1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* mpi.h  -  Multi Precision Integers
3 *	Copyright (C) 1994, 1996, 1998, 1999,
4 *                    2000, 2001 Free Software Foundation, Inc.
5 *
6 * This file is part of GNUPG.
7 *
8 * Note: This code is heavily based on the GNU MP Library.
9 *	 Actually it's the same code with only minor changes in the
10 *	 way the data is stored; this is to support the abstraction
11 *	 of an optional secure memory allocation which may be used
12 *	 to avoid revealing of sensitive data due to paging etc.
13 *	 The GNU MP Library itself is published under the LGPL;
14 *	 however I decided to publish this code under the plain GPL.
15 */
16
17#ifndef G10_MPI_H
18#define G10_MPI_H
19
20#include <linux/types.h>
21#include <linux/scatterlist.h>
22
23#define BYTES_PER_MPI_LIMB	(BITS_PER_LONG / 8)
24#define BITS_PER_MPI_LIMB	BITS_PER_LONG
25
26typedef unsigned long int mpi_limb_t;
27typedef signed long int mpi_limb_signed_t;
28
29struct gcry_mpi {
30	int alloced;		/* array size (# of allocated limbs) */
31	int nlimbs;		/* number of valid limbs */
32	int nbits;		/* the real number of valid bits (info only) */
33	int sign;		/* indicates a negative number */
34	unsigned flags;		/* bit 0: array must be allocated in secure memory space */
35	/* bit 1: not used */
36	/* bit 2: the limb is a pointer to some m_alloced data */
37	mpi_limb_t *d;		/* array with the limbs */
38};
39
40typedef struct gcry_mpi *MPI;
41
42#define mpi_get_nlimbs(a)     ((a)->nlimbs)
43#define mpi_has_sign(a)       ((a)->sign)
44
45/*-- mpiutil.c --*/
46MPI mpi_alloc(unsigned nlimbs);
47void mpi_clear(MPI a);
48void mpi_free(MPI a);
49int mpi_resize(MPI a, unsigned nlimbs);
50
51static inline MPI mpi_new(unsigned int nbits)
52{
53	return mpi_alloc((nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB);
54}
55
56MPI mpi_copy(MPI a);
57MPI mpi_alloc_like(MPI a);
58void mpi_snatch(MPI w, MPI u);
59MPI mpi_set(MPI w, MPI u);
60MPI mpi_set_ui(MPI w, unsigned long u);
61MPI mpi_alloc_set_ui(unsigned long u);
62void mpi_swap_cond(MPI a, MPI b, unsigned long swap);
63
64/* Constants used to return constant MPIs.  See mpi_init if you
65 * want to add more constants.
66 */
67#define MPI_NUMBER_OF_CONSTANTS 6
68enum gcry_mpi_constants {
69	MPI_C_ZERO,
70	MPI_C_ONE,
71	MPI_C_TWO,
72	MPI_C_THREE,
73	MPI_C_FOUR,
74	MPI_C_EIGHT
75};
76
77MPI mpi_const(enum gcry_mpi_constants no);
78
79/*-- mpicoder.c --*/
80
81/* Different formats of external big integer representation. */
82enum gcry_mpi_format {
83	GCRYMPI_FMT_NONE = 0,
84	GCRYMPI_FMT_STD = 1,    /* Twos complement stored without length. */
85	GCRYMPI_FMT_PGP = 2,    /* As used by OpenPGP (unsigned only). */
86	GCRYMPI_FMT_SSH = 3,    /* As used by SSH (like STD but with length). */
87	GCRYMPI_FMT_HEX = 4,    /* Hex format. */
88	GCRYMPI_FMT_USG = 5,    /* Like STD but unsigned. */
89	GCRYMPI_FMT_OPAQUE = 8  /* Opaque format (some functions only). */
90};
91
92MPI mpi_read_raw_data(const void *xbuffer, size_t nbytes);
93MPI mpi_read_from_buffer(const void *buffer, unsigned *ret_nread);
94int mpi_fromstr(MPI val, const char *str);
95MPI mpi_scanval(const char *string);
96MPI mpi_read_raw_from_sgl(struct scatterlist *sgl, unsigned int len);
97void *mpi_get_buffer(MPI a, unsigned *nbytes, int *sign);
98int mpi_read_buffer(MPI a, uint8_t *buf, unsigned buf_len, unsigned *nbytes,
99		    int *sign);
100int mpi_write_to_sgl(MPI a, struct scatterlist *sg, unsigned nbytes,
101		     int *sign);
102int mpi_print(enum gcry_mpi_format format, unsigned char *buffer,
103			size_t buflen, size_t *nwritten, MPI a);
104
105/*-- mpi-mod.c --*/
106void mpi_mod(MPI rem, MPI dividend, MPI divisor);
107
108/* Context used with Barrett reduction.  */
109struct barrett_ctx_s;
110typedef struct barrett_ctx_s *mpi_barrett_t;
111
112mpi_barrett_t mpi_barrett_init(MPI m, int copy);
113void mpi_barrett_free(mpi_barrett_t ctx);
114void mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx);
115void mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx);
116
117/*-- mpi-pow.c --*/
118int mpi_powm(MPI res, MPI base, MPI exp, MPI mod);
119
120/*-- mpi-cmp.c --*/
121int mpi_cmp_ui(MPI u, ulong v);
122int mpi_cmp(MPI u, MPI v);
123int mpi_cmpabs(MPI u, MPI v);
124
125/*-- mpi-sub-ui.c --*/
126int mpi_sub_ui(MPI w, MPI u, unsigned long vval);
127
128/*-- mpi-bit.c --*/
129void mpi_normalize(MPI a);
130unsigned mpi_get_nbits(MPI a);
131int mpi_test_bit(MPI a, unsigned int n);
132void mpi_set_bit(MPI a, unsigned int n);
133void mpi_set_highbit(MPI a, unsigned int n);
134void mpi_clear_highbit(MPI a, unsigned int n);
135void mpi_clear_bit(MPI a, unsigned int n);
136void mpi_rshift_limbs(MPI a, unsigned int count);
137void mpi_rshift(MPI x, MPI a, unsigned int n);
138void mpi_lshift_limbs(MPI a, unsigned int count);
139void mpi_lshift(MPI x, MPI a, unsigned int n);
140
141/*-- mpi-add.c --*/
142void mpi_add_ui(MPI w, MPI u, unsigned long v);
143void mpi_add(MPI w, MPI u, MPI v);
144void mpi_sub(MPI w, MPI u, MPI v);
145void mpi_addm(MPI w, MPI u, MPI v, MPI m);
146void mpi_subm(MPI w, MPI u, MPI v, MPI m);
147
148/*-- mpi-mul.c --*/
149void mpi_mul(MPI w, MPI u, MPI v);
150void mpi_mulm(MPI w, MPI u, MPI v, MPI m);
151
152/*-- mpi-div.c --*/
153void mpi_tdiv_r(MPI rem, MPI num, MPI den);
154void mpi_fdiv_r(MPI rem, MPI dividend, MPI divisor);
155void mpi_fdiv_q(MPI quot, MPI dividend, MPI divisor);
156
157/*-- mpi-inv.c --*/
158int mpi_invm(MPI x, MPI a, MPI n);
159
160/*-- ec.c --*/
161
162/* Object to represent a point in projective coordinates */
163struct gcry_mpi_point {
164	MPI x;
165	MPI y;
166	MPI z;
167};
168
169typedef struct gcry_mpi_point *MPI_POINT;
170
171/* Models describing an elliptic curve */
172enum gcry_mpi_ec_models {
173	/* The Short Weierstrass equation is
174	 *      y^2 = x^3 + ax + b
175	 */
176	MPI_EC_WEIERSTRASS = 0,
177	/* The Montgomery equation is
178	 *      by^2 = x^3 + ax^2 + x
179	 */
180	MPI_EC_MONTGOMERY,
181	/* The Twisted Edwards equation is
182	 *      ax^2 + y^2 = 1 + bx^2y^2
183	 * Note that we use 'b' instead of the commonly used 'd'.
184	 */
185	MPI_EC_EDWARDS
186};
187
188/* Dialects used with elliptic curves */
189enum ecc_dialects {
190	ECC_DIALECT_STANDARD = 0,
191	ECC_DIALECT_ED25519,
192	ECC_DIALECT_SAFECURVE
193};
194
195/* This context is used with all our EC functions. */
196struct mpi_ec_ctx {
197	enum gcry_mpi_ec_models model; /* The model describing this curve. */
198	enum ecc_dialects dialect;     /* The ECC dialect used with the curve. */
199	int flags;                     /* Public key flags (not always used). */
200	unsigned int nbits;            /* Number of bits.  */
201
202	/* Domain parameters.  Note that they may not all be set and if set
203	 * the MPIs may be flagged as constant.
204	 */
205	MPI p;         /* Prime specifying the field GF(p).  */
206	MPI a;         /* First coefficient of the Weierstrass equation.  */
207	MPI b;         /* Second coefficient of the Weierstrass equation.  */
208	MPI_POINT G;   /* Base point (generator).  */
209	MPI n;         /* Order of G.  */
210	unsigned int h;       /* Cofactor.  */
211
212	/* The actual key.  May not be set.  */
213	MPI_POINT Q;   /* Public key.   */
214	MPI d;         /* Private key.  */
215
216	const char *name;      /* Name of the curve.  */
217
218	/* This structure is private to mpi/ec.c! */
219	struct {
220		struct {
221			unsigned int a_is_pminus3:1;
222			unsigned int two_inv_p:1;
223		} valid; /* Flags to help setting the helper vars below.  */
224
225		int a_is_pminus3;  /* True if A = P - 3. */
226
227		MPI two_inv_p;
228
229		mpi_barrett_t p_barrett;
230
231		/* Scratch variables.  */
232		MPI scratch[11];
233
234		/* Helper for fast reduction.  */
235		/*   int nist_nbits; /\* If this is a NIST curve, the # of bits. *\/ */
236		/*   MPI s[10]; */
237		/*   MPI c; */
238	} t;
239
240	/* Curve specific computation routines for the field.  */
241	void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
242	void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec);
243	void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
244	void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx);
245	void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx);
246};
247
248void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model,
249			enum ecc_dialects dialect,
250			int flags, MPI p, MPI a, MPI b);
251void mpi_ec_deinit(struct mpi_ec_ctx *ctx);
252MPI_POINT mpi_point_new(unsigned int nbits);
253void mpi_point_release(MPI_POINT p);
254void mpi_point_init(MPI_POINT p);
255void mpi_point_free_parts(MPI_POINT p);
256int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx);
257void mpi_ec_add_points(MPI_POINT result,
258			MPI_POINT p1, MPI_POINT p2,
259			struct mpi_ec_ctx *ctx);
260void mpi_ec_mul_point(MPI_POINT result,
261			MPI scalar, MPI_POINT point,
262			struct mpi_ec_ctx *ctx);
263int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx);
264
265/* inline functions */
266
267/**
268 * mpi_get_size() - returns max size required to store the number
269 *
270 * @a:	A multi precision integer for which we want to allocate a buffer
271 *
272 * Return: size required to store the number
273 */
274static inline unsigned int mpi_get_size(MPI a)
275{
276	return a->nlimbs * BYTES_PER_MPI_LIMB;
277}
278#endif /*G10_MPI_H */
279