1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 *  Universal power supply monitor class
4 *
5 *  Copyright �� 2007  Anton Vorontsov <cbou@mail.ru>
6 *  Copyright �� 2004  Szabolcs Gyurko
7 *  Copyright �� 2003  Ian Molton <spyro@f2s.com>
8 *
9 *  Modified: 2004, Oct     Szabolcs Gyurko
10 */
11
12#ifndef __LINUX_POWER_SUPPLY_H__
13#define __LINUX_POWER_SUPPLY_H__
14
15#include <linux/device.h>
16#include <linux/workqueue.h>
17#include <linux/leds.h>
18#include <linux/spinlock.h>
19#include <linux/notifier.h>
20
21/*
22 * All voltages, currents, charges, energies, time and temperatures in uV,
23 * ��A, ��Ah, ��Wh, seconds and tenths of degree Celsius unless otherwise
24 * stated. It's driver's job to convert its raw values to units in which
25 * this class operates.
26 */
27
28/*
29 * For systems where the charger determines the maximum battery capacity
30 * the min and max fields should be used to present these values to user
31 * space. Unused/unknown fields will not appear in sysfs.
32 */
33
34enum {
35	POWER_SUPPLY_STATUS_UNKNOWN = 0,
36	POWER_SUPPLY_STATUS_CHARGING,
37	POWER_SUPPLY_STATUS_DISCHARGING,
38	POWER_SUPPLY_STATUS_NOT_CHARGING,
39	POWER_SUPPLY_STATUS_FULL,
40};
41
42/* What algorithm is the charger using? */
43enum {
44	POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
45	POWER_SUPPLY_CHARGE_TYPE_NONE,
46	POWER_SUPPLY_CHARGE_TYPE_TRICKLE,	/* slow speed */
47	POWER_SUPPLY_CHARGE_TYPE_FAST,		/* fast speed */
48	POWER_SUPPLY_CHARGE_TYPE_STANDARD,	/* normal speed */
49	POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE,	/* dynamically adjusted speed */
50	POWER_SUPPLY_CHARGE_TYPE_CUSTOM,	/* use CHARGE_CONTROL_* props */
51	POWER_SUPPLY_CHARGE_TYPE_LONGLIFE,	/* slow speed, longer life */
52	POWER_SUPPLY_CHARGE_TYPE_BYPASS,	/* bypassing the charger */
53};
54
55enum {
56	POWER_SUPPLY_HEALTH_UNKNOWN = 0,
57	POWER_SUPPLY_HEALTH_GOOD,
58	POWER_SUPPLY_HEALTH_OVERHEAT,
59	POWER_SUPPLY_HEALTH_DEAD,
60	POWER_SUPPLY_HEALTH_OVERVOLTAGE,
61	POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
62	POWER_SUPPLY_HEALTH_COLD,
63	POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
64	POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
65	POWER_SUPPLY_HEALTH_OVERCURRENT,
66	POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
67	POWER_SUPPLY_HEALTH_WARM,
68	POWER_SUPPLY_HEALTH_COOL,
69	POWER_SUPPLY_HEALTH_HOT,
70	POWER_SUPPLY_HEALTH_NO_BATTERY,
71};
72
73enum {
74	POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
75	POWER_SUPPLY_TECHNOLOGY_NiMH,
76	POWER_SUPPLY_TECHNOLOGY_LION,
77	POWER_SUPPLY_TECHNOLOGY_LIPO,
78	POWER_SUPPLY_TECHNOLOGY_LiFe,
79	POWER_SUPPLY_TECHNOLOGY_NiCd,
80	POWER_SUPPLY_TECHNOLOGY_LiMn,
81};
82
83enum {
84	POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
85	POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
86	POWER_SUPPLY_CAPACITY_LEVEL_LOW,
87	POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
88	POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
89	POWER_SUPPLY_CAPACITY_LEVEL_FULL,
90};
91
92enum {
93	POWER_SUPPLY_SCOPE_UNKNOWN = 0,
94	POWER_SUPPLY_SCOPE_SYSTEM,
95	POWER_SUPPLY_SCOPE_DEVICE,
96};
97
98enum power_supply_property {
99	/* Properties of type `int' */
100	POWER_SUPPLY_PROP_STATUS = 0,
101	POWER_SUPPLY_PROP_CHARGE_TYPE,
102	POWER_SUPPLY_PROP_HEALTH,
103	POWER_SUPPLY_PROP_PRESENT,
104	POWER_SUPPLY_PROP_ONLINE,
105	POWER_SUPPLY_PROP_AUTHENTIC,
106	POWER_SUPPLY_PROP_TECHNOLOGY,
107	POWER_SUPPLY_PROP_CYCLE_COUNT,
108	POWER_SUPPLY_PROP_VOLTAGE_MAX,
109	POWER_SUPPLY_PROP_VOLTAGE_MIN,
110	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
111	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
112	POWER_SUPPLY_PROP_VOLTAGE_NOW,
113	POWER_SUPPLY_PROP_VOLTAGE_AVG,
114	POWER_SUPPLY_PROP_VOLTAGE_OCV,
115	POWER_SUPPLY_PROP_VOLTAGE_BOOT,
116	POWER_SUPPLY_PROP_CURRENT_MAX,
117	POWER_SUPPLY_PROP_CURRENT_NOW,
118	POWER_SUPPLY_PROP_CURRENT_AVG,
119	POWER_SUPPLY_PROP_CURRENT_BOOT,
120	POWER_SUPPLY_PROP_POWER_NOW,
121	POWER_SUPPLY_PROP_POWER_AVG,
122	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
123	POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
124	POWER_SUPPLY_PROP_CHARGE_FULL,
125	POWER_SUPPLY_PROP_CHARGE_EMPTY,
126	POWER_SUPPLY_PROP_CHARGE_NOW,
127	POWER_SUPPLY_PROP_CHARGE_AVG,
128	POWER_SUPPLY_PROP_CHARGE_COUNTER,
129	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
130	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
131	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
132	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
133	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
134	POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
135	POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
136	POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
137	POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
138	POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
139	POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
140	POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
141	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
142	POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
143	POWER_SUPPLY_PROP_ENERGY_FULL,
144	POWER_SUPPLY_PROP_ENERGY_EMPTY,
145	POWER_SUPPLY_PROP_ENERGY_NOW,
146	POWER_SUPPLY_PROP_ENERGY_AVG,
147	POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
148	POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
149	POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
150	POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
151	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
152	POWER_SUPPLY_PROP_TEMP,
153	POWER_SUPPLY_PROP_TEMP_MAX,
154	POWER_SUPPLY_PROP_TEMP_MIN,
155	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
156	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
157	POWER_SUPPLY_PROP_TEMP_AMBIENT,
158	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
159	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
160	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
161	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
162	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
163	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
164	POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
165	POWER_SUPPLY_PROP_USB_TYPE,
166	POWER_SUPPLY_PROP_SCOPE,
167	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
168	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
169	POWER_SUPPLY_PROP_CALIBRATE,
170	POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
171	POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
172	POWER_SUPPLY_PROP_MANUFACTURE_DAY,
173	/* Properties of type `const char *' */
174	POWER_SUPPLY_PROP_MODEL_NAME,
175	POWER_SUPPLY_PROP_MANUFACTURER,
176	POWER_SUPPLY_PROP_SERIAL_NUMBER,
177};
178
179enum power_supply_type {
180	POWER_SUPPLY_TYPE_UNKNOWN = 0,
181	POWER_SUPPLY_TYPE_BATTERY,
182	POWER_SUPPLY_TYPE_UPS,
183	POWER_SUPPLY_TYPE_MAINS,
184	POWER_SUPPLY_TYPE_USB,			/* Standard Downstream Port */
185	POWER_SUPPLY_TYPE_USB_DCP,		/* Dedicated Charging Port */
186	POWER_SUPPLY_TYPE_USB_CDP,		/* Charging Downstream Port */
187	POWER_SUPPLY_TYPE_USB_ACA,		/* Accessory Charger Adapters */
188	POWER_SUPPLY_TYPE_USB_TYPE_C,		/* Type C Port */
189	POWER_SUPPLY_TYPE_USB_PD,		/* Power Delivery Port */
190	POWER_SUPPLY_TYPE_USB_PD_DRP,		/* PD Dual Role Port */
191	POWER_SUPPLY_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
192	POWER_SUPPLY_TYPE_WIRELESS,		/* Wireless */
193};
194
195enum power_supply_usb_type {
196	POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
197	POWER_SUPPLY_USB_TYPE_SDP,		/* Standard Downstream Port */
198	POWER_SUPPLY_USB_TYPE_DCP,		/* Dedicated Charging Port */
199	POWER_SUPPLY_USB_TYPE_CDP,		/* Charging Downstream Port */
200	POWER_SUPPLY_USB_TYPE_ACA,		/* Accessory Charger Adapters */
201	POWER_SUPPLY_USB_TYPE_C,		/* Type C Port */
202	POWER_SUPPLY_USB_TYPE_PD,		/* Power Delivery Port */
203	POWER_SUPPLY_USB_TYPE_PD_DRP,		/* PD Dual Role Port */
204	POWER_SUPPLY_USB_TYPE_PD_PPS,		/* PD Programmable Power Supply */
205	POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID,	/* Apple Charging Method */
206};
207
208enum power_supply_charge_behaviour {
209	POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
210	POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
211	POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
212};
213
214enum power_supply_notifier_events {
215	PSY_EVENT_PROP_CHANGED,
216};
217
218union power_supply_propval {
219	int intval;
220	const char *strval;
221};
222
223struct device_node;
224struct power_supply;
225
226/* Run-time specific power supply configuration */
227struct power_supply_config {
228	struct device_node *of_node;
229	struct fwnode_handle *fwnode;
230
231	/* Driver private data */
232	void *drv_data;
233
234	/* Device specific sysfs attributes */
235	const struct attribute_group **attr_grp;
236
237	char **supplied_to;
238	size_t num_supplicants;
239};
240
241/* Description of power supply */
242struct power_supply_desc {
243	const char *name;
244	enum power_supply_type type;
245	u8 charge_behaviours;
246	const enum power_supply_usb_type *usb_types;
247	size_t num_usb_types;
248	const enum power_supply_property *properties;
249	size_t num_properties;
250
251	/*
252	 * Functions for drivers implementing power supply class.
253	 * These shouldn't be called directly by other drivers for accessing
254	 * this power supply. Instead use power_supply_*() functions (for
255	 * example power_supply_get_property()).
256	 */
257	int (*get_property)(struct power_supply *psy,
258			    enum power_supply_property psp,
259			    union power_supply_propval *val);
260	int (*set_property)(struct power_supply *psy,
261			    enum power_supply_property psp,
262			    const union power_supply_propval *val);
263	/*
264	 * property_is_writeable() will be called during registration
265	 * of power supply. If this happens during device probe then it must
266	 * not access internal data of device (because probe did not end).
267	 */
268	int (*property_is_writeable)(struct power_supply *psy,
269				     enum power_supply_property psp);
270	void (*external_power_changed)(struct power_supply *psy);
271	void (*set_charged)(struct power_supply *psy);
272
273	/*
274	 * Set if thermal zone should not be created for this power supply.
275	 * For example for virtual supplies forwarding calls to actual
276	 * sensors or other supplies.
277	 */
278	bool no_thermal;
279	/* For APM emulation, think legacy userspace. */
280	int use_for_apm;
281};
282
283struct power_supply {
284	const struct power_supply_desc *desc;
285
286	char **supplied_to;
287	size_t num_supplicants;
288
289	char **supplied_from;
290	size_t num_supplies;
291	struct device_node *of_node;
292
293	/* Driver private data */
294	void *drv_data;
295
296	/* private */
297	struct device dev;
298	struct work_struct changed_work;
299	struct delayed_work deferred_register_work;
300	spinlock_t changed_lock;
301	bool changed;
302	bool initialized;
303	bool removing;
304	atomic_t use_cnt;
305	struct power_supply_battery_info *battery_info;
306#ifdef CONFIG_THERMAL
307	struct thermal_zone_device *tzd;
308	struct thermal_cooling_device *tcd;
309#endif
310
311#ifdef CONFIG_LEDS_TRIGGERS
312	struct led_trigger *charging_full_trig;
313	char *charging_full_trig_name;
314	struct led_trigger *charging_trig;
315	char *charging_trig_name;
316	struct led_trigger *full_trig;
317	char *full_trig_name;
318	struct led_trigger *online_trig;
319	char *online_trig_name;
320	struct led_trigger *charging_blink_full_solid_trig;
321	char *charging_blink_full_solid_trig_name;
322#endif
323};
324
325/*
326 * This is recommended structure to specify static power supply parameters.
327 * Generic one, parametrizable for different power supplies. Power supply
328 * class itself does not use it, but that's what implementing most platform
329 * drivers, should try reuse for consistency.
330 */
331
332struct power_supply_info {
333	const char *name;
334	int technology;
335	int voltage_max_design;
336	int voltage_min_design;
337	int charge_full_design;
338	int charge_empty_design;
339	int energy_full_design;
340	int energy_empty_design;
341	int use_for_apm;
342};
343
344struct power_supply_battery_ocv_table {
345	int ocv;	/* microVolts */
346	int capacity;	/* percent */
347};
348
349struct power_supply_resistance_temp_table {
350	int temp;	/* celsius */
351	int resistance;	/* internal resistance percent */
352};
353
354struct power_supply_vbat_ri_table {
355	int vbat_uv;	/* Battery voltage in microvolt */
356	int ri_uohm;	/* Internal resistance in microohm */
357};
358
359/**
360 * struct power_supply_maintenance_charge_table - setting for maintenace charging
361 * @charge_current_max_ua: maintenance charging current that is used to keep
362 *   the charge of the battery full as current is consumed after full charging.
363 *   The corresponding charge_voltage_max_uv is used as a safeguard: when we
364 *   reach this voltage the maintenance charging current is turned off. It is
365 *   turned back on if we fall below this voltage.
366 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
367 *   lower than the constant_charge_voltage_max_uv. We can apply this settings
368 *   charge_current_max_ua until we get back up to this voltage.
369 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
370 *   time in minutes. We will only use maintenance charging in this setting
371 *   for a certain amount of time, then we will first move to the next
372 *   maintenance charge current and voltage pair in respective array and wait
373 *   for the next safety timer timeout, or, if we reached the last maintencance
374 *   charging setting, disable charging until we reach
375 *   charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
376 *   These timers should be chosen to align with the typical discharge curve
377 *   for the battery.
378 *
379 * Ordinary CC/CV charging will stop charging when the charge current goes
380 * below charge_term_current_ua, and then restart it (if the device is still
381 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
382 * consumer products because the power usage while connected to a charger is
383 * not zero, and devices are not manufactured to draw power directly from the
384 * charger: instead they will at all times dissipate the battery a little, like
385 * the power used in standby mode. This will over time give a charge graph
386 * such as this:
387 *
388 * Energy
389 *  ^      ...        ...      ...      ...      ...      ...      ...
390 *  |    .   .       .  .     .  .     .  .     .  .     .  .     .
391 *  |  ..     .   ..     .  ..    .  ..    .  ..    .  ..    .  ..
392 *  |.          ..        ..       ..       ..       ..       ..
393 *  +-------------------------------------------------------------------> t
394 *
395 * Practically this means that the Li-ions are wandering back and forth in the
396 * battery and this causes degeneration of the battery anode and cathode.
397 * To prolong the life of the battery, maintenance charging is applied after
398 * reaching charge_term_current_ua to hold up the charge in the battery while
399 * consuming power, thus lowering the wear on the battery:
400 *
401 * Energy
402 *  ^      .......................................
403 *  |    .                                        ......................
404 *  |  ..
405 *  |.
406 *  +-------------------------------------------------------------------> t
407 *
408 * Maintenance charging uses the voltages from this table: a table of settings
409 * is traversed using a slightly lower current and voltage than what is used for
410 * CC/CV charging. The maintenance charging will for safety reasons not go on
411 * indefinately: we lower the current and voltage with successive maintenance
412 * settings, then disable charging completely after we reach the last one,
413 * and after that we do not restart charging until we reach
414 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
415 * ordinary CC/CV charging from there.
416 *
417 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
418 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
419 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
420 * After this the charge cycle is restarted waiting for
421 * charge_restart_voltage_uv.
422 *
423 * For most mobile electronics this type of maintenance charging is enough for
424 * the user to disconnect the device and make use of it before both maintenance
425 * charging cycles are complete, if the current and voltage has been chosen
426 * appropriately. These need to be determined from battery discharge curves
427 * and expected standby current.
428 *
429 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
430 * charging, ordinary CC/CV charging is restarted. This can happen if the
431 * device is e.g. actively used during charging, so more current is drawn than
432 * the expected stand-by current. Also overvoltage protection will be applied
433 * as usual.
434 */
435struct power_supply_maintenance_charge_table {
436	int charge_current_max_ua;
437	int charge_voltage_max_uv;
438	int charge_safety_timer_minutes;
439};
440
441#define POWER_SUPPLY_OCV_TEMP_MAX 20
442
443/**
444 * struct power_supply_battery_info - information about batteries
445 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
446 * @energy_full_design_uwh: energy content when fully charged in microwatt
447 *   hours
448 * @charge_full_design_uah: charge content when fully charged in microampere
449 *   hours
450 * @voltage_min_design_uv: minimum voltage across the poles when the battery
451 *   is at minimum voltage level in microvolts. If the voltage drops below this
452 *   level the battery will need precharging when using CC/CV charging.
453 * @voltage_max_design_uv: voltage across the poles when the battery is fully
454 *   charged in microvolts. This is the "nominal voltage" i.e. the voltage
455 *   printed on the label of the battery.
456 * @tricklecharge_current_ua: the tricklecharge current used when trickle
457 *   charging the battery in microamperes. This is the charging phase when the
458 *   battery is completely empty and we need to carefully trickle in some
459 *   charge until we reach the precharging voltage.
460 * @precharge_current_ua: current to use in the precharge phase in microamperes,
461 *   the precharge rate is limited by limiting the current to this value.
462 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
463 *   microvolts. When we pass this voltage we will nominally switch over to the
464 *   CC (constant current) charging phase defined by constant_charge_current_ua
465 *   and constant_charge_voltage_max_uv.
466 * @charge_term_current_ua: when the current in the CV (constant voltage)
467 *   charging phase drops below this value in microamperes the charging will
468 *   terminate completely and not restart until the voltage over the battery
469 *   poles reach charge_restart_voltage_uv unless we use maintenance charging.
470 * @charge_restart_voltage_uv: when the battery has been fully charged by
471 *   CC/CV charging and charging has been disabled, and the voltage subsequently
472 *   drops below this value in microvolts, the charging will be restarted
473 *   (typically using CV charging).
474 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
475 *   voltage_max_design_uv and we reach this voltage level, all charging must
476 *   stop and emergency procedures take place, such as shutting down the system
477 *   in some cases.
478 * @constant_charge_current_max_ua: current in microamperes to use in the CC
479 *   (constant current) charging phase. The charging rate is limited
480 *   by this current. This is the main charging phase and as the current is
481 *   constant into the battery the voltage slowly ascends to
482 *   constant_charge_voltage_max_uv.
483 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
484 *   the CC (constant current) charging phase and the beginning of the CV
485 *   (constant voltage) charging phase.
486 * @maintenance_charge: an array of maintenance charging settings to be used
487 *   after the main CC/CV charging phase is complete.
488 * @maintenance_charge_size: the number of maintenance charging settings in
489 *   maintenance_charge.
490 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
491 *   enters low alert temperature, i.e. if the internal temperature is between
492 *   temp_alert_min and temp_min. No matter the charging phase, this
493 *   and alert_high_temp_charge_voltage_uv will be applied.
494 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
495 *   but for the charging voltage.
496 * @alert_high_temp_charge_current_ua: The charging current to use if the
497 *   battery enters high alert temperature, i.e. if the internal temperature is
498 *   between temp_alert_max and temp_max. No matter the charging phase, this
499 *   and alert_high_temp_charge_voltage_uv will be applied, usually lowering
500 *   the charging current as an evasive manouver.
501 * @alert_high_temp_charge_voltage_uv: Same as
502 *   alert_high_temp_charge_current_ua, but for the charging voltage.
503 * @factory_internal_resistance_uohm: the internal resistance of the battery
504 *   at fabrication time, expressed in microohms. This resistance will vary
505 *   depending on the lifetime and charge of the battery, so this is just a
506 *   nominal ballpark figure. This internal resistance is given for the state
507 *   when the battery is discharging.
508 * @factory_internal_resistance_charging_uohm: the internal resistance of the
509 *   battery at fabrication time while charging, expressed in microohms.
510 *   The charging process will affect the internal resistance of the battery
511 *   so this value provides a better resistance under these circumstances.
512 *   This resistance will vary depending on the lifetime and charge of the
513 *   battery, so this is just a nominal ballpark figure.
514 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
515 *   temperature indices. This is an array of temperatures in degrees Celsius
516 *   indicating which capacity table to use for a certain temperature, since
517 *   the capacity for reasons of chemistry will be different at different
518 *   temperatures. Determining capacity is a multivariate problem and the
519 *   temperature is the first variable we determine.
520 * @temp_ambient_alert_min: the battery will go outside of operating conditions
521 *   when the ambient temperature goes below this temperature in degrees
522 *   Celsius.
523 * @temp_ambient_alert_max: the battery will go outside of operating conditions
524 *   when the ambient temperature goes above this temperature in degrees
525 *   Celsius.
526 * @temp_alert_min: the battery should issue an alert if the internal
527 *   temperature goes below this temperature in degrees Celsius.
528 * @temp_alert_max: the battery should issue an alert if the internal
529 *   temperature goes above this temperature in degrees Celsius.
530 * @temp_min: the battery will go outside of operating conditions when
531 *   the internal temperature goes below this temperature in degrees Celsius.
532 *   Normally this means the system should shut down.
533 * @temp_max: the battery will go outside of operating conditions when
534 *   the internal temperature goes above this temperature in degrees Celsius.
535 *   Normally this means the system should shut down.
536 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
537 *   ocv_table and a size for each entry in ocv_table_size. These arrays
538 *   determine the capacity in percent in relation to the voltage in microvolts
539 *   at the indexed temperature.
540 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
541 *   each entry in the array of capacity arrays in ocv_table.
542 * @resist_table: this is a table that correlates a battery temperature to the
543 *   expected internal resistance at this temperature. The resistance is given
544 *   as a percentage of factory_internal_resistance_uohm. Knowing the
545 *   resistance of the battery is usually necessary for calculating the open
546 *   circuit voltage (OCV) that is then used with the ocv_table to calculate
547 *   the capacity of the battery. The resist_table must be ordered descending
548 *   by temperature: highest temperature with lowest resistance first, lowest
549 *   temperature with highest resistance last.
550 * @resist_table_size: the number of items in the resist_table.
551 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
552 *   to internal resistance (Ri). The resistance is given in microohm for the
553 *   corresponding voltage in microvolts. The internal resistance is used to
554 *   determine the open circuit voltage so that we can determine the capacity
555 *   of the battery. These voltages to resistance tables apply when the battery
556 *   is discharging. The table must be ordered descending by voltage: highest
557 *   voltage first.
558 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
559 *   table.
560 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
561 *   when the battery is charging. Being under charge changes the battery's
562 *   internal resistance characteristics so a separate table is needed.*
563 *   The table must be ordered descending by voltage: highest voltage first.
564 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
565 *   table.
566 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
567 *   in ohms for this battery, if an identification resistor is mounted
568 *   between a third battery terminal and ground. This scheme is used by a lot
569 *   of mobile device batteries.
570 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
571 *   for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
572 *   tolerance is 10% we will detect a proper battery if the BTI resistance
573 *   is between 6300 and 7700 Ohm.
574 *
575 * This is the recommended struct to manage static battery parameters,
576 * populated by power_supply_get_battery_info(). Most platform drivers should
577 * use these for consistency.
578 *
579 * Its field names must correspond to elements in enum power_supply_property.
580 * The default field value is -EINVAL or NULL for pointers.
581 *
582 * CC/CV CHARGING:
583 *
584 * The charging parameters here assume a CC/CV charging scheme. This method
585 * is most common with Lithium Ion batteries (other methods are possible) and
586 * looks as follows:
587 *
588 * ^ Battery voltage
589 * |                                               --- overvoltage_limit_uv
590 * |
591 * |                    ...................................................
592 * |                 .. constant_charge_voltage_max_uv
593 * |              ..
594 * |             .
595 * |            .
596 * |           .
597 * |          .
598 * |         .
599 * |     .. precharge_voltage_max_uv
600 * |  ..
601 * |. (trickle charging)
602 * +------------------------------------------------------------------> time
603 *
604 * ^ Current into the battery
605 * |
606 * |      ............. constant_charge_current_max_ua
607 * |      .            .
608 * |      .             .
609 * |      .              .
610 * |      .               .
611 * |      .                ..
612 * |      .                  ....
613 * |      .                       .....
614 * |    ... precharge_current_ua       .......  charge_term_current_ua
615 * |    .                                    .
616 * |    .                                    .
617 * |.... tricklecharge_current_ua            .
618 * |                                         .
619 * +-----------------------------------------------------------------> time
620 *
621 * These diagrams are synchronized on time and the voltage and current
622 * follow each other.
623 *
624 * With CC/CV charging commence over time like this for an empty battery:
625 *
626 * 1. When the battery is completely empty it may need to be charged with
627 *    an especially small current so that electrons just "trickle in",
628 *    this is the tricklecharge_current_ua.
629 *
630 * 2. Next a small initial pre-charge current (precharge_current_ua)
631 *    is applied if the voltage is below precharge_voltage_max_uv until we
632 *    reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
633 *    to as "trickle charging" but the use in the Linux kernel is different
634 *    see below!
635 *
636 * 3. Then the main charging current is applied, which is called the constant
637 *    current (CC) phase. A current regulator is set up to allow
638 *    constant_charge_current_max_ua of current to flow into the battery.
639 *    The chemical reaction in the battery will make the voltage go up as
640 *    charge goes into the battery. This current is applied until we reach
641 *    the constant_charge_voltage_max_uv voltage.
642 *
643 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
644 *    means we allow current to go into the battery, but we keep the voltage
645 *    fixed. This current will continue to charge the battery while keeping
646 *    the voltage the same. A chemical reaction in the battery goes on
647 *    storing energy without affecting the voltage. Over time the current
648 *    will slowly drop and when we reach charge_term_current_ua we will
649 *    end the constant voltage phase.
650 *
651 * After this the battery is fully charged, and if we do not support maintenance
652 * charging, the charging will not restart until power dissipation makes the
653 * voltage fall so that we reach charge_restart_voltage_uv and at this point
654 * we restart charging at the appropriate phase, usually this will be inside
655 * the CV phase.
656 *
657 * If we support maintenance charging the voltage is however kept high after
658 * the CV phase with a very low current. This is meant to let the same charge
659 * go in for usage while the charger is still connected, mainly for
660 * dissipation for the power consuming entity while connected to the
661 * charger.
662 *
663 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
664 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
665 * explosions.
666 *
667 * DETERMINING BATTERY CAPACITY:
668 *
669 * Several members of the struct deal with trying to determine the remaining
670 * capacity in the battery, usually as a percentage of charge. In practice
671 * many chargers uses a so-called fuel gauge or coloumb counter that measure
672 * how much charge goes into the battery and how much goes out (+/- leak
673 * consumption). This does not help if we do not know how much capacity the
674 * battery has to begin with, such as when it is first used or was taken out
675 * and charged in a separate charger. Therefore many capacity algorithms use
676 * the open circuit voltage with a look-up table to determine the rough
677 * capacity of the battery. The open circuit voltage can be conceptualized
678 * with an ideal voltage source (V) in series with an internal resistance (Ri)
679 * like this:
680 *
681 *      +-------> IBAT >----------------+
682 *      |                    ^          |
683 *     [ ] Ri                |          |
684 *      |                    | VBAT     |
685 *      o <----------        |          |
686 *     +|           ^        |         [ ] Rload
687 *    .---.         |        |          |
688 *    | V |         | OCV    |          |
689 *    '---'         |        |          |
690 *      |           |        |          |
691 *  GND +-------------------------------+
692 *
693 * If we disconnect the load (here simplified as a fixed resistance Rload)
694 * and measure VBAT with a infinite impedance voltage meter we will get
695 * VBAT = OCV and this assumption is sometimes made even under load, assuming
696 * Rload is insignificant. However this will be of dubious quality because the
697 * load is rarely that small and Ri is strongly nonlinear depending on
698 * temperature and how much capacity is left in the battery due to the
699 * chemistry involved.
700 *
701 * In many practical applications we cannot just disconnect the battery from
702 * the load, so instead we often try to measure the instantaneous IBAT (the
703 * current out from the battery), estimate the Ri and thus calculate the
704 * voltage drop over Ri and compensate like this:
705 *
706 *   OCV = VBAT - (IBAT * Ri)
707 *
708 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
709 * (by interpolation) the Ri from the VBAT under load. These curves are highly
710 * nonlinear and may need many datapoints but can be found in datasheets for
711 * some batteries. This gives the compensated open circuit voltage (OCV) for
712 * the battery even under load. Using this method will also compensate for
713 * temperature changes in the environment: this will also make the internal
714 * resistance change, and it will affect the VBAT under load, so correlating
715 * VBAT to Ri takes both remaining capacity and temperature into consideration.
716 *
717 * Alternatively a manufacturer can specify how the capacity of the battery
718 * is dependent on the battery temperature which is the main factor affecting
719 * Ri. As we know all checmical reactions are faster when it is warm and slower
720 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
721 * voltage drops too low for example. This effect is also highly nonlinear and
722 * the purpose of the table resist_table: this will take a temperature and
723 * tell us how big percentage of Ri the specified temperature correlates to.
724 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
725 * Celsius.
726 *
727 * The power supply class itself doesn't use this struct as of now.
728 */
729
730struct power_supply_battery_info {
731	unsigned int technology;
732	int energy_full_design_uwh;
733	int charge_full_design_uah;
734	int voltage_min_design_uv;
735	int voltage_max_design_uv;
736	int tricklecharge_current_ua;
737	int precharge_current_ua;
738	int precharge_voltage_max_uv;
739	int charge_term_current_ua;
740	int charge_restart_voltage_uv;
741	int overvoltage_limit_uv;
742	int constant_charge_current_max_ua;
743	int constant_charge_voltage_max_uv;
744	struct power_supply_maintenance_charge_table *maintenance_charge;
745	int maintenance_charge_size;
746	int alert_low_temp_charge_current_ua;
747	int alert_low_temp_charge_voltage_uv;
748	int alert_high_temp_charge_current_ua;
749	int alert_high_temp_charge_voltage_uv;
750	int factory_internal_resistance_uohm;
751	int factory_internal_resistance_charging_uohm;
752	int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
753	int temp_ambient_alert_min;
754	int temp_ambient_alert_max;
755	int temp_alert_min;
756	int temp_alert_max;
757	int temp_min;
758	int temp_max;
759	struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
760	int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
761	struct power_supply_resistance_temp_table *resist_table;
762	int resist_table_size;
763	struct power_supply_vbat_ri_table *vbat2ri_discharging;
764	int vbat2ri_discharging_size;
765	struct power_supply_vbat_ri_table *vbat2ri_charging;
766	int vbat2ri_charging_size;
767	int bti_resistance_ohm;
768	int bti_resistance_tolerance;
769};
770
771extern int power_supply_reg_notifier(struct notifier_block *nb);
772extern void power_supply_unreg_notifier(struct notifier_block *nb);
773#if IS_ENABLED(CONFIG_POWER_SUPPLY)
774extern struct power_supply *power_supply_get_by_name(const char *name);
775extern void power_supply_put(struct power_supply *psy);
776#else
777static inline void power_supply_put(struct power_supply *psy) {}
778static inline struct power_supply *power_supply_get_by_name(const char *name)
779{ return NULL; }
780#endif
781#ifdef CONFIG_OF
782extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
783							const char *property);
784extern struct power_supply *devm_power_supply_get_by_phandle(
785				    struct device *dev, const char *property);
786#else /* !CONFIG_OF */
787static inline struct power_supply *
788power_supply_get_by_phandle(struct device_node *np, const char *property)
789{ return NULL; }
790static inline struct power_supply *
791devm_power_supply_get_by_phandle(struct device *dev, const char *property)
792{ return NULL; }
793#endif /* CONFIG_OF */
794
795extern const enum power_supply_property power_supply_battery_info_properties[];
796extern const size_t power_supply_battery_info_properties_size;
797extern int power_supply_get_battery_info(struct power_supply *psy,
798					 struct power_supply_battery_info **info_out);
799extern void power_supply_put_battery_info(struct power_supply *psy,
800					  struct power_supply_battery_info *info);
801extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
802					       enum power_supply_property psp);
803extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
804					      enum power_supply_property psp,
805					      union power_supply_propval *val);
806extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
807				       int table_len, int ocv);
808extern struct power_supply_battery_ocv_table *
809power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
810				int temp, int *table_len);
811extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
812					int ocv, int temp);
813extern int
814power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
815				int table_len, int temp);
816extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
817				int vbat_uv, bool charging);
818extern struct power_supply_maintenance_charge_table *
819power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
820extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
821					      int resistance);
822extern void power_supply_changed(struct power_supply *psy);
823extern int power_supply_am_i_supplied(struct power_supply *psy);
824int power_supply_get_property_from_supplier(struct power_supply *psy,
825					    enum power_supply_property psp,
826					    union power_supply_propval *val);
827extern int power_supply_set_battery_charged(struct power_supply *psy);
828
829static inline bool
830power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
831{
832	struct power_supply_maintenance_charge_table *mt;
833
834	mt = power_supply_get_maintenance_charging_setting(info, 0);
835
836	return (mt != NULL);
837}
838
839static inline bool
840power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
841{
842	return ((info->vbat2ri_discharging != NULL) &&
843		info->vbat2ri_discharging_size > 0);
844}
845
846static inline bool
847power_supply_supports_temp2ri(struct power_supply_battery_info *info)
848{
849	return ((info->resist_table != NULL) &&
850		info->resist_table_size > 0);
851}
852
853#ifdef CONFIG_POWER_SUPPLY
854extern int power_supply_is_system_supplied(void);
855#else
856static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
857#endif
858
859extern int power_supply_get_property(struct power_supply *psy,
860			    enum power_supply_property psp,
861			    union power_supply_propval *val);
862#if IS_ENABLED(CONFIG_POWER_SUPPLY)
863extern int power_supply_set_property(struct power_supply *psy,
864			    enum power_supply_property psp,
865			    const union power_supply_propval *val);
866#else
867static inline int power_supply_set_property(struct power_supply *psy,
868			    enum power_supply_property psp,
869			    const union power_supply_propval *val)
870{ return 0; }
871#endif
872extern int power_supply_property_is_writeable(struct power_supply *psy,
873					enum power_supply_property psp);
874extern void power_supply_external_power_changed(struct power_supply *psy);
875
876extern struct power_supply *__must_check
877power_supply_register(struct device *parent,
878				 const struct power_supply_desc *desc,
879				 const struct power_supply_config *cfg);
880extern struct power_supply *__must_check
881power_supply_register_no_ws(struct device *parent,
882				 const struct power_supply_desc *desc,
883				 const struct power_supply_config *cfg);
884extern struct power_supply *__must_check
885devm_power_supply_register(struct device *parent,
886				 const struct power_supply_desc *desc,
887				 const struct power_supply_config *cfg);
888extern struct power_supply *__must_check
889devm_power_supply_register_no_ws(struct device *parent,
890				 const struct power_supply_desc *desc,
891				 const struct power_supply_config *cfg);
892extern void power_supply_unregister(struct power_supply *psy);
893extern int power_supply_powers(struct power_supply *psy, struct device *dev);
894
895#define to_power_supply(device) container_of(device, struct power_supply, dev)
896
897extern void *power_supply_get_drvdata(struct power_supply *psy);
898extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data));
899
900static inline bool power_supply_is_amp_property(enum power_supply_property psp)
901{
902	switch (psp) {
903	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
904	case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
905	case POWER_SUPPLY_PROP_CHARGE_FULL:
906	case POWER_SUPPLY_PROP_CHARGE_EMPTY:
907	case POWER_SUPPLY_PROP_CHARGE_NOW:
908	case POWER_SUPPLY_PROP_CHARGE_AVG:
909	case POWER_SUPPLY_PROP_CHARGE_COUNTER:
910	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
911	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
912	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
913	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
914	case POWER_SUPPLY_PROP_CURRENT_MAX:
915	case POWER_SUPPLY_PROP_CURRENT_NOW:
916	case POWER_SUPPLY_PROP_CURRENT_AVG:
917	case POWER_SUPPLY_PROP_CURRENT_BOOT:
918		return true;
919	default:
920		break;
921	}
922
923	return false;
924}
925
926static inline bool power_supply_is_watt_property(enum power_supply_property psp)
927{
928	switch (psp) {
929	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
930	case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
931	case POWER_SUPPLY_PROP_ENERGY_FULL:
932	case POWER_SUPPLY_PROP_ENERGY_EMPTY:
933	case POWER_SUPPLY_PROP_ENERGY_NOW:
934	case POWER_SUPPLY_PROP_ENERGY_AVG:
935	case POWER_SUPPLY_PROP_VOLTAGE_MAX:
936	case POWER_SUPPLY_PROP_VOLTAGE_MIN:
937	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
938	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
939	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
940	case POWER_SUPPLY_PROP_VOLTAGE_AVG:
941	case POWER_SUPPLY_PROP_VOLTAGE_OCV:
942	case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
943	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
944	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
945	case POWER_SUPPLY_PROP_POWER_NOW:
946		return true;
947	default:
948		break;
949	}
950
951	return false;
952}
953
954#ifdef CONFIG_POWER_SUPPLY_HWMON
955int power_supply_add_hwmon_sysfs(struct power_supply *psy);
956void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
957#else
958static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
959{
960	return 0;
961}
962
963static inline
964void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
965#endif
966
967#ifdef CONFIG_SYSFS
968ssize_t power_supply_charge_behaviour_show(struct device *dev,
969					   unsigned int available_behaviours,
970					   enum power_supply_charge_behaviour behaviour,
971					   char *buf);
972
973int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
974#else
975static inline
976ssize_t power_supply_charge_behaviour_show(struct device *dev,
977					   unsigned int available_behaviours,
978					   enum power_supply_charge_behaviour behaviour,
979					   char *buf)
980{
981	return -EOPNOTSUPP;
982}
983
984static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
985						      const char *buf)
986{
987	return -EOPNOTSUPP;
988}
989#endif
990
991#endif /* __LINUX_POWER_SUPPLY_H__ */
992