb_frag_t *fragto,
3605				      const skb_frag_t *fragfrom)
3606{
3607	fragto->netmem = fragfrom->netmem;
3608}
3609
3610bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3611
3612/**
3613 * skb_frag_dma_map - maps a paged fragment via the DMA API
3614 * @dev: the device to map the fragment to
3615 * @frag: the paged fragment to map
3616 * @offset: the offset within the fragment (starting at the
3617 *          fragment's own offset)
3618 * @size: the number of bytes to map
3619 * @dir: the direction of the mapping (``PCI_DMA_*``)
3620 *
3621 * Maps the page associated with @frag to @device.
3622 */
3623static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3624					  const skb_frag_t *frag,
3625					  size_t offset, size_t size,
3626					  enum dma_data_direction dir)
3627{
3628	return dma_map_page(dev, skb_frag_page(frag),
3629			    skb_frag_off(frag) + offset, size, dir);
3630}
3631
3632static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3633					gfp_t gfp_mask)
3634{
3635	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3636}
3637
3638
3639static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3640						  gfp_t gfp_mask)
3641{
3642	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3643}
3644
3645
3646/**
3647 *	skb_clone_writable - is the header of a clone writable
3648 *	@skb: buffer to check
3649 *	@len: length up to which to write
3650 *
3651 *	Returns true if modifying the header part of the cloned buffer
3652 *	does not requires the data to be copied.
3653 */
3654static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3655{
3656	return !skb_header_cloned(skb) &&
3657	       skb_headroom(skb) + len <= skb->hdr_len;
3658}
3659
3660static inline int skb_try_make_writable(struct sk_buff *skb,
3661					unsigned int write_len)
3662{
3663	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3664	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3665}
3666
3667static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3668			    int cloned)
3669{
3670	int delta = 0;
3671
3672	if (headroom > skb_headroom(skb))
3673		delta = headroom - skb_headroom(skb);
3674
3675	if (delta || cloned)
3676		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3677					GFP_ATOMIC);
3678	return 0;
3679}
3680
3681/**
3682 *	skb_cow - copy header of skb when it is required
3683 *	@skb: buffer to cow
3684 *	@headroom: needed headroom
3685 *
3686 *	If the skb passed lacks sufficient headroom or its data part
3687 *	is shared, data is reallocated. If reallocation fails, an error
3688 *	is returned and original skb is not changed.
3689 *
3690 *	The result is skb with writable area skb->head...skb->tail
3691 *	and at least @headroom of space at head.
3692 */
3693static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3694{
3695	return __skb_cow(skb, headroom, skb_cloned(skb));
3696}
3697
3698/**
3699 *	skb_cow_head - skb_cow but only making the head writable
3700 *	@skb: buffer to cow
3701 *	@headroom: needed headroom
3702 *
3703 *	This function is identical to skb_cow except that we replace the
3704 *	skb_cloned check by skb_header_cloned.  It should be used when
3705 *	you only need to push on some header and do not need to modify
3706 *	the data.
3707 */
3708static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3709{
3710	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3711}
3712
3713/**
3714 *	skb_padto	- pad an skbuff up to a minimal size
3715 *	@skb: buffer to pad
3716 *	@len: minimal length
3717 *
3718 *	Pads up a buffer to ensure the trailing bytes exist and are
3719 *	blanked. If the buffer already contains sufficient data it
3720 *	is untouched. Otherwise it is extended. Returns zero on
3721 *	success. The skb is freed on error.
3722 */
3723static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3724{
3725	unsigned int size = skb->len;
3726	if (likely(size >= len))
3727		return 0;
3728	return skb_pad(skb, len - size);
3729}
3730
3731/**
3732 *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3733 *	@skb: buffer to pad
3734 *	@len: minimal length
3735 *	@free_on_error: free buffer on error
3736 *
3737 *	Pads up a buffer to ensure the trailing bytes exist and are
3738 *	blanked. If the buffer already contains sufficient data it
3739 *	is untouched. Otherwise it is extended. Returns zero on
3740 *	success. The skb is freed on error if @free_on_error is true.
3741 */
3742static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3743					       unsigned int len,
3744					       bool free_on_error)
3745{
3746	unsigned int size = skb->len;
3747
3748	if (unlikely(size < len)) {
3749		len -= size;
3750		if (__skb_pad(skb, len, free_on_error))
3751			return -ENOMEM;
3752		__skb_put(skb, len);
3753	}
3754	return 0;
3755}
3756
3757/**
3758 *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3759 *	@skb: buffer to pad
3760 *	@len: minimal length
3761 *
3762 *	Pads up a buffer to ensure the trailing bytes exist and are
3763 *	blanked. If the buffer already contains sufficient data it
3764 *	is untouched. Otherwise it is extended. Returns zero on
3765 *	success. The skb is freed on error.
3766 */
3767static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3768{
3769	return __skb_put_padto(skb, len, true);
3770}
3771
3772bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3773	__must_check;
3774
3775static inline int skb_add_data(struct sk_buff *skb,
3776			       struct iov_iter *from, int copy)
3777{
3778	const int off = skb->len;
3779
3780	if (skb->ip_summed == CHECKSUM_NONE) {
3781		__wsum csum = 0;
3782		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3783					         &csum, from)) {
3784			skb->csum = csum_block_add(skb->csum, csum, off);
3785			return 0;
3786		}
3787	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3788		return 0;
3789
3790	__skb_trim(skb, off);
3791	return -EFAULT;
3792}
3793
3794static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3795				    const struct page *page, int off)
3796{
3797	if (skb_zcopy(skb))
3798		return false;
3799	if (i) {
3800		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3801
3802		return page == skb_frag_page(frag) &&
3803		       off == skb_frag_off(frag) + skb_frag_size(frag);
3804	}
3805	return false;
3806}
3807
3808static inline int __skb_linearize(struct sk_buff *skb)
3809{
3810	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3811}
3812
3813/**
3814 *	skb_linearize - convert paged skb to linear one
3815 *	@skb: buffer to linarize
3816 *
3817 *	If there is no free memory -ENOMEM is returned, otherwise zero
3818 *	is returned and the old skb data released.
3819 */
3820static inline int skb_linearize(struct sk_buff *skb)
3821{
3822	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3823}
3824
3825/**
3826 * skb_has_shared_frag - can any frag be overwritten
3827 * @skb: buffer to test
3828 *
3829 * Return true if the skb has at least one frag that might be modified
3830 * by an external entity (as in vmsplice()/sendfile())
3831 */
3832static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3833{
3834	return skb_is_nonlinear(skb) &&
3835	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3836}
3837
3838/**
3839 *	skb_linearize_cow - make sure skb is linear and writable
3840 *	@skb: buffer to process
3841 *
3842 *	If there is no free memory -ENOMEM is returned, otherwise zero
3843 *	is returned and the old skb data released.
3844 */
3845static inline int skb_linearize_cow(struct sk_buff *skb)
3846{
3847	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3848	       __skb_linearize(skb) : 0;
3849}
3850
3851static __always_inline void
3852__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3853		     unsigned int off)
3854{
3855	if (skb->ip_summed == CHECKSUM_COMPLETE)
3856		skb->csum = csum_block_sub(skb->csum,
3857					   csum_partial(start, len, 0), off);
3858	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3859		 skb_checksum_start_offset(skb) < 0)
3860		skb->ip_summed = CHECKSUM_NONE;
3861}
3862
3863/**
3864 *	skb_postpull_rcsum - update checksum for received skb after pull
3865 *	@skb: buffer to update
3866 *	@start: start of data before pull
3867 *	@len: length of data pulled
3868 *
3869 *	After doing a pull on a received packet, you need to call this to
3870 *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3871 *	CHECKSUM_NONE so that it can be recomputed from scratch.
3872 */
3873static inline void skb_postpull_rcsum(struct sk_buff *skb,
3874				      const void *start, unsigned int len)
3875{
3876	if (skb->ip_summed == CHECKSUM_COMPLETE)
3877		skb->csum = wsum_negate(csum_partial(start, len,
3878						     wsum_negate(skb->csum)));
3879	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3880		 skb_checksum_start_offset(skb) < 0)
3881		skb->ip_summed = CHECKSUM_NONE;
3882}
3883
3884static __always_inline void
3885__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3886		     unsigned int off)
3887{
3888	if (skb->ip_summed == CHECKSUM_COMPLETE)
3889		skb->csum = csum_block_add(skb->csum,
3890					   csum_partial(start, len, 0), off);
3891}
3892
3893/**
3894 *	skb_postpush_rcsum - update checksum for received skb after push
3895 *	@skb: buffer to update
3896 *	@start: start of data after push
3897 *	@len: length of data pushed
3898 *
3899 *	After doing a push on a received packet, you need to call this to
3900 *	update the CHECKSUM_COMPLETE checksum.
3901 */
3902static inline void skb_postpush_rcsum(struct sk_buff *skb,
3903				      const void *start, unsigned int len)
3904{
3905	__skb_postpush_rcsum(skb, start, len, 0);
3906}
3907
3908void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3909
3910/**
3911 *	skb_push_rcsum - push skb and update receive checksum
3912 *	@skb: buffer to update
3913 *	@len: length of data pulled
3914 *
3915 *	This function performs an skb_push on the packet and updates
3916 *	the CHECKSUM_COMPLETE checksum.  It should be used on
3917 *	receive path processing instead of skb_push unless you know
3918 *	that the checksum difference is zero (e.g., a valid IP header)
3919 *	or you are setting ip_summed to CHECKSUM_NONE.
3920 */
3921static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3922{
3923	skb_push(skb, len);
3924	skb_postpush_rcsum(skb, skb->data, len);
3925	return skb->data;
3926}
3927
3928int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3929/**
3930 *	pskb_trim_rcsum - trim received skb and update checksum
3931 *	@skb: buffer to trim
3932 *	@len: new length
3933 *
3934 *	This is exactly the same as pskb_trim except that it ensures the
3935 *	checksum of received packets are still valid after the operation.
3936 *	It can change skb pointers.
3937 */
3938
3939static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3940{
3941	if (likely(len >= skb->len))
3942		return 0;
3943	return pskb_trim_rcsum_slow(skb, len);
3944}
3945
3946static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3947{
3948	if (skb->ip_summed == CHECKSUM_COMPLETE)
3949		skb->ip_summed = CHECKSUM_NONE;
3950	__skb_trim(skb, len);
3951	return 0;
3952}
3953
3954static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3955{
3956	if (skb->ip_summed == CHECKSUM_COMPLETE)
3957		skb->ip_summed = CHECKSUM_NONE;
3958	return __skb_grow(skb, len);
3959}
3960
3961#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3962#define skb_rb_first(root) rb_to_skb(rb_first(root))
3963#define skb_rb_last(root)  rb_to_skb(rb_last(root))
3964#define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3965#define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3966
3967#define skb_queue_walk(queue, skb) \
3968		for (skb = (queue)->next;					\
3969		     skb != (struct sk_buff *)(queue);				\
3970		     skb = skb->next)
3971
3972#define skb_queue_walk_safe(queue, skb, tmp)					\
3973		for (skb = (queue)->next, tmp = skb->next;			\
3974		     skb != (struct sk_buff *)(queue);				\
3975		     skb = tmp, tmp = skb->next)
3976
3977#define skb_queue_walk_from(queue, skb)						\
3978		for (; skb != (struct sk_buff *)(queue);			\
3979		     skb = skb->next)
3980
3981#define skb_rbtree_walk(skb, root)						\
3982		for (skb = skb_rb_first(root); skb != NULL;			\
3983		     skb = skb_rb_next(skb))
3984
3985#define skb_rbtree_walk_from(skb)						\
3986		for (; skb != NULL;						\
3987		     skb = skb_rb_next(skb))
3988
3989#define skb_rbtree_walk_from_safe(skb, tmp)					\
3990		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3991		     skb = tmp)
3992
3993#define skb_queue_walk_from_safe(queue, skb, tmp)				\
3994		for (tmp = skb->next;						\
3995		     skb != (struct sk_buff *)(queue);				\
3996		     skb = tmp, tmp = skb->next)
3997
3998#define skb_queue_reverse_walk(queue, skb) \
3999		for (skb = (queue)->prev;					\
4000		     skb != (struct sk_buff *)(queue);				\
4001		     skb = skb->prev)
4002
4003#define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4004		for (skb = (queue)->prev, tmp = skb->prev;			\
4005		     skb != (struct sk_buff *)(queue);				\
4006		     skb = tmp, tmp = skb->prev)
4007
4008#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4009		for (tmp = skb->prev;						\
4010		     skb != (struct sk_buff *)(queue);				\
4011		     skb = tmp, tmp = skb->prev)
4012
4013static inline bool skb_has_frag_list(const struct sk_buff *skb)
4014{
4015	return skb_shinfo(skb)->frag_list != NULL;
4016}
4017
4018static inline void skb_frag_list_init(struct sk_buff *skb)
4019{
4020	skb_shinfo(skb)->frag_list = NULL;
4021}
4022
4023#define skb_walk_frags(skb, iter)	\
4024	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4025
4026
4027int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4028				int *err, long *timeo_p,
4029				const struct sk_buff *skb);
4030struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
4031					  struct sk_buff_head *queue,
4032					  unsigned int flags,
4033					  int *off, int *err,
4034					  struct sk_buff **last);
4035struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4036					struct sk_buff_head *queue,
4037					unsigned int flags, int *off, int *err,
4038					struct sk_buff **last);
4039struct sk_buff *__skb_recv_datagram(struct sock *sk,
4040				    struct sk_buff_head *sk_queue,
4041				    unsigned int flags, int *off, int *err);
4042struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4043__poll_t datagram_poll(struct file *file, struct socket *sock,
4044			   struct poll_table_struct *wait);
4045int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4046			   struct iov_iter *to, int size);
4047static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4048					struct msghdr *msg, int size)
4049{
4050	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4051}
4052int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4053				   struct msghdr *msg);
4054int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
4055			   struct iov_iter *to, int len,
4056			   struct ahash_request *hash);
4057int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4058				 struct iov_iter *from, int len);
4059int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4060void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4061void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
4062static inline void skb_free_datagram_locked(struct sock *sk,
4063					    struct sk_buff *skb)
4064{
4065	__skb_free_datagram_locked(sk, skb, 0);
4066}
4067int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4068int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4069int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4070__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4071			      int len);
4072int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4073		    struct pipe_inode_info *pipe, unsigned int len,
4074		    unsigned int flags);
4075int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4076			 int len);
4077int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4078void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4079unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4080int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4081		 int len, int hlen);
4082void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4083int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4084void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4085struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4086struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4087				 unsigned int offset);
4088struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4089int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4090int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4091int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4092int skb_vlan_pop(struct sk_buff *skb);
4093int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4094int skb_eth_pop(struct sk_buff *skb);
4095int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4096		 const unsigned char *src);
4097int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4098		  int mac_len, bool ethernet);
4099int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4100		 bool ethernet);
4101int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4102int skb_mpls_dec_ttl(struct sk_buff *skb);
4103struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4104			     gfp_t gfp);
4105
4106static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4107{
4108	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4109}
4110
4111static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4112{
4113	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4114}
4115
4116struct skb_checksum_ops {
4117	__wsum (*update)(const void *mem, int len, __wsum wsum);
4118	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4119};
4120
4121extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4122
4123__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4124		      __wsum csum, const struct skb_checksum_ops *ops);
4125__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4126		    __wsum csum);
4127
4128static inline void * __must_check
4129__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4130		     const void *data, int hlen, void *buffer)
4131{
4132	if (likely(hlen - offset >= len))
4133		return (void *)data + offset;
4134
4135	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4136		return NULL;
4137
4138	return buffer;
4139}
4140
4141static inline void * __must_check
4142skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4143{
4144	return __skb_header_pointer(skb, offset, len, skb->data,
4145				    skb_headlen(skb), buffer);
4146}
4147
4148static inline void * __must_check
4149skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4150{
4151	if (likely(skb_headlen(skb) - offset >= len))
4152		return skb->data + offset;
4153	return NULL;
4154}
4155
4156/**
4157 *	skb_needs_linearize - check if we need to linearize a given skb
4158 *			      depending on the given device features.
4159 *	@skb: socket buffer to check
4160 *	@features: net device features
4161 *
4162 *	Returns true if either:
4163 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4164 *	2. skb is fragmented and the device does not support SG.
4165 */
4166static inline bool skb_needs_linearize(struct sk_buff *skb,
4167				       netdev_features_t features)
4168{
4169	return skb_is_nonlinear(skb) &&
4170	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4171		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4172}
4173
4174static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4175					     void *to,
4176					     const unsigned int len)
4177{
4178	memcpy(to, skb->data, len);
4179}
4180
4181static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4182						    const int offset, void *to,
4183						    const unsigned int len)
4184{
4185	memcpy(to, skb->data + offset, len);
4186}
4187
4188static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4189					   const void *from,
4190					   const unsigned int len)
4191{
4192	memcpy(skb->data, from, len);
4193}
4194
4195static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4196						  const int offset,
4197						  const void *from,
4198						  const unsigned int len)
4199{
4200	memcpy(skb->data + offset, from, len);
4201}
4202
4203void skb_init(void);
4204
4205static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4206{
4207	return skb->tstamp;
4208}
4209
4210/**
4211 *	skb_get_timestamp - get timestamp from a skb
4212 *	@skb: skb to get stamp from
4213 *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4214 *
4215 *	Timestamps are stored in the skb as offsets to a base timestamp.
4216 *	This function converts the offset back to a struct timeval and stores
4217 *	it in stamp.
4218 */
4219static inline void skb_get_timestamp(const struct sk_buff *skb,
4220				     struct __kernel_old_timeval *stamp)
4221{
4222	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4223}
4224
4225static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4226					 struct __kernel_sock_timeval *stamp)
4227{
4228	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4229
4230	stamp->tv_sec = ts.tv_sec;
4231	stamp->tv_usec = ts.tv_nsec / 1000;
4232}
4233
4234static inline void skb_get_timestampns(const struct sk_buff *skb,
4235				       struct __kernel_old_timespec *stamp)
4236{
4237	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4238
4239	stamp->tv_sec = ts.tv_sec;
4240	stamp->tv_nsec = ts.tv_nsec;
4241}
4242
4243static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4244					   struct __kernel_timespec *stamp)
4245{
4246	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4247
4248	stamp->tv_sec = ts.tv_sec;
4249	stamp->tv_nsec = ts.tv_nsec;
4250}
4251
4252static inline void __net_timestamp(struct sk_buff *skb)
4253{
4254	skb->tstamp = ktime_get_real();
4255	skb->mono_delivery_time = 0;
4256}
4257
4258static inline ktime_t net_timedelta(ktime_t t)
4259{
4260	return ktime_sub(ktime_get_real(), t);
4261}
4262
4263static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4264					 bool mono)
4265{
4266	skb->tstamp = kt;
4267	skb->mono_delivery_time = kt && mono;
4268}
4269
4270DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4271
4272/* It is used in the ingress path to clear the delivery_time.
4273 * If needed, set the skb->tstamp to the (rcv) timestamp.
4274 */
4275static inline void skb_clear_delivery_time(struct sk_buff *skb)
4276{
4277	if (skb->mono_delivery_time) {
4278		skb->mono_delivery_time = 0;
4279		if (static_branch_unlikely(&netstamp_needed_key))
4280			skb->tstamp = ktime_get_real();
4281		else
4282			skb->tstamp = 0;
4283	}
4284}
4285
4286static inline void skb_clear_tstamp(struct sk_buff *skb)
4287{
4288	if (skb->mono_delivery_time)
4289		return;
4290
4291	skb->tstamp = 0;
4292}
4293
4294static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4295{
4296	if (skb->mono_delivery_time)
4297		return 0;
4298
4299	return skb->tstamp;
4300}
4301
4302static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4303{
4304	if (!skb->mono_delivery_time && skb->tstamp)
4305		return skb->tstamp;
4306
4307	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4308		return ktime_get_real();
4309
4310	return 0;
4311}
4312
4313static inline u8 skb_metadata_len(const struct sk_buff *skb)
4314{
4315	return skb_shinfo(skb)->meta_len;
4316}
4317
4318static inline void *skb_metadata_end(const struct sk_buff *skb)
4319{
4320	return skb_mac_header(skb);
4321}
4322
4323static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4324					  const struct sk_buff *skb_b,
4325					  u8 meta_len)
4326{
4327	const void *a = skb_metadata_end(skb_a);
4328	const void *b = skb_metadata_end(skb_b);
4329	u64 diffs = 0;
4330
4331	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4332	    BITS_PER_LONG != 64)
4333		goto slow;
4334
4335	/* Using more efficient variant than plain call to memcmp(). */
4336	switch (meta_len) {
4337#define __it(x, op) (x -= sizeof(u##op))
4338#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4339	case 32: diffs |= __it_diff(a, b, 64);
4340		fallthrough;
4341	case 24: diffs |= __it_diff(a, b, 64);
4342		fallthrough;
4343	case 16: diffs |= __it_diff(a, b, 64);
4344		fallthrough;
4345	case  8: diffs |= __it_diff(a, b, 64);
4346		break;
4347	case 28: diffs |= __it_diff(a, b, 64);
4348		fallthrough;
4349	case 20: diffs |= __it_diff(a, b, 64);
4350		fallthrough;
4351	case 12: diffs |= __it_diff(a, b, 64);
4352		fallthrough;
4353	case  4: diffs |= __it_diff(a, b, 32);
4354		break;
4355	default:
4356slow:
4357		return memcmp(a - meta_len, b - meta_len, meta_len);
4358	}
4359	return diffs;
4360}
4361
4362static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4363					const struct sk_buff *skb_b)
4364{
4365	u8 len_a = skb_metadata_len(skb_a);
4366	u8 len_b = skb_metadata_len(skb_b);
4367
4368	if (!(len_a | len_b))
4369		return false;
4370
4371	return len_a != len_b ?
4372	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4373}
4374
4375static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4376{
4377	skb_shinfo(skb)->meta_len = meta_len;
4378}
4379
4380static inline void skb_metadata_clear(struct sk_buff *skb)
4381{
4382	skb_metadata_set(skb, 0);
4383}
4384
4385struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4386
4387#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4388
4389void skb_clone_tx_timestamp(struct sk_buff *skb);
4390bool skb_defer_rx_timestamp(struct sk_buff *skb);
4391
4392#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4393
4394static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4395{
4396}
4397
4398static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4399{
4400	return false;
4401}
4402
4403#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4404
4405/**
4406 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4407 *
4408 * PHY drivers may accept clones of transmitted packets for
4409 * timestamping via their phy_driver.txtstamp method. These drivers
4410 * must call this function to return the skb back to the stack with a
4411 * timestamp.
4412 *
4413 * @skb: clone of the original outgoing packet
4414 * @hwtstamps: hardware time stamps
4415 *
4416 */
4417void skb_complete_tx_timestamp(struct sk_buff *skb,
4418			       struct skb_shared_hwtstamps *hwtstamps);
4419
4420void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4421		     struct skb_shared_hwtstamps *hwtstamps,
4422		     struct sock *sk, int tstype);
4423
4424/**
4425 * skb_tstamp_tx - queue clone of skb with send time stamps
4426 * @orig_skb:	the original outgoing packet
4427 * @hwtstamps:	hardware time stamps, may be NULL if not available
4428 *
4429 * If the skb has a socket associated, then this function clones the
4430 * skb (thus sharing the actual data and optional structures), stores
4431 * the optional hardware time stamping information (if non NULL) or
4432 * generates a software time stamp (otherwise), then queues the clone
4433 * to the error queue of the socket.  Errors are silently ignored.
4434 */
4435void skb_tstamp_tx(struct sk_buff *orig_skb,
4436		   struct skb_shared_hwtstamps *hwtstamps);
4437
4438/**
4439 * skb_tx_timestamp() - Driver hook for transmit timestamping
4440 *
4441 * Ethernet MAC Drivers should call this function in their hard_xmit()
4442 * function immediately before giving the sk_buff to the MAC hardware.
4443 *
4444 * Specifically, one should make absolutely sure that this function is
4445 * called before TX completion of this packet can trigger.  Otherwise
4446 * the packet could potentially already be freed.
4447 *
4448 * @skb: A socket buffer.
4449 */
4450static inline void skb_tx_timestamp(struct sk_buff *skb)
4451{
4452	skb_clone_tx_timestamp(skb);
4453	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4454		skb_tstamp_tx(skb, NULL);
4455}
4456
4457/**
4458 * skb_complete_wifi_ack - deliver skb with wifi status
4459 *
4460 * @skb: the original outgoing packet
4461 * @acked: ack status
4462 *
4463 */
4464void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4465
4466__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4467__sum16 __skb_checksum_complete(struct sk_buff *skb);
4468
4469static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4470{
4471	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4472		skb->csum_valid ||
4473		(skb->ip_summed == CHECKSUM_PARTIAL &&
4474		 skb_checksum_start_offset(skb) >= 0));
4475}
4476
4477/**
4478 *	skb_checksum_complete - Calculate checksum of an entire packet
4479 *	@skb: packet to process
4480 *
4481 *	This function calculates the checksum over the entire packet plus
4482 *	the value of skb->csum.  The latter can be used to supply the
4483 *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4484 *	checksum.
4485 *
4486 *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4487 *	this function can be used to verify that checksum on received
4488 *	packets.  In that case the function should return zero if the
4489 *	checksum is correct.  In particular, this function will return zero
4490 *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4491 *	hardware has already verified the correctness of the checksum.
4492 */
4493static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4494{
4495	return skb_csum_unnecessary(skb) ?
4496	       0 : __skb_checksum_complete(skb);
4497}
4498
4499static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4500{
4501	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4502		if (skb->csum_level == 0)
4503			skb->ip_summed = CHECKSUM_NONE;
4504		else
4505			skb->csum_level--;
4506	}
4507}
4508
4509static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4510{
4511	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4512		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4513			skb->csum_level++;
4514	} else if (skb->ip_summed == CHECKSUM_NONE) {
4515		skb->ip_summed = CHECKSUM_UNNECESSARY;
4516		skb->csum_level = 0;
4517	}
4518}
4519
4520static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4521{
4522	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4523		skb->ip_summed = CHECKSUM_NONE;
4524		skb->csum_level = 0;
4525	}
4526}
4527
4528/* Check if we need to perform checksum complete validation.
4529 *
4530 * Returns true if checksum complete is needed, false otherwise
4531 * (either checksum is unnecessary or zero checksum is allowed).
4532 */
4533static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4534						  bool zero_okay,
4535						  __sum16 check)
4536{
4537	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4538		skb->csum_valid = 1;
4539		__skb_decr_checksum_unnecessary(skb);
4540		return false;
4541	}
4542
4543	return true;
4544}
4545
4546/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4547 * in checksum_init.
4548 */
4549#define CHECKSUM_BREAK 76
4550
4551/* Unset checksum-complete
4552 *
4553 * Unset checksum complete can be done when packet is being modified
4554 * (uncompressed for instance) and checksum-complete value is
4555 * invalidated.
4556 */
4557static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4558{
4559	if (skb->ip_summed == CHECKSUM_COMPLETE)
4560		skb->ip_summed = CHECKSUM_NONE;
4561}
4562
4563/* Validate (init) checksum based on checksum complete.
4564 *
4565 * Return values:
4566 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4567 *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4568 *	checksum is stored in skb->csum for use in __skb_checksum_complete
4569 *   non-zero: value of invalid checksum
4570 *
4571 */
4572static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4573						       bool complete,
4574						       __wsum psum)
4575{
4576	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4577		if (!csum_fold(csum_add(psum, skb->csum))) {
4578			skb->csum_valid = 1;
4579			return 0;
4580		}
4581	}
4582
4583	skb->csum = psum;
4584
4585	if (complete || skb->len <= CHECKSUM_BREAK) {
4586		__sum16 csum;
4587
4588		csum = __skb_checksum_complete(skb);
4589		skb->csum_valid = !csum;
4590		return csum;
4591	}
4592
4593	return 0;
4594}
4595
4596static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4597{
4598	return 0;
4599}
4600
4601/* Perform checksum validate (init). Note that this is a macro since we only
4602 * want to calculate the pseudo header which is an input function if necessary.
4603 * First we try to validate without any computation (checksum unnecessary) and
4604 * then calculate based on checksum complete calling the function to compute
4605 * pseudo header.
4606 *
4607 * Return values:
4608 *   0: checksum is validated or try to in skb_checksum_complete
4609 *   non-zero: value of invalid checksum
4610 */
4611#define __skb_checksum_validate(skb, proto, complete,			\
4612				zero_okay, check, compute_pseudo)	\
4613({									\
4614	__sum16 __ret = 0;						\
4615	skb->csum_valid = 0;						\
4616	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4617		__ret = __skb_checksum_validate_complete(skb,		\
4618				complete, compute_pseudo(skb, proto));	\
4619	__ret;								\
4620})
4621
4622#define skb_checksum_init(skb, proto, compute_pseudo)			\
4623	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4624
4625#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4626	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4627
4628#define skb_checksum_validate(skb, proto, compute_pseudo)		\
4629	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4630
4631#define skb_checksum_validate_zero_check(skb, proto, check,		\
4632					 compute_pseudo)		\
4633	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4634
4635#define skb_checksum_simple_validate(skb)				\
4636	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4637
4638static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4639{
4640	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4641}
4642
4643static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4644{
4645	skb->csum = ~pseudo;
4646	skb->ip_summed = CHECKSUM_COMPLETE;
4647}
4648
4649#define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4650do {									\
4651	if (__skb_checksum_convert_check(skb))				\
4652		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4653} while (0)
4654
4655static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4656					      u16 start, u16 offset)
4657{
4658	skb->ip_summed = CHECKSUM_PARTIAL;
4659	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4660	skb->csum_offset = offset - start;
4661}
4662
4663/* Update skbuf and packet to reflect the remote checksum offload operation.
4664 * When called, ptr indicates the starting point for skb->csum when
4665 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4666 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4667 */
4668static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4669				       int start, int offset, bool nopartial)
4670{
4671	__wsum delta;
4672
4673	if (!nopartial) {
4674		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4675		return;
4676	}
4677
4678	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4679		__skb_checksum_complete(skb);
4680		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4681	}
4682
4683	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4684
4685	/* Adjust skb->csum since we changed the packet */
4686	skb->csum = csum_add(skb->csum, delta);
4687}
4688
4689static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4690{
4691#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4692	return (void *)(skb->_nfct & NFCT_PTRMASK);
4693#else
4694	return NULL;
4695#endif
4696}
4697
4698static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4699{
4700#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4701	return skb->_nfct;
4702#else
4703	return 0UL;
4704#endif
4705}
4706
4707static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4708{
4709#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4710	skb->slow_gro |= !!nfct;
4711	skb->_nfct = nfct;
4712#endif
4713}
4714
4715#ifdef CONFIG_SKB_EXTENSIONS
4716enum skb_ext_id {
4717#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4718	SKB_EXT_BRIDGE_NF,
4719#endif
4720#ifdef CONFIG_XFRM
4721	SKB_EXT_SEC_PATH,
4722#endif
4723#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4724	TC_SKB_EXT,
4725#endif
4726#if IS_ENABLED(CONFIG_MPTCP)
4727	SKB_EXT_MPTCP,
4728#endif
4729#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4730	SKB_EXT_MCTP,
4731#endif
4732	SKB_EXT_NUM, /* must be last */
4733};
4734
4735/**
4736 *	struct skb_ext - sk_buff extensions
4737 *	@refcnt: 1 on allocation, deallocated on 0
4738 *	@offset: offset to add to @data to obtain extension address
4739 *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4740 *	@data: start of extension data, variable sized
4741 *
4742 *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4743 *	to use 'u8' types while allowing up to 2kb worth of extension data.
4744 */
4745struct skb_ext {
4746	refcount_t refcnt;
4747	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4748	u8 chunks;		/* same */
4749	char data[] __aligned(8);
4750};
4751
4752struct skb_ext *__skb_ext_alloc(gfp_t flags);
4753void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4754		    struct skb_ext *ext);
4755void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4756void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4757void __skb_ext_put(struct skb_ext *ext);
4758
4759static inline void skb_ext_put(struct sk_buff *skb)
4760{
4761	if (skb->active_extensions)
4762		__skb_ext_put(skb->extensions);
4763}
4764
4765static inline void __skb_ext_copy(struct sk_buff *dst,
4766				  const struct sk_buff *src)
4767{
4768	dst->active_extensions = src->active_extensions;
4769
4770	if (src->active_extensions) {
4771		struct skb_ext *ext = src->extensions;
4772
4773		refcount_inc(&ext->refcnt);
4774		dst->extensions = ext;
4775	}
4776}
4777
4778static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4779{
4780	skb_ext_put(dst);
4781	__skb_ext_copy(dst, src);
4782}
4783
4784static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4785{
4786	return !!ext->offset[i];
4787}
4788
4789static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4790{
4791	return skb->active_extensions & (1 << id);
4792}
4793
4794static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4795{
4796	if (skb_ext_exist(skb, id))
4797		__skb_ext_del(skb, id);
4798}
4799
4800static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4801{
4802	if (skb_ext_exist(skb, id)) {
4803		struct skb_ext *ext = skb->extensions;
4804
4805		return (void *)ext + (ext->offset[id] << 3);
4806	}
4807
4808	return NULL;
4809}
4810
4811static inline void skb_ext_reset(struct sk_buff *skb)
4812{
4813	if (unlikely(skb->active_extensions)) {
4814		__skb_ext_put(skb->extensions);
4815		skb->active_extensions = 0;
4816	}
4817}
4818
4819static inline bool skb_has_extensions(struct sk_buff *skb)
4820{
4821	return unlikely(skb->active_extensions);
4822}
4823#else
4824static inline void skb_ext_put(struct sk_buff *skb) {}
4825static inline void skb_ext_reset(struct sk_buff *skb) {}
4826static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4827static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4828static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4829static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4830#endif /* CONFIG_SKB_EXTENSIONS */
4831
4832static inline void nf_reset_ct(struct sk_buff *skb)
4833{
4834#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4835	nf_conntrack_put(skb_nfct(skb));
4836	skb->_nfct = 0;
4837#endif
4838}
4839
4840static inline void nf_reset_trace(struct sk_buff *skb)
4841{
4842#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4843	skb->nf_trace = 0;
4844#endif
4845}
4846
4847static inline void ipvs_reset(struct sk_buff *skb)
4848{
4849#if IS_ENABLED(CONFIG_IP_VS)
4850	skb->ipvs_property = 0;
4851#endif
4852}
4853
4854/* Note: This doesn't put any conntrack info in dst. */
4855static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4856			     bool copy)
4857{
4858#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4859	dst->_nfct = src->_nfct;
4860	nf_conntrack_get(skb_nfct(src));
4861#endif
4862#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4863	if (copy)
4864		dst->nf_trace = src->nf_trace;
4865#endif
4866}
4867
4868static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4869{
4870#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4871	nf_conntrack_put(skb_nfct(dst));
4872#endif
4873	dst->slow_gro = src->slow_gro;
4874	__nf_copy(dst, src, true);
4875}
4876
4877#ifdef CONFIG_NETWORK_SECMARK
4878static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4879{
4880	to->secmark = from->secmark;
4881}
4882
4883static inline void skb_init_secmark(struct sk_buff *skb)
4884{
4885	skb->secmark = 0;
4886}
4887#else
4888static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4889{ }
4890
4891static inline void skb_init_secmark(struct sk_buff *skb)
4892{ }
4893#endif
4894
4895static inline int secpath_exists(const struct sk_buff *skb)
4896{
4897#ifdef CONFIG_XFRM
4898	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4899#else
4900	return 0;
4901#endif
4902}
4903
4904static inline bool skb_irq_freeable(const struct sk_buff *skb)
4905{
4906	return !skb->destructor &&
4907		!secpath_exists(skb) &&
4908		!skb_nfct(skb) &&
4909		!skb->_skb_refdst &&
4910		!skb_has_frag_list(skb);
4911}
4912
4913static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4914{
4915	skb->queue_mapping = queue_mapping;
4916}
4917
4918static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4919{
4920	return skb->queue_mapping;
4921}
4922
4923static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4924{
4925	to->queue_mapping = from->queue_mapping;
4926}
4927
4928static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4929{
4930	skb->queue_mapping = rx_queue + 1;
4931}
4932
4933static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4934{
4935	return skb->queue_mapping - 1;
4936}
4937
4938static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4939{
4940	return skb->queue_mapping != 0;
4941}
4942
4943static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4944{
4945	skb->dst_pending_confirm = val;
4946}
4947
4948static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4949{
4950	return skb->dst_pending_confirm != 0;
4951}
4952
4953static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4954{
4955#ifdef CONFIG_XFRM
4956	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4957#else
4958	return NULL;
4959#endif
4960}
4961
4962static inline bool skb_is_gso(const struct sk_buff *skb)
4963{
4964	return skb_shinfo(skb)->gso_size;
4965}
4966
4967/* Note: Should be called only if skb_is_gso(skb) is true */
4968static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4969{
4970	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4971}
4972
4973/* Note: Should be called only if skb_is_gso(skb) is true */
4974static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4975{
4976	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4977}
4978
4979/* Note: Should be called only if skb_is_gso(skb) is true */
4980static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4981{
4982	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4983}
4984
4985static inline void skb_gso_reset(struct sk_buff *skb)
4986{
4987	skb_shinfo(skb)->gso_size = 0;
4988	skb_shinfo(skb)->gso_segs = 0;
4989	skb_shinfo(skb)->gso_type = 0;
4990}
4991
4992static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4993					 u16 increment)
4994{
4995	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4996		return;
4997	shinfo->gso_size += increment;
4998}
4999
5000static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5001					 u16 decrement)
5002{
5003	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5004		return;
5005	shinfo->gso_size -= decrement;
5006}
5007
5008void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5009
5010static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5011{
5012	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5013	 * wanted then gso_type will be set. */
5014	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5015
5016	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5017	    unlikely(shinfo->gso_type == 0)) {
5018		__skb_warn_lro_forwarding(skb);
5019		return true;
5020	}
5021	return false;
5022}
5023
5024static inline void skb_forward_csum(struct sk_buff *skb)
5025{
5026	/* Unfortunately we don't support this one.  Any brave souls? */
5027	if (skb->ip_summed == CHECKSUM_COMPLETE)
5028		skb->ip_summed = CHECKSUM_NONE;
5029}
5030
5031/**
5032 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5033 * @skb: skb to check
5034 *
5035 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5036 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5037 * use this helper, to document places where we make this assertion.
5038 */
5039static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5040{
5041	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5042}
5043
5044bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5045
5046int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5047struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5048				     unsigned int transport_len,
5049				     __sum16(*skb_chkf)(struct sk_buff *skb));
5050
5051/**
5052 * skb_head_is_locked - Determine if the skb->head is locked down
5053 * @skb: skb to check
5054 *
5055 * The head on skbs build around a head frag can be removed if they are
5056 * not cloned.  This function returns true if the skb head is locked down
5057 * due to either being allocated via kmalloc, or by being a clone with
5058 * multiple references to the head.
5059 */
5060static inline bool skb_head_is_locked(const struct sk_buff *skb)
5061{
5062	return !skb->head_frag || skb_cloned(skb);
5063}
5064
5065/* Local Checksum Offload.
5066 * Compute outer checksum based on the assumption that the
5067 * inner checksum will be offloaded later.
5068 * See Documentation/networking/checksum-offloads.rst for
5069 * explanation of how this works.
5070 * Fill in outer checksum adjustment (e.g. with sum of outer
5071 * pseudo-header) before calling.
5072 * Also ensure that inner checksum is in linear data area.
5073 */
5074static inline __wsum lco_csum(struct sk_buff *skb)
5075{
5076	unsigned char *csum_start = skb_checksum_start(skb);
5077	unsigned char *l4_hdr = skb_transport_header(skb);
5078	__wsum partial;
5079
5080	/* Start with complement of inner checksum adjustment */
5081	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5082						    skb->csum_offset));
5083
5084	/* Add in checksum of our headers (incl. outer checksum
5085	 * adjustment filled in by caller) and return result.
5086	 */
5087	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5088}
5089
5090static inline bool skb_is_redirected(const struct sk_buff *skb)
5091{
5092	return skb->redirected;
5093}
5094
5095static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5096{
5097	skb->redirected = 1;
5098#ifdef CONFIG_NET_REDIRECT
5099	skb->from_ingress = from_ingress;
5100	if (skb->from_ingress)
5101		skb_clear_tstamp(skb);
5102#endif
5103}
5104
5105static inline void skb_reset_redirect(struct sk_buff *skb)
5106{
5107	skb->redirected = 0;
5108}
5109
5110static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5111					      bool from_ingress)
5112{
5113	skb->redirected = 1;
5114#ifdef CONFIG_NET_REDIRECT
5115	skb->from_ingress = from_ingress;
5116#endif
5117}
5118
5119static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5120{
5121#if IS_ENABLED(CONFIG_IP_SCTP)
5122	return skb->csum_not_inet;
5123#else
5124	return 0;
5125#endif
5126}
5127
5128static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5129{
5130	skb->ip_summed = CHECKSUM_NONE;
5131#if IS_ENABLED(CONFIG_IP_SCTP)
5132	skb->csum_not_inet = 0;
5133#endif
5134}
5135
5136static inline void skb_set_kcov_handle(struct sk_buff *skb,
5137				       const u64 kcov_handle)
5138{
5139#ifdef CONFIG_KCOV
5140	skb->kcov_handle = kcov_handle;
5141#endif
5142}
5143
5144static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5145{
5146#ifdef CONFIG_KCOV
5147	return skb->kcov_handle;
5148#else
5149	return 0;
5150#endif
5151}
5152
5153static inline void skb_mark_for_recycle(struct sk_buff *skb)
5154{
5155#ifdef CONFIG_PAGE_POOL
5156	skb->pp_recycle = 1;
5157#endif
5158}
5159
5160ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5161			     ssize_t maxsize, gfp_t gfp);
5162
5163#endif	/* __KERNEL__ */
5164#endif	/* _LINUX_SKBUFF_H */
5165