1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * linux/percpu-defs.h - basic definitions for percpu areas
4 *
5 * DO NOT INCLUDE DIRECTLY OUTSIDE PERCPU IMPLEMENTATION PROPER.
6 *
7 * This file is separate from linux/percpu.h to avoid cyclic inclusion
8 * dependency from arch header files.  Only to be included from
9 * asm/percpu.h.
10 *
11 * This file includes macros necessary to declare percpu sections and
12 * variables, and definitions of percpu accessors and operations.  It
13 * should provide enough percpu features to arch header files even when
14 * they can only include asm/percpu.h to avoid cyclic inclusion dependency.
15 */
16
17#ifndef _LINUX_PERCPU_DEFS_H
18#define _LINUX_PERCPU_DEFS_H
19
20#ifdef CONFIG_SMP
21
22#ifdef MODULE
23#define PER_CPU_SHARED_ALIGNED_SECTION ""
24#define PER_CPU_ALIGNED_SECTION ""
25#else
26#define PER_CPU_SHARED_ALIGNED_SECTION "..shared_aligned"
27#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
28#endif
29#define PER_CPU_FIRST_SECTION "..first"
30
31#else
32
33#define PER_CPU_SHARED_ALIGNED_SECTION ""
34#define PER_CPU_ALIGNED_SECTION "..shared_aligned"
35#define PER_CPU_FIRST_SECTION ""
36
37#endif
38
39/*
40 * Base implementations of per-CPU variable declarations and definitions, where
41 * the section in which the variable is to be placed is provided by the
42 * 'sec' argument.  This may be used to affect the parameters governing the
43 * variable's storage.
44 *
45 * NOTE!  The sections for the DECLARE and for the DEFINE must match, lest
46 * linkage errors occur due the compiler generating the wrong code to access
47 * that section.
48 */
49#define __PCPU_ATTRS(sec)						\
50	__percpu __attribute__((section(PER_CPU_BASE_SECTION sec)))	\
51	PER_CPU_ATTRIBUTES
52
53#define __PCPU_DUMMY_ATTRS						\
54	__section(".discard") __attribute__((unused))
55
56/*
57 * s390 and alpha modules require percpu variables to be defined as
58 * weak to force the compiler to generate GOT based external
59 * references for them.  This is necessary because percpu sections
60 * will be located outside of the usually addressable area.
61 *
62 * This definition puts the following two extra restrictions when
63 * defining percpu variables.
64 *
65 * 1. The symbol must be globally unique, even the static ones.
66 * 2. Static percpu variables cannot be defined inside a function.
67 *
68 * Archs which need weak percpu definitions should define
69 * ARCH_NEEDS_WEAK_PER_CPU in asm/percpu.h when necessary.
70 *
71 * To ensure that the generic code observes the above two
72 * restrictions, if CONFIG_DEBUG_FORCE_WEAK_PER_CPU is set weak
73 * definition is used for all cases.
74 */
75#if defined(ARCH_NEEDS_WEAK_PER_CPU) || defined(CONFIG_DEBUG_FORCE_WEAK_PER_CPU)
76/*
77 * __pcpu_scope_* dummy variable is used to enforce scope.  It
78 * receives the static modifier when it's used in front of
79 * DEFINE_PER_CPU() and will trigger build failure if
80 * DECLARE_PER_CPU() is used for the same variable.
81 *
82 * __pcpu_unique_* dummy variable is used to enforce symbol uniqueness
83 * such that hidden weak symbol collision, which will cause unrelated
84 * variables to share the same address, can be detected during build.
85 */
86#define DECLARE_PER_CPU_SECTION(type, name, sec)			\
87	extern __PCPU_DUMMY_ATTRS char __pcpu_scope_##name;		\
88	extern __PCPU_ATTRS(sec) __typeof__(type) name
89
90#define DEFINE_PER_CPU_SECTION(type, name, sec)				\
91	__PCPU_DUMMY_ATTRS char __pcpu_scope_##name;			\
92	extern __PCPU_DUMMY_ATTRS char __pcpu_unique_##name;		\
93	__PCPU_DUMMY_ATTRS char __pcpu_unique_##name;			\
94	extern __PCPU_ATTRS(sec) __typeof__(type) name;			\
95	__PCPU_ATTRS(sec) __weak __typeof__(type) name
96#else
97/*
98 * Normal declaration and definition macros.
99 */
100#define DECLARE_PER_CPU_SECTION(type, name, sec)			\
101	extern __PCPU_ATTRS(sec) __typeof__(type) name
102
103#define DEFINE_PER_CPU_SECTION(type, name, sec)				\
104	__PCPU_ATTRS(sec) __typeof__(type) name
105#endif
106
107/*
108 * Variant on the per-CPU variable declaration/definition theme used for
109 * ordinary per-CPU variables.
110 */
111#define DECLARE_PER_CPU(type, name)					\
112	DECLARE_PER_CPU_SECTION(type, name, "")
113
114#define DEFINE_PER_CPU(type, name)					\
115	DEFINE_PER_CPU_SECTION(type, name, "")
116
117/*
118 * Declaration/definition used for per-CPU variables that must come first in
119 * the set of variables.
120 */
121#define DECLARE_PER_CPU_FIRST(type, name)				\
122	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
123
124#define DEFINE_PER_CPU_FIRST(type, name)				\
125	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_FIRST_SECTION)
126
127/*
128 * Declaration/definition used for per-CPU variables that must be cacheline
129 * aligned under SMP conditions so that, whilst a particular instance of the
130 * data corresponds to a particular CPU, inefficiencies due to direct access by
131 * other CPUs are reduced by preventing the data from unnecessarily spanning
132 * cachelines.
133 *
134 * An example of this would be statistical data, where each CPU's set of data
135 * is updated by that CPU alone, but the data from across all CPUs is collated
136 * by a CPU processing a read from a proc file.
137 */
138#define DECLARE_PER_CPU_SHARED_ALIGNED(type, name)			\
139	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
140	____cacheline_aligned_in_smp
141
142#define DEFINE_PER_CPU_SHARED_ALIGNED(type, name)			\
143	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_SHARED_ALIGNED_SECTION) \
144	____cacheline_aligned_in_smp
145
146#define DECLARE_PER_CPU_ALIGNED(type, name)				\
147	DECLARE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
148	____cacheline_aligned
149
150#define DEFINE_PER_CPU_ALIGNED(type, name)				\
151	DEFINE_PER_CPU_SECTION(type, name, PER_CPU_ALIGNED_SECTION)	\
152	____cacheline_aligned
153
154/*
155 * Declaration/definition used for per-CPU variables that must be page aligned.
156 */
157#define DECLARE_PER_CPU_PAGE_ALIGNED(type, name)			\
158	DECLARE_PER_CPU_SECTION(type, name, "..page_aligned")		\
159	__aligned(PAGE_SIZE)
160
161#define DEFINE_PER_CPU_PAGE_ALIGNED(type, name)				\
162	DEFINE_PER_CPU_SECTION(type, name, "..page_aligned")		\
163	__aligned(PAGE_SIZE)
164
165/*
166 * Declaration/definition used for per-CPU variables that must be read mostly.
167 */
168#define DECLARE_PER_CPU_READ_MOSTLY(type, name)			\
169	DECLARE_PER_CPU_SECTION(type, name, "..read_mostly")
170
171#define DEFINE_PER_CPU_READ_MOSTLY(type, name)				\
172	DEFINE_PER_CPU_SECTION(type, name, "..read_mostly")
173
174/*
175 * Declaration/definition used for per-CPU variables that should be accessed
176 * as decrypted when memory encryption is enabled in the guest.
177 */
178#ifdef CONFIG_AMD_MEM_ENCRYPT
179#define DECLARE_PER_CPU_DECRYPTED(type, name)				\
180	DECLARE_PER_CPU_SECTION(type, name, "..decrypted")
181
182#define DEFINE_PER_CPU_DECRYPTED(type, name)				\
183	DEFINE_PER_CPU_SECTION(type, name, "..decrypted")
184#else
185#define DEFINE_PER_CPU_DECRYPTED(type, name)	DEFINE_PER_CPU(type, name)
186#endif
187
188/*
189 * Intermodule exports for per-CPU variables.  sparse forgets about
190 * address space across EXPORT_SYMBOL(), change EXPORT_SYMBOL() to
191 * noop if __CHECKER__.
192 */
193#ifndef __CHECKER__
194#define EXPORT_PER_CPU_SYMBOL(var) EXPORT_SYMBOL(var)
195#define EXPORT_PER_CPU_SYMBOL_GPL(var) EXPORT_SYMBOL_GPL(var)
196#else
197#define EXPORT_PER_CPU_SYMBOL(var)
198#define EXPORT_PER_CPU_SYMBOL_GPL(var)
199#endif
200
201/*
202 * Accessors and operations.
203 */
204#ifndef __ASSEMBLY__
205
206/*
207 * __verify_pcpu_ptr() verifies @ptr is a percpu pointer without evaluating
208 * @ptr and is invoked once before a percpu area is accessed by all
209 * accessors and operations.  This is performed in the generic part of
210 * percpu and arch overrides don't need to worry about it; however, if an
211 * arch wants to implement an arch-specific percpu accessor or operation,
212 * it may use __verify_pcpu_ptr() to verify the parameters.
213 *
214 * + 0 is required in order to convert the pointer type from a
215 * potential array type to a pointer to a single item of the array.
216 */
217#define __verify_pcpu_ptr(ptr)						\
218do {									\
219	const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL;	\
220	(void)__vpp_verify;						\
221} while (0)
222
223#ifdef CONFIG_SMP
224
225/*
226 * Add an offset to a pointer but keep the pointer as-is.  Use RELOC_HIDE()
227 * to prevent the compiler from making incorrect assumptions about the
228 * pointer value.  The weird cast keeps both GCC and sparse happy.
229 */
230#define SHIFT_PERCPU_PTR(__p, __offset)					\
231	RELOC_HIDE((typeof(*(__p)) __kernel __force *)(__p), (__offset))
232
233#define per_cpu_ptr(ptr, cpu)						\
234({									\
235	__verify_pcpu_ptr(ptr);						\
236	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)));			\
237})
238
239#define raw_cpu_ptr(ptr)						\
240({									\
241	__verify_pcpu_ptr(ptr);						\
242	arch_raw_cpu_ptr(ptr);						\
243})
244
245#ifdef CONFIG_DEBUG_PREEMPT
246#define this_cpu_ptr(ptr)						\
247({									\
248	__verify_pcpu_ptr(ptr);						\
249	SHIFT_PERCPU_PTR(ptr, my_cpu_offset);				\
250})
251#else
252#define this_cpu_ptr(ptr) raw_cpu_ptr(ptr)
253#endif
254
255#else	/* CONFIG_SMP */
256
257#define VERIFY_PERCPU_PTR(__p)						\
258({									\
259	__verify_pcpu_ptr(__p);						\
260	(typeof(*(__p)) __kernel __force *)(__p);			\
261})
262
263#define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); })
264#define raw_cpu_ptr(ptr)	per_cpu_ptr(ptr, 0)
265#define this_cpu_ptr(ptr)	raw_cpu_ptr(ptr)
266
267#endif	/* CONFIG_SMP */
268
269#define per_cpu(var, cpu)	(*per_cpu_ptr(&(var), cpu))
270
271/*
272 * Must be an lvalue. Since @var must be a simple identifier,
273 * we force a syntax error here if it isn't.
274 */
275#define get_cpu_var(var)						\
276(*({									\
277	preempt_disable();						\
278	this_cpu_ptr(&var);						\
279}))
280
281/*
282 * The weird & is necessary because sparse considers (void)(var) to be
283 * a direct dereference of percpu variable (var).
284 */
285#define put_cpu_var(var)						\
286do {									\
287	(void)&(var);							\
288	preempt_enable();						\
289} while (0)
290
291#define get_cpu_ptr(var)						\
292({									\
293	preempt_disable();						\
294	this_cpu_ptr(var);						\
295})
296
297#define put_cpu_ptr(var)						\
298do {									\
299	(void)(var);							\
300	preempt_enable();						\
301} while (0)
302
303/*
304 * Branching function to split up a function into a set of functions that
305 * are called for different scalar sizes of the objects handled.
306 */
307
308extern void __bad_size_call_parameter(void);
309
310#ifdef CONFIG_DEBUG_PREEMPT
311extern void __this_cpu_preempt_check(const char *op);
312#else
313static __always_inline void __this_cpu_preempt_check(const char *op) { }
314#endif
315
316#define __pcpu_size_call_return(stem, variable)				\
317({									\
318	typeof(variable) pscr_ret__;					\
319	__verify_pcpu_ptr(&(variable));					\
320	switch(sizeof(variable)) {					\
321	case 1: pscr_ret__ = stem##1(variable); break;			\
322	case 2: pscr_ret__ = stem##2(variable); break;			\
323	case 4: pscr_ret__ = stem##4(variable); break;			\
324	case 8: pscr_ret__ = stem##8(variable); break;			\
325	default:							\
326		__bad_size_call_parameter(); break;			\
327	}								\
328	pscr_ret__;							\
329})
330
331#define __pcpu_size_call_return2(stem, variable, ...)			\
332({									\
333	typeof(variable) pscr2_ret__;					\
334	__verify_pcpu_ptr(&(variable));					\
335	switch(sizeof(variable)) {					\
336	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
337	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
338	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
339	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
340	default:							\
341		__bad_size_call_parameter(); break;			\
342	}								\
343	pscr2_ret__;							\
344})
345
346#define __pcpu_size_call_return2bool(stem, variable, ...)		\
347({									\
348	bool pscr2_ret__;						\
349	__verify_pcpu_ptr(&(variable));					\
350	switch(sizeof(variable)) {					\
351	case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\
352	case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\
353	case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\
354	case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\
355	default:							\
356		__bad_size_call_parameter(); break;			\
357	}								\
358	pscr2_ret__;							\
359})
360
361#define __pcpu_size_call(stem, variable, ...)				\
362do {									\
363	__verify_pcpu_ptr(&(variable));					\
364	switch(sizeof(variable)) {					\
365		case 1: stem##1(variable, __VA_ARGS__);break;		\
366		case 2: stem##2(variable, __VA_ARGS__);break;		\
367		case 4: stem##4(variable, __VA_ARGS__);break;		\
368		case 8: stem##8(variable, __VA_ARGS__);break;		\
369		default: 						\
370			__bad_size_call_parameter();break;		\
371	}								\
372} while (0)
373
374/*
375 * this_cpu operations (C) 2008-2013 Christoph Lameter <cl@linux.com>
376 *
377 * Optimized manipulation for memory allocated through the per cpu
378 * allocator or for addresses of per cpu variables.
379 *
380 * These operation guarantee exclusivity of access for other operations
381 * on the *same* processor. The assumption is that per cpu data is only
382 * accessed by a single processor instance (the current one).
383 *
384 * The arch code can provide optimized implementation by defining macros
385 * for certain scalar sizes. F.e. provide this_cpu_add_2() to provide per
386 * cpu atomic operations for 2 byte sized RMW actions. If arch code does
387 * not provide operations for a scalar size then the fallback in the
388 * generic code will be used.
389 *
390 * cmpxchg_double replaces two adjacent scalars at once.  The first two
391 * parameters are per cpu variables which have to be of the same size.  A
392 * truth value is returned to indicate success or failure (since a double
393 * register result is difficult to handle).  There is very limited hardware
394 * support for these operations, so only certain sizes may work.
395 */
396
397/*
398 * Operations for contexts where we do not want to do any checks for
399 * preemptions.  Unless strictly necessary, always use [__]this_cpu_*()
400 * instead.
401 *
402 * If there is no other protection through preempt disable and/or disabling
403 * interrupts then one of these RMW operations can show unexpected behavior
404 * because the execution thread was rescheduled on another processor or an
405 * interrupt occurred and the same percpu variable was modified from the
406 * interrupt context.
407 */
408#define raw_cpu_read(pcp)		__pcpu_size_call_return(raw_cpu_read_, pcp)
409#define raw_cpu_write(pcp, val)		__pcpu_size_call(raw_cpu_write_, pcp, val)
410#define raw_cpu_add(pcp, val)		__pcpu_size_call(raw_cpu_add_, pcp, val)
411#define raw_cpu_and(pcp, val)		__pcpu_size_call(raw_cpu_and_, pcp, val)
412#define raw_cpu_or(pcp, val)		__pcpu_size_call(raw_cpu_or_, pcp, val)
413#define raw_cpu_add_return(pcp, val)	__pcpu_size_call_return2(raw_cpu_add_return_, pcp, val)
414#define raw_cpu_xchg(pcp, nval)		__pcpu_size_call_return2(raw_cpu_xchg_, pcp, nval)
415#define raw_cpu_cmpxchg(pcp, oval, nval) \
416	__pcpu_size_call_return2(raw_cpu_cmpxchg_, pcp, oval, nval)
417#define raw_cpu_try_cmpxchg(pcp, ovalp, nval) \
418	__pcpu_size_call_return2bool(raw_cpu_try_cmpxchg_, pcp, ovalp, nval)
419#define raw_cpu_sub(pcp, val)		raw_cpu_add(pcp, -(val))
420#define raw_cpu_inc(pcp)		raw_cpu_add(pcp, 1)
421#define raw_cpu_dec(pcp)		raw_cpu_sub(pcp, 1)
422#define raw_cpu_sub_return(pcp, val)	raw_cpu_add_return(pcp, -(typeof(pcp))(val))
423#define raw_cpu_inc_return(pcp)		raw_cpu_add_return(pcp, 1)
424#define raw_cpu_dec_return(pcp)		raw_cpu_add_return(pcp, -1)
425
426/*
427 * Operations for contexts that are safe from preemption/interrupts.  These
428 * operations verify that preemption is disabled.
429 */
430#define __this_cpu_read(pcp)						\
431({									\
432	__this_cpu_preempt_check("read");				\
433	raw_cpu_read(pcp);						\
434})
435
436#define __this_cpu_write(pcp, val)					\
437({									\
438	__this_cpu_preempt_check("write");				\
439	raw_cpu_write(pcp, val);					\
440})
441
442#define __this_cpu_add(pcp, val)					\
443({									\
444	__this_cpu_preempt_check("add");				\
445	raw_cpu_add(pcp, val);						\
446})
447
448#define __this_cpu_and(pcp, val)					\
449({									\
450	__this_cpu_preempt_check("and");				\
451	raw_cpu_and(pcp, val);						\
452})
453
454#define __this_cpu_or(pcp, val)						\
455({									\
456	__this_cpu_preempt_check("or");					\
457	raw_cpu_or(pcp, val);						\
458})
459
460#define __this_cpu_add_return(pcp, val)					\
461({									\
462	__this_cpu_preempt_check("add_return");				\
463	raw_cpu_add_return(pcp, val);					\
464})
465
466#define __this_cpu_xchg(pcp, nval)					\
467({									\
468	__this_cpu_preempt_check("xchg");				\
469	raw_cpu_xchg(pcp, nval);					\
470})
471
472#define __this_cpu_cmpxchg(pcp, oval, nval)				\
473({									\
474	__this_cpu_preempt_check("cmpxchg");				\
475	raw_cpu_cmpxchg(pcp, oval, nval);				\
476})
477
478#define __this_cpu_sub(pcp, val)	__this_cpu_add(pcp, -(typeof(pcp))(val))
479#define __this_cpu_inc(pcp)		__this_cpu_add(pcp, 1)
480#define __this_cpu_dec(pcp)		__this_cpu_sub(pcp, 1)
481#define __this_cpu_sub_return(pcp, val)	__this_cpu_add_return(pcp, -(typeof(pcp))(val))
482#define __this_cpu_inc_return(pcp)	__this_cpu_add_return(pcp, 1)
483#define __this_cpu_dec_return(pcp)	__this_cpu_add_return(pcp, -1)
484
485/*
486 * Operations with implied preemption/interrupt protection.  These
487 * operations can be used without worrying about preemption or interrupt.
488 */
489#define this_cpu_read(pcp)		__pcpu_size_call_return(this_cpu_read_, pcp)
490#define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, pcp, val)
491#define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, pcp, val)
492#define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, pcp, val)
493#define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, pcp, val)
494#define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
495#define this_cpu_xchg(pcp, nval)	__pcpu_size_call_return2(this_cpu_xchg_, pcp, nval)
496#define this_cpu_cmpxchg(pcp, oval, nval) \
497	__pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
498#define this_cpu_try_cmpxchg(pcp, ovalp, nval) \
499	__pcpu_size_call_return2bool(this_cpu_try_cmpxchg_, pcp, ovalp, nval)
500#define this_cpu_sub(pcp, val)		this_cpu_add(pcp, -(typeof(pcp))(val))
501#define this_cpu_inc(pcp)		this_cpu_add(pcp, 1)
502#define this_cpu_dec(pcp)		this_cpu_sub(pcp, 1)
503#define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(typeof(pcp))(val))
504#define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1)
505#define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1)
506
507#endif /* __ASSEMBLY__ */
508#endif /* _LINUX_PERCPU_DEFS_H */
509