1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/kernel.h>
18#include <linux/page_counter.h>
19#include <linux/vmpressure.h>
20#include <linux/eventfd.h>
21#include <linux/mm.h>
22#include <linux/vmstat.h>
23#include <linux/writeback.h>
24#include <linux/page-flags.h>
25#include <linux/shrinker.h>
26
27struct mem_cgroup;
28struct obj_cgroup;
29struct page;
30struct mm_struct;
31struct kmem_cache;
32
33/* Cgroup-specific page state, on top of universal node page state */
34enum memcg_stat_item {
35	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36	MEMCG_SOCK,
37	MEMCG_PERCPU_B,
38	MEMCG_VMALLOC,
39	MEMCG_KMEM,
40	MEMCG_ZSWAP_B,
41	MEMCG_ZSWAPPED,
42	MEMCG_NR_STAT,
43};
44
45enum memcg_memory_event {
46	MEMCG_LOW,
47	MEMCG_HIGH,
48	MEMCG_MAX,
49	MEMCG_OOM,
50	MEMCG_OOM_KILL,
51	MEMCG_OOM_GROUP_KILL,
52	MEMCG_SWAP_HIGH,
53	MEMCG_SWAP_MAX,
54	MEMCG_SWAP_FAIL,
55	MEMCG_NR_MEMORY_EVENTS,
56};
57
58struct mem_cgroup_reclaim_cookie {
59	pg_data_t *pgdat;
60	unsigned int generation;
61};
62
63#ifdef CONFIG_MEMCG
64
65#define MEM_CGROUP_ID_SHIFT	16
66
67struct mem_cgroup_id {
68	int id;
69	refcount_t ref;
70};
71
72/*
73 * Per memcg event counter is incremented at every pagein/pageout. With THP,
74 * it will be incremented by the number of pages. This counter is used
75 * to trigger some periodic events. This is straightforward and better
76 * than using jiffies etc. to handle periodic memcg event.
77 */
78enum mem_cgroup_events_target {
79	MEM_CGROUP_TARGET_THRESH,
80	MEM_CGROUP_TARGET_SOFTLIMIT,
81	MEM_CGROUP_NTARGETS,
82};
83
84struct memcg_vmstats_percpu;
85struct memcg_vmstats;
86
87struct mem_cgroup_reclaim_iter {
88	struct mem_cgroup *position;
89	/* scan generation, increased every round-trip */
90	unsigned int generation;
91};
92
93struct lruvec_stats_percpu {
94	/* Local (CPU and cgroup) state */
95	long state[NR_VM_NODE_STAT_ITEMS];
96
97	/* Delta calculation for lockless upward propagation */
98	long state_prev[NR_VM_NODE_STAT_ITEMS];
99};
100
101struct lruvec_stats {
102	/* Aggregated (CPU and subtree) state */
103	long state[NR_VM_NODE_STAT_ITEMS];
104
105	/* Non-hierarchical (CPU aggregated) state */
106	long state_local[NR_VM_NODE_STAT_ITEMS];
107
108	/* Pending child counts during tree propagation */
109	long state_pending[NR_VM_NODE_STAT_ITEMS];
110};
111
112/*
113 * per-node information in memory controller.
114 */
115struct mem_cgroup_per_node {
116	struct lruvec		lruvec;
117
118	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
119	struct lruvec_stats			lruvec_stats;
120
121	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
122
123	struct mem_cgroup_reclaim_iter	iter;
124
125	struct shrinker_info __rcu	*shrinker_info;
126
127	struct rb_node		tree_node;	/* RB tree node */
128	unsigned long		usage_in_excess;/* Set to the value by which */
129						/* the soft limit is exceeded*/
130	bool			on_tree;
131	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
132						/* use container_of	   */
133};
134
135struct mem_cgroup_threshold {
136	struct eventfd_ctx *eventfd;
137	unsigned long threshold;
138};
139
140/* For threshold */
141struct mem_cgroup_threshold_ary {
142	/* An array index points to threshold just below or equal to usage. */
143	int current_threshold;
144	/* Size of entries[] */
145	unsigned int size;
146	/* Array of thresholds */
147	struct mem_cgroup_threshold entries[] __counted_by(size);
148};
149
150struct mem_cgroup_thresholds {
151	/* Primary thresholds array */
152	struct mem_cgroup_threshold_ary *primary;
153	/*
154	 * Spare threshold array.
155	 * This is needed to make mem_cgroup_unregister_event() "never fail".
156	 * It must be able to store at least primary->size - 1 entries.
157	 */
158	struct mem_cgroup_threshold_ary *spare;
159};
160
161/*
162 * Remember four most recent foreign writebacks with dirty pages in this
163 * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
164 * one in a given round, we're likely to catch it later if it keeps
165 * foreign-dirtying, so a fairly low count should be enough.
166 *
167 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
168 */
169#define MEMCG_CGWB_FRN_CNT	4
170
171struct memcg_cgwb_frn {
172	u64 bdi_id;			/* bdi->id of the foreign inode */
173	int memcg_id;			/* memcg->css.id of foreign inode */
174	u64 at;				/* jiffies_64 at the time of dirtying */
175	struct wb_completion done;	/* tracks in-flight foreign writebacks */
176};
177
178/*
179 * Bucket for arbitrarily byte-sized objects charged to a memory
180 * cgroup. The bucket can be reparented in one piece when the cgroup
181 * is destroyed, without having to round up the individual references
182 * of all live memory objects in the wild.
183 */
184struct obj_cgroup {
185	struct percpu_ref refcnt;
186	struct mem_cgroup *memcg;
187	atomic_t nr_charged_bytes;
188	union {
189		struct list_head list; /* protected by objcg_lock */
190		struct rcu_head rcu;
191	};
192};
193
194/*
195 * The memory controller data structure. The memory controller controls both
196 * page cache and RSS per cgroup. We would eventually like to provide
197 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
198 * to help the administrator determine what knobs to tune.
199 */
200struct mem_cgroup {
201	struct cgroup_subsys_state css;
202
203	/* Private memcg ID. Used to ID objects that outlive the cgroup */
204	struct mem_cgroup_id id;
205
206	/* Accounted resources */
207	struct page_counter memory;		/* Both v1 & v2 */
208
209	union {
210		struct page_counter swap;	/* v2 only */
211		struct page_counter memsw;	/* v1 only */
212	};
213
214	/* Legacy consumer-oriented counters */
215	struct page_counter kmem;		/* v1 only */
216	struct page_counter tcpmem;		/* v1 only */
217
218	/* Range enforcement for interrupt charges */
219	struct work_struct high_work;
220
221#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
222	unsigned long zswap_max;
223
224	/*
225	 * Prevent pages from this memcg from being written back from zswap to
226	 * swap, and from being swapped out on zswap store failures.
227	 */
228	bool zswap_writeback;
229#endif
230
231	unsigned long soft_limit;
232
233	/* vmpressure notifications */
234	struct vmpressure vmpressure;
235
236	/*
237	 * Should the OOM killer kill all belonging tasks, had it kill one?
238	 */
239	bool oom_group;
240
241	/* protected by memcg_oom_lock */
242	bool		oom_lock;
243	int		under_oom;
244
245	int	swappiness;
246	/* OOM-Killer disable */
247	int		oom_kill_disable;
248
249	/* memory.events and memory.events.local */
250	struct cgroup_file events_file;
251	struct cgroup_file events_local_file;
252
253	/* handle for "memory.swap.events" */
254	struct cgroup_file swap_events_file;
255
256	/* protect arrays of thresholds */
257	struct mutex thresholds_lock;
258
259	/* thresholds for memory usage. RCU-protected */
260	struct mem_cgroup_thresholds thresholds;
261
262	/* thresholds for mem+swap usage. RCU-protected */
263	struct mem_cgroup_thresholds memsw_thresholds;
264
265	/* For oom notifier event fd */
266	struct list_head oom_notify;
267
268	/*
269	 * Should we move charges of a task when a task is moved into this
270	 * mem_cgroup ? And what type of charges should we move ?
271	 */
272	unsigned long move_charge_at_immigrate;
273	/* taken only while moving_account > 0 */
274	spinlock_t		move_lock;
275	unsigned long		move_lock_flags;
276
277	CACHELINE_PADDING(_pad1_);
278
279	/* memory.stat */
280	struct memcg_vmstats	*vmstats;
281
282	/* memory.events */
283	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
284	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285
286	/*
287	 * Hint of reclaim pressure for socket memroy management. Note
288	 * that this indicator should NOT be used in legacy cgroup mode
289	 * where socket memory is accounted/charged separately.
290	 */
291	unsigned long		socket_pressure;
292
293	/* Legacy tcp memory accounting */
294	bool			tcpmem_active;
295	int			tcpmem_pressure;
296
297#ifdef CONFIG_MEMCG_KMEM
298	int kmemcg_id;
299	/*
300	 * memcg->objcg is wiped out as a part of the objcg repaprenting
301	 * process. memcg->orig_objcg preserves a pointer (and a reference)
302	 * to the original objcg until the end of live of memcg.
303	 */
304	struct obj_cgroup __rcu	*objcg;
305	struct obj_cgroup	*orig_objcg;
306	/* list of inherited objcgs, protected by objcg_lock */
307	struct list_head objcg_list;
308#endif
309
310	CACHELINE_PADDING(_pad2_);
311
312	/*
313	 * set > 0 if pages under this cgroup are moving to other cgroup.
314	 */
315	atomic_t		moving_account;
316	struct task_struct	*move_lock_task;
317
318	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
319
320#ifdef CONFIG_CGROUP_WRITEBACK
321	struct list_head cgwb_list;
322	struct wb_domain cgwb_domain;
323	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
324#endif
325
326	/* List of events which userspace want to receive */
327	struct list_head event_list;
328	spinlock_t event_list_lock;
329
330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
331	struct deferred_split deferred_split_queue;
332#endif
333
334#ifdef CONFIG_LRU_GEN_WALKS_MMU
335	/* per-memcg mm_struct list */
336	struct lru_gen_mm_list mm_list;
337#endif
338
339	struct mem_cgroup_per_node *nodeinfo[];
340};
341
342/*
343 * size of first charge trial.
344 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
345 * workload.
346 */
347#define MEMCG_CHARGE_BATCH 64U
348
349extern struct mem_cgroup *root_mem_cgroup;
350
351enum page_memcg_data_flags {
352	/* page->memcg_data is a pointer to an objcgs vector */
353	MEMCG_DATA_OBJCGS = (1UL << 0),
354	/* page has been accounted as a non-slab kernel page */
355	MEMCG_DATA_KMEM = (1UL << 1),
356	/* the next bit after the last actual flag */
357	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
358};
359
360#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
361
362static inline bool folio_memcg_kmem(struct folio *folio);
363
364/*
365 * After the initialization objcg->memcg is always pointing at
366 * a valid memcg, but can be atomically swapped to the parent memcg.
367 *
368 * The caller must ensure that the returned memcg won't be released:
369 * e.g. acquire the rcu_read_lock or css_set_lock.
370 */
371static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
372{
373	return READ_ONCE(objcg->memcg);
374}
375
376/*
377 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
378 * @folio: Pointer to the folio.
379 *
380 * Returns a pointer to the memory cgroup associated with the folio,
381 * or NULL. This function assumes that the folio is known to have a
382 * proper memory cgroup pointer. It's not safe to call this function
383 * against some type of folios, e.g. slab folios or ex-slab folios or
384 * kmem folios.
385 */
386static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
387{
388	unsigned long memcg_data = folio->memcg_data;
389
390	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
391	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
392	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
393
394	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
395}
396
397/*
398 * __folio_objcg - get the object cgroup associated with a kmem folio.
399 * @folio: Pointer to the folio.
400 *
401 * Returns a pointer to the object cgroup associated with the folio,
402 * or NULL. This function assumes that the folio is known to have a
403 * proper object cgroup pointer. It's not safe to call this function
404 * against some type of folios, e.g. slab folios or ex-slab folios or
405 * LRU folios.
406 */
407static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
408{
409	unsigned long memcg_data = folio->memcg_data;
410
411	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
412	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
413	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
414
415	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
416}
417
418/*
419 * folio_memcg - Get the memory cgroup associated with a folio.
420 * @folio: Pointer to the folio.
421 *
422 * Returns a pointer to the memory cgroup associated with the folio,
423 * or NULL. This function assumes that the folio is known to have a
424 * proper memory cgroup pointer. It's not safe to call this function
425 * against some type of folios, e.g. slab folios or ex-slab folios.
426 *
427 * For a non-kmem folio any of the following ensures folio and memcg binding
428 * stability:
429 *
430 * - the folio lock
431 * - LRU isolation
432 * - folio_memcg_lock()
433 * - exclusive reference
434 * - mem_cgroup_trylock_pages()
435 *
436 * For a kmem folio a caller should hold an rcu read lock to protect memcg
437 * associated with a kmem folio from being released.
438 */
439static inline struct mem_cgroup *folio_memcg(struct folio *folio)
440{
441	if (folio_memcg_kmem(folio))
442		return obj_cgroup_memcg(__folio_objcg(folio));
443	return __folio_memcg(folio);
444}
445
446static inline struct mem_cgroup *page_memcg(struct page *page)
447{
448	return folio_memcg(page_folio(page));
449}
450
451/**
452 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
453 * @folio: Pointer to the folio.
454 *
455 * This function assumes that the folio is known to have a
456 * proper memory cgroup pointer. It's not safe to call this function
457 * against some type of folios, e.g. slab folios or ex-slab folios.
458 *
459 * Return: A pointer to the memory cgroup associated with the folio,
460 * or NULL.
461 */
462static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
463{
464	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
465
466	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
467	WARN_ON_ONCE(!rcu_read_lock_held());
468
469	if (memcg_data & MEMCG_DATA_KMEM) {
470		struct obj_cgroup *objcg;
471
472		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
473		return obj_cgroup_memcg(objcg);
474	}
475
476	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
477}
478
479/*
480 * folio_memcg_check - Get the memory cgroup associated with a folio.
481 * @folio: Pointer to the folio.
482 *
483 * Returns a pointer to the memory cgroup associated with the folio,
484 * or NULL. This function unlike folio_memcg() can take any folio
485 * as an argument. It has to be used in cases when it's not known if a folio
486 * has an associated memory cgroup pointer or an object cgroups vector or
487 * an object cgroup.
488 *
489 * For a non-kmem folio any of the following ensures folio and memcg binding
490 * stability:
491 *
492 * - the folio lock
493 * - LRU isolation
494 * - lock_folio_memcg()
495 * - exclusive reference
496 * - mem_cgroup_trylock_pages()
497 *
498 * For a kmem folio a caller should hold an rcu read lock to protect memcg
499 * associated with a kmem folio from being released.
500 */
501static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
502{
503	/*
504	 * Because folio->memcg_data might be changed asynchronously
505	 * for slabs, READ_ONCE() should be used here.
506	 */
507	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
508
509	if (memcg_data & MEMCG_DATA_OBJCGS)
510		return NULL;
511
512	if (memcg_data & MEMCG_DATA_KMEM) {
513		struct obj_cgroup *objcg;
514
515		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
516		return obj_cgroup_memcg(objcg);
517	}
518
519	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
520}
521
522static inline struct mem_cgroup *page_memcg_check(struct page *page)
523{
524	if (PageTail(page))
525		return NULL;
526	return folio_memcg_check((struct folio *)page);
527}
528
529static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
530{
531	struct mem_cgroup *memcg;
532
533	rcu_read_lock();
534retry:
535	memcg = obj_cgroup_memcg(objcg);
536	if (unlikely(!css_tryget(&memcg->css)))
537		goto retry;
538	rcu_read_unlock();
539
540	return memcg;
541}
542
543#ifdef CONFIG_MEMCG_KMEM
544/*
545 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
546 * @folio: Pointer to the folio.
547 *
548 * Checks if the folio has MemcgKmem flag set. The caller must ensure
549 * that the folio has an associated memory cgroup. It's not safe to call
550 * this function against some types of folios, e.g. slab folios.
551 */
552static inline bool folio_memcg_kmem(struct folio *folio)
553{
554	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
555	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
556	return folio->memcg_data & MEMCG_DATA_KMEM;
557}
558
559
560#else
561static inline bool folio_memcg_kmem(struct folio *folio)
562{
563	return false;
564}
565
566#endif
567
568static inline bool PageMemcgKmem(struct page *page)
569{
570	return folio_memcg_kmem(page_folio(page));
571}
572
573static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
574{
575	return (memcg == root_mem_cgroup);
576}
577
578static inline bool mem_cgroup_disabled(void)
579{
580	return !cgroup_subsys_enabled(memory_cgrp_subsys);
581}
582
583static inline void mem_cgroup_protection(struct mem_cgroup *root,
584					 struct mem_cgroup *memcg,
585					 unsigned long *min,
586					 unsigned long *low)
587{
588	*min = *low = 0;
589
590	if (mem_cgroup_disabled())
591		return;
592
593	/*
594	 * There is no reclaim protection applied to a targeted reclaim.
595	 * We are special casing this specific case here because
596	 * mem_cgroup_calculate_protection is not robust enough to keep
597	 * the protection invariant for calculated effective values for
598	 * parallel reclaimers with different reclaim target. This is
599	 * especially a problem for tail memcgs (as they have pages on LRU)
600	 * which would want to have effective values 0 for targeted reclaim
601	 * but a different value for external reclaim.
602	 *
603	 * Example
604	 * Let's have global and A's reclaim in parallel:
605	 *  |
606	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
607	 *  |\
608	 *  | C (low = 1G, usage = 2.5G)
609	 *  B (low = 1G, usage = 0.5G)
610	 *
611	 * For the global reclaim
612	 * A.elow = A.low
613	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
614	 * C.elow = min(C.usage, C.low)
615	 *
616	 * With the effective values resetting we have A reclaim
617	 * A.elow = 0
618	 * B.elow = B.low
619	 * C.elow = C.low
620	 *
621	 * If the global reclaim races with A's reclaim then
622	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
623	 * is possible and reclaiming B would be violating the protection.
624	 *
625	 */
626	if (root == memcg)
627		return;
628
629	*min = READ_ONCE(memcg->memory.emin);
630	*low = READ_ONCE(memcg->memory.elow);
631}
632
633void mem_cgroup_calculate_protection(struct mem_cgroup *root,
634				     struct mem_cgroup *memcg);
635
636static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
637					  struct mem_cgroup *memcg)
638{
639	/*
640	 * The root memcg doesn't account charges, and doesn't support
641	 * protection. The target memcg's protection is ignored, see
642	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
643	 */
644	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
645		memcg == target;
646}
647
648static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
649					struct mem_cgroup *memcg)
650{
651	if (mem_cgroup_unprotected(target, memcg))
652		return false;
653
654	return READ_ONCE(memcg->memory.elow) >=
655		page_counter_read(&memcg->memory);
656}
657
658static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
659					struct mem_cgroup *memcg)
660{
661	if (mem_cgroup_unprotected(target, memcg))
662		return false;
663
664	return READ_ONCE(memcg->memory.emin) >=
665		page_counter_read(&memcg->memory);
666}
667
668void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
669
670int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
671
672/**
673 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
674 * @folio: Folio to charge.
675 * @mm: mm context of the allocating task.
676 * @gfp: Reclaim mode.
677 *
678 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
679 * pages according to @gfp if necessary.  If @mm is NULL, try to
680 * charge to the active memcg.
681 *
682 * Do not use this for folios allocated for swapin.
683 *
684 * Return: 0 on success. Otherwise, an error code is returned.
685 */
686static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
687				    gfp_t gfp)
688{
689	if (mem_cgroup_disabled())
690		return 0;
691	return __mem_cgroup_charge(folio, mm, gfp);
692}
693
694int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
695		long nr_pages);
696
697int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
698				  gfp_t gfp, swp_entry_t entry);
699void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700
701void __mem_cgroup_uncharge(struct folio *folio);
702
703/**
704 * mem_cgroup_uncharge - Uncharge a folio.
705 * @folio: Folio to uncharge.
706 *
707 * Uncharge a folio previously charged with mem_cgroup_charge().
708 */
709static inline void mem_cgroup_uncharge(struct folio *folio)
710{
711	if (mem_cgroup_disabled())
712		return;
713	__mem_cgroup_uncharge(folio);
714}
715
716void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
717static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
718{
719	if (mem_cgroup_disabled())
720		return;
721	__mem_cgroup_uncharge_folios(folios);
722}
723
724void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
725void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
726void mem_cgroup_migrate(struct folio *old, struct folio *new);
727
728/**
729 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
730 * @memcg: memcg of the wanted lruvec
731 * @pgdat: pglist_data
732 *
733 * Returns the lru list vector holding pages for a given @memcg &
734 * @pgdat combination. This can be the node lruvec, if the memory
735 * controller is disabled.
736 */
737static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
738					       struct pglist_data *pgdat)
739{
740	struct mem_cgroup_per_node *mz;
741	struct lruvec *lruvec;
742
743	if (mem_cgroup_disabled()) {
744		lruvec = &pgdat->__lruvec;
745		goto out;
746	}
747
748	if (!memcg)
749		memcg = root_mem_cgroup;
750
751	mz = memcg->nodeinfo[pgdat->node_id];
752	lruvec = &mz->lruvec;
753out:
754	/*
755	 * Since a node can be onlined after the mem_cgroup was created,
756	 * we have to be prepared to initialize lruvec->pgdat here;
757	 * and if offlined then reonlined, we need to reinitialize it.
758	 */
759	if (unlikely(lruvec->pgdat != pgdat))
760		lruvec->pgdat = pgdat;
761	return lruvec;
762}
763
764/**
765 * folio_lruvec - return lruvec for isolating/putting an LRU folio
766 * @folio: Pointer to the folio.
767 *
768 * This function relies on folio->mem_cgroup being stable.
769 */
770static inline struct lruvec *folio_lruvec(struct folio *folio)
771{
772	struct mem_cgroup *memcg = folio_memcg(folio);
773
774	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
775	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
776}
777
778struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
779
780struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
781
782struct mem_cgroup *get_mem_cgroup_from_current(void);
783
784struct lruvec *folio_lruvec_lock(struct folio *folio);
785struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
786struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
787						unsigned long *flags);
788
789#ifdef CONFIG_DEBUG_VM
790void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
791#else
792static inline
793void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
794{
795}
796#endif
797
798static inline
799struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
800	return css ? container_of(css, struct mem_cgroup, css) : NULL;
801}
802
803static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
804{
805	return percpu_ref_tryget(&objcg->refcnt);
806}
807
808static inline void obj_cgroup_get(struct obj_cgroup *objcg)
809{
810	percpu_ref_get(&objcg->refcnt);
811}
812
813static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
814				       unsigned long nr)
815{
816	percpu_ref_get_many(&objcg->refcnt, nr);
817}
818
819static inline void obj_cgroup_put(struct obj_cgroup *objcg)
820{
821	percpu_ref_put(&objcg->refcnt);
822}
823
824static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
825{
826	return !memcg || css_tryget(&memcg->css);
827}
828
829static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
830{
831	return !memcg || css_tryget_online(&memcg->css);
832}
833
834static inline void mem_cgroup_put(struct mem_cgroup *memcg)
835{
836	if (memcg)
837		css_put(&memcg->css);
838}
839
840#define mem_cgroup_from_counter(counter, member)	\
841	container_of(counter, struct mem_cgroup, member)
842
843struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
844				   struct mem_cgroup *,
845				   struct mem_cgroup_reclaim_cookie *);
846void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
847void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
848			   int (*)(struct task_struct *, void *), void *arg);
849
850static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
851{
852	if (mem_cgroup_disabled())
853		return 0;
854
855	return memcg->id.id;
856}
857struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
858
859#ifdef CONFIG_SHRINKER_DEBUG
860static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
861{
862	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
863}
864
865struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
866#endif
867
868static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
869{
870	return mem_cgroup_from_css(seq_css(m));
871}
872
873static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
874{
875	struct mem_cgroup_per_node *mz;
876
877	if (mem_cgroup_disabled())
878		return NULL;
879
880	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
881	return mz->memcg;
882}
883
884/**
885 * parent_mem_cgroup - find the accounting parent of a memcg
886 * @memcg: memcg whose parent to find
887 *
888 * Returns the parent memcg, or NULL if this is the root.
889 */
890static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
891{
892	return mem_cgroup_from_css(memcg->css.parent);
893}
894
895static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
896			      struct mem_cgroup *root)
897{
898	if (root == memcg)
899		return true;
900	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
901}
902
903static inline bool mm_match_cgroup(struct mm_struct *mm,
904				   struct mem_cgroup *memcg)
905{
906	struct mem_cgroup *task_memcg;
907	bool match = false;
908
909	rcu_read_lock();
910	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
911	if (task_memcg)
912		match = mem_cgroup_is_descendant(task_memcg, memcg);
913	rcu_read_unlock();
914	return match;
915}
916
917struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
918ino_t page_cgroup_ino(struct page *page);
919
920static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
921{
922	if (mem_cgroup_disabled())
923		return true;
924	return !!(memcg->css.flags & CSS_ONLINE);
925}
926
927void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
928		int zid, int nr_pages);
929
930static inline
931unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
932		enum lru_list lru, int zone_idx)
933{
934	struct mem_cgroup_per_node *mz;
935
936	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
937	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
938}
939
940void mem_cgroup_handle_over_high(gfp_t gfp_mask);
941
942unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
943
944unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
945
946void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
947				struct task_struct *p);
948
949void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
950
951static inline void mem_cgroup_enter_user_fault(void)
952{
953	WARN_ON(current->in_user_fault);
954	current->in_user_fault = 1;
955}
956
957static inline void mem_cgroup_exit_user_fault(void)
958{
959	WARN_ON(!current->in_user_fault);
960	current->in_user_fault = 0;
961}
962
963static inline bool task_in_memcg_oom(struct task_struct *p)
964{
965	return p->memcg_in_oom;
966}
967
968bool mem_cgroup_oom_synchronize(bool wait);
969struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
970					    struct mem_cgroup *oom_domain);
971void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
972
973void folio_memcg_lock(struct folio *folio);
974void folio_memcg_unlock(struct folio *folio);
975
976void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
977
978/* try to stablize folio_memcg() for all the pages in a memcg */
979static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
980{
981	rcu_read_lock();
982
983	if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
984		return true;
985
986	rcu_read_unlock();
987	return false;
988}
989
990static inline void mem_cgroup_unlock_pages(void)
991{
992	rcu_read_unlock();
993}
994
995/* idx can be of type enum memcg_stat_item or node_stat_item */
996static inline void mod_memcg_state(struct mem_cgroup *memcg,
997				   int idx, int val)
998{
999	unsigned long flags;
1000
1001	local_irq_save(flags);
1002	__mod_memcg_state(memcg, idx, val);
1003	local_irq_restore(flags);
1004}
1005
1006static inline void mod_memcg_page_state(struct page *page,
1007					int idx, int val)
1008{
1009	struct mem_cgroup *memcg;
1010
1011	if (mem_cgroup_disabled())
1012		return;
1013
1014	rcu_read_lock();
1015	memcg = page_memcg(page);
1016	if (memcg)
1017		mod_memcg_state(memcg, idx, val);
1018	rcu_read_unlock();
1019}
1020
1021unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1022
1023static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1024					      enum node_stat_item idx)
1025{
1026	struct mem_cgroup_per_node *pn;
1027	long x;
1028
1029	if (mem_cgroup_disabled())
1030		return node_page_state(lruvec_pgdat(lruvec), idx);
1031
1032	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1033	x = READ_ONCE(pn->lruvec_stats.state[idx]);
1034#ifdef CONFIG_SMP
1035	if (x < 0)
1036		x = 0;
1037#endif
1038	return x;
1039}
1040
1041static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1042						    enum node_stat_item idx)
1043{
1044	struct mem_cgroup_per_node *pn;
1045	long x = 0;
1046
1047	if (mem_cgroup_disabled())
1048		return node_page_state(lruvec_pgdat(lruvec), idx);
1049
1050	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1051	x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1052#ifdef CONFIG_SMP
1053	if (x < 0)
1054		x = 0;
1055#endif
1056	return x;
1057}
1058
1059void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
1060void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
1061
1062void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1063			      int val);
1064void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1065
1066static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1067					 int val)
1068{
1069	unsigned long flags;
1070
1071	local_irq_save(flags);
1072	__mod_lruvec_kmem_state(p, idx, val);
1073	local_irq_restore(flags);
1074}
1075
1076static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1077					  enum node_stat_item idx, int val)
1078{
1079	unsigned long flags;
1080
1081	local_irq_save(flags);
1082	__mod_memcg_lruvec_state(lruvec, idx, val);
1083	local_irq_restore(flags);
1084}
1085
1086void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1087			  unsigned long count);
1088
1089static inline void count_memcg_events(struct mem_cgroup *memcg,
1090				      enum vm_event_item idx,
1091				      unsigned long count)
1092{
1093	unsigned long flags;
1094
1095	local_irq_save(flags);
1096	__count_memcg_events(memcg, idx, count);
1097	local_irq_restore(flags);
1098}
1099
1100static inline void count_memcg_folio_events(struct folio *folio,
1101		enum vm_event_item idx, unsigned long nr)
1102{
1103	struct mem_cgroup *memcg = folio_memcg(folio);
1104
1105	if (memcg)
1106		count_memcg_events(memcg, idx, nr);
1107}
1108
1109static inline void count_memcg_event_mm(struct mm_struct *mm,
1110					enum vm_event_item idx)
1111{
1112	struct mem_cgroup *memcg;
1113
1114	if (mem_cgroup_disabled())
1115		return;
1116
1117	rcu_read_lock();
1118	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1119	if (likely(memcg))
1120		count_memcg_events(memcg, idx, 1);
1121	rcu_read_unlock();
1122}
1123
1124static inline void memcg_memory_event(struct mem_cgroup *memcg,
1125				      enum memcg_memory_event event)
1126{
1127	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1128			  event == MEMCG_SWAP_FAIL;
1129
1130	atomic_long_inc(&memcg->memory_events_local[event]);
1131	if (!swap_event)
1132		cgroup_file_notify(&memcg->events_local_file);
1133
1134	do {
1135		atomic_long_inc(&memcg->memory_events[event]);
1136		if (swap_event)
1137			cgroup_file_notify(&memcg->swap_events_file);
1138		else
1139			cgroup_file_notify(&memcg->events_file);
1140
1141		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1142			break;
1143		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1144			break;
1145	} while ((memcg = parent_mem_cgroup(memcg)) &&
1146		 !mem_cgroup_is_root(memcg));
1147}
1148
1149static inline void memcg_memory_event_mm(struct mm_struct *mm,
1150					 enum memcg_memory_event event)
1151{
1152	struct mem_cgroup *memcg;
1153
1154	if (mem_cgroup_disabled())
1155		return;
1156
1157	rcu_read_lock();
1158	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1159	if (likely(memcg))
1160		memcg_memory_event(memcg, event);
1161	rcu_read_unlock();
1162}
1163
1164void split_page_memcg(struct page *head, int old_order, int new_order);
1165
1166unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1167						gfp_t gfp_mask,
1168						unsigned long *total_scanned);
1169
1170#else /* CONFIG_MEMCG */
1171
1172#define MEM_CGROUP_ID_SHIFT	0
1173
1174static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1175{
1176	return NULL;
1177}
1178
1179static inline struct mem_cgroup *page_memcg(struct page *page)
1180{
1181	return NULL;
1182}
1183
1184static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1185{
1186	WARN_ON_ONCE(!rcu_read_lock_held());
1187	return NULL;
1188}
1189
1190static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1191{
1192	return NULL;
1193}
1194
1195static inline struct mem_cgroup *page_memcg_check(struct page *page)
1196{
1197	return NULL;
1198}
1199
1200static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1201{
1202	return NULL;
1203}
1204
1205static inline bool folio_memcg_kmem(struct folio *folio)
1206{
1207	return false;
1208}
1209
1210static inline bool PageMemcgKmem(struct page *page)
1211{
1212	return false;
1213}
1214
1215static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1216{
1217	return true;
1218}
1219
1220static inline bool mem_cgroup_disabled(void)
1221{
1222	return true;
1223}
1224
1225static inline void memcg_memory_event(struct mem_cgroup *memcg,
1226				      enum memcg_memory_event event)
1227{
1228}
1229
1230static inline void memcg_memory_event_mm(struct mm_struct *mm,
1231					 enum memcg_memory_event event)
1232{
1233}
1234
1235static inline void mem_cgroup_protection(struct mem_cgroup *root,
1236					 struct mem_cgroup *memcg,
1237					 unsigned long *min,
1238					 unsigned long *low)
1239{
1240	*min = *low = 0;
1241}
1242
1243static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1244						   struct mem_cgroup *memcg)
1245{
1246}
1247
1248static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1249					  struct mem_cgroup *memcg)
1250{
1251	return true;
1252}
1253static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1254					struct mem_cgroup *memcg)
1255{
1256	return false;
1257}
1258
1259static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1260					struct mem_cgroup *memcg)
1261{
1262	return false;
1263}
1264
1265static inline void mem_cgroup_commit_charge(struct folio *folio,
1266		struct mem_cgroup *memcg)
1267{
1268}
1269
1270static inline int mem_cgroup_charge(struct folio *folio,
1271		struct mm_struct *mm, gfp_t gfp)
1272{
1273	return 0;
1274}
1275
1276static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1277		gfp_t gfp, long nr_pages)
1278{
1279	return 0;
1280}
1281
1282static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1283			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1284{
1285	return 0;
1286}
1287
1288static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1289{
1290}
1291
1292static inline void mem_cgroup_uncharge(struct folio *folio)
1293{
1294}
1295
1296static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1297{
1298}
1299
1300static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1301		unsigned int nr_pages)
1302{
1303}
1304
1305static inline void mem_cgroup_replace_folio(struct folio *old,
1306		struct folio *new)
1307{
1308}
1309
1310static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1311{
1312}
1313
1314static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1315					       struct pglist_data *pgdat)
1316{
1317	return &pgdat->__lruvec;
1318}
1319
1320static inline struct lruvec *folio_lruvec(struct folio *folio)
1321{
1322	struct pglist_data *pgdat = folio_pgdat(folio);
1323	return &pgdat->__lruvec;
1324}
1325
1326static inline
1327void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1328{
1329}
1330
1331static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1332{
1333	return NULL;
1334}
1335
1336static inline bool mm_match_cgroup(struct mm_struct *mm,
1337		struct mem_cgroup *memcg)
1338{
1339	return true;
1340}
1341
1342static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1343{
1344	return NULL;
1345}
1346
1347static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1348{
1349	return NULL;
1350}
1351
1352static inline
1353struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1354{
1355	return NULL;
1356}
1357
1358static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1359{
1360}
1361
1362static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1363{
1364	return true;
1365}
1366
1367static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1368{
1369	return true;
1370}
1371
1372static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1373{
1374}
1375
1376static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1377{
1378	struct pglist_data *pgdat = folio_pgdat(folio);
1379
1380	spin_lock(&pgdat->__lruvec.lru_lock);
1381	return &pgdat->__lruvec;
1382}
1383
1384static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1385{
1386	struct pglist_data *pgdat = folio_pgdat(folio);
1387
1388	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1389	return &pgdat->__lruvec;
1390}
1391
1392static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1393		unsigned long *flagsp)
1394{
1395	struct pglist_data *pgdat = folio_pgdat(folio);
1396
1397	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1398	return &pgdat->__lruvec;
1399}
1400
1401static inline struct mem_cgroup *
1402mem_cgroup_iter(struct mem_cgroup *root,
1403		struct mem_cgroup *prev,
1404		struct mem_cgroup_reclaim_cookie *reclaim)
1405{
1406	return NULL;
1407}
1408
1409static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1410					 struct mem_cgroup *prev)
1411{
1412}
1413
1414static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1415		int (*fn)(struct task_struct *, void *), void *arg)
1416{
1417}
1418
1419static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1420{
1421	return 0;
1422}
1423
1424static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1425{
1426	WARN_ON_ONCE(id);
1427	/* XXX: This should always return root_mem_cgroup */
1428	return NULL;
1429}
1430
1431#ifdef CONFIG_SHRINKER_DEBUG
1432static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1433{
1434	return 0;
1435}
1436
1437static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1438{
1439	return NULL;
1440}
1441#endif
1442
1443static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1444{
1445	return NULL;
1446}
1447
1448static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1449{
1450	return NULL;
1451}
1452
1453static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1454{
1455	return true;
1456}
1457
1458static inline
1459unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1460		enum lru_list lru, int zone_idx)
1461{
1462	return 0;
1463}
1464
1465static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1466{
1467	return 0;
1468}
1469
1470static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1471{
1472	return 0;
1473}
1474
1475static inline void
1476mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1477{
1478}
1479
1480static inline void
1481mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1482{
1483}
1484
1485static inline void folio_memcg_lock(struct folio *folio)
1486{
1487}
1488
1489static inline void folio_memcg_unlock(struct folio *folio)
1490{
1491}
1492
1493static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1494{
1495	/* to match folio_memcg_rcu() */
1496	rcu_read_lock();
1497	return true;
1498}
1499
1500static inline void mem_cgroup_unlock_pages(void)
1501{
1502	rcu_read_unlock();
1503}
1504
1505static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1506{
1507}
1508
1509static inline void mem_cgroup_enter_user_fault(void)
1510{
1511}
1512
1513static inline void mem_cgroup_exit_user_fault(void)
1514{
1515}
1516
1517static inline bool task_in_memcg_oom(struct task_struct *p)
1518{
1519	return false;
1520}
1521
1522static inline bool mem_cgroup_oom_synchronize(bool wait)
1523{
1524	return false;
1525}
1526
1527static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1528	struct task_struct *victim, struct mem_cgroup *oom_domain)
1529{
1530	return NULL;
1531}
1532
1533static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1534{
1535}
1536
1537static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1538				     int idx,
1539				     int nr)
1540{
1541}
1542
1543static inline void mod_memcg_state(struct mem_cgroup *memcg,
1544				   int idx,
1545				   int nr)
1546{
1547}
1548
1549static inline void mod_memcg_page_state(struct page *page,
1550					int idx, int val)
1551{
1552}
1553
1554static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1555{
1556	return 0;
1557}
1558
1559static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1560					      enum node_stat_item idx)
1561{
1562	return node_page_state(lruvec_pgdat(lruvec), idx);
1563}
1564
1565static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1566						    enum node_stat_item idx)
1567{
1568	return node_page_state(lruvec_pgdat(lruvec), idx);
1569}
1570
1571static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1572{
1573}
1574
1575static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1576{
1577}
1578
1579static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1580					    enum node_stat_item idx, int val)
1581{
1582}
1583
1584static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1585					   int val)
1586{
1587	struct page *page = virt_to_head_page(p);
1588
1589	__mod_node_page_state(page_pgdat(page), idx, val);
1590}
1591
1592static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1593					 int val)
1594{
1595	struct page *page = virt_to_head_page(p);
1596
1597	mod_node_page_state(page_pgdat(page), idx, val);
1598}
1599
1600static inline void count_memcg_events(struct mem_cgroup *memcg,
1601				      enum vm_event_item idx,
1602				      unsigned long count)
1603{
1604}
1605
1606static inline void __count_memcg_events(struct mem_cgroup *memcg,
1607					enum vm_event_item idx,
1608					unsigned long count)
1609{
1610}
1611
1612static inline void count_memcg_folio_events(struct folio *folio,
1613		enum vm_event_item idx, unsigned long nr)
1614{
1615}
1616
1617static inline
1618void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1619{
1620}
1621
1622static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1623{
1624}
1625
1626static inline
1627unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1628					    gfp_t gfp_mask,
1629					    unsigned long *total_scanned)
1630{
1631	return 0;
1632}
1633#endif /* CONFIG_MEMCG */
1634
1635static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1636{
1637	__mod_lruvec_kmem_state(p, idx, 1);
1638}
1639
1640static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1641{
1642	__mod_lruvec_kmem_state(p, idx, -1);
1643}
1644
1645static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1646{
1647	struct mem_cgroup *memcg;
1648
1649	memcg = lruvec_memcg(lruvec);
1650	if (!memcg)
1651		return NULL;
1652	memcg = parent_mem_cgroup(memcg);
1653	if (!memcg)
1654		return NULL;
1655	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1656}
1657
1658static inline void unlock_page_lruvec(struct lruvec *lruvec)
1659{
1660	spin_unlock(&lruvec->lru_lock);
1661}
1662
1663static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1664{
1665	spin_unlock_irq(&lruvec->lru_lock);
1666}
1667
1668static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1669		unsigned long flags)
1670{
1671	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1672}
1673
1674/* Test requires a stable page->memcg binding, see page_memcg() */
1675static inline bool folio_matches_lruvec(struct folio *folio,
1676		struct lruvec *lruvec)
1677{
1678	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1679	       lruvec_memcg(lruvec) == folio_memcg(folio);
1680}
1681
1682/* Don't lock again iff page's lruvec locked */
1683static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1684		struct lruvec *locked_lruvec)
1685{
1686	if (locked_lruvec) {
1687		if (folio_matches_lruvec(folio, locked_lruvec))
1688			return locked_lruvec;
1689
1690		unlock_page_lruvec_irq(locked_lruvec);
1691	}
1692
1693	return folio_lruvec_lock_irq(folio);
1694}
1695
1696/* Don't lock again iff folio's lruvec locked */
1697static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1698		struct lruvec **lruvecp, unsigned long *flags)
1699{
1700	if (*lruvecp) {
1701		if (folio_matches_lruvec(folio, *lruvecp))
1702			return;
1703
1704		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1705	}
1706
1707	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1708}
1709
1710#ifdef CONFIG_CGROUP_WRITEBACK
1711
1712struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1713void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1714			 unsigned long *pheadroom, unsigned long *pdirty,
1715			 unsigned long *pwriteback);
1716
1717void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1718					     struct bdi_writeback *wb);
1719
1720static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1721						  struct bdi_writeback *wb)
1722{
1723	struct mem_cgroup *memcg;
1724
1725	if (mem_cgroup_disabled())
1726		return;
1727
1728	memcg = folio_memcg(folio);
1729	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1730		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1731}
1732
1733void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1734
1735#else	/* CONFIG_CGROUP_WRITEBACK */
1736
1737static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1738{
1739	return NULL;
1740}
1741
1742static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1743				       unsigned long *pfilepages,
1744				       unsigned long *pheadroom,
1745				       unsigned long *pdirty,
1746				       unsigned long *pwriteback)
1747{
1748}
1749
1750static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1751						  struct bdi_writeback *wb)
1752{
1753}
1754
1755static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1756{
1757}
1758
1759#endif	/* CONFIG_CGROUP_WRITEBACK */
1760
1761struct sock;
1762bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1763			     gfp_t gfp_mask);
1764void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1765#ifdef CONFIG_MEMCG
1766extern struct static_key_false memcg_sockets_enabled_key;
1767#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1768void mem_cgroup_sk_alloc(struct sock *sk);
1769void mem_cgroup_sk_free(struct sock *sk);
1770static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1771{
1772	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1773		return !!memcg->tcpmem_pressure;
1774	do {
1775		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1776			return true;
1777	} while ((memcg = parent_mem_cgroup(memcg)));
1778	return false;
1779}
1780
1781int alloc_shrinker_info(struct mem_cgroup *memcg);
1782void free_shrinker_info(struct mem_cgroup *memcg);
1783void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1784void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1785#else
1786#define mem_cgroup_sockets_enabled 0
1787static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1788static inline void mem_cgroup_sk_free(struct sock *sk) { };
1789static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1790{
1791	return false;
1792}
1793
1794static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1795				    int nid, int shrinker_id)
1796{
1797}
1798#endif
1799
1800#ifdef CONFIG_MEMCG_KMEM
1801bool mem_cgroup_kmem_disabled(void);
1802int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1803void __memcg_kmem_uncharge_page(struct page *page, int order);
1804
1805/*
1806 * The returned objcg pointer is safe to use without additional
1807 * protection within a scope. The scope is defined either by
1808 * the current task (similar to the "current" global variable)
1809 * or by set_active_memcg() pair.
1810 * Please, use obj_cgroup_get() to get a reference if the pointer
1811 * needs to be used outside of the local scope.
1812 */
1813struct obj_cgroup *current_obj_cgroup(void);
1814struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1815
1816static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1817{
1818	struct obj_cgroup *objcg = current_obj_cgroup();
1819
1820	if (objcg)
1821		obj_cgroup_get(objcg);
1822
1823	return objcg;
1824}
1825
1826int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1827void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1828
1829extern struct static_key_false memcg_bpf_enabled_key;
1830static inline bool memcg_bpf_enabled(void)
1831{
1832	return static_branch_likely(&memcg_bpf_enabled_key);
1833}
1834
1835extern struct static_key_false memcg_kmem_online_key;
1836
1837static inline bool memcg_kmem_online(void)
1838{
1839	return static_branch_likely(&memcg_kmem_online_key);
1840}
1841
1842static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1843					 int order)
1844{
1845	if (memcg_kmem_online())
1846		return __memcg_kmem_charge_page(page, gfp, order);
1847	return 0;
1848}
1849
1850static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1851{
1852	if (memcg_kmem_online())
1853		__memcg_kmem_uncharge_page(page, order);
1854}
1855
1856/*
1857 * A helper for accessing memcg's kmem_id, used for getting
1858 * corresponding LRU lists.
1859 */
1860static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1861{
1862	return memcg ? memcg->kmemcg_id : -1;
1863}
1864
1865struct mem_cgroup *mem_cgroup_from_obj(void *p);
1866struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1867
1868static inline void count_objcg_event(struct obj_cgroup *objcg,
1869				     enum vm_event_item idx)
1870{
1871	struct mem_cgroup *memcg;
1872
1873	if (!memcg_kmem_online())
1874		return;
1875
1876	rcu_read_lock();
1877	memcg = obj_cgroup_memcg(objcg);
1878	count_memcg_events(memcg, idx, 1);
1879	rcu_read_unlock();
1880}
1881
1882#else
1883static inline bool mem_cgroup_kmem_disabled(void)
1884{
1885	return true;
1886}
1887
1888static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1889					 int order)
1890{
1891	return 0;
1892}
1893
1894static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1895{
1896}
1897
1898static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1899					   int order)
1900{
1901	return 0;
1902}
1903
1904static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1905{
1906}
1907
1908static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1909{
1910	return NULL;
1911}
1912
1913static inline bool memcg_bpf_enabled(void)
1914{
1915	return false;
1916}
1917
1918static inline bool memcg_kmem_online(void)
1919{
1920	return false;
1921}
1922
1923static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1924{
1925	return -1;
1926}
1927
1928static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1929{
1930	return NULL;
1931}
1932
1933static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1934{
1935	return NULL;
1936}
1937
1938static inline void count_objcg_event(struct obj_cgroup *objcg,
1939				     enum vm_event_item idx)
1940{
1941}
1942
1943#endif /* CONFIG_MEMCG_KMEM */
1944
1945#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1946bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1947void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1948void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1949bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1950#else
1951static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1952{
1953	return true;
1954}
1955static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1956					   size_t size)
1957{
1958}
1959static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1960					     size_t size)
1961{
1962}
1963static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1964{
1965	/* if zswap is disabled, do not block pages going to the swapping device */
1966	return true;
1967}
1968#endif
1969
1970#endif /* _LINUX_MEMCONTROL_H */
1971