1/*
2 * Performance events:
3 *
4 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 *    Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29#define PERF_GUEST_ACTIVE	0x01
30#define PERF_GUEST_USER	0x02
31
32struct perf_guest_info_callbacks {
33	unsigned int			(*state)(void);
34	unsigned long			(*get_ip)(void);
35	unsigned int			(*handle_intel_pt_intr)(void);
36};
37
38#ifdef CONFIG_HAVE_HW_BREAKPOINT
39#include <linux/rhashtable-types.h>
40#include <asm/hw_breakpoint.h>
41#endif
42
43#include <linux/list.h>
44#include <linux/mutex.h>
45#include <linux/rculist.h>
46#include <linux/rcupdate.h>
47#include <linux/spinlock.h>
48#include <linux/hrtimer.h>
49#include <linux/fs.h>
50#include <linux/pid_namespace.h>
51#include <linux/workqueue.h>
52#include <linux/ftrace.h>
53#include <linux/cpu.h>
54#include <linux/irq_work.h>
55#include <linux/static_key.h>
56#include <linux/jump_label_ratelimit.h>
57#include <linux/atomic.h>
58#include <linux/sysfs.h>
59#include <linux/perf_regs.h>
60#include <linux/cgroup.h>
61#include <linux/refcount.h>
62#include <linux/security.h>
63#include <linux/static_call.h>
64#include <linux/lockdep.h>
65#include <asm/local.h>
66
67struct perf_callchain_entry {
68	__u64				nr;
69	__u64				ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70};
71
72struct perf_callchain_entry_ctx {
73	struct perf_callchain_entry *entry;
74	u32			    max_stack;
75	u32			    nr;
76	short			    contexts;
77	bool			    contexts_maxed;
78};
79
80typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81				     unsigned long off, unsigned long len);
82
83struct perf_raw_frag {
84	union {
85		struct perf_raw_frag	*next;
86		unsigned long		pad;
87	};
88	perf_copy_f			copy;
89	void				*data;
90	u32				size;
91} __packed;
92
93struct perf_raw_record {
94	struct perf_raw_frag		frag;
95	u32				size;
96};
97
98static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99{
100	return frag->pad < sizeof(u64);
101}
102
103/*
104 * branch stack layout:
105 *  nr: number of taken branches stored in entries[]
106 *  hw_idx: The low level index of raw branch records
107 *          for the most recent branch.
108 *          -1ULL means invalid/unknown.
109 *
110 * Note that nr can vary from sample to sample
111 * branches (to, from) are stored from most recent
112 * to least recent, i.e., entries[0] contains the most
113 * recent branch.
114 * The entries[] is an abstraction of raw branch records,
115 * which may not be stored in age order in HW, e.g. Intel LBR.
116 * The hw_idx is to expose the low level index of raw
117 * branch record for the most recent branch aka entries[0].
118 * The hw_idx index is between -1 (unknown) and max depth,
119 * which can be retrieved in /sys/devices/cpu/caps/branches.
120 * For the architectures whose raw branch records are
121 * already stored in age order, the hw_idx should be 0.
122 */
123struct perf_branch_stack {
124	__u64				nr;
125	__u64				hw_idx;
126	struct perf_branch_entry	entries[];
127};
128
129struct task_struct;
130
131/*
132 * extra PMU register associated with an event
133 */
134struct hw_perf_event_extra {
135	u64		config;	/* register value */
136	unsigned int	reg;	/* register address or index */
137	int		alloc;	/* extra register already allocated */
138	int		idx;	/* index in shared_regs->regs[] */
139};
140
141/**
142 * hw_perf_event::flag values
143 *
144 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145 * usage.
146 */
147#define PERF_EVENT_FLAG_ARCH			0x000fffff
148#define PERF_EVENT_FLAG_USER_READ_CNT		0x80000000
149
150static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152/**
153 * struct hw_perf_event - performance event hardware details:
154 */
155struct hw_perf_event {
156#ifdef CONFIG_PERF_EVENTS
157	union {
158		struct { /* hardware */
159			u64		config;
160			u64		last_tag;
161			unsigned long	config_base;
162			unsigned long	event_base;
163			int		event_base_rdpmc;
164			int		idx;
165			int		last_cpu;
166			int		flags;
167
168			struct hw_perf_event_extra extra_reg;
169			struct hw_perf_event_extra branch_reg;
170		};
171		struct { /* software */
172			struct hrtimer	hrtimer;
173		};
174		struct { /* tracepoint */
175			/* for tp_event->class */
176			struct list_head	tp_list;
177		};
178		struct { /* amd_power */
179			u64	pwr_acc;
180			u64	ptsc;
181		};
182#ifdef CONFIG_HAVE_HW_BREAKPOINT
183		struct { /* breakpoint */
184			/*
185			 * Crufty hack to avoid the chicken and egg
186			 * problem hw_breakpoint has with context
187			 * creation and event initalization.
188			 */
189			struct arch_hw_breakpoint	info;
190			struct rhlist_head		bp_list;
191		};
192#endif
193		struct { /* amd_iommu */
194			u8	iommu_bank;
195			u8	iommu_cntr;
196			u16	padding;
197			u64	conf;
198			u64	conf1;
199		};
200	};
201	/*
202	 * If the event is a per task event, this will point to the task in
203	 * question. See the comment in perf_event_alloc().
204	 */
205	struct task_struct		*target;
206
207	/*
208	 * PMU would store hardware filter configuration
209	 * here.
210	 */
211	void				*addr_filters;
212
213	/* Last sync'ed generation of filters */
214	unsigned long			addr_filters_gen;
215
216/*
217 * hw_perf_event::state flags; used to track the PERF_EF_* state.
218 */
219#define PERF_HES_STOPPED	0x01 /* the counter is stopped */
220#define PERF_HES_UPTODATE	0x02 /* event->count up-to-date */
221#define PERF_HES_ARCH		0x04
222
223	int				state;
224
225	/*
226	 * The last observed hardware counter value, updated with a
227	 * local64_cmpxchg() such that pmu::read() can be called nested.
228	 */
229	local64_t			prev_count;
230
231	/*
232	 * The period to start the next sample with.
233	 */
234	u64				sample_period;
235
236	union {
237		struct { /* Sampling */
238			/*
239			 * The period we started this sample with.
240			 */
241			u64				last_period;
242
243			/*
244			 * However much is left of the current period;
245			 * note that this is a full 64bit value and
246			 * allows for generation of periods longer
247			 * than hardware might allow.
248			 */
249			local64_t			period_left;
250		};
251		struct { /* Topdown events counting for context switch */
252			u64				saved_metric;
253			u64				saved_slots;
254		};
255	};
256
257	/*
258	 * State for throttling the event, see __perf_event_overflow() and
259	 * perf_adjust_freq_unthr_context().
260	 */
261	u64                             interrupts_seq;
262	u64				interrupts;
263
264	/*
265	 * State for freq target events, see __perf_event_overflow() and
266	 * perf_adjust_freq_unthr_context().
267	 */
268	u64				freq_time_stamp;
269	u64				freq_count_stamp;
270#endif
271};
272
273struct perf_event;
274struct perf_event_pmu_context;
275
276/*
277 * Common implementation detail of pmu::{start,commit,cancel}_txn
278 */
279#define PERF_PMU_TXN_ADD  0x1		/* txn to add/schedule event on PMU */
280#define PERF_PMU_TXN_READ 0x2		/* txn to read event group from PMU */
281
282/**
283 * pmu::capabilities flags
284 */
285#define PERF_PMU_CAP_NO_INTERRUPT		0x0001
286#define PERF_PMU_CAP_NO_NMI			0x0002
287#define PERF_PMU_CAP_AUX_NO_SG			0x0004
288#define PERF_PMU_CAP_EXTENDED_REGS		0x0008
289#define PERF_PMU_CAP_EXCLUSIVE			0x0010
290#define PERF_PMU_CAP_ITRACE			0x0020
291#define PERF_PMU_CAP_NO_EXCLUDE			0x0040
292#define PERF_PMU_CAP_AUX_OUTPUT			0x0080
293#define PERF_PMU_CAP_EXTENDED_HW_TYPE		0x0100
294
295struct perf_output_handle;
296
297#define PMU_NULL_DEV	((void *)(~0UL))
298
299/**
300 * struct pmu - generic performance monitoring unit
301 */
302struct pmu {
303	struct list_head		entry;
304
305	struct module			*module;
306	struct device			*dev;
307	struct device			*parent;
308	const struct attribute_group	**attr_groups;
309	const struct attribute_group	**attr_update;
310	const char			*name;
311	int				type;
312
313	/*
314	 * various common per-pmu feature flags
315	 */
316	int				capabilities;
317
318	int __percpu			*pmu_disable_count;
319	struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
320	atomic_t			exclusive_cnt; /* < 0: cpu; > 0: tsk */
321	int				task_ctx_nr;
322	int				hrtimer_interval_ms;
323
324	/* number of address filters this PMU can do */
325	unsigned int			nr_addr_filters;
326
327	/*
328	 * Fully disable/enable this PMU, can be used to protect from the PMI
329	 * as well as for lazy/batch writing of the MSRs.
330	 */
331	void (*pmu_enable)		(struct pmu *pmu); /* optional */
332	void (*pmu_disable)		(struct pmu *pmu); /* optional */
333
334	/*
335	 * Try and initialize the event for this PMU.
336	 *
337	 * Returns:
338	 *  -ENOENT	-- @event is not for this PMU
339	 *
340	 *  -ENODEV	-- @event is for this PMU but PMU not present
341	 *  -EBUSY	-- @event is for this PMU but PMU temporarily unavailable
342	 *  -EINVAL	-- @event is for this PMU but @event is not valid
343	 *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
344	 *  -EACCES	-- @event is for this PMU, @event is valid, but no privileges
345	 *
346	 *  0		-- @event is for this PMU and valid
347	 *
348	 * Other error return values are allowed.
349	 */
350	int (*event_init)		(struct perf_event *event);
351
352	/*
353	 * Notification that the event was mapped or unmapped.  Called
354	 * in the context of the mapping task.
355	 */
356	void (*event_mapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
357	void (*event_unmapped)		(struct perf_event *event, struct mm_struct *mm); /* optional */
358
359	/*
360	 * Flags for ->add()/->del()/ ->start()/->stop(). There are
361	 * matching hw_perf_event::state flags.
362	 */
363#define PERF_EF_START	0x01		/* start the counter when adding    */
364#define PERF_EF_RELOAD	0x02		/* reload the counter when starting */
365#define PERF_EF_UPDATE	0x04		/* update the counter when stopping */
366
367	/*
368	 * Adds/Removes a counter to/from the PMU, can be done inside a
369	 * transaction, see the ->*_txn() methods.
370	 *
371	 * The add/del callbacks will reserve all hardware resources required
372	 * to service the event, this includes any counter constraint
373	 * scheduling etc.
374	 *
375	 * Called with IRQs disabled and the PMU disabled on the CPU the event
376	 * is on.
377	 *
378	 * ->add() called without PERF_EF_START should result in the same state
379	 *  as ->add() followed by ->stop().
380	 *
381	 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
382	 *  ->stop() that must deal with already being stopped without
383	 *  PERF_EF_UPDATE.
384	 */
385	int  (*add)			(struct perf_event *event, int flags);
386	void (*del)			(struct perf_event *event, int flags);
387
388	/*
389	 * Starts/Stops a counter present on the PMU.
390	 *
391	 * The PMI handler should stop the counter when perf_event_overflow()
392	 * returns !0. ->start() will be used to continue.
393	 *
394	 * Also used to change the sample period.
395	 *
396	 * Called with IRQs disabled and the PMU disabled on the CPU the event
397	 * is on -- will be called from NMI context with the PMU generates
398	 * NMIs.
399	 *
400	 * ->stop() with PERF_EF_UPDATE will read the counter and update
401	 *  period/count values like ->read() would.
402	 *
403	 * ->start() with PERF_EF_RELOAD will reprogram the counter
404	 *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
405	 */
406	void (*start)			(struct perf_event *event, int flags);
407	void (*stop)			(struct perf_event *event, int flags);
408
409	/*
410	 * Updates the counter value of the event.
411	 *
412	 * For sampling capable PMUs this will also update the software period
413	 * hw_perf_event::period_left field.
414	 */
415	void (*read)			(struct perf_event *event);
416
417	/*
418	 * Group events scheduling is treated as a transaction, add
419	 * group events as a whole and perform one schedulability test.
420	 * If the test fails, roll back the whole group
421	 *
422	 * Start the transaction, after this ->add() doesn't need to
423	 * do schedulability tests.
424	 *
425	 * Optional.
426	 */
427	void (*start_txn)		(struct pmu *pmu, unsigned int txn_flags);
428	/*
429	 * If ->start_txn() disabled the ->add() schedulability test
430	 * then ->commit_txn() is required to perform one. On success
431	 * the transaction is closed. On error the transaction is kept
432	 * open until ->cancel_txn() is called.
433	 *
434	 * Optional.
435	 */
436	int  (*commit_txn)		(struct pmu *pmu);
437	/*
438	 * Will cancel the transaction, assumes ->del() is called
439	 * for each successful ->add() during the transaction.
440	 *
441	 * Optional.
442	 */
443	void (*cancel_txn)		(struct pmu *pmu);
444
445	/*
446	 * Will return the value for perf_event_mmap_page::index for this event,
447	 * if no implementation is provided it will default to 0 (see
448	 * perf_event_idx_default).
449	 */
450	int (*event_idx)		(struct perf_event *event); /*optional */
451
452	/*
453	 * context-switches callback
454	 */
455	void (*sched_task)		(struct perf_event_pmu_context *pmu_ctx,
456					bool sched_in);
457
458	/*
459	 * Kmem cache of PMU specific data
460	 */
461	struct kmem_cache		*task_ctx_cache;
462
463	/*
464	 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
465	 * can be synchronized using this function. See Intel LBR callstack support
466	 * implementation and Perf core context switch handling callbacks for usage
467	 * examples.
468	 */
469	void (*swap_task_ctx)		(struct perf_event_pmu_context *prev_epc,
470					 struct perf_event_pmu_context *next_epc);
471					/* optional */
472
473	/*
474	 * Set up pmu-private data structures for an AUX area
475	 */
476	void *(*setup_aux)		(struct perf_event *event, void **pages,
477					 int nr_pages, bool overwrite);
478					/* optional */
479
480	/*
481	 * Free pmu-private AUX data structures
482	 */
483	void (*free_aux)		(void *aux); /* optional */
484
485	/*
486	 * Take a snapshot of the AUX buffer without touching the event
487	 * state, so that preempting ->start()/->stop() callbacks does
488	 * not interfere with their logic. Called in PMI context.
489	 *
490	 * Returns the size of AUX data copied to the output handle.
491	 *
492	 * Optional.
493	 */
494	long (*snapshot_aux)		(struct perf_event *event,
495					 struct perf_output_handle *handle,
496					 unsigned long size);
497
498	/*
499	 * Validate address range filters: make sure the HW supports the
500	 * requested configuration and number of filters; return 0 if the
501	 * supplied filters are valid, -errno otherwise.
502	 *
503	 * Runs in the context of the ioctl()ing process and is not serialized
504	 * with the rest of the PMU callbacks.
505	 */
506	int (*addr_filters_validate)	(struct list_head *filters);
507					/* optional */
508
509	/*
510	 * Synchronize address range filter configuration:
511	 * translate hw-agnostic filters into hardware configuration in
512	 * event::hw::addr_filters.
513	 *
514	 * Runs as a part of filter sync sequence that is done in ->start()
515	 * callback by calling perf_event_addr_filters_sync().
516	 *
517	 * May (and should) traverse event::addr_filters::list, for which its
518	 * caller provides necessary serialization.
519	 */
520	void (*addr_filters_sync)	(struct perf_event *event);
521					/* optional */
522
523	/*
524	 * Check if event can be used for aux_output purposes for
525	 * events of this PMU.
526	 *
527	 * Runs from perf_event_open(). Should return 0 for "no match"
528	 * or non-zero for "match".
529	 */
530	int (*aux_output_match)		(struct perf_event *event);
531					/* optional */
532
533	/*
534	 * Skip programming this PMU on the given CPU. Typically needed for
535	 * big.LITTLE things.
536	 */
537	bool (*filter)			(struct pmu *pmu, int cpu); /* optional */
538
539	/*
540	 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
541	 */
542	int (*check_period)		(struct perf_event *event, u64 value); /* optional */
543};
544
545enum perf_addr_filter_action_t {
546	PERF_ADDR_FILTER_ACTION_STOP = 0,
547	PERF_ADDR_FILTER_ACTION_START,
548	PERF_ADDR_FILTER_ACTION_FILTER,
549};
550
551/**
552 * struct perf_addr_filter - address range filter definition
553 * @entry:	event's filter list linkage
554 * @path:	object file's path for file-based filters
555 * @offset:	filter range offset
556 * @size:	filter range size (size==0 means single address trigger)
557 * @action:	filter/start/stop
558 *
559 * This is a hardware-agnostic filter configuration as specified by the user.
560 */
561struct perf_addr_filter {
562	struct list_head	entry;
563	struct path		path;
564	unsigned long		offset;
565	unsigned long		size;
566	enum perf_addr_filter_action_t	action;
567};
568
569/**
570 * struct perf_addr_filters_head - container for address range filters
571 * @list:	list of filters for this event
572 * @lock:	spinlock that serializes accesses to the @list and event's
573 *		(and its children's) filter generations.
574 * @nr_file_filters:	number of file-based filters
575 *
576 * A child event will use parent's @list (and therefore @lock), so they are
577 * bundled together; see perf_event_addr_filters().
578 */
579struct perf_addr_filters_head {
580	struct list_head	list;
581	raw_spinlock_t		lock;
582	unsigned int		nr_file_filters;
583};
584
585struct perf_addr_filter_range {
586	unsigned long		start;
587	unsigned long		size;
588};
589
590/**
591 * enum perf_event_state - the states of an event:
592 */
593enum perf_event_state {
594	PERF_EVENT_STATE_DEAD		= -4,
595	PERF_EVENT_STATE_EXIT		= -3,
596	PERF_EVENT_STATE_ERROR		= -2,
597	PERF_EVENT_STATE_OFF		= -1,
598	PERF_EVENT_STATE_INACTIVE	=  0,
599	PERF_EVENT_STATE_ACTIVE		=  1,
600};
601
602struct file;
603struct perf_sample_data;
604
605typedef void (*perf_overflow_handler_t)(struct perf_event *,
606					struct perf_sample_data *,
607					struct pt_regs *regs);
608
609/*
610 * Event capabilities. For event_caps and groups caps.
611 *
612 * PERF_EV_CAP_SOFTWARE: Is a software event.
613 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
614 * from any CPU in the package where it is active.
615 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
616 * cannot be a group leader. If an event with this flag is detached from the
617 * group it is scheduled out and moved into an unrecoverable ERROR state.
618 */
619#define PERF_EV_CAP_SOFTWARE		BIT(0)
620#define PERF_EV_CAP_READ_ACTIVE_PKG	BIT(1)
621#define PERF_EV_CAP_SIBLING		BIT(2)
622
623#define SWEVENT_HLIST_BITS		8
624#define SWEVENT_HLIST_SIZE		(1 << SWEVENT_HLIST_BITS)
625
626struct swevent_hlist {
627	struct hlist_head		heads[SWEVENT_HLIST_SIZE];
628	struct rcu_head			rcu_head;
629};
630
631#define PERF_ATTACH_CONTEXT	0x01
632#define PERF_ATTACH_GROUP	0x02
633#define PERF_ATTACH_TASK	0x04
634#define PERF_ATTACH_TASK_DATA	0x08
635#define PERF_ATTACH_ITRACE	0x10
636#define PERF_ATTACH_SCHED_CB	0x20
637#define PERF_ATTACH_CHILD	0x40
638
639struct bpf_prog;
640struct perf_cgroup;
641struct perf_buffer;
642
643struct pmu_event_list {
644	raw_spinlock_t		lock;
645	struct list_head	list;
646};
647
648/*
649 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
650 * as such iteration must hold either lock. However, since ctx->lock is an IRQ
651 * safe lock, and is only held by the CPU doing the modification, having IRQs
652 * disabled is sufficient since it will hold-off the IPIs.
653 */
654#ifdef CONFIG_PROVE_LOCKING
655#define lockdep_assert_event_ctx(event)				\
656	WARN_ON_ONCE(__lockdep_enabled &&			\
657		     (this_cpu_read(hardirqs_enabled) &&	\
658		      lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
659#else
660#define lockdep_assert_event_ctx(event)
661#endif
662
663#define for_each_sibling_event(sibling, event)			\
664	lockdep_assert_event_ctx(event);			\
665	if ((event)->group_leader == (event))			\
666		list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
667
668/**
669 * struct perf_event - performance event kernel representation:
670 */
671struct perf_event {
672#ifdef CONFIG_PERF_EVENTS
673	/*
674	 * entry onto perf_event_context::event_list;
675	 *   modifications require ctx->lock
676	 *   RCU safe iterations.
677	 */
678	struct list_head		event_entry;
679
680	/*
681	 * Locked for modification by both ctx->mutex and ctx->lock; holding
682	 * either sufficies for read.
683	 */
684	struct list_head		sibling_list;
685	struct list_head		active_list;
686	/*
687	 * Node on the pinned or flexible tree located at the event context;
688	 */
689	struct rb_node			group_node;
690	u64				group_index;
691	/*
692	 * We need storage to track the entries in perf_pmu_migrate_context; we
693	 * cannot use the event_entry because of RCU and we want to keep the
694	 * group in tact which avoids us using the other two entries.
695	 */
696	struct list_head		migrate_entry;
697
698	struct hlist_node		hlist_entry;
699	struct list_head		active_entry;
700	int				nr_siblings;
701
702	/* Not serialized. Only written during event initialization. */
703	int				event_caps;
704	/* The cumulative AND of all event_caps for events in this group. */
705	int				group_caps;
706
707	unsigned int			group_generation;
708	struct perf_event		*group_leader;
709	/*
710	 * event->pmu will always point to pmu in which this event belongs.
711	 * Whereas event->pmu_ctx->pmu may point to other pmu when group of
712	 * different pmu events is created.
713	 */
714	struct pmu			*pmu;
715	void				*pmu_private;
716
717	enum perf_event_state		state;
718	unsigned int			attach_state;
719	local64_t			count;
720	atomic64_t			child_count;
721
722	/*
723	 * These are the total time in nanoseconds that the event
724	 * has been enabled (i.e. eligible to run, and the task has
725	 * been scheduled in, if this is a per-task event)
726	 * and running (scheduled onto the CPU), respectively.
727	 */
728	u64				total_time_enabled;
729	u64				total_time_running;
730	u64				tstamp;
731
732	struct perf_event_attr		attr;
733	u16				header_size;
734	u16				id_header_size;
735	u16				read_size;
736	struct hw_perf_event		hw;
737
738	struct perf_event_context	*ctx;
739	/*
740	 * event->pmu_ctx points to perf_event_pmu_context in which the event
741	 * is added. This pmu_ctx can be of other pmu for sw event when that
742	 * sw event is part of a group which also contains non-sw events.
743	 */
744	struct perf_event_pmu_context	*pmu_ctx;
745	atomic_long_t			refcount;
746
747	/*
748	 * These accumulate total time (in nanoseconds) that children
749	 * events have been enabled and running, respectively.
750	 */
751	atomic64_t			child_total_time_enabled;
752	atomic64_t			child_total_time_running;
753
754	/*
755	 * Protect attach/detach and child_list:
756	 */
757	struct mutex			child_mutex;
758	struct list_head		child_list;
759	struct perf_event		*parent;
760
761	int				oncpu;
762	int				cpu;
763
764	struct list_head		owner_entry;
765	struct task_struct		*owner;
766
767	/* mmap bits */
768	struct mutex			mmap_mutex;
769	atomic_t			mmap_count;
770
771	struct perf_buffer		*rb;
772	struct list_head		rb_entry;
773	unsigned long			rcu_batches;
774	int				rcu_pending;
775
776	/* poll related */
777	wait_queue_head_t		waitq;
778	struct fasync_struct		*fasync;
779
780	/* delayed work for NMIs and such */
781	unsigned int			pending_wakeup;
782	unsigned int			pending_kill;
783	unsigned int			pending_disable;
784	unsigned int			pending_sigtrap;
785	unsigned long			pending_addr;	/* SIGTRAP */
786	struct irq_work			pending_irq;
787	struct callback_head		pending_task;
788	unsigned int			pending_work;
789
790	atomic_t			event_limit;
791
792	/* address range filters */
793	struct perf_addr_filters_head	addr_filters;
794	/* vma address array for file-based filders */
795	struct perf_addr_filter_range	*addr_filter_ranges;
796	unsigned long			addr_filters_gen;
797
798	/* for aux_output events */
799	struct perf_event		*aux_event;
800
801	void (*destroy)(struct perf_event *);
802	struct rcu_head			rcu_head;
803
804	struct pid_namespace		*ns;
805	u64				id;
806
807	atomic64_t			lost_samples;
808
809	u64				(*clock)(void);
810	perf_overflow_handler_t		overflow_handler;
811	void				*overflow_handler_context;
812#ifdef CONFIG_BPF_SYSCALL
813	perf_overflow_handler_t		orig_overflow_handler;
814	struct bpf_prog			*prog;
815	u64				bpf_cookie;
816#endif
817
818#ifdef CONFIG_EVENT_TRACING
819	struct trace_event_call		*tp_event;
820	struct event_filter		*filter;
821#ifdef CONFIG_FUNCTION_TRACER
822	struct ftrace_ops               ftrace_ops;
823#endif
824#endif
825
826#ifdef CONFIG_CGROUP_PERF
827	struct perf_cgroup		*cgrp; /* cgroup event is attach to */
828#endif
829
830#ifdef CONFIG_SECURITY
831	void *security;
832#endif
833	struct list_head		sb_list;
834
835	/*
836	 * Certain events gets forwarded to another pmu internally by over-
837	 * writing kernel copy of event->attr.type without user being aware
838	 * of it. event->orig_type contains original 'type' requested by
839	 * user.
840	 */
841	__u32				orig_type;
842#endif /* CONFIG_PERF_EVENTS */
843};
844
845/*
846 *           ,-----------------------[1:n]------------------------.
847 *           V                                                    V
848 * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
849 *                                        |                       |
850 *                                        `--[n:1]-> pmu <-[1:n]--'
851 *
852 *
853 * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
854 * (similar to perf_event_context). Locking is as if it were a member of
855 * perf_event_context; specifically:
856 *
857 *   modification, both: ctx->mutex && ctx->lock
858 *   reading, either:    ctx->mutex || ctx->lock
859 *
860 * There is one exception to this; namely put_pmu_ctx() isn't always called
861 * with ctx->mutex held; this means that as long as we can guarantee the epc
862 * has events the above rules hold.
863 *
864 * Specificially, sys_perf_event_open()'s group_leader case depends on
865 * ctx->mutex pinning the configuration. Since we hold a reference on
866 * group_leader (through the filedesc) it can't go away, therefore it's
867 * associated pmu_ctx must exist and cannot change due to ctx->mutex.
868 *
869 * perf_event holds a refcount on perf_event_context
870 * perf_event holds a refcount on perf_event_pmu_context
871 */
872struct perf_event_pmu_context {
873	struct pmu			*pmu;
874	struct perf_event_context       *ctx;
875
876	struct list_head		pmu_ctx_entry;
877
878	struct list_head		pinned_active;
879	struct list_head		flexible_active;
880
881	/* Used to avoid freeing per-cpu perf_event_pmu_context */
882	unsigned int			embedded : 1;
883
884	unsigned int			nr_events;
885	unsigned int			nr_cgroups;
886
887	atomic_t			refcount; /* event <-> epc */
888	struct rcu_head			rcu_head;
889
890	void				*task_ctx_data; /* pmu specific data */
891	/*
892	 * Set when one or more (plausibly active) event can't be scheduled
893	 * due to pmu overcommit or pmu constraints, except tolerant to
894	 * events not necessary to be active due to scheduling constraints,
895	 * such as cgroups.
896	 */
897	int				rotate_necessary;
898};
899
900struct perf_event_groups {
901	struct rb_root	tree;
902	u64		index;
903};
904
905
906/**
907 * struct perf_event_context - event context structure
908 *
909 * Used as a container for task events and CPU events as well:
910 */
911struct perf_event_context {
912	/*
913	 * Protect the states of the events in the list,
914	 * nr_active, and the list:
915	 */
916	raw_spinlock_t			lock;
917	/*
918	 * Protect the list of events.  Locking either mutex or lock
919	 * is sufficient to ensure the list doesn't change; to change
920	 * the list you need to lock both the mutex and the spinlock.
921	 */
922	struct mutex			mutex;
923
924	struct list_head		pmu_ctx_list;
925	struct perf_event_groups	pinned_groups;
926	struct perf_event_groups	flexible_groups;
927	struct list_head		event_list;
928
929	int				nr_events;
930	int				nr_user;
931	int				is_active;
932
933	int				nr_task_data;
934	int				nr_stat;
935	int				nr_freq;
936	int				rotate_disable;
937
938	refcount_t			refcount; /* event <-> ctx */
939	struct task_struct		*task;
940
941	/*
942	 * Context clock, runs when context enabled.
943	 */
944	u64				time;
945	u64				timestamp;
946	u64				timeoffset;
947
948	/*
949	 * These fields let us detect when two contexts have both
950	 * been cloned (inherited) from a common ancestor.
951	 */
952	struct perf_event_context	*parent_ctx;
953	u64				parent_gen;
954	u64				generation;
955	int				pin_count;
956#ifdef CONFIG_CGROUP_PERF
957	int				nr_cgroups;	 /* cgroup evts */
958#endif
959	struct rcu_head			rcu_head;
960
961	/*
962	 * Sum (event->pending_sigtrap + event->pending_work)
963	 *
964	 * The SIGTRAP is targeted at ctx->task, as such it won't do changing
965	 * that until the signal is delivered.
966	 */
967	local_t				nr_pending;
968};
969
970/*
971 * Number of contexts where an event can trigger:
972 *	task, softirq, hardirq, nmi.
973 */
974#define PERF_NR_CONTEXTS	4
975
976struct perf_cpu_pmu_context {
977	struct perf_event_pmu_context	epc;
978	struct perf_event_pmu_context	*task_epc;
979
980	struct list_head		sched_cb_entry;
981	int				sched_cb_usage;
982
983	int				active_oncpu;
984	int				exclusive;
985
986	raw_spinlock_t			hrtimer_lock;
987	struct hrtimer			hrtimer;
988	ktime_t				hrtimer_interval;
989	unsigned int			hrtimer_active;
990};
991
992/**
993 * struct perf_event_cpu_context - per cpu event context structure
994 */
995struct perf_cpu_context {
996	struct perf_event_context	ctx;
997	struct perf_event_context	*task_ctx;
998	int				online;
999
1000#ifdef CONFIG_CGROUP_PERF
1001	struct perf_cgroup		*cgrp;
1002#endif
1003
1004	/*
1005	 * Per-CPU storage for iterators used in visit_groups_merge. The default
1006	 * storage is of size 2 to hold the CPU and any CPU event iterators.
1007	 */
1008	int				heap_size;
1009	struct perf_event		**heap;
1010	struct perf_event		*heap_default[2];
1011};
1012
1013struct perf_output_handle {
1014	struct perf_event		*event;
1015	struct perf_buffer		*rb;
1016	unsigned long			wakeup;
1017	unsigned long			size;
1018	u64				aux_flags;
1019	union {
1020		void			*addr;
1021		unsigned long		head;
1022	};
1023	int				page;
1024};
1025
1026struct bpf_perf_event_data_kern {
1027	bpf_user_pt_regs_t *regs;
1028	struct perf_sample_data *data;
1029	struct perf_event *event;
1030};
1031
1032#ifdef CONFIG_CGROUP_PERF
1033
1034/*
1035 * perf_cgroup_info keeps track of time_enabled for a cgroup.
1036 * This is a per-cpu dynamically allocated data structure.
1037 */
1038struct perf_cgroup_info {
1039	u64				time;
1040	u64				timestamp;
1041	u64				timeoffset;
1042	int				active;
1043};
1044
1045struct perf_cgroup {
1046	struct cgroup_subsys_state	css;
1047	struct perf_cgroup_info	__percpu *info;
1048};
1049
1050/*
1051 * Must ensure cgroup is pinned (css_get) before calling
1052 * this function. In other words, we cannot call this function
1053 * if there is no cgroup event for the current CPU context.
1054 */
1055static inline struct perf_cgroup *
1056perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1057{
1058	return container_of(task_css_check(task, perf_event_cgrp_id,
1059					   ctx ? lockdep_is_held(&ctx->lock)
1060					       : true),
1061			    struct perf_cgroup, css);
1062}
1063#endif /* CONFIG_CGROUP_PERF */
1064
1065#ifdef CONFIG_PERF_EVENTS
1066
1067extern struct perf_event_context *perf_cpu_task_ctx(void);
1068
1069extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1070				   struct perf_event *event);
1071extern void perf_aux_output_end(struct perf_output_handle *handle,
1072				unsigned long size);
1073extern int perf_aux_output_skip(struct perf_output_handle *handle,
1074				unsigned long size);
1075extern void *perf_get_aux(struct perf_output_handle *handle);
1076extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1077extern void perf_event_itrace_started(struct perf_event *event);
1078
1079extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1080extern void perf_pmu_unregister(struct pmu *pmu);
1081
1082extern void __perf_event_task_sched_in(struct task_struct *prev,
1083				       struct task_struct *task);
1084extern void __perf_event_task_sched_out(struct task_struct *prev,
1085					struct task_struct *next);
1086extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1087extern void perf_event_exit_task(struct task_struct *child);
1088extern void perf_event_free_task(struct task_struct *task);
1089extern void perf_event_delayed_put(struct task_struct *task);
1090extern struct file *perf_event_get(unsigned int fd);
1091extern const struct perf_event *perf_get_event(struct file *file);
1092extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1093extern void perf_event_print_debug(void);
1094extern void perf_pmu_disable(struct pmu *pmu);
1095extern void perf_pmu_enable(struct pmu *pmu);
1096extern void perf_sched_cb_dec(struct pmu *pmu);
1097extern void perf_sched_cb_inc(struct pmu *pmu);
1098extern int perf_event_task_disable(void);
1099extern int perf_event_task_enable(void);
1100
1101extern void perf_pmu_resched(struct pmu *pmu);
1102
1103extern int perf_event_refresh(struct perf_event *event, int refresh);
1104extern void perf_event_update_userpage(struct perf_event *event);
1105extern int perf_event_release_kernel(struct perf_event *event);
1106extern struct perf_event *
1107perf_event_create_kernel_counter(struct perf_event_attr *attr,
1108				int cpu,
1109				struct task_struct *task,
1110				perf_overflow_handler_t callback,
1111				void *context);
1112extern void perf_pmu_migrate_context(struct pmu *pmu,
1113				int src_cpu, int dst_cpu);
1114int perf_event_read_local(struct perf_event *event, u64 *value,
1115			  u64 *enabled, u64 *running);
1116extern u64 perf_event_read_value(struct perf_event *event,
1117				 u64 *enabled, u64 *running);
1118
1119extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1120
1121static inline bool branch_sample_no_flags(const struct perf_event *event)
1122{
1123	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1124}
1125
1126static inline bool branch_sample_no_cycles(const struct perf_event *event)
1127{
1128	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1129}
1130
1131static inline bool branch_sample_type(const struct perf_event *event)
1132{
1133	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1134}
1135
1136static inline bool branch_sample_hw_index(const struct perf_event *event)
1137{
1138	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1139}
1140
1141static inline bool branch_sample_priv(const struct perf_event *event)
1142{
1143	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1144}
1145
1146static inline bool branch_sample_counters(const struct perf_event *event)
1147{
1148	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_COUNTERS;
1149}
1150
1151static inline bool branch_sample_call_stack(const struct perf_event *event)
1152{
1153	return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK;
1154}
1155
1156struct perf_sample_data {
1157	/*
1158	 * Fields set by perf_sample_data_init() unconditionally,
1159	 * group so as to minimize the cachelines touched.
1160	 */
1161	u64				sample_flags;
1162	u64				period;
1163	u64				dyn_size;
1164
1165	/*
1166	 * Fields commonly set by __perf_event_header__init_id(),
1167	 * group so as to minimize the cachelines touched.
1168	 */
1169	u64				type;
1170	struct {
1171		u32	pid;
1172		u32	tid;
1173	}				tid_entry;
1174	u64				time;
1175	u64				id;
1176	struct {
1177		u32	cpu;
1178		u32	reserved;
1179	}				cpu_entry;
1180
1181	/*
1182	 * The other fields, optionally {set,used} by
1183	 * perf_{prepare,output}_sample().
1184	 */
1185	u64				ip;
1186	struct perf_callchain_entry	*callchain;
1187	struct perf_raw_record		*raw;
1188	struct perf_branch_stack	*br_stack;
1189	u64				*br_stack_cntr;
1190	union perf_sample_weight	weight;
1191	union  perf_mem_data_src	data_src;
1192	u64				txn;
1193
1194	struct perf_regs		regs_user;
1195	struct perf_regs		regs_intr;
1196	u64				stack_user_size;
1197
1198	u64				stream_id;
1199	u64				cgroup;
1200	u64				addr;
1201	u64				phys_addr;
1202	u64				data_page_size;
1203	u64				code_page_size;
1204	u64				aux_size;
1205} ____cacheline_aligned;
1206
1207/* default value for data source */
1208#define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1209		    PERF_MEM_S(LVL, NA)   |\
1210		    PERF_MEM_S(SNOOP, NA) |\
1211		    PERF_MEM_S(LOCK, NA)  |\
1212		    PERF_MEM_S(TLB, NA)   |\
1213		    PERF_MEM_S(LVLNUM, NA))
1214
1215static inline void perf_sample_data_init(struct perf_sample_data *data,
1216					 u64 addr, u64 period)
1217{
1218	/* remaining struct members initialized in perf_prepare_sample() */
1219	data->sample_flags = PERF_SAMPLE_PERIOD;
1220	data->period = period;
1221	data->dyn_size = 0;
1222
1223	if (addr) {
1224		data->addr = addr;
1225		data->sample_flags |= PERF_SAMPLE_ADDR;
1226	}
1227}
1228
1229static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1230					      struct perf_event *event,
1231					      struct pt_regs *regs)
1232{
1233	int size = 1;
1234
1235	data->callchain = perf_callchain(event, regs);
1236	size += data->callchain->nr;
1237
1238	data->dyn_size += size * sizeof(u64);
1239	data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1240}
1241
1242static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1243					     struct perf_raw_record *raw)
1244{
1245	struct perf_raw_frag *frag = &raw->frag;
1246	u32 sum = 0;
1247	int size;
1248
1249	do {
1250		sum += frag->size;
1251		if (perf_raw_frag_last(frag))
1252			break;
1253		frag = frag->next;
1254	} while (1);
1255
1256	size = round_up(sum + sizeof(u32), sizeof(u64));
1257	raw->size = size - sizeof(u32);
1258	frag->pad = raw->size - sum;
1259
1260	data->raw = raw;
1261	data->dyn_size += size;
1262	data->sample_flags |= PERF_SAMPLE_RAW;
1263}
1264
1265static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1266					    struct perf_event *event,
1267					    struct perf_branch_stack *brs,
1268					    u64 *brs_cntr)
1269{
1270	int size = sizeof(u64); /* nr */
1271
1272	if (branch_sample_hw_index(event))
1273		size += sizeof(u64);
1274	size += brs->nr * sizeof(struct perf_branch_entry);
1275
1276	/*
1277	 * The extension space for counters is appended after the
1278	 * struct perf_branch_stack. It is used to store the occurrences
1279	 * of events of each branch.
1280	 */
1281	if (brs_cntr)
1282		size += brs->nr * sizeof(u64);
1283
1284	data->br_stack = brs;
1285	data->br_stack_cntr = brs_cntr;
1286	data->dyn_size += size;
1287	data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1288}
1289
1290static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1291					struct perf_event *event)
1292{
1293	u32 size = sizeof(struct perf_event_header);
1294
1295	size += event->header_size + event->id_header_size;
1296	size += data->dyn_size;
1297
1298	return size;
1299}
1300
1301/*
1302 * Clear all bitfields in the perf_branch_entry.
1303 * The to and from fields are not cleared because they are
1304 * systematically modified by caller.
1305 */
1306static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1307{
1308	br->mispred = 0;
1309	br->predicted = 0;
1310	br->in_tx = 0;
1311	br->abort = 0;
1312	br->cycles = 0;
1313	br->type = 0;
1314	br->spec = PERF_BR_SPEC_NA;
1315	br->reserved = 0;
1316}
1317
1318extern void perf_output_sample(struct perf_output_handle *handle,
1319			       struct perf_event_header *header,
1320			       struct perf_sample_data *data,
1321			       struct perf_event *event);
1322extern void perf_prepare_sample(struct perf_sample_data *data,
1323				struct perf_event *event,
1324				struct pt_regs *regs);
1325extern void perf_prepare_header(struct perf_event_header *header,
1326				struct perf_sample_data *data,
1327				struct perf_event *event,
1328				struct pt_regs *regs);
1329
1330extern int perf_event_overflow(struct perf_event *event,
1331				 struct perf_sample_data *data,
1332				 struct pt_regs *regs);
1333
1334extern void perf_event_output_forward(struct perf_event *event,
1335				     struct perf_sample_data *data,
1336				     struct pt_regs *regs);
1337extern void perf_event_output_backward(struct perf_event *event,
1338				       struct perf_sample_data *data,
1339				       struct pt_regs *regs);
1340extern int perf_event_output(struct perf_event *event,
1341			     struct perf_sample_data *data,
1342			     struct pt_regs *regs);
1343
1344static inline bool
1345__is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1346{
1347	if (likely(overflow_handler == perf_event_output_forward))
1348		return true;
1349	if (unlikely(overflow_handler == perf_event_output_backward))
1350		return true;
1351	return false;
1352}
1353
1354#define is_default_overflow_handler(event) \
1355	__is_default_overflow_handler((event)->overflow_handler)
1356
1357#ifdef CONFIG_BPF_SYSCALL
1358static inline bool uses_default_overflow_handler(struct perf_event *event)
1359{
1360	if (likely(is_default_overflow_handler(event)))
1361		return true;
1362
1363	return __is_default_overflow_handler(event->orig_overflow_handler);
1364}
1365#else
1366#define uses_default_overflow_handler(event) \
1367	is_default_overflow_handler(event)
1368#endif
1369
1370extern void
1371perf_event_header__init_id(struct perf_event_header *header,
1372			   struct perf_sample_data *data,
1373			   struct perf_event *event);
1374extern void
1375perf_event__output_id_sample(struct perf_event *event,
1376			     struct perf_output_handle *handle,
1377			     struct perf_sample_data *sample);
1378
1379extern void
1380perf_log_lost_samples(struct perf_event *event, u64 lost);
1381
1382static inline bool event_has_any_exclude_flag(struct perf_event *event)
1383{
1384	struct perf_event_attr *attr = &event->attr;
1385
1386	return attr->exclude_idle || attr->exclude_user ||
1387	       attr->exclude_kernel || attr->exclude_hv ||
1388	       attr->exclude_guest || attr->exclude_host;
1389}
1390
1391static inline bool is_sampling_event(struct perf_event *event)
1392{
1393	return event->attr.sample_period != 0;
1394}
1395
1396/*
1397 * Return 1 for a software event, 0 for a hardware event
1398 */
1399static inline int is_software_event(struct perf_event *event)
1400{
1401	return event->event_caps & PERF_EV_CAP_SOFTWARE;
1402}
1403
1404/*
1405 * Return 1 for event in sw context, 0 for event in hw context
1406 */
1407static inline int in_software_context(struct perf_event *event)
1408{
1409	return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1410}
1411
1412static inline int is_exclusive_pmu(struct pmu *pmu)
1413{
1414	return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1415}
1416
1417extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1418
1419extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1420extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1421
1422#ifndef perf_arch_fetch_caller_regs
1423static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1424#endif
1425
1426/*
1427 * When generating a perf sample in-line, instead of from an interrupt /
1428 * exception, we lack a pt_regs. This is typically used from software events
1429 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1430 *
1431 * We typically don't need a full set, but (for x86) do require:
1432 * - ip for PERF_SAMPLE_IP
1433 * - cs for user_mode() tests
1434 * - sp for PERF_SAMPLE_CALLCHAIN
1435 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1436 *
1437 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1438 * things like PERF_SAMPLE_REGS_INTR.
1439 */
1440static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1441{
1442	perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1443}
1444
1445static __always_inline void
1446perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1447{
1448	if (static_key_false(&perf_swevent_enabled[event_id]))
1449		__perf_sw_event(event_id, nr, regs, addr);
1450}
1451
1452DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1453
1454/*
1455 * 'Special' version for the scheduler, it hard assumes no recursion,
1456 * which is guaranteed by us not actually scheduling inside other swevents
1457 * because those disable preemption.
1458 */
1459static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1460{
1461	struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1462
1463	perf_fetch_caller_regs(regs);
1464	___perf_sw_event(event_id, nr, regs, addr);
1465}
1466
1467extern struct static_key_false perf_sched_events;
1468
1469static __always_inline bool __perf_sw_enabled(int swevt)
1470{
1471	return static_key_false(&perf_swevent_enabled[swevt]);
1472}
1473
1474static inline void perf_event_task_migrate(struct task_struct *task)
1475{
1476	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1477		task->sched_migrated = 1;
1478}
1479
1480static inline void perf_event_task_sched_in(struct task_struct *prev,
1481					    struct task_struct *task)
1482{
1483	if (static_branch_unlikely(&perf_sched_events))
1484		__perf_event_task_sched_in(prev, task);
1485
1486	if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1487	    task->sched_migrated) {
1488		__perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1489		task->sched_migrated = 0;
1490	}
1491}
1492
1493static inline void perf_event_task_sched_out(struct task_struct *prev,
1494					     struct task_struct *next)
1495{
1496	if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1497		__perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1498
1499#ifdef CONFIG_CGROUP_PERF
1500	if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1501	    perf_cgroup_from_task(prev, NULL) !=
1502	    perf_cgroup_from_task(next, NULL))
1503		__perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1504#endif
1505
1506	if (static_branch_unlikely(&perf_sched_events))
1507		__perf_event_task_sched_out(prev, next);
1508}
1509
1510extern void perf_event_mmap(struct vm_area_struct *vma);
1511
1512extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1513			       bool unregister, const char *sym);
1514extern void perf_event_bpf_event(struct bpf_prog *prog,
1515				 enum perf_bpf_event_type type,
1516				 u16 flags);
1517
1518#ifdef CONFIG_GUEST_PERF_EVENTS
1519extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1520
1521DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1522DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1523DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1524
1525static inline unsigned int perf_guest_state(void)
1526{
1527	return static_call(__perf_guest_state)();
1528}
1529static inline unsigned long perf_guest_get_ip(void)
1530{
1531	return static_call(__perf_guest_get_ip)();
1532}
1533static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1534{
1535	return static_call(__perf_guest_handle_intel_pt_intr)();
1536}
1537extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1538extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1539#else
1540static inline unsigned int perf_guest_state(void)		 { return 0; }
1541static inline unsigned long perf_guest_get_ip(void)		 { return 0; }
1542static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1543#endif /* CONFIG_GUEST_PERF_EVENTS */
1544
1545extern void perf_event_exec(void);
1546extern void perf_event_comm(struct task_struct *tsk, bool exec);
1547extern void perf_event_namespaces(struct task_struct *tsk);
1548extern void perf_event_fork(struct task_struct *tsk);
1549extern void perf_event_text_poke(const void *addr,
1550				 const void *old_bytes, size_t old_len,
1551				 const void *new_bytes, size_t new_len);
1552
1553/* Callchains */
1554DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1555
1556extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1557extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1558extern struct perf_callchain_entry *
1559get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1560		   u32 max_stack, bool crosstask, bool add_mark);
1561extern int get_callchain_buffers(int max_stack);
1562extern void put_callchain_buffers(void);
1563extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1564extern void put_callchain_entry(int rctx);
1565
1566extern int sysctl_perf_event_max_stack;
1567extern int sysctl_perf_event_max_contexts_per_stack;
1568
1569static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1570{
1571	if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1572		struct perf_callchain_entry *entry = ctx->entry;
1573		entry->ip[entry->nr++] = ip;
1574		++ctx->contexts;
1575		return 0;
1576	} else {
1577		ctx->contexts_maxed = true;
1578		return -1; /* no more room, stop walking the stack */
1579	}
1580}
1581
1582static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1583{
1584	if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1585		struct perf_callchain_entry *entry = ctx->entry;
1586		entry->ip[entry->nr++] = ip;
1587		++ctx->nr;
1588		return 0;
1589	} else {
1590		return -1; /* no more room, stop walking the stack */
1591	}
1592}
1593
1594extern int sysctl_perf_event_paranoid;
1595extern int sysctl_perf_event_mlock;
1596extern int sysctl_perf_event_sample_rate;
1597extern int sysctl_perf_cpu_time_max_percent;
1598
1599extern void perf_sample_event_took(u64 sample_len_ns);
1600
1601int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
1602		void *buffer, size_t *lenp, loff_t *ppos);
1603int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1604		void *buffer, size_t *lenp, loff_t *ppos);
1605int perf_event_max_stack_handler(struct ctl_table *table, int write,
1606		void *buffer, size_t *lenp, loff_t *ppos);
1607
1608/* Access to perf_event_open(2) syscall. */
1609#define PERF_SECURITY_OPEN		0
1610
1611/* Finer grained perf_event_open(2) access control. */
1612#define PERF_SECURITY_CPU		1
1613#define PERF_SECURITY_KERNEL		2
1614#define PERF_SECURITY_TRACEPOINT	3
1615
1616static inline int perf_is_paranoid(void)
1617{
1618	return sysctl_perf_event_paranoid > -1;
1619}
1620
1621static inline int perf_allow_kernel(struct perf_event_attr *attr)
1622{
1623	if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1624		return -EACCES;
1625
1626	return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1627}
1628
1629static inline int perf_allow_cpu(struct perf_event_attr *attr)
1630{
1631	if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1632		return -EACCES;
1633
1634	return security_perf_event_open(attr, PERF_SECURITY_CPU);
1635}
1636
1637static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1638{
1639	if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1640		return -EPERM;
1641
1642	return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1643}
1644
1645extern void perf_event_init(void);
1646extern void perf_tp_event(u16 event_type, u64 count, void *record,
1647			  int entry_size, struct pt_regs *regs,
1648			  struct hlist_head *head, int rctx,
1649			  struct task_struct *task);
1650extern void perf_bp_event(struct perf_event *event, void *data);
1651
1652#ifndef perf_misc_flags
1653# define perf_misc_flags(regs) \
1654		(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1655# define perf_instruction_pointer(regs)	instruction_pointer(regs)
1656#endif
1657#ifndef perf_arch_bpf_user_pt_regs
1658# define perf_arch_bpf_user_pt_regs(regs) regs
1659#endif
1660
1661static inline bool has_branch_stack(struct perf_event *event)
1662{
1663	return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1664}
1665
1666static inline bool needs_branch_stack(struct perf_event *event)
1667{
1668	return event->attr.branch_sample_type != 0;
1669}
1670
1671static inline bool has_aux(struct perf_event *event)
1672{
1673	return event->pmu->setup_aux;
1674}
1675
1676static inline bool is_write_backward(struct perf_event *event)
1677{
1678	return !!event->attr.write_backward;
1679}
1680
1681static inline bool has_addr_filter(struct perf_event *event)
1682{
1683	return event->pmu->nr_addr_filters;
1684}
1685
1686/*
1687 * An inherited event uses parent's filters
1688 */
1689static inline struct perf_addr_filters_head *
1690perf_event_addr_filters(struct perf_event *event)
1691{
1692	struct perf_addr_filters_head *ifh = &event->addr_filters;
1693
1694	if (event->parent)
1695		ifh = &event->parent->addr_filters;
1696
1697	return ifh;
1698}
1699
1700extern void perf_event_addr_filters_sync(struct perf_event *event);
1701extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1702
1703extern int perf_output_begin(struct perf_output_handle *handle,
1704			     struct perf_sample_data *data,
1705			     struct perf_event *event, unsigned int size);
1706extern int perf_output_begin_forward(struct perf_output_handle *handle,
1707				     struct perf_sample_data *data,
1708				     struct perf_event *event,
1709				     unsigned int size);
1710extern int perf_output_begin_backward(struct perf_output_handle *handle,
1711				      struct perf_sample_data *data,
1712				      struct perf_event *event,
1713				      unsigned int size);
1714
1715extern void perf_output_end(struct perf_output_handle *handle);
1716extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1717			     const void *buf, unsigned int len);
1718extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1719				     unsigned int len);
1720extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1721				 struct perf_output_handle *handle,
1722				 unsigned long from, unsigned long to);
1723extern int perf_swevent_get_recursion_context(void);
1724extern void perf_swevent_put_recursion_context(int rctx);
1725extern u64 perf_swevent_set_period(struct perf_event *event);
1726extern void perf_event_enable(struct perf_event *event);
1727extern void perf_event_disable(struct perf_event *event);
1728extern void perf_event_disable_local(struct perf_event *event);
1729extern void perf_event_disable_inatomic(struct perf_event *event);
1730extern void perf_event_task_tick(void);
1731extern int perf_event_account_interrupt(struct perf_event *event);
1732extern int perf_event_period(struct perf_event *event, u64 value);
1733extern u64 perf_event_pause(struct perf_event *event, bool reset);
1734#else /* !CONFIG_PERF_EVENTS: */
1735static inline void *
1736perf_aux_output_begin(struct perf_output_handle *handle,
1737		      struct perf_event *event)				{ return NULL; }
1738static inline void
1739perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1740									{ }
1741static inline int
1742perf_aux_output_skip(struct perf_output_handle *handle,
1743		     unsigned long size)				{ return -EINVAL; }
1744static inline void *
1745perf_get_aux(struct perf_output_handle *handle)				{ return NULL; }
1746static inline void
1747perf_event_task_migrate(struct task_struct *task)			{ }
1748static inline void
1749perf_event_task_sched_in(struct task_struct *prev,
1750			 struct task_struct *task)			{ }
1751static inline void
1752perf_event_task_sched_out(struct task_struct *prev,
1753			  struct task_struct *next)			{ }
1754static inline int perf_event_init_task(struct task_struct *child,
1755				       u64 clone_flags)			{ return 0; }
1756static inline void perf_event_exit_task(struct task_struct *child)	{ }
1757static inline void perf_event_free_task(struct task_struct *task)	{ }
1758static inline void perf_event_delayed_put(struct task_struct *task)	{ }
1759static inline struct file *perf_event_get(unsigned int fd)	{ return ERR_PTR(-EINVAL); }
1760static inline const struct perf_event *perf_get_event(struct file *file)
1761{
1762	return ERR_PTR(-EINVAL);
1763}
1764static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1765{
1766	return ERR_PTR(-EINVAL);
1767}
1768static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1769					u64 *enabled, u64 *running)
1770{
1771	return -EINVAL;
1772}
1773static inline void perf_event_print_debug(void)				{ }
1774static inline int perf_event_task_disable(void)				{ return -EINVAL; }
1775static inline int perf_event_task_enable(void)				{ return -EINVAL; }
1776static inline int perf_event_refresh(struct perf_event *event, int refresh)
1777{
1778	return -EINVAL;
1779}
1780
1781static inline void
1782perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)	{ }
1783static inline void
1784perf_bp_event(struct perf_event *event, void *data)			{ }
1785
1786static inline void perf_event_mmap(struct vm_area_struct *vma)		{ }
1787
1788typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1789static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1790				      bool unregister, const char *sym)	{ }
1791static inline void perf_event_bpf_event(struct bpf_prog *prog,
1792					enum perf_bpf_event_type type,
1793					u16 flags)			{ }
1794static inline void perf_event_exec(void)				{ }
1795static inline void perf_event_comm(struct task_struct *tsk, bool exec)	{ }
1796static inline void perf_event_namespaces(struct task_struct *tsk)	{ }
1797static inline void perf_event_fork(struct task_struct *tsk)		{ }
1798static inline void perf_event_text_poke(const void *addr,
1799					const void *old_bytes,
1800					size_t old_len,
1801					const void *new_bytes,
1802					size_t new_len)			{ }
1803static inline void perf_event_init(void)				{ }
1804static inline int  perf_swevent_get_recursion_context(void)		{ return -1; }
1805static inline void perf_swevent_put_recursion_context(int rctx)		{ }
1806static inline u64 perf_swevent_set_period(struct perf_event *event)	{ return 0; }
1807static inline void perf_event_enable(struct perf_event *event)		{ }
1808static inline void perf_event_disable(struct perf_event *event)		{ }
1809static inline int __perf_event_disable(void *info)			{ return -1; }
1810static inline void perf_event_task_tick(void)				{ }
1811static inline int perf_event_release_kernel(struct perf_event *event)	{ return 0; }
1812static inline int perf_event_period(struct perf_event *event, u64 value)
1813{
1814	return -EINVAL;
1815}
1816static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1817{
1818	return 0;
1819}
1820#endif
1821
1822#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1823extern void perf_restore_debug_store(void);
1824#else
1825static inline void perf_restore_debug_store(void)			{ }
1826#endif
1827
1828#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1829
1830struct perf_pmu_events_attr {
1831	struct device_attribute attr;
1832	u64 id;
1833	const char *event_str;
1834};
1835
1836struct perf_pmu_events_ht_attr {
1837	struct device_attribute			attr;
1838	u64					id;
1839	const char				*event_str_ht;
1840	const char				*event_str_noht;
1841};
1842
1843struct perf_pmu_events_hybrid_attr {
1844	struct device_attribute			attr;
1845	u64					id;
1846	const char				*event_str;
1847	u64					pmu_type;
1848};
1849
1850struct perf_pmu_format_hybrid_attr {
1851	struct device_attribute			attr;
1852	u64					pmu_type;
1853};
1854
1855ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1856			      char *page);
1857
1858#define PMU_EVENT_ATTR(_name, _var, _id, _show)				\
1859static struct perf_pmu_events_attr _var = {				\
1860	.attr = __ATTR(_name, 0444, _show, NULL),			\
1861	.id   =  _id,							\
1862};
1863
1864#define PMU_EVENT_ATTR_STRING(_name, _var, _str)			    \
1865static struct perf_pmu_events_attr _var = {				    \
1866	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1867	.id		= 0,						    \
1868	.event_str	= _str,						    \
1869};
1870
1871#define PMU_EVENT_ATTR_ID(_name, _show, _id)				\
1872	(&((struct perf_pmu_events_attr[]) {				\
1873		{ .attr = __ATTR(_name, 0444, _show, NULL),		\
1874		  .id = _id, }						\
1875	})[0].attr.attr)
1876
1877#define PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1878static ssize_t								\
1879_name##_show(struct device *dev,					\
1880			       struct device_attribute *attr,		\
1881			       char *page)				\
1882{									\
1883	BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);			\
1884	return sprintf(page, _format "\n");				\
1885}									\
1886
1887#define PMU_FORMAT_ATTR(_name, _format)					\
1888	PMU_FORMAT_ATTR_SHOW(_name, _format)				\
1889									\
1890static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1891
1892/* Performance counter hotplug functions */
1893#ifdef CONFIG_PERF_EVENTS
1894int perf_event_init_cpu(unsigned int cpu);
1895int perf_event_exit_cpu(unsigned int cpu);
1896#else
1897#define perf_event_init_cpu	NULL
1898#define perf_event_exit_cpu	NULL
1899#endif
1900
1901extern void arch_perf_update_userpage(struct perf_event *event,
1902				      struct perf_event_mmap_page *userpg,
1903				      u64 now);
1904
1905/*
1906 * Snapshot branch stack on software events.
1907 *
1908 * Branch stack can be very useful in understanding software events. For
1909 * example, when a long function, e.g. sys_perf_event_open, returns an
1910 * errno, it is not obvious why the function failed. Branch stack could
1911 * provide very helpful information in this type of scenarios.
1912 *
1913 * On software event, it is necessary to stop the hardware branch recorder
1914 * fast. Otherwise, the hardware register/buffer will be flushed with
1915 * entries of the triggering event. Therefore, static call is used to
1916 * stop the hardware recorder.
1917 */
1918
1919/*
1920 * cnt is the number of entries allocated for entries.
1921 * Return number of entries copied to .
1922 */
1923typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1924					   unsigned int cnt);
1925DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1926
1927#ifndef PERF_NEEDS_LOPWR_CB
1928static inline void perf_lopwr_cb(bool mode)
1929{
1930}
1931#endif
1932
1933#endif /* _LINUX_PERF_EVENT_H */
1934