1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
5#ifndef __ASSEMBLY__
6#ifndef __GENERATING_BOUNDS_H
7
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/list_nulls.h>
11#include <linux/wait.h>
12#include <linux/bitops.h>
13#include <linux/cache.h>
14#include <linux/threads.h>
15#include <linux/numa.h>
16#include <linux/init.h>
17#include <linux/seqlock.h>
18#include <linux/nodemask.h>
19#include <linux/pageblock-flags.h>
20#include <linux/page-flags-layout.h>
21#include <linux/atomic.h>
22#include <linux/mm_types.h>
23#include <linux/page-flags.h>
24#include <linux/local_lock.h>
25#include <linux/zswap.h>
26#include <asm/page.h>
27
28/* Free memory management - zoned buddy allocator.  */
29#ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30#define MAX_PAGE_ORDER 10
31#else
32#define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33#endif
34#define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35
36#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37
38#define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39
40/*
41 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42 * costly to service.  That is between allocation orders which should
43 * coalesce naturally under reasonable reclaim pressure and those which
44 * will not.
45 */
46#define PAGE_ALLOC_COSTLY_ORDER 3
47
48enum migratetype {
49	MIGRATE_UNMOVABLE,
50	MIGRATE_MOVABLE,
51	MIGRATE_RECLAIMABLE,
52	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54#ifdef CONFIG_CMA
55	/*
56	 * MIGRATE_CMA migration type is designed to mimic the way
57	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58	 * from MIGRATE_CMA pageblocks and page allocator never
59	 * implicitly change migration type of MIGRATE_CMA pageblock.
60	 *
61	 * The way to use it is to change migratetype of a range of
62	 * pageblocks to MIGRATE_CMA which can be done by
63	 * __free_pageblock_cma() function.
64	 */
65	MIGRATE_CMA,
66#endif
67#ifdef CONFIG_MEMORY_ISOLATION
68	MIGRATE_ISOLATE,	/* can't allocate from here */
69#endif
70	MIGRATE_TYPES
71};
72
73/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74extern const char * const migratetype_names[MIGRATE_TYPES];
75
76#ifdef CONFIG_CMA
77#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79#  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81#else
82#  define is_migrate_cma(migratetype) false
83#  define is_migrate_cma_page(_page) false
84#  define is_migrate_cma_folio(folio, pfn) false
85#endif
86
87static inline bool is_migrate_movable(int mt)
88{
89	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90}
91
92/*
93 * Check whether a migratetype can be merged with another migratetype.
94 *
95 * It is only mergeable when it can fall back to other migratetypes for
96 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97 */
98static inline bool migratetype_is_mergeable(int mt)
99{
100	return mt < MIGRATE_PCPTYPES;
101}
102
103#define for_each_migratetype_order(order, type) \
104	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105		for (type = 0; type < MIGRATE_TYPES; type++)
106
107extern int page_group_by_mobility_disabled;
108
109#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110
111#define get_pageblock_migratetype(page)					\
112	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113
114#define folio_migratetype(folio)				\
115	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116			MIGRATETYPE_MASK)
117struct free_area {
118	struct list_head	free_list[MIGRATE_TYPES];
119	unsigned long		nr_free;
120};
121
122struct pglist_data;
123
124#ifdef CONFIG_NUMA
125enum numa_stat_item {
126	NUMA_HIT,		/* allocated in intended node */
127	NUMA_MISS,		/* allocated in non intended node */
128	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130	NUMA_LOCAL,		/* allocation from local node */
131	NUMA_OTHER,		/* allocation from other node */
132	NR_VM_NUMA_EVENT_ITEMS
133};
134#else
135#define NR_VM_NUMA_EVENT_ITEMS 0
136#endif
137
138enum zone_stat_item {
139	/* First 128 byte cacheline (assuming 64 bit words) */
140	NR_FREE_PAGES,
141	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143	NR_ZONE_ACTIVE_ANON,
144	NR_ZONE_INACTIVE_FILE,
145	NR_ZONE_ACTIVE_FILE,
146	NR_ZONE_UNEVICTABLE,
147	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149	/* Second 128 byte cacheline */
150	NR_BOUNCE,
151#if IS_ENABLED(CONFIG_ZSMALLOC)
152	NR_ZSPAGES,		/* allocated in zsmalloc */
153#endif
154	NR_FREE_CMA_PAGES,
155#ifdef CONFIG_UNACCEPTED_MEMORY
156	NR_UNACCEPTED,
157#endif
158	NR_VM_ZONE_STAT_ITEMS };
159
160enum node_stat_item {
161	NR_LRU_BASE,
162	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
164	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
165	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
166	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
167	NR_SLAB_RECLAIMABLE_B,
168	NR_SLAB_UNRECLAIMABLE_B,
169	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
170	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
171	WORKINGSET_NODES,
172	WORKINGSET_REFAULT_BASE,
173	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174	WORKINGSET_REFAULT_FILE,
175	WORKINGSET_ACTIVATE_BASE,
176	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177	WORKINGSET_ACTIVATE_FILE,
178	WORKINGSET_RESTORE_BASE,
179	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180	WORKINGSET_RESTORE_FILE,
181	WORKINGSET_NODERECLAIM,
182	NR_ANON_MAPPED,	/* Mapped anonymous pages */
183	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
184			   only modified from process context */
185	NR_FILE_PAGES,
186	NR_FILE_DIRTY,
187	NR_WRITEBACK,
188	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
189	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
190	NR_SHMEM_THPS,
191	NR_SHMEM_PMDMAPPED,
192	NR_FILE_THPS,
193	NR_FILE_PMDMAPPED,
194	NR_ANON_THPS,
195	NR_VMSCAN_WRITE,
196	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
197	NR_DIRTIED,		/* page dirtyings since bootup */
198	NR_WRITTEN,		/* page writings since bootup */
199	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
200	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
201	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
202	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
203	NR_KERNEL_STACK_KB,	/* measured in KiB */
204#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205	NR_KERNEL_SCS_KB,	/* measured in KiB */
206#endif
207	NR_PAGETABLE,		/* used for pagetables */
208	NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */
209#ifdef CONFIG_SWAP
210	NR_SWAPCACHE,
211#endif
212#ifdef CONFIG_NUMA_BALANCING
213	PGPROMOTE_SUCCESS,	/* promote successfully */
214	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
215#endif
216	/* PGDEMOTE_*: pages demoted */
217	PGDEMOTE_KSWAPD,
218	PGDEMOTE_DIRECT,
219	PGDEMOTE_KHUGEPAGED,
220	NR_VM_NODE_STAT_ITEMS
221};
222
223/*
224 * Returns true if the item should be printed in THPs (/proc/vmstat
225 * currently prints number of anon, file and shmem THPs. But the item
226 * is charged in pages).
227 */
228static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
229{
230	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
231		return false;
232
233	return item == NR_ANON_THPS ||
234	       item == NR_FILE_THPS ||
235	       item == NR_SHMEM_THPS ||
236	       item == NR_SHMEM_PMDMAPPED ||
237	       item == NR_FILE_PMDMAPPED;
238}
239
240/*
241 * Returns true if the value is measured in bytes (most vmstat values are
242 * measured in pages). This defines the API part, the internal representation
243 * might be different.
244 */
245static __always_inline bool vmstat_item_in_bytes(int idx)
246{
247	/*
248	 * Global and per-node slab counters track slab pages.
249	 * It's expected that changes are multiples of PAGE_SIZE.
250	 * Internally values are stored in pages.
251	 *
252	 * Per-memcg and per-lruvec counters track memory, consumed
253	 * by individual slab objects. These counters are actually
254	 * byte-precise.
255	 */
256	return (idx == NR_SLAB_RECLAIMABLE_B ||
257		idx == NR_SLAB_UNRECLAIMABLE_B);
258}
259
260/*
261 * We do arithmetic on the LRU lists in various places in the code,
262 * so it is important to keep the active lists LRU_ACTIVE higher in
263 * the array than the corresponding inactive lists, and to keep
264 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
265 *
266 * This has to be kept in sync with the statistics in zone_stat_item
267 * above and the descriptions in vmstat_text in mm/vmstat.c
268 */
269#define LRU_BASE 0
270#define LRU_ACTIVE 1
271#define LRU_FILE 2
272
273enum lru_list {
274	LRU_INACTIVE_ANON = LRU_BASE,
275	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
276	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
277	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
278	LRU_UNEVICTABLE,
279	NR_LRU_LISTS
280};
281
282enum vmscan_throttle_state {
283	VMSCAN_THROTTLE_WRITEBACK,
284	VMSCAN_THROTTLE_ISOLATED,
285	VMSCAN_THROTTLE_NOPROGRESS,
286	VMSCAN_THROTTLE_CONGESTED,
287	NR_VMSCAN_THROTTLE,
288};
289
290#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
291
292#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
293
294static inline bool is_file_lru(enum lru_list lru)
295{
296	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
297}
298
299static inline bool is_active_lru(enum lru_list lru)
300{
301	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
302}
303
304#define WORKINGSET_ANON 0
305#define WORKINGSET_FILE 1
306#define ANON_AND_FILE 2
307
308enum lruvec_flags {
309	/*
310	 * An lruvec has many dirty pages backed by a congested BDI:
311	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
312	 *    It can be cleared by cgroup reclaim or kswapd.
313	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
314	 *    It can only be cleared by kswapd.
315	 *
316	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
317	 * reclaim, but not vice versa. This only applies to the root cgroup.
318	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
319	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
320	 * by kswapd).
321	 */
322	LRUVEC_CGROUP_CONGESTED,
323	LRUVEC_NODE_CONGESTED,
324};
325
326#endif /* !__GENERATING_BOUNDS_H */
327
328/*
329 * Evictable pages are divided into multiple generations. The youngest and the
330 * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
331 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
332 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
333 * corresponding generation. The gen counter in folio->flags stores gen+1 while
334 * a page is on one of lrugen->folios[]. Otherwise it stores 0.
335 *
336 * A page is added to the youngest generation on faulting. The aging needs to
337 * check the accessed bit at least twice before handing this page over to the
338 * eviction. The first check takes care of the accessed bit set on the initial
339 * fault; the second check makes sure this page hasn't been used since then.
340 * This process, AKA second chance, requires a minimum of two generations,
341 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive
342 * LRU, e.g., /proc/vmstat, these two generations are considered active; the
343 * rest of generations, if they exist, are considered inactive. See
344 * lru_gen_is_active().
345 *
346 * PG_active is always cleared while a page is on one of lrugen->folios[] so
347 * that the aging needs not to worry about it. And it's set again when a page
348 * considered active is isolated for non-reclaiming purposes, e.g., migration.
349 * See lru_gen_add_folio() and lru_gen_del_folio().
350 *
351 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
352 * number of categories of the active/inactive LRU when keeping track of
353 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
354 * in folio->flags.
355 */
356#define MIN_NR_GENS		2U
357#define MAX_NR_GENS		4U
358
359/*
360 * Each generation is divided into multiple tiers. A page accessed N times
361 * through file descriptors is in tier order_base_2(N). A page in the first tier
362 * (N=0,1) is marked by PG_referenced unless it was faulted in through page
363 * tables or read ahead. A page in any other tier (N>1) is marked by
364 * PG_referenced and PG_workingset. This implies a minimum of two tiers is
365 * supported without using additional bits in folio->flags.
366 *
367 * In contrast to moving across generations which requires the LRU lock, moving
368 * across tiers only involves atomic operations on folio->flags and therefore
369 * has a negligible cost in the buffered access path. In the eviction path,
370 * comparisons of refaulted/(evicted+protected) from the first tier and the
371 * rest infer whether pages accessed multiple times through file descriptors
372 * are statistically hot and thus worth protecting.
373 *
374 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
375 * number of categories of the active/inactive LRU when keeping track of
376 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
377 * folio->flags.
378 */
379#define MAX_NR_TIERS		4U
380
381#ifndef __GENERATING_BOUNDS_H
382
383struct lruvec;
384struct page_vma_mapped_walk;
385
386#define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
387#define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
388
389#ifdef CONFIG_LRU_GEN
390
391enum {
392	LRU_GEN_ANON,
393	LRU_GEN_FILE,
394};
395
396enum {
397	LRU_GEN_CORE,
398	LRU_GEN_MM_WALK,
399	LRU_GEN_NONLEAF_YOUNG,
400	NR_LRU_GEN_CAPS
401};
402
403#define MIN_LRU_BATCH		BITS_PER_LONG
404#define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
405
406/* whether to keep historical stats from evicted generations */
407#ifdef CONFIG_LRU_GEN_STATS
408#define NR_HIST_GENS		MAX_NR_GENS
409#else
410#define NR_HIST_GENS		1U
411#endif
412
413/*
414 * The youngest generation number is stored in max_seq for both anon and file
415 * types as they are aged on an equal footing. The oldest generation numbers are
416 * stored in min_seq[] separately for anon and file types as clean file pages
417 * can be evicted regardless of swap constraints.
418 *
419 * Normally anon and file min_seq are in sync. But if swapping is constrained,
420 * e.g., out of swap space, file min_seq is allowed to advance and leave anon
421 * min_seq behind.
422 *
423 * The number of pages in each generation is eventually consistent and therefore
424 * can be transiently negative when reset_batch_size() is pending.
425 */
426struct lru_gen_folio {
427	/* the aging increments the youngest generation number */
428	unsigned long max_seq;
429	/* the eviction increments the oldest generation numbers */
430	unsigned long min_seq[ANON_AND_FILE];
431	/* the birth time of each generation in jiffies */
432	unsigned long timestamps[MAX_NR_GENS];
433	/* the multi-gen LRU lists, lazily sorted on eviction */
434	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
435	/* the multi-gen LRU sizes, eventually consistent */
436	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
437	/* the exponential moving average of refaulted */
438	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
439	/* the exponential moving average of evicted+protected */
440	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
441	/* the first tier doesn't need protection, hence the minus one */
442	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1];
443	/* can be modified without holding the LRU lock */
444	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
445	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
446	/* whether the multi-gen LRU is enabled */
447	bool enabled;
448	/* the memcg generation this lru_gen_folio belongs to */
449	u8 gen;
450	/* the list segment this lru_gen_folio belongs to */
451	u8 seg;
452	/* per-node lru_gen_folio list for global reclaim */
453	struct hlist_nulls_node list;
454};
455
456enum {
457	MM_LEAF_TOTAL,		/* total leaf entries */
458	MM_LEAF_OLD,		/* old leaf entries */
459	MM_LEAF_YOUNG,		/* young leaf entries */
460	MM_NONLEAF_TOTAL,	/* total non-leaf entries */
461	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
462	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
463	NR_MM_STATS
464};
465
466/* double-buffering Bloom filters */
467#define NR_BLOOM_FILTERS	2
468
469struct lru_gen_mm_state {
470	/* synced with max_seq after each iteration */
471	unsigned long seq;
472	/* where the current iteration continues after */
473	struct list_head *head;
474	/* where the last iteration ended before */
475	struct list_head *tail;
476	/* Bloom filters flip after each iteration */
477	unsigned long *filters[NR_BLOOM_FILTERS];
478	/* the mm stats for debugging */
479	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
480};
481
482struct lru_gen_mm_walk {
483	/* the lruvec under reclaim */
484	struct lruvec *lruvec;
485	/* max_seq from lru_gen_folio: can be out of date */
486	unsigned long seq;
487	/* the next address within an mm to scan */
488	unsigned long next_addr;
489	/* to batch promoted pages */
490	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
491	/* to batch the mm stats */
492	int mm_stats[NR_MM_STATS];
493	/* total batched items */
494	int batched;
495	bool can_swap;
496	bool force_scan;
497};
498
499/*
500 * For each node, memcgs are divided into two generations: the old and the
501 * young. For each generation, memcgs are randomly sharded into multiple bins
502 * to improve scalability. For each bin, the hlist_nulls is virtually divided
503 * into three segments: the head, the tail and the default.
504 *
505 * An onlining memcg is added to the tail of a random bin in the old generation.
506 * The eviction starts at the head of a random bin in the old generation. The
507 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
508 * the old generation, is incremented when all its bins become empty.
509 *
510 * There are four operations:
511 * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
512 *    current generation (old or young) and updates its "seg" to "head";
513 * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
514 *    current generation (old or young) and updates its "seg" to "tail";
515 * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
516 *    generation, updates its "gen" to "old" and resets its "seg" to "default";
517 * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
518 *    young generation, updates its "gen" to "young" and resets its "seg" to
519 *    "default".
520 *
521 * The events that trigger the above operations are:
522 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
523 * 2. The first attempt to reclaim a memcg below low, which triggers
524 *    MEMCG_LRU_TAIL;
525 * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
526 *    threshold, which triggers MEMCG_LRU_TAIL;
527 * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
528 *    threshold, which triggers MEMCG_LRU_YOUNG;
529 * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
530 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
531 * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
532 *
533 * Notes:
534 * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
535 *    of their max_seq counters ensures the eventual fairness to all eligible
536 *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
537 * 2. There are only two valid generations: old (seq) and young (seq+1).
538 *    MEMCG_NR_GENS is set to three so that when reading the generation counter
539 *    locklessly, a stale value (seq-1) does not wraparound to young.
540 */
541#define MEMCG_NR_GENS	3
542#define MEMCG_NR_BINS	8
543
544struct lru_gen_memcg {
545	/* the per-node memcg generation counter */
546	unsigned long seq;
547	/* each memcg has one lru_gen_folio per node */
548	unsigned long nr_memcgs[MEMCG_NR_GENS];
549	/* per-node lru_gen_folio list for global reclaim */
550	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
551	/* protects the above */
552	spinlock_t lock;
553};
554
555void lru_gen_init_pgdat(struct pglist_data *pgdat);
556void lru_gen_init_lruvec(struct lruvec *lruvec);
557void lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
558
559void lru_gen_init_memcg(struct mem_cgroup *memcg);
560void lru_gen_exit_memcg(struct mem_cgroup *memcg);
561void lru_gen_online_memcg(struct mem_cgroup *memcg);
562void lru_gen_offline_memcg(struct mem_cgroup *memcg);
563void lru_gen_release_memcg(struct mem_cgroup *memcg);
564void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
565
566#else /* !CONFIG_LRU_GEN */
567
568static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
569{
570}
571
572static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
573{
574}
575
576static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
577{
578}
579
580static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
581{
582}
583
584static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
585{
586}
587
588static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
589{
590}
591
592static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
593{
594}
595
596static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
597{
598}
599
600static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
601{
602}
603
604#endif /* CONFIG_LRU_GEN */
605
606struct lruvec {
607	struct list_head		lists[NR_LRU_LISTS];
608	/* per lruvec lru_lock for memcg */
609	spinlock_t			lru_lock;
610	/*
611	 * These track the cost of reclaiming one LRU - file or anon -
612	 * over the other. As the observed cost of reclaiming one LRU
613	 * increases, the reclaim scan balance tips toward the other.
614	 */
615	unsigned long			anon_cost;
616	unsigned long			file_cost;
617	/* Non-resident age, driven by LRU movement */
618	atomic_long_t			nonresident_age;
619	/* Refaults at the time of last reclaim cycle */
620	unsigned long			refaults[ANON_AND_FILE];
621	/* Various lruvec state flags (enum lruvec_flags) */
622	unsigned long			flags;
623#ifdef CONFIG_LRU_GEN
624	/* evictable pages divided into generations */
625	struct lru_gen_folio		lrugen;
626#ifdef CONFIG_LRU_GEN_WALKS_MMU
627	/* to concurrently iterate lru_gen_mm_list */
628	struct lru_gen_mm_state		mm_state;
629#endif
630#endif /* CONFIG_LRU_GEN */
631#ifdef CONFIG_MEMCG
632	struct pglist_data *pgdat;
633#endif
634	struct zswap_lruvec_state zswap_lruvec_state;
635};
636
637/* Isolate for asynchronous migration */
638#define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
639/* Isolate unevictable pages */
640#define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
641
642/* LRU Isolation modes. */
643typedef unsigned __bitwise isolate_mode_t;
644
645enum zone_watermarks {
646	WMARK_MIN,
647	WMARK_LOW,
648	WMARK_HIGH,
649	WMARK_PROMO,
650	NR_WMARK
651};
652
653/*
654 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
655 * for THP which will usually be GFP_MOVABLE. Even if it is another type,
656 * it should not contribute to serious fragmentation causing THP allocation
657 * failures.
658 */
659#ifdef CONFIG_TRANSPARENT_HUGEPAGE
660#define NR_PCP_THP 1
661#else
662#define NR_PCP_THP 0
663#endif
664#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
665#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
666
667#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
668#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
669#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
670#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
671
672/*
673 * Flags used in pcp->flags field.
674 *
675 * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
676 * previous page freeing.  To avoid to drain PCP for an accident
677 * high-order page freeing.
678 *
679 * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
680 * draining PCP for consecutive high-order pages freeing without
681 * allocation if data cache slice of CPU is large enough.  To reduce
682 * zone lock contention and keep cache-hot pages reusing.
683 */
684#define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
685#define	PCPF_FREE_HIGH_BATCH		BIT(1)
686
687struct per_cpu_pages {
688	spinlock_t lock;	/* Protects lists field */
689	int count;		/* number of pages in the list */
690	int high;		/* high watermark, emptying needed */
691	int high_min;		/* min high watermark */
692	int high_max;		/* max high watermark */
693	int batch;		/* chunk size for buddy add/remove */
694	u8 flags;		/* protected by pcp->lock */
695	u8 alloc_factor;	/* batch scaling factor during allocate */
696#ifdef CONFIG_NUMA
697	u8 expire;		/* When 0, remote pagesets are drained */
698#endif
699	short free_count;	/* consecutive free count */
700
701	/* Lists of pages, one per migrate type stored on the pcp-lists */
702	struct list_head lists[NR_PCP_LISTS];
703} ____cacheline_aligned_in_smp;
704
705struct per_cpu_zonestat {
706#ifdef CONFIG_SMP
707	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
708	s8 stat_threshold;
709#endif
710#ifdef CONFIG_NUMA
711	/*
712	 * Low priority inaccurate counters that are only folded
713	 * on demand. Use a large type to avoid the overhead of
714	 * folding during refresh_cpu_vm_stats.
715	 */
716	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
717#endif
718};
719
720struct per_cpu_nodestat {
721	s8 stat_threshold;
722	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
723};
724
725#endif /* !__GENERATING_BOUNDS.H */
726
727enum zone_type {
728	/*
729	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
730	 * to DMA to all of the addressable memory (ZONE_NORMAL).
731	 * On architectures where this area covers the whole 32 bit address
732	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
733	 * DMA addressing constraints. This distinction is important as a 32bit
734	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
735	 * platforms may need both zones as they support peripherals with
736	 * different DMA addressing limitations.
737	 */
738#ifdef CONFIG_ZONE_DMA
739	ZONE_DMA,
740#endif
741#ifdef CONFIG_ZONE_DMA32
742	ZONE_DMA32,
743#endif
744	/*
745	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
746	 * performed on pages in ZONE_NORMAL if the DMA devices support
747	 * transfers to all addressable memory.
748	 */
749	ZONE_NORMAL,
750#ifdef CONFIG_HIGHMEM
751	/*
752	 * A memory area that is only addressable by the kernel through
753	 * mapping portions into its own address space. This is for example
754	 * used by i386 to allow the kernel to address the memory beyond
755	 * 900MB. The kernel will set up special mappings (page
756	 * table entries on i386) for each page that the kernel needs to
757	 * access.
758	 */
759	ZONE_HIGHMEM,
760#endif
761	/*
762	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
763	 * movable pages with few exceptional cases described below. Main use
764	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
765	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
766	 * to increase the number of THP/huge pages. Notable special cases are:
767	 *
768	 * 1. Pinned pages: (long-term) pinning of movable pages might
769	 *    essentially turn such pages unmovable. Therefore, we do not allow
770	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
771	 *    faulted, they come from the right zone right away. However, it is
772	 *    still possible that address space already has pages in
773	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
774	 *    touches that memory before pinning). In such case we migrate them
775	 *    to a different zone. When migration fails - pinning fails.
776	 * 2. memblock allocations: kernelcore/movablecore setups might create
777	 *    situations where ZONE_MOVABLE contains unmovable allocations
778	 *    after boot. Memory offlining and allocations fail early.
779	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
780	 *    situations where ZONE_MOVABLE contains memory holes after boot,
781	 *    for example, if we have sections that are only partially
782	 *    populated. Memory offlining and allocations fail early.
783	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
784	 *    memory offlining, such pages cannot be allocated.
785	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
786	 *    hotplugged memory blocks might only partially be managed by the
787	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
788	 *    parts not manged by the buddy are unmovable PG_offline pages. In
789	 *    some cases (virtio-mem), such pages can be skipped during
790	 *    memory offlining, however, cannot be moved/allocated. These
791	 *    techniques might use alloc_contig_range() to hide previously
792	 *    exposed pages from the buddy again (e.g., to implement some sort
793	 *    of memory unplug in virtio-mem).
794	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
795	 *    situations where ZERO_PAGE(0) which is allocated differently
796	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
797	 *    cannot be migrated.
798	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
799	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
800	 *    such zone. Such pages cannot be really moved around as they are
801	 *    self-stored in the range, but they are treated as movable when
802	 *    the range they describe is about to be offlined.
803	 *
804	 * In general, no unmovable allocations that degrade memory offlining
805	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
806	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
807	 * if has_unmovable_pages() states that there are no unmovable pages,
808	 * there can be false negatives).
809	 */
810	ZONE_MOVABLE,
811#ifdef CONFIG_ZONE_DEVICE
812	ZONE_DEVICE,
813#endif
814	__MAX_NR_ZONES
815
816};
817
818#ifndef __GENERATING_BOUNDS_H
819
820#define ASYNC_AND_SYNC 2
821
822struct zone {
823	/* Read-mostly fields */
824
825	/* zone watermarks, access with *_wmark_pages(zone) macros */
826	unsigned long _watermark[NR_WMARK];
827	unsigned long watermark_boost;
828
829	unsigned long nr_reserved_highatomic;
830
831	/*
832	 * We don't know if the memory that we're going to allocate will be
833	 * freeable or/and it will be released eventually, so to avoid totally
834	 * wasting several GB of ram we must reserve some of the lower zone
835	 * memory (otherwise we risk to run OOM on the lower zones despite
836	 * there being tons of freeable ram on the higher zones).  This array is
837	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
838	 * changes.
839	 */
840	long lowmem_reserve[MAX_NR_ZONES];
841
842#ifdef CONFIG_NUMA
843	int node;
844#endif
845	struct pglist_data	*zone_pgdat;
846	struct per_cpu_pages	__percpu *per_cpu_pageset;
847	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
848	/*
849	 * the high and batch values are copied to individual pagesets for
850	 * faster access
851	 */
852	int pageset_high_min;
853	int pageset_high_max;
854	int pageset_batch;
855
856#ifndef CONFIG_SPARSEMEM
857	/*
858	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
859	 * In SPARSEMEM, this map is stored in struct mem_section
860	 */
861	unsigned long		*pageblock_flags;
862#endif /* CONFIG_SPARSEMEM */
863
864	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
865	unsigned long		zone_start_pfn;
866
867	/*
868	 * spanned_pages is the total pages spanned by the zone, including
869	 * holes, which is calculated as:
870	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
871	 *
872	 * present_pages is physical pages existing within the zone, which
873	 * is calculated as:
874	 *	present_pages = spanned_pages - absent_pages(pages in holes);
875	 *
876	 * present_early_pages is present pages existing within the zone
877	 * located on memory available since early boot, excluding hotplugged
878	 * memory.
879	 *
880	 * managed_pages is present pages managed by the buddy system, which
881	 * is calculated as (reserved_pages includes pages allocated by the
882	 * bootmem allocator):
883	 *	managed_pages = present_pages - reserved_pages;
884	 *
885	 * cma pages is present pages that are assigned for CMA use
886	 * (MIGRATE_CMA).
887	 *
888	 * So present_pages may be used by memory hotplug or memory power
889	 * management logic to figure out unmanaged pages by checking
890	 * (present_pages - managed_pages). And managed_pages should be used
891	 * by page allocator and vm scanner to calculate all kinds of watermarks
892	 * and thresholds.
893	 *
894	 * Locking rules:
895	 *
896	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
897	 * It is a seqlock because it has to be read outside of zone->lock,
898	 * and it is done in the main allocator path.  But, it is written
899	 * quite infrequently.
900	 *
901	 * The span_seq lock is declared along with zone->lock because it is
902	 * frequently read in proximity to zone->lock.  It's good to
903	 * give them a chance of being in the same cacheline.
904	 *
905	 * Write access to present_pages at runtime should be protected by
906	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
907	 * present_pages should use get_online_mems() to get a stable value.
908	 */
909	atomic_long_t		managed_pages;
910	unsigned long		spanned_pages;
911	unsigned long		present_pages;
912#if defined(CONFIG_MEMORY_HOTPLUG)
913	unsigned long		present_early_pages;
914#endif
915#ifdef CONFIG_CMA
916	unsigned long		cma_pages;
917#endif
918
919	const char		*name;
920
921#ifdef CONFIG_MEMORY_ISOLATION
922	/*
923	 * Number of isolated pageblock. It is used to solve incorrect
924	 * freepage counting problem due to racy retrieving migratetype
925	 * of pageblock. Protected by zone->lock.
926	 */
927	unsigned long		nr_isolate_pageblock;
928#endif
929
930#ifdef CONFIG_MEMORY_HOTPLUG
931	/* see spanned/present_pages for more description */
932	seqlock_t		span_seqlock;
933#endif
934
935	int initialized;
936
937	/* Write-intensive fields used from the page allocator */
938	CACHELINE_PADDING(_pad1_);
939
940	/* free areas of different sizes */
941	struct free_area	free_area[NR_PAGE_ORDERS];
942
943#ifdef CONFIG_UNACCEPTED_MEMORY
944	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
945	struct list_head	unaccepted_pages;
946#endif
947
948	/* zone flags, see below */
949	unsigned long		flags;
950
951	/* Primarily protects free_area */
952	spinlock_t		lock;
953
954	/* Write-intensive fields used by compaction and vmstats. */
955	CACHELINE_PADDING(_pad2_);
956
957	/*
958	 * When free pages are below this point, additional steps are taken
959	 * when reading the number of free pages to avoid per-cpu counter
960	 * drift allowing watermarks to be breached
961	 */
962	unsigned long percpu_drift_mark;
963
964#if defined CONFIG_COMPACTION || defined CONFIG_CMA
965	/* pfn where compaction free scanner should start */
966	unsigned long		compact_cached_free_pfn;
967	/* pfn where compaction migration scanner should start */
968	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
969	unsigned long		compact_init_migrate_pfn;
970	unsigned long		compact_init_free_pfn;
971#endif
972
973#ifdef CONFIG_COMPACTION
974	/*
975	 * On compaction failure, 1<<compact_defer_shift compactions
976	 * are skipped before trying again. The number attempted since
977	 * last failure is tracked with compact_considered.
978	 * compact_order_failed is the minimum compaction failed order.
979	 */
980	unsigned int		compact_considered;
981	unsigned int		compact_defer_shift;
982	int			compact_order_failed;
983#endif
984
985#if defined CONFIG_COMPACTION || defined CONFIG_CMA
986	/* Set to true when the PG_migrate_skip bits should be cleared */
987	bool			compact_blockskip_flush;
988#endif
989
990	bool			contiguous;
991
992	CACHELINE_PADDING(_pad3_);
993	/* Zone statistics */
994	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
995	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
996} ____cacheline_internodealigned_in_smp;
997
998enum pgdat_flags {
999	PGDAT_DIRTY,			/* reclaim scanning has recently found
1000					 * many dirty file pages at the tail
1001					 * of the LRU.
1002					 */
1003	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1004					 * many pages under writeback
1005					 */
1006	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1007};
1008
1009enum zone_flags {
1010	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1011					 * Cleared when kswapd is woken.
1012					 */
1013	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1014	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1015};
1016
1017static inline unsigned long zone_managed_pages(struct zone *zone)
1018{
1019	return (unsigned long)atomic_long_read(&zone->managed_pages);
1020}
1021
1022static inline unsigned long zone_cma_pages(struct zone *zone)
1023{
1024#ifdef CONFIG_CMA
1025	return zone->cma_pages;
1026#else
1027	return 0;
1028#endif
1029}
1030
1031static inline unsigned long zone_end_pfn(const struct zone *zone)
1032{
1033	return zone->zone_start_pfn + zone->spanned_pages;
1034}
1035
1036static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1037{
1038	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1039}
1040
1041static inline bool zone_is_initialized(struct zone *zone)
1042{
1043	return zone->initialized;
1044}
1045
1046static inline bool zone_is_empty(struct zone *zone)
1047{
1048	return zone->spanned_pages == 0;
1049}
1050
1051#ifndef BUILD_VDSO32_64
1052/*
1053 * The zone field is never updated after free_area_init_core()
1054 * sets it, so none of the operations on it need to be atomic.
1055 */
1056
1057/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1058#define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1059#define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1060#define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1061#define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1062#define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1063#define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1064#define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1065
1066/*
1067 * Define the bit shifts to access each section.  For non-existent
1068 * sections we define the shift as 0; that plus a 0 mask ensures
1069 * the compiler will optimise away reference to them.
1070 */
1071#define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1072#define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1073#define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1074#define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1075#define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1076
1077/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1078#ifdef NODE_NOT_IN_PAGE_FLAGS
1079#define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1080#define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1081						SECTIONS_PGOFF : ZONES_PGOFF)
1082#else
1083#define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1084#define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1085						NODES_PGOFF : ZONES_PGOFF)
1086#endif
1087
1088#define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1089
1090#define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1091#define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1092#define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1093#define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1094#define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1095#define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1096
1097static inline enum zone_type page_zonenum(const struct page *page)
1098{
1099	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1100	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1101}
1102
1103static inline enum zone_type folio_zonenum(const struct folio *folio)
1104{
1105	return page_zonenum(&folio->page);
1106}
1107
1108#ifdef CONFIG_ZONE_DEVICE
1109static inline bool is_zone_device_page(const struct page *page)
1110{
1111	return page_zonenum(page) == ZONE_DEVICE;
1112}
1113
1114/*
1115 * Consecutive zone device pages should not be merged into the same sgl
1116 * or bvec segment with other types of pages or if they belong to different
1117 * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1118 * without scanning the entire segment. This helper returns true either if
1119 * both pages are not zone device pages or both pages are zone device pages
1120 * with the same pgmap.
1121 */
1122static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1123						     const struct page *b)
1124{
1125	if (is_zone_device_page(a) != is_zone_device_page(b))
1126		return false;
1127	if (!is_zone_device_page(a))
1128		return true;
1129	return a->pgmap == b->pgmap;
1130}
1131
1132extern void memmap_init_zone_device(struct zone *, unsigned long,
1133				    unsigned long, struct dev_pagemap *);
1134#else
1135static inline bool is_zone_device_page(const struct page *page)
1136{
1137	return false;
1138}
1139static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1140						     const struct page *b)
1141{
1142	return true;
1143}
1144#endif
1145
1146static inline bool folio_is_zone_device(const struct folio *folio)
1147{
1148	return is_zone_device_page(&folio->page);
1149}
1150
1151static inline bool is_zone_movable_page(const struct page *page)
1152{
1153	return page_zonenum(page) == ZONE_MOVABLE;
1154}
1155
1156static inline bool folio_is_zone_movable(const struct folio *folio)
1157{
1158	return folio_zonenum(folio) == ZONE_MOVABLE;
1159}
1160#endif
1161
1162/*
1163 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1164 * intersection with the given zone
1165 */
1166static inline bool zone_intersects(struct zone *zone,
1167		unsigned long start_pfn, unsigned long nr_pages)
1168{
1169	if (zone_is_empty(zone))
1170		return false;
1171	if (start_pfn >= zone_end_pfn(zone) ||
1172	    start_pfn + nr_pages <= zone->zone_start_pfn)
1173		return false;
1174
1175	return true;
1176}
1177
1178/*
1179 * The "priority" of VM scanning is how much of the queues we will scan in one
1180 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1181 * queues ("queue_length >> 12") during an aging round.
1182 */
1183#define DEF_PRIORITY 12
1184
1185/* Maximum number of zones on a zonelist */
1186#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1187
1188enum {
1189	ZONELIST_FALLBACK,	/* zonelist with fallback */
1190#ifdef CONFIG_NUMA
1191	/*
1192	 * The NUMA zonelists are doubled because we need zonelists that
1193	 * restrict the allocations to a single node for __GFP_THISNODE.
1194	 */
1195	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1196#endif
1197	MAX_ZONELISTS
1198};
1199
1200/*
1201 * This struct contains information about a zone in a zonelist. It is stored
1202 * here to avoid dereferences into large structures and lookups of tables
1203 */
1204struct zoneref {
1205	struct zone *zone;	/* Pointer to actual zone */
1206	int zone_idx;		/* zone_idx(zoneref->zone) */
1207};
1208
1209/*
1210 * One allocation request operates on a zonelist. A zonelist
1211 * is a list of zones, the first one is the 'goal' of the
1212 * allocation, the other zones are fallback zones, in decreasing
1213 * priority.
1214 *
1215 * To speed the reading of the zonelist, the zonerefs contain the zone index
1216 * of the entry being read. Helper functions to access information given
1217 * a struct zoneref are
1218 *
1219 * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1220 * zonelist_zone_idx()	- Return the index of the zone for an entry
1221 * zonelist_node_idx()	- Return the index of the node for an entry
1222 */
1223struct zonelist {
1224	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1225};
1226
1227/*
1228 * The array of struct pages for flatmem.
1229 * It must be declared for SPARSEMEM as well because there are configurations
1230 * that rely on that.
1231 */
1232extern struct page *mem_map;
1233
1234#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1235struct deferred_split {
1236	spinlock_t split_queue_lock;
1237	struct list_head split_queue;
1238	unsigned long split_queue_len;
1239};
1240#endif
1241
1242#ifdef CONFIG_MEMORY_FAILURE
1243/*
1244 * Per NUMA node memory failure handling statistics.
1245 */
1246struct memory_failure_stats {
1247	/*
1248	 * Number of raw pages poisoned.
1249	 * Cases not accounted: memory outside kernel control, offline page,
1250	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1251	 * error events, and unpoison actions from hwpoison_unpoison.
1252	 */
1253	unsigned long total;
1254	/*
1255	 * Recovery results of poisoned raw pages handled by memory_failure,
1256	 * in sync with mf_result.
1257	 * total = ignored + failed + delayed + recovered.
1258	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1259	 */
1260	unsigned long ignored;
1261	unsigned long failed;
1262	unsigned long delayed;
1263	unsigned long recovered;
1264};
1265#endif
1266
1267/*
1268 * On NUMA machines, each NUMA node would have a pg_data_t to describe
1269 * it's memory layout. On UMA machines there is a single pglist_data which
1270 * describes the whole memory.
1271 *
1272 * Memory statistics and page replacement data structures are maintained on a
1273 * per-zone basis.
1274 */
1275typedef struct pglist_data {
1276	/*
1277	 * node_zones contains just the zones for THIS node. Not all of the
1278	 * zones may be populated, but it is the full list. It is referenced by
1279	 * this node's node_zonelists as well as other node's node_zonelists.
1280	 */
1281	struct zone node_zones[MAX_NR_ZONES];
1282
1283	/*
1284	 * node_zonelists contains references to all zones in all nodes.
1285	 * Generally the first zones will be references to this node's
1286	 * node_zones.
1287	 */
1288	struct zonelist node_zonelists[MAX_ZONELISTS];
1289
1290	int nr_zones; /* number of populated zones in this node */
1291#ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1292	struct page *node_mem_map;
1293#ifdef CONFIG_PAGE_EXTENSION
1294	struct page_ext *node_page_ext;
1295#endif
1296#endif
1297#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1298	/*
1299	 * Must be held any time you expect node_start_pfn,
1300	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1301	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1302	 * init.
1303	 *
1304	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1305	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1306	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1307	 *
1308	 * Nests above zone->lock and zone->span_seqlock
1309	 */
1310	spinlock_t node_size_lock;
1311#endif
1312	unsigned long node_start_pfn;
1313	unsigned long node_present_pages; /* total number of physical pages */
1314	unsigned long node_spanned_pages; /* total size of physical page
1315					     range, including holes */
1316	int node_id;
1317	wait_queue_head_t kswapd_wait;
1318	wait_queue_head_t pfmemalloc_wait;
1319
1320	/* workqueues for throttling reclaim for different reasons. */
1321	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1322
1323	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1324	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1325					 * when throttling started. */
1326#ifdef CONFIG_MEMORY_HOTPLUG
1327	struct mutex kswapd_lock;
1328#endif
1329	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1330	int kswapd_order;
1331	enum zone_type kswapd_highest_zoneidx;
1332
1333	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1334
1335#ifdef CONFIG_COMPACTION
1336	int kcompactd_max_order;
1337	enum zone_type kcompactd_highest_zoneidx;
1338	wait_queue_head_t kcompactd_wait;
1339	struct task_struct *kcompactd;
1340	bool proactive_compact_trigger;
1341#endif
1342	/*
1343	 * This is a per-node reserve of pages that are not available
1344	 * to userspace allocations.
1345	 */
1346	unsigned long		totalreserve_pages;
1347
1348#ifdef CONFIG_NUMA
1349	/*
1350	 * node reclaim becomes active if more unmapped pages exist.
1351	 */
1352	unsigned long		min_unmapped_pages;
1353	unsigned long		min_slab_pages;
1354#endif /* CONFIG_NUMA */
1355
1356	/* Write-intensive fields used by page reclaim */
1357	CACHELINE_PADDING(_pad1_);
1358
1359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1360	/*
1361	 * If memory initialisation on large machines is deferred then this
1362	 * is the first PFN that needs to be initialised.
1363	 */
1364	unsigned long first_deferred_pfn;
1365#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1366
1367#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1368	struct deferred_split deferred_split_queue;
1369#endif
1370
1371#ifdef CONFIG_NUMA_BALANCING
1372	/* start time in ms of current promote rate limit period */
1373	unsigned int nbp_rl_start;
1374	/* number of promote candidate pages at start time of current rate limit period */
1375	unsigned long nbp_rl_nr_cand;
1376	/* promote threshold in ms */
1377	unsigned int nbp_threshold;
1378	/* start time in ms of current promote threshold adjustment period */
1379	unsigned int nbp_th_start;
1380	/*
1381	 * number of promote candidate pages at start time of current promote
1382	 * threshold adjustment period
1383	 */
1384	unsigned long nbp_th_nr_cand;
1385#endif
1386	/* Fields commonly accessed by the page reclaim scanner */
1387
1388	/*
1389	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1390	 *
1391	 * Use mem_cgroup_lruvec() to look up lruvecs.
1392	 */
1393	struct lruvec		__lruvec;
1394
1395	unsigned long		flags;
1396
1397#ifdef CONFIG_LRU_GEN
1398	/* kswap mm walk data */
1399	struct lru_gen_mm_walk mm_walk;
1400	/* lru_gen_folio list */
1401	struct lru_gen_memcg memcg_lru;
1402#endif
1403
1404	CACHELINE_PADDING(_pad2_);
1405
1406	/* Per-node vmstats */
1407	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1408	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1409#ifdef CONFIG_NUMA
1410	struct memory_tier __rcu *memtier;
1411#endif
1412#ifdef CONFIG_MEMORY_FAILURE
1413	struct memory_failure_stats mf_stats;
1414#endif
1415} pg_data_t;
1416
1417#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1418#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1419
1420#define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1421#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1422
1423static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1424{
1425	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1426}
1427
1428#include <linux/memory_hotplug.h>
1429
1430void build_all_zonelists(pg_data_t *pgdat);
1431void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1432		   enum zone_type highest_zoneidx);
1433bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1434			 int highest_zoneidx, unsigned int alloc_flags,
1435			 long free_pages);
1436bool zone_watermark_ok(struct zone *z, unsigned int order,
1437		unsigned long mark, int highest_zoneidx,
1438		unsigned int alloc_flags);
1439bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1440		unsigned long mark, int highest_zoneidx);
1441/*
1442 * Memory initialization context, use to differentiate memory added by
1443 * the platform statically or via memory hotplug interface.
1444 */
1445enum meminit_context {
1446	MEMINIT_EARLY,
1447	MEMINIT_HOTPLUG,
1448};
1449
1450extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1451				     unsigned long size);
1452
1453extern void lruvec_init(struct lruvec *lruvec);
1454
1455static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1456{
1457#ifdef CONFIG_MEMCG
1458	return lruvec->pgdat;
1459#else
1460	return container_of(lruvec, struct pglist_data, __lruvec);
1461#endif
1462}
1463
1464#ifdef CONFIG_HAVE_MEMORYLESS_NODES
1465int local_memory_node(int node_id);
1466#else
1467static inline int local_memory_node(int node_id) { return node_id; };
1468#endif
1469
1470/*
1471 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1472 */
1473#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1474
1475#ifdef CONFIG_ZONE_DEVICE
1476static inline bool zone_is_zone_device(struct zone *zone)
1477{
1478	return zone_idx(zone) == ZONE_DEVICE;
1479}
1480#else
1481static inline bool zone_is_zone_device(struct zone *zone)
1482{
1483	return false;
1484}
1485#endif
1486
1487/*
1488 * Returns true if a zone has pages managed by the buddy allocator.
1489 * All the reclaim decisions have to use this function rather than
1490 * populated_zone(). If the whole zone is reserved then we can easily
1491 * end up with populated_zone() && !managed_zone().
1492 */
1493static inline bool managed_zone(struct zone *zone)
1494{
1495	return zone_managed_pages(zone);
1496}
1497
1498/* Returns true if a zone has memory */
1499static inline bool populated_zone(struct zone *zone)
1500{
1501	return zone->present_pages;
1502}
1503
1504#ifdef CONFIG_NUMA
1505static inline int zone_to_nid(struct zone *zone)
1506{
1507	return zone->node;
1508}
1509
1510static inline void zone_set_nid(struct zone *zone, int nid)
1511{
1512	zone->node = nid;
1513}
1514#else
1515static inline int zone_to_nid(struct zone *zone)
1516{
1517	return 0;
1518}
1519
1520static inline void zone_set_nid(struct zone *zone, int nid) {}
1521#endif
1522
1523extern int movable_zone;
1524
1525static inline int is_highmem_idx(enum zone_type idx)
1526{
1527#ifdef CONFIG_HIGHMEM
1528	return (idx == ZONE_HIGHMEM ||
1529		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1530#else
1531	return 0;
1532#endif
1533}
1534
1535/**
1536 * is_highmem - helper function to quickly check if a struct zone is a
1537 *              highmem zone or not.  This is an attempt to keep references
1538 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1539 * @zone: pointer to struct zone variable
1540 * Return: 1 for a highmem zone, 0 otherwise
1541 */
1542static inline int is_highmem(struct zone *zone)
1543{
1544	return is_highmem_idx(zone_idx(zone));
1545}
1546
1547#ifdef CONFIG_ZONE_DMA
1548bool has_managed_dma(void);
1549#else
1550static inline bool has_managed_dma(void)
1551{
1552	return false;
1553}
1554#endif
1555
1556
1557#ifndef CONFIG_NUMA
1558
1559extern struct pglist_data contig_page_data;
1560static inline struct pglist_data *NODE_DATA(int nid)
1561{
1562	return &contig_page_data;
1563}
1564
1565#else /* CONFIG_NUMA */
1566
1567#include <asm/mmzone.h>
1568
1569#endif /* !CONFIG_NUMA */
1570
1571extern struct pglist_data *first_online_pgdat(void);
1572extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1573extern struct zone *next_zone(struct zone *zone);
1574
1575/**
1576 * for_each_online_pgdat - helper macro to iterate over all online nodes
1577 * @pgdat: pointer to a pg_data_t variable
1578 */
1579#define for_each_online_pgdat(pgdat)			\
1580	for (pgdat = first_online_pgdat();		\
1581	     pgdat;					\
1582	     pgdat = next_online_pgdat(pgdat))
1583/**
1584 * for_each_zone - helper macro to iterate over all memory zones
1585 * @zone: pointer to struct zone variable
1586 *
1587 * The user only needs to declare the zone variable, for_each_zone
1588 * fills it in.
1589 */
1590#define for_each_zone(zone)			        \
1591	for (zone = (first_online_pgdat())->node_zones; \
1592	     zone;					\
1593	     zone = next_zone(zone))
1594
1595#define for_each_populated_zone(zone)		        \
1596	for (zone = (first_online_pgdat())->node_zones; \
1597	     zone;					\
1598	     zone = next_zone(zone))			\
1599		if (!populated_zone(zone))		\
1600			; /* do nothing */		\
1601		else
1602
1603static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1604{
1605	return zoneref->zone;
1606}
1607
1608static inline int zonelist_zone_idx(struct zoneref *zoneref)
1609{
1610	return zoneref->zone_idx;
1611}
1612
1613static inline int zonelist_node_idx(struct zoneref *zoneref)
1614{
1615	return zone_to_nid(zoneref->zone);
1616}
1617
1618struct zoneref *__next_zones_zonelist(struct zoneref *z,
1619					enum zone_type highest_zoneidx,
1620					nodemask_t *nodes);
1621
1622/**
1623 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1624 * @z: The cursor used as a starting point for the search
1625 * @highest_zoneidx: The zone index of the highest zone to return
1626 * @nodes: An optional nodemask to filter the zonelist with
1627 *
1628 * This function returns the next zone at or below a given zone index that is
1629 * within the allowed nodemask using a cursor as the starting point for the
1630 * search. The zoneref returned is a cursor that represents the current zone
1631 * being examined. It should be advanced by one before calling
1632 * next_zones_zonelist again.
1633 *
1634 * Return: the next zone at or below highest_zoneidx within the allowed
1635 * nodemask using a cursor within a zonelist as a starting point
1636 */
1637static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1638					enum zone_type highest_zoneidx,
1639					nodemask_t *nodes)
1640{
1641	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1642		return z;
1643	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1644}
1645
1646/**
1647 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1648 * @zonelist: The zonelist to search for a suitable zone
1649 * @highest_zoneidx: The zone index of the highest zone to return
1650 * @nodes: An optional nodemask to filter the zonelist with
1651 *
1652 * This function returns the first zone at or below a given zone index that is
1653 * within the allowed nodemask. The zoneref returned is a cursor that can be
1654 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1655 * one before calling.
1656 *
1657 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1658 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1659 * update due to cpuset modification.
1660 *
1661 * Return: Zoneref pointer for the first suitable zone found
1662 */
1663static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1664					enum zone_type highest_zoneidx,
1665					nodemask_t *nodes)
1666{
1667	return next_zones_zonelist(zonelist->_zonerefs,
1668							highest_zoneidx, nodes);
1669}
1670
1671/**
1672 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1673 * @zone: The current zone in the iterator
1674 * @z: The current pointer within zonelist->_zonerefs being iterated
1675 * @zlist: The zonelist being iterated
1676 * @highidx: The zone index of the highest zone to return
1677 * @nodemask: Nodemask allowed by the allocator
1678 *
1679 * This iterator iterates though all zones at or below a given zone index and
1680 * within a given nodemask
1681 */
1682#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1683	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1684		zone;							\
1685		z = next_zones_zonelist(++z, highidx, nodemask),	\
1686			zone = zonelist_zone(z))
1687
1688#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1689	for (zone = z->zone;	\
1690		zone;							\
1691		z = next_zones_zonelist(++z, highidx, nodemask),	\
1692			zone = zonelist_zone(z))
1693
1694
1695/**
1696 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1697 * @zone: The current zone in the iterator
1698 * @z: The current pointer within zonelist->zones being iterated
1699 * @zlist: The zonelist being iterated
1700 * @highidx: The zone index of the highest zone to return
1701 *
1702 * This iterator iterates though all zones at or below a given zone index.
1703 */
1704#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1705	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1706
1707/* Whether the 'nodes' are all movable nodes */
1708static inline bool movable_only_nodes(nodemask_t *nodes)
1709{
1710	struct zonelist *zonelist;
1711	struct zoneref *z;
1712	int nid;
1713
1714	if (nodes_empty(*nodes))
1715		return false;
1716
1717	/*
1718	 * We can chose arbitrary node from the nodemask to get a
1719	 * zonelist as they are interlinked. We just need to find
1720	 * at least one zone that can satisfy kernel allocations.
1721	 */
1722	nid = first_node(*nodes);
1723	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1724	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1725	return (!z->zone) ? true : false;
1726}
1727
1728
1729#ifdef CONFIG_SPARSEMEM
1730#include <asm/sparsemem.h>
1731#endif
1732
1733#ifdef CONFIG_FLATMEM
1734#define pfn_to_nid(pfn)		(0)
1735#endif
1736
1737#ifdef CONFIG_SPARSEMEM
1738
1739/*
1740 * PA_SECTION_SHIFT		physical address to/from section number
1741 * PFN_SECTION_SHIFT		pfn to/from section number
1742 */
1743#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1744#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1745
1746#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1747
1748#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1749#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1750
1751#define SECTION_BLOCKFLAGS_BITS \
1752	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1753
1754#if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1755#error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1756#endif
1757
1758static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1759{
1760	return pfn >> PFN_SECTION_SHIFT;
1761}
1762static inline unsigned long section_nr_to_pfn(unsigned long sec)
1763{
1764	return sec << PFN_SECTION_SHIFT;
1765}
1766
1767#define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1768#define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1769
1770#define SUBSECTION_SHIFT 21
1771#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1772
1773#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1774#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1775#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1776
1777#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1778#error Subsection size exceeds section size
1779#else
1780#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1781#endif
1782
1783#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1784#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1785
1786struct mem_section_usage {
1787	struct rcu_head rcu;
1788#ifdef CONFIG_SPARSEMEM_VMEMMAP
1789	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1790#endif
1791	/* See declaration of similar field in struct zone */
1792	unsigned long pageblock_flags[0];
1793};
1794
1795void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1796
1797struct page;
1798struct page_ext;
1799struct mem_section {
1800	/*
1801	 * This is, logically, a pointer to an array of struct
1802	 * pages.  However, it is stored with some other magic.
1803	 * (see sparse.c::sparse_init_one_section())
1804	 *
1805	 * Additionally during early boot we encode node id of
1806	 * the location of the section here to guide allocation.
1807	 * (see sparse.c::memory_present())
1808	 *
1809	 * Making it a UL at least makes someone do a cast
1810	 * before using it wrong.
1811	 */
1812	unsigned long section_mem_map;
1813
1814	struct mem_section_usage *usage;
1815#ifdef CONFIG_PAGE_EXTENSION
1816	/*
1817	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1818	 * section. (see page_ext.h about this.)
1819	 */
1820	struct page_ext *page_ext;
1821	unsigned long pad;
1822#endif
1823	/*
1824	 * WARNING: mem_section must be a power-of-2 in size for the
1825	 * calculation and use of SECTION_ROOT_MASK to make sense.
1826	 */
1827};
1828
1829#ifdef CONFIG_SPARSEMEM_EXTREME
1830#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1831#else
1832#define SECTIONS_PER_ROOT	1
1833#endif
1834
1835#define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1836#define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1837#define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1838
1839#ifdef CONFIG_SPARSEMEM_EXTREME
1840extern struct mem_section **mem_section;
1841#else
1842extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1843#endif
1844
1845static inline unsigned long *section_to_usemap(struct mem_section *ms)
1846{
1847	return ms->usage->pageblock_flags;
1848}
1849
1850static inline struct mem_section *__nr_to_section(unsigned long nr)
1851{
1852	unsigned long root = SECTION_NR_TO_ROOT(nr);
1853
1854	if (unlikely(root >= NR_SECTION_ROOTS))
1855		return NULL;
1856
1857#ifdef CONFIG_SPARSEMEM_EXTREME
1858	if (!mem_section || !mem_section[root])
1859		return NULL;
1860#endif
1861	return &mem_section[root][nr & SECTION_ROOT_MASK];
1862}
1863extern size_t mem_section_usage_size(void);
1864
1865/*
1866 * We use the lower bits of the mem_map pointer to store
1867 * a little bit of information.  The pointer is calculated
1868 * as mem_map - section_nr_to_pfn(pnum).  The result is
1869 * aligned to the minimum alignment of the two values:
1870 *   1. All mem_map arrays are page-aligned.
1871 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1872 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1873 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1874 *      worst combination is powerpc with 256k pages,
1875 *      which results in PFN_SECTION_SHIFT equal 6.
1876 * To sum it up, at least 6 bits are available on all architectures.
1877 * However, we can exceed 6 bits on some other architectures except
1878 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1879 * with the worst case of 64K pages on arm64) if we make sure the
1880 * exceeded bit is not applicable to powerpc.
1881 */
1882enum {
1883	SECTION_MARKED_PRESENT_BIT,
1884	SECTION_HAS_MEM_MAP_BIT,
1885	SECTION_IS_ONLINE_BIT,
1886	SECTION_IS_EARLY_BIT,
1887#ifdef CONFIG_ZONE_DEVICE
1888	SECTION_TAINT_ZONE_DEVICE_BIT,
1889#endif
1890	SECTION_MAP_LAST_BIT,
1891};
1892
1893#define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1894#define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1895#define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1896#define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1897#ifdef CONFIG_ZONE_DEVICE
1898#define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1899#endif
1900#define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1901#define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1902
1903static inline struct page *__section_mem_map_addr(struct mem_section *section)
1904{
1905	unsigned long map = section->section_mem_map;
1906	map &= SECTION_MAP_MASK;
1907	return (struct page *)map;
1908}
1909
1910static inline int present_section(struct mem_section *section)
1911{
1912	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1913}
1914
1915static inline int present_section_nr(unsigned long nr)
1916{
1917	return present_section(__nr_to_section(nr));
1918}
1919
1920static inline int valid_section(struct mem_section *section)
1921{
1922	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1923}
1924
1925static inline int early_section(struct mem_section *section)
1926{
1927	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1928}
1929
1930static inline int valid_section_nr(unsigned long nr)
1931{
1932	return valid_section(__nr_to_section(nr));
1933}
1934
1935static inline int online_section(struct mem_section *section)
1936{
1937	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1938}
1939
1940#ifdef CONFIG_ZONE_DEVICE
1941static inline int online_device_section(struct mem_section *section)
1942{
1943	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1944
1945	return section && ((section->section_mem_map & flags) == flags);
1946}
1947#else
1948static inline int online_device_section(struct mem_section *section)
1949{
1950	return 0;
1951}
1952#endif
1953
1954static inline int online_section_nr(unsigned long nr)
1955{
1956	return online_section(__nr_to_section(nr));
1957}
1958
1959#ifdef CONFIG_MEMORY_HOTPLUG
1960void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1961void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1962#endif
1963
1964static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1965{
1966	return __nr_to_section(pfn_to_section_nr(pfn));
1967}
1968
1969extern unsigned long __highest_present_section_nr;
1970
1971static inline int subsection_map_index(unsigned long pfn)
1972{
1973	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1974}
1975
1976#ifdef CONFIG_SPARSEMEM_VMEMMAP
1977static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1978{
1979	int idx = subsection_map_index(pfn);
1980
1981	return test_bit(idx, READ_ONCE(ms->usage)->subsection_map);
1982}
1983#else
1984static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1985{
1986	return 1;
1987}
1988#endif
1989
1990#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1991/**
1992 * pfn_valid - check if there is a valid memory map entry for a PFN
1993 * @pfn: the page frame number to check
1994 *
1995 * Check if there is a valid memory map entry aka struct page for the @pfn.
1996 * Note, that availability of the memory map entry does not imply that
1997 * there is actual usable memory at that @pfn. The struct page may
1998 * represent a hole or an unusable page frame.
1999 *
2000 * Return: 1 for PFNs that have memory map entries and 0 otherwise
2001 */
2002static inline int pfn_valid(unsigned long pfn)
2003{
2004	struct mem_section *ms;
2005	int ret;
2006
2007	/*
2008	 * Ensure the upper PAGE_SHIFT bits are clear in the
2009	 * pfn. Else it might lead to false positives when
2010	 * some of the upper bits are set, but the lower bits
2011	 * match a valid pfn.
2012	 */
2013	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2014		return 0;
2015
2016	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2017		return 0;
2018	ms = __pfn_to_section(pfn);
2019	rcu_read_lock_sched();
2020	if (!valid_section(ms)) {
2021		rcu_read_unlock_sched();
2022		return 0;
2023	}
2024	/*
2025	 * Traditionally early sections always returned pfn_valid() for
2026	 * the entire section-sized span.
2027	 */
2028	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2029	rcu_read_unlock_sched();
2030
2031	return ret;
2032}
2033#endif
2034
2035static inline int pfn_in_present_section(unsigned long pfn)
2036{
2037	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2038		return 0;
2039	return present_section(__pfn_to_section(pfn));
2040}
2041
2042static inline unsigned long next_present_section_nr(unsigned long section_nr)
2043{
2044	while (++section_nr <= __highest_present_section_nr) {
2045		if (present_section_nr(section_nr))
2046			return section_nr;
2047	}
2048
2049	return -1;
2050}
2051
2052/*
2053 * These are _only_ used during initialisation, therefore they
2054 * can use __initdata ...  They could have names to indicate
2055 * this restriction.
2056 */
2057#ifdef CONFIG_NUMA
2058#define pfn_to_nid(pfn)							\
2059({									\
2060	unsigned long __pfn_to_nid_pfn = (pfn);				\
2061	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2062})
2063#else
2064#define pfn_to_nid(pfn)		(0)
2065#endif
2066
2067void sparse_init(void);
2068#else
2069#define sparse_init()	do {} while (0)
2070#define sparse_index_init(_sec, _nid)  do {} while (0)
2071#define pfn_in_present_section pfn_valid
2072#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2073#endif /* CONFIG_SPARSEMEM */
2074
2075#endif /* !__GENERATING_BOUNDS.H */
2076#endif /* !__ASSEMBLY__ */
2077#endif /* _LINUX_MMZONE_H */
2078