1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_LIST_H
3#define _LINUX_LIST_H
4
5#include <linux/container_of.h>
6#include <linux/types.h>
7#include <linux/stddef.h>
8#include <linux/poison.h>
9#include <linux/const.h>
10
11#include <asm/barrier.h>
12
13/*
14 * Circular doubly linked list implementation.
15 *
16 * Some of the internal functions ("__xxx") are useful when
17 * manipulating whole lists rather than single entries, as
18 * sometimes we already know the next/prev entries and we can
19 * generate better code by using them directly rather than
20 * using the generic single-entry routines.
21 */
22
23#define LIST_HEAD_INIT(name) { &(name), &(name) }
24
25#define LIST_HEAD(name) \
26	struct list_head name = LIST_HEAD_INIT(name)
27
28/**
29 * INIT_LIST_HEAD - Initialize a list_head structure
30 * @list: list_head structure to be initialized.
31 *
32 * Initializes the list_head to point to itself.  If it is a list header,
33 * the result is an empty list.
34 */
35static inline void INIT_LIST_HEAD(struct list_head *list)
36{
37	WRITE_ONCE(list->next, list);
38	WRITE_ONCE(list->prev, list);
39}
40
41#ifdef CONFIG_LIST_HARDENED
42
43#ifdef CONFIG_DEBUG_LIST
44# define __list_valid_slowpath
45#else
46# define __list_valid_slowpath __cold __preserve_most
47#endif
48
49/*
50 * Performs the full set of list corruption checks before __list_add().
51 * On list corruption reports a warning, and returns false.
52 */
53extern bool __list_valid_slowpath __list_add_valid_or_report(struct list_head *new,
54							     struct list_head *prev,
55							     struct list_head *next);
56
57/*
58 * Performs list corruption checks before __list_add(). Returns false if a
59 * corruption is detected, true otherwise.
60 *
61 * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
62 * inline to catch non-faulting corruptions, and only if a corruption is
63 * detected calls the reporting function __list_add_valid_or_report().
64 */
65static __always_inline bool __list_add_valid(struct list_head *new,
66					     struct list_head *prev,
67					     struct list_head *next)
68{
69	bool ret = true;
70
71	if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
72		/*
73		 * With the hardening version, elide checking if next and prev
74		 * are NULL, since the immediate dereference of them below would
75		 * result in a fault if NULL.
76		 *
77		 * With the reduced set of checks, we can afford to inline the
78		 * checks, which also gives the compiler a chance to elide some
79		 * of them completely if they can be proven at compile-time. If
80		 * one of the pre-conditions does not hold, the slow-path will
81		 * show a report which pre-condition failed.
82		 */
83		if (likely(next->prev == prev && prev->next == next && new != prev && new != next))
84			return true;
85		ret = false;
86	}
87
88	ret &= __list_add_valid_or_report(new, prev, next);
89	return ret;
90}
91
92/*
93 * Performs the full set of list corruption checks before __list_del_entry().
94 * On list corruption reports a warning, and returns false.
95 */
96extern bool __list_valid_slowpath __list_del_entry_valid_or_report(struct list_head *entry);
97
98/*
99 * Performs list corruption checks before __list_del_entry(). Returns false if a
100 * corruption is detected, true otherwise.
101 *
102 * With CONFIG_LIST_HARDENED only, performs minimal list integrity checking
103 * inline to catch non-faulting corruptions, and only if a corruption is
104 * detected calls the reporting function __list_del_entry_valid_or_report().
105 */
106static __always_inline bool __list_del_entry_valid(struct list_head *entry)
107{
108	bool ret = true;
109
110	if (!IS_ENABLED(CONFIG_DEBUG_LIST)) {
111		struct list_head *prev = entry->prev;
112		struct list_head *next = entry->next;
113
114		/*
115		 * With the hardening version, elide checking if next and prev
116		 * are NULL, LIST_POISON1 or LIST_POISON2, since the immediate
117		 * dereference of them below would result in a fault.
118		 */
119		if (likely(prev->next == entry && next->prev == entry))
120			return true;
121		ret = false;
122	}
123
124	ret &= __list_del_entry_valid_or_report(entry);
125	return ret;
126}
127#else
128static inline bool __list_add_valid(struct list_head *new,
129				struct list_head *prev,
130				struct list_head *next)
131{
132	return true;
133}
134static inline bool __list_del_entry_valid(struct list_head *entry)
135{
136	return true;
137}
138#endif
139
140/*
141 * Insert a new entry between two known consecutive entries.
142 *
143 * This is only for internal list manipulation where we know
144 * the prev/next entries already!
145 */
146static inline void __list_add(struct list_head *new,
147			      struct list_head *prev,
148			      struct list_head *next)
149{
150	if (!__list_add_valid(new, prev, next))
151		return;
152
153	next->prev = new;
154	new->next = next;
155	new->prev = prev;
156	WRITE_ONCE(prev->next, new);
157}
158
159/**
160 * list_add - add a new entry
161 * @new: new entry to be added
162 * @head: list head to add it after
163 *
164 * Insert a new entry after the specified head.
165 * This is good for implementing stacks.
166 */
167static inline void list_add(struct list_head *new, struct list_head *head)
168{
169	__list_add(new, head, head->next);
170}
171
172
173/**
174 * list_add_tail - add a new entry
175 * @new: new entry to be added
176 * @head: list head to add it before
177 *
178 * Insert a new entry before the specified head.
179 * This is useful for implementing queues.
180 */
181static inline void list_add_tail(struct list_head *new, struct list_head *head)
182{
183	__list_add(new, head->prev, head);
184}
185
186/*
187 * Delete a list entry by making the prev/next entries
188 * point to each other.
189 *
190 * This is only for internal list manipulation where we know
191 * the prev/next entries already!
192 */
193static inline void __list_del(struct list_head * prev, struct list_head * next)
194{
195	next->prev = prev;
196	WRITE_ONCE(prev->next, next);
197}
198
199/*
200 * Delete a list entry and clear the 'prev' pointer.
201 *
202 * This is a special-purpose list clearing method used in the networking code
203 * for lists allocated as per-cpu, where we don't want to incur the extra
204 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
205 * needs to check the node 'prev' pointer instead of calling list_empty().
206 */
207static inline void __list_del_clearprev(struct list_head *entry)
208{
209	__list_del(entry->prev, entry->next);
210	entry->prev = NULL;
211}
212
213static inline void __list_del_entry(struct list_head *entry)
214{
215	if (!__list_del_entry_valid(entry))
216		return;
217
218	__list_del(entry->prev, entry->next);
219}
220
221/**
222 * list_del - deletes entry from list.
223 * @entry: the element to delete from the list.
224 * Note: list_empty() on entry does not return true after this, the entry is
225 * in an undefined state.
226 */
227static inline void list_del(struct list_head *entry)
228{
229	__list_del_entry(entry);
230	entry->next = LIST_POISON1;
231	entry->prev = LIST_POISON2;
232}
233
234/**
235 * list_replace - replace old entry by new one
236 * @old : the element to be replaced
237 * @new : the new element to insert
238 *
239 * If @old was empty, it will be overwritten.
240 */
241static inline void list_replace(struct list_head *old,
242				struct list_head *new)
243{
244	new->next = old->next;
245	new->next->prev = new;
246	new->prev = old->prev;
247	new->prev->next = new;
248}
249
250/**
251 * list_replace_init - replace old entry by new one and initialize the old one
252 * @old : the element to be replaced
253 * @new : the new element to insert
254 *
255 * If @old was empty, it will be overwritten.
256 */
257static inline void list_replace_init(struct list_head *old,
258				     struct list_head *new)
259{
260	list_replace(old, new);
261	INIT_LIST_HEAD(old);
262}
263
264/**
265 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
266 * @entry1: the location to place entry2
267 * @entry2: the location to place entry1
268 */
269static inline void list_swap(struct list_head *entry1,
270			     struct list_head *entry2)
271{
272	struct list_head *pos = entry2->prev;
273
274	list_del(entry2);
275	list_replace(entry1, entry2);
276	if (pos == entry1)
277		pos = entry2;
278	list_add(entry1, pos);
279}
280
281/**
282 * list_del_init - deletes entry from list and reinitialize it.
283 * @entry: the element to delete from the list.
284 */
285static inline void list_del_init(struct list_head *entry)
286{
287	__list_del_entry(entry);
288	INIT_LIST_HEAD(entry);
289}
290
291/**
292 * list_move - delete from one list and add as another's head
293 * @list: the entry to move
294 * @head: the head that will precede our entry
295 */
296static inline void list_move(struct list_head *list, struct list_head *head)
297{
298	__list_del_entry(list);
299	list_add(list, head);
300}
301
302/**
303 * list_move_tail - delete from one list and add as another's tail
304 * @list: the entry to move
305 * @head: the head that will follow our entry
306 */
307static inline void list_move_tail(struct list_head *list,
308				  struct list_head *head)
309{
310	__list_del_entry(list);
311	list_add_tail(list, head);
312}
313
314/**
315 * list_bulk_move_tail - move a subsection of a list to its tail
316 * @head: the head that will follow our entry
317 * @first: first entry to move
318 * @last: last entry to move, can be the same as first
319 *
320 * Move all entries between @first and including @last before @head.
321 * All three entries must belong to the same linked list.
322 */
323static inline void list_bulk_move_tail(struct list_head *head,
324				       struct list_head *first,
325				       struct list_head *last)
326{
327	first->prev->next = last->next;
328	last->next->prev = first->prev;
329
330	head->prev->next = first;
331	first->prev = head->prev;
332
333	last->next = head;
334	head->prev = last;
335}
336
337/**
338 * list_is_first -- tests whether @list is the first entry in list @head
339 * @list: the entry to test
340 * @head: the head of the list
341 */
342static inline int list_is_first(const struct list_head *list, const struct list_head *head)
343{
344	return list->prev == head;
345}
346
347/**
348 * list_is_last - tests whether @list is the last entry in list @head
349 * @list: the entry to test
350 * @head: the head of the list
351 */
352static inline int list_is_last(const struct list_head *list, const struct list_head *head)
353{
354	return list->next == head;
355}
356
357/**
358 * list_is_head - tests whether @list is the list @head
359 * @list: the entry to test
360 * @head: the head of the list
361 */
362static inline int list_is_head(const struct list_head *list, const struct list_head *head)
363{
364	return list == head;
365}
366
367/**
368 * list_empty - tests whether a list is empty
369 * @head: the list to test.
370 */
371static inline int list_empty(const struct list_head *head)
372{
373	return READ_ONCE(head->next) == head;
374}
375
376/**
377 * list_del_init_careful - deletes entry from list and reinitialize it.
378 * @entry: the element to delete from the list.
379 *
380 * This is the same as list_del_init(), except designed to be used
381 * together with list_empty_careful() in a way to guarantee ordering
382 * of other memory operations.
383 *
384 * Any memory operations done before a list_del_init_careful() are
385 * guaranteed to be visible after a list_empty_careful() test.
386 */
387static inline void list_del_init_careful(struct list_head *entry)
388{
389	__list_del_entry(entry);
390	WRITE_ONCE(entry->prev, entry);
391	smp_store_release(&entry->next, entry);
392}
393
394/**
395 * list_empty_careful - tests whether a list is empty and not being modified
396 * @head: the list to test
397 *
398 * Description:
399 * tests whether a list is empty _and_ checks that no other CPU might be
400 * in the process of modifying either member (next or prev)
401 *
402 * NOTE: using list_empty_careful() without synchronization
403 * can only be safe if the only activity that can happen
404 * to the list entry is list_del_init(). Eg. it cannot be used
405 * if another CPU could re-list_add() it.
406 */
407static inline int list_empty_careful(const struct list_head *head)
408{
409	struct list_head *next = smp_load_acquire(&head->next);
410	return list_is_head(next, head) && (next == READ_ONCE(head->prev));
411}
412
413/**
414 * list_rotate_left - rotate the list to the left
415 * @head: the head of the list
416 */
417static inline void list_rotate_left(struct list_head *head)
418{
419	struct list_head *first;
420
421	if (!list_empty(head)) {
422		first = head->next;
423		list_move_tail(first, head);
424	}
425}
426
427/**
428 * list_rotate_to_front() - Rotate list to specific item.
429 * @list: The desired new front of the list.
430 * @head: The head of the list.
431 *
432 * Rotates list so that @list becomes the new front of the list.
433 */
434static inline void list_rotate_to_front(struct list_head *list,
435					struct list_head *head)
436{
437	/*
438	 * Deletes the list head from the list denoted by @head and
439	 * places it as the tail of @list, this effectively rotates the
440	 * list so that @list is at the front.
441	 */
442	list_move_tail(head, list);
443}
444
445/**
446 * list_is_singular - tests whether a list has just one entry.
447 * @head: the list to test.
448 */
449static inline int list_is_singular(const struct list_head *head)
450{
451	return !list_empty(head) && (head->next == head->prev);
452}
453
454static inline void __list_cut_position(struct list_head *list,
455		struct list_head *head, struct list_head *entry)
456{
457	struct list_head *new_first = entry->next;
458	list->next = head->next;
459	list->next->prev = list;
460	list->prev = entry;
461	entry->next = list;
462	head->next = new_first;
463	new_first->prev = head;
464}
465
466/**
467 * list_cut_position - cut a list into two
468 * @list: a new list to add all removed entries
469 * @head: a list with entries
470 * @entry: an entry within head, could be the head itself
471 *	and if so we won't cut the list
472 *
473 * This helper moves the initial part of @head, up to and
474 * including @entry, from @head to @list. You should
475 * pass on @entry an element you know is on @head. @list
476 * should be an empty list or a list you do not care about
477 * losing its data.
478 *
479 */
480static inline void list_cut_position(struct list_head *list,
481		struct list_head *head, struct list_head *entry)
482{
483	if (list_empty(head))
484		return;
485	if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
486		return;
487	if (list_is_head(entry, head))
488		INIT_LIST_HEAD(list);
489	else
490		__list_cut_position(list, head, entry);
491}
492
493/**
494 * list_cut_before - cut a list into two, before given entry
495 * @list: a new list to add all removed entries
496 * @head: a list with entries
497 * @entry: an entry within head, could be the head itself
498 *
499 * This helper moves the initial part of @head, up to but
500 * excluding @entry, from @head to @list.  You should pass
501 * in @entry an element you know is on @head.  @list should
502 * be an empty list or a list you do not care about losing
503 * its data.
504 * If @entry == @head, all entries on @head are moved to
505 * @list.
506 */
507static inline void list_cut_before(struct list_head *list,
508				   struct list_head *head,
509				   struct list_head *entry)
510{
511	if (head->next == entry) {
512		INIT_LIST_HEAD(list);
513		return;
514	}
515	list->next = head->next;
516	list->next->prev = list;
517	list->prev = entry->prev;
518	list->prev->next = list;
519	head->next = entry;
520	entry->prev = head;
521}
522
523static inline void __list_splice(const struct list_head *list,
524				 struct list_head *prev,
525				 struct list_head *next)
526{
527	struct list_head *first = list->next;
528	struct list_head *last = list->prev;
529
530	first->prev = prev;
531	prev->next = first;
532
533	last->next = next;
534	next->prev = last;
535}
536
537/**
538 * list_splice - join two lists, this is designed for stacks
539 * @list: the new list to add.
540 * @head: the place to add it in the first list.
541 */
542static inline void list_splice(const struct list_head *list,
543				struct list_head *head)
544{
545	if (!list_empty(list))
546		__list_splice(list, head, head->next);
547}
548
549/**
550 * list_splice_tail - join two lists, each list being a queue
551 * @list: the new list to add.
552 * @head: the place to add it in the first list.
553 */
554static inline void list_splice_tail(struct list_head *list,
555				struct list_head *head)
556{
557	if (!list_empty(list))
558		__list_splice(list, head->prev, head);
559}
560
561/**
562 * list_splice_init - join two lists and reinitialise the emptied list.
563 * @list: the new list to add.
564 * @head: the place to add it in the first list.
565 *
566 * The list at @list is reinitialised
567 */
568static inline void list_splice_init(struct list_head *list,
569				    struct list_head *head)
570{
571	if (!list_empty(list)) {
572		__list_splice(list, head, head->next);
573		INIT_LIST_HEAD(list);
574	}
575}
576
577/**
578 * list_splice_tail_init - join two lists and reinitialise the emptied list
579 * @list: the new list to add.
580 * @head: the place to add it in the first list.
581 *
582 * Each of the lists is a queue.
583 * The list at @list is reinitialised
584 */
585static inline void list_splice_tail_init(struct list_head *list,
586					 struct list_head *head)
587{
588	if (!list_empty(list)) {
589		__list_splice(list, head->prev, head);
590		INIT_LIST_HEAD(list);
591	}
592}
593
594/**
595 * list_entry - get the struct for this entry
596 * @ptr:	the &struct list_head pointer.
597 * @type:	the type of the struct this is embedded in.
598 * @member:	the name of the list_head within the struct.
599 */
600#define list_entry(ptr, type, member) \
601	container_of(ptr, type, member)
602
603/**
604 * list_first_entry - get the first element from a list
605 * @ptr:	the list head to take the element from.
606 * @type:	the type of the struct this is embedded in.
607 * @member:	the name of the list_head within the struct.
608 *
609 * Note, that list is expected to be not empty.
610 */
611#define list_first_entry(ptr, type, member) \
612	list_entry((ptr)->next, type, member)
613
614/**
615 * list_last_entry - get the last element from a list
616 * @ptr:	the list head to take the element from.
617 * @type:	the type of the struct this is embedded in.
618 * @member:	the name of the list_head within the struct.
619 *
620 * Note, that list is expected to be not empty.
621 */
622#define list_last_entry(ptr, type, member) \
623	list_entry((ptr)->prev, type, member)
624
625/**
626 * list_first_entry_or_null - get the first element from a list
627 * @ptr:	the list head to take the element from.
628 * @type:	the type of the struct this is embedded in.
629 * @member:	the name of the list_head within the struct.
630 *
631 * Note that if the list is empty, it returns NULL.
632 */
633#define list_first_entry_or_null(ptr, type, member) ({ \
634	struct list_head *head__ = (ptr); \
635	struct list_head *pos__ = READ_ONCE(head__->next); \
636	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
637})
638
639/**
640 * list_next_entry - get the next element in list
641 * @pos:	the type * to cursor
642 * @member:	the name of the list_head within the struct.
643 */
644#define list_next_entry(pos, member) \
645	list_entry((pos)->member.next, typeof(*(pos)), member)
646
647/**
648 * list_next_entry_circular - get the next element in list
649 * @pos:	the type * to cursor.
650 * @head:	the list head to take the element from.
651 * @member:	the name of the list_head within the struct.
652 *
653 * Wraparound if pos is the last element (return the first element).
654 * Note, that list is expected to be not empty.
655 */
656#define list_next_entry_circular(pos, head, member) \
657	(list_is_last(&(pos)->member, head) ? \
658	list_first_entry(head, typeof(*(pos)), member) : list_next_entry(pos, member))
659
660/**
661 * list_prev_entry - get the prev element in list
662 * @pos:	the type * to cursor
663 * @member:	the name of the list_head within the struct.
664 */
665#define list_prev_entry(pos, member) \
666	list_entry((pos)->member.prev, typeof(*(pos)), member)
667
668/**
669 * list_prev_entry_circular - get the prev element in list
670 * @pos:	the type * to cursor.
671 * @head:	the list head to take the element from.
672 * @member:	the name of the list_head within the struct.
673 *
674 * Wraparound if pos is the first element (return the last element).
675 * Note, that list is expected to be not empty.
676 */
677#define list_prev_entry_circular(pos, head, member) \
678	(list_is_first(&(pos)->member, head) ? \
679	list_last_entry(head, typeof(*(pos)), member) : list_prev_entry(pos, member))
680
681/**
682 * list_for_each	-	iterate over a list
683 * @pos:	the &struct list_head to use as a loop cursor.
684 * @head:	the head for your list.
685 */
686#define list_for_each(pos, head) \
687	for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
688
689/**
690 * list_for_each_reverse - iterate backwards over a list
691 * @pos:	the &struct list_head to use as a loop cursor.
692 * @head:	the head for your list.
693 */
694#define list_for_each_reverse(pos, head) \
695	for (pos = (head)->prev; pos != (head); pos = pos->prev)
696
697/**
698 * list_for_each_rcu - Iterate over a list in an RCU-safe fashion
699 * @pos:	the &struct list_head to use as a loop cursor.
700 * @head:	the head for your list.
701 */
702#define list_for_each_rcu(pos, head)		  \
703	for (pos = rcu_dereference((head)->next); \
704	     !list_is_head(pos, (head)); \
705	     pos = rcu_dereference(pos->next))
706
707/**
708 * list_for_each_continue - continue iteration over a list
709 * @pos:	the &struct list_head to use as a loop cursor.
710 * @head:	the head for your list.
711 *
712 * Continue to iterate over a list, continuing after the current position.
713 */
714#define list_for_each_continue(pos, head) \
715	for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
716
717/**
718 * list_for_each_prev	-	iterate over a list backwards
719 * @pos:	the &struct list_head to use as a loop cursor.
720 * @head:	the head for your list.
721 */
722#define list_for_each_prev(pos, head) \
723	for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
724
725/**
726 * list_for_each_safe - iterate over a list safe against removal of list entry
727 * @pos:	the &struct list_head to use as a loop cursor.
728 * @n:		another &struct list_head to use as temporary storage
729 * @head:	the head for your list.
730 */
731#define list_for_each_safe(pos, n, head) \
732	for (pos = (head)->next, n = pos->next; \
733	     !list_is_head(pos, (head)); \
734	     pos = n, n = pos->next)
735
736/**
737 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
738 * @pos:	the &struct list_head to use as a loop cursor.
739 * @n:		another &struct list_head to use as temporary storage
740 * @head:	the head for your list.
741 */
742#define list_for_each_prev_safe(pos, n, head) \
743	for (pos = (head)->prev, n = pos->prev; \
744	     !list_is_head(pos, (head)); \
745	     pos = n, n = pos->prev)
746
747/**
748 * list_count_nodes - count nodes in the list
749 * @head:	the head for your list.
750 */
751static inline size_t list_count_nodes(struct list_head *head)
752{
753	struct list_head *pos;
754	size_t count = 0;
755
756	list_for_each(pos, head)
757		count++;
758
759	return count;
760}
761
762/**
763 * list_entry_is_head - test if the entry points to the head of the list
764 * @pos:	the type * to cursor
765 * @head:	the head for your list.
766 * @member:	the name of the list_head within the struct.
767 */
768#define list_entry_is_head(pos, head, member)				\
769	list_is_head(&pos->member, (head))
770
771/**
772 * list_for_each_entry	-	iterate over list of given type
773 * @pos:	the type * to use as a loop cursor.
774 * @head:	the head for your list.
775 * @member:	the name of the list_head within the struct.
776 */
777#define list_for_each_entry(pos, head, member)				\
778	for (pos = list_first_entry(head, typeof(*pos), member);	\
779	     !list_entry_is_head(pos, head, member);			\
780	     pos = list_next_entry(pos, member))
781
782/**
783 * list_for_each_entry_reverse - iterate backwards over list of given type.
784 * @pos:	the type * to use as a loop cursor.
785 * @head:	the head for your list.
786 * @member:	the name of the list_head within the struct.
787 */
788#define list_for_each_entry_reverse(pos, head, member)			\
789	for (pos = list_last_entry(head, typeof(*pos), member);		\
790	     !list_entry_is_head(pos, head, member); 			\
791	     pos = list_prev_entry(pos, member))
792
793/**
794 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
795 * @pos:	the type * to use as a start point
796 * @head:	the head of the list
797 * @member:	the name of the list_head within the struct.
798 *
799 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
800 */
801#define list_prepare_entry(pos, head, member) \
802	((pos) ? : list_entry(head, typeof(*pos), member))
803
804/**
805 * list_for_each_entry_continue - continue iteration over list of given type
806 * @pos:	the type * to use as a loop cursor.
807 * @head:	the head for your list.
808 * @member:	the name of the list_head within the struct.
809 *
810 * Continue to iterate over list of given type, continuing after
811 * the current position.
812 */
813#define list_for_each_entry_continue(pos, head, member) 		\
814	for (pos = list_next_entry(pos, member);			\
815	     !list_entry_is_head(pos, head, member);			\
816	     pos = list_next_entry(pos, member))
817
818/**
819 * list_for_each_entry_continue_reverse - iterate backwards from the given point
820 * @pos:	the type * to use as a loop cursor.
821 * @head:	the head for your list.
822 * @member:	the name of the list_head within the struct.
823 *
824 * Start to iterate over list of given type backwards, continuing after
825 * the current position.
826 */
827#define list_for_each_entry_continue_reverse(pos, head, member)		\
828	for (pos = list_prev_entry(pos, member);			\
829	     !list_entry_is_head(pos, head, member);			\
830	     pos = list_prev_entry(pos, member))
831
832/**
833 * list_for_each_entry_from - iterate over list of given type from the current point
834 * @pos:	the type * to use as a loop cursor.
835 * @head:	the head for your list.
836 * @member:	the name of the list_head within the struct.
837 *
838 * Iterate over list of given type, continuing from current position.
839 */
840#define list_for_each_entry_from(pos, head, member) 			\
841	for (; !list_entry_is_head(pos, head, member);			\
842	     pos = list_next_entry(pos, member))
843
844/**
845 * list_for_each_entry_from_reverse - iterate backwards over list of given type
846 *                                    from the current point
847 * @pos:	the type * to use as a loop cursor.
848 * @head:	the head for your list.
849 * @member:	the name of the list_head within the struct.
850 *
851 * Iterate backwards over list of given type, continuing from current position.
852 */
853#define list_for_each_entry_from_reverse(pos, head, member)		\
854	for (; !list_entry_is_head(pos, head, member);			\
855	     pos = list_prev_entry(pos, member))
856
857/**
858 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
859 * @pos:	the type * to use as a loop cursor.
860 * @n:		another type * to use as temporary storage
861 * @head:	the head for your list.
862 * @member:	the name of the list_head within the struct.
863 */
864#define list_for_each_entry_safe(pos, n, head, member)			\
865	for (pos = list_first_entry(head, typeof(*pos), member),	\
866		n = list_next_entry(pos, member);			\
867	     !list_entry_is_head(pos, head, member); 			\
868	     pos = n, n = list_next_entry(n, member))
869
870/**
871 * list_for_each_entry_safe_continue - continue list iteration safe against removal
872 * @pos:	the type * to use as a loop cursor.
873 * @n:		another type * to use as temporary storage
874 * @head:	the head for your list.
875 * @member:	the name of the list_head within the struct.
876 *
877 * Iterate over list of given type, continuing after current point,
878 * safe against removal of list entry.
879 */
880#define list_for_each_entry_safe_continue(pos, n, head, member) 		\
881	for (pos = list_next_entry(pos, member), 				\
882		n = list_next_entry(pos, member);				\
883	     !list_entry_is_head(pos, head, member);				\
884	     pos = n, n = list_next_entry(n, member))
885
886/**
887 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
888 * @pos:	the type * to use as a loop cursor.
889 * @n:		another type * to use as temporary storage
890 * @head:	the head for your list.
891 * @member:	the name of the list_head within the struct.
892 *
893 * Iterate over list of given type from current point, safe against
894 * removal of list entry.
895 */
896#define list_for_each_entry_safe_from(pos, n, head, member) 			\
897	for (n = list_next_entry(pos, member);					\
898	     !list_entry_is_head(pos, head, member);				\
899	     pos = n, n = list_next_entry(n, member))
900
901/**
902 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
903 * @pos:	the type * to use as a loop cursor.
904 * @n:		another type * to use as temporary storage
905 * @head:	the head for your list.
906 * @member:	the name of the list_head within the struct.
907 *
908 * Iterate backwards over list of given type, safe against removal
909 * of list entry.
910 */
911#define list_for_each_entry_safe_reverse(pos, n, head, member)		\
912	for (pos = list_last_entry(head, typeof(*pos), member),		\
913		n = list_prev_entry(pos, member);			\
914	     !list_entry_is_head(pos, head, member); 			\
915	     pos = n, n = list_prev_entry(n, member))
916
917/**
918 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
919 * @pos:	the loop cursor used in the list_for_each_entry_safe loop
920 * @n:		temporary storage used in list_for_each_entry_safe
921 * @member:	the name of the list_head within the struct.
922 *
923 * list_safe_reset_next is not safe to use in general if the list may be
924 * modified concurrently (eg. the lock is dropped in the loop body). An
925 * exception to this is if the cursor element (pos) is pinned in the list,
926 * and list_safe_reset_next is called after re-taking the lock and before
927 * completing the current iteration of the loop body.
928 */
929#define list_safe_reset_next(pos, n, member)				\
930	n = list_next_entry(pos, member)
931
932/*
933 * Double linked lists with a single pointer list head.
934 * Mostly useful for hash tables where the two pointer list head is
935 * too wasteful.
936 * You lose the ability to access the tail in O(1).
937 */
938
939#define HLIST_HEAD_INIT { .first = NULL }
940#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
941#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
942static inline void INIT_HLIST_NODE(struct hlist_node *h)
943{
944	h->next = NULL;
945	h->pprev = NULL;
946}
947
948/**
949 * hlist_unhashed - Has node been removed from list and reinitialized?
950 * @h: Node to be checked
951 *
952 * Not that not all removal functions will leave a node in unhashed
953 * state.  For example, hlist_nulls_del_init_rcu() does leave the
954 * node in unhashed state, but hlist_nulls_del() does not.
955 */
956static inline int hlist_unhashed(const struct hlist_node *h)
957{
958	return !h->pprev;
959}
960
961/**
962 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
963 * @h: Node to be checked
964 *
965 * This variant of hlist_unhashed() must be used in lockless contexts
966 * to avoid potential load-tearing.  The READ_ONCE() is paired with the
967 * various WRITE_ONCE() in hlist helpers that are defined below.
968 */
969static inline int hlist_unhashed_lockless(const struct hlist_node *h)
970{
971	return !READ_ONCE(h->pprev);
972}
973
974/**
975 * hlist_empty - Is the specified hlist_head structure an empty hlist?
976 * @h: Structure to check.
977 */
978static inline int hlist_empty(const struct hlist_head *h)
979{
980	return !READ_ONCE(h->first);
981}
982
983static inline void __hlist_del(struct hlist_node *n)
984{
985	struct hlist_node *next = n->next;
986	struct hlist_node **pprev = n->pprev;
987
988	WRITE_ONCE(*pprev, next);
989	if (next)
990		WRITE_ONCE(next->pprev, pprev);
991}
992
993/**
994 * hlist_del - Delete the specified hlist_node from its list
995 * @n: Node to delete.
996 *
997 * Note that this function leaves the node in hashed state.  Use
998 * hlist_del_init() or similar instead to unhash @n.
999 */
1000static inline void hlist_del(struct hlist_node *n)
1001{
1002	__hlist_del(n);
1003	n->next = LIST_POISON1;
1004	n->pprev = LIST_POISON2;
1005}
1006
1007/**
1008 * hlist_del_init - Delete the specified hlist_node from its list and initialize
1009 * @n: Node to delete.
1010 *
1011 * Note that this function leaves the node in unhashed state.
1012 */
1013static inline void hlist_del_init(struct hlist_node *n)
1014{
1015	if (!hlist_unhashed(n)) {
1016		__hlist_del(n);
1017		INIT_HLIST_NODE(n);
1018	}
1019}
1020
1021/**
1022 * hlist_add_head - add a new entry at the beginning of the hlist
1023 * @n: new entry to be added
1024 * @h: hlist head to add it after
1025 *
1026 * Insert a new entry after the specified head.
1027 * This is good for implementing stacks.
1028 */
1029static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
1030{
1031	struct hlist_node *first = h->first;
1032	WRITE_ONCE(n->next, first);
1033	if (first)
1034		WRITE_ONCE(first->pprev, &n->next);
1035	WRITE_ONCE(h->first, n);
1036	WRITE_ONCE(n->pprev, &h->first);
1037}
1038
1039/**
1040 * hlist_add_before - add a new entry before the one specified
1041 * @n: new entry to be added
1042 * @next: hlist node to add it before, which must be non-NULL
1043 */
1044static inline void hlist_add_before(struct hlist_node *n,
1045				    struct hlist_node *next)
1046{
1047	WRITE_ONCE(n->pprev, next->pprev);
1048	WRITE_ONCE(n->next, next);
1049	WRITE_ONCE(next->pprev, &n->next);
1050	WRITE_ONCE(*(n->pprev), n);
1051}
1052
1053/**
1054 * hlist_add_behind - add a new entry after the one specified
1055 * @n: new entry to be added
1056 * @prev: hlist node to add it after, which must be non-NULL
1057 */
1058static inline void hlist_add_behind(struct hlist_node *n,
1059				    struct hlist_node *prev)
1060{
1061	WRITE_ONCE(n->next, prev->next);
1062	WRITE_ONCE(prev->next, n);
1063	WRITE_ONCE(n->pprev, &prev->next);
1064
1065	if (n->next)
1066		WRITE_ONCE(n->next->pprev, &n->next);
1067}
1068
1069/**
1070 * hlist_add_fake - create a fake hlist consisting of a single headless node
1071 * @n: Node to make a fake list out of
1072 *
1073 * This makes @n appear to be its own predecessor on a headless hlist.
1074 * The point of this is to allow things like hlist_del() to work correctly
1075 * in cases where there is no list.
1076 */
1077static inline void hlist_add_fake(struct hlist_node *n)
1078{
1079	n->pprev = &n->next;
1080}
1081
1082/**
1083 * hlist_fake: Is this node a fake hlist?
1084 * @h: Node to check for being a self-referential fake hlist.
1085 */
1086static inline bool hlist_fake(struct hlist_node *h)
1087{
1088	return h->pprev == &h->next;
1089}
1090
1091/**
1092 * hlist_is_singular_node - is node the only element of the specified hlist?
1093 * @n: Node to check for singularity.
1094 * @h: Header for potentially singular list.
1095 *
1096 * Check whether the node is the only node of the head without
1097 * accessing head, thus avoiding unnecessary cache misses.
1098 */
1099static inline bool
1100hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
1101{
1102	return !n->next && n->pprev == &h->first;
1103}
1104
1105/**
1106 * hlist_move_list - Move an hlist
1107 * @old: hlist_head for old list.
1108 * @new: hlist_head for new list.
1109 *
1110 * Move a list from one list head to another. Fixup the pprev
1111 * reference of the first entry if it exists.
1112 */
1113static inline void hlist_move_list(struct hlist_head *old,
1114				   struct hlist_head *new)
1115{
1116	new->first = old->first;
1117	if (new->first)
1118		new->first->pprev = &new->first;
1119	old->first = NULL;
1120}
1121
1122/**
1123 * hlist_splice_init() - move all entries from one list to another
1124 * @from: hlist_head from which entries will be moved
1125 * @last: last entry on the @from list
1126 * @to:   hlist_head to which entries will be moved
1127 *
1128 * @to can be empty, @from must contain at least @last.
1129 */
1130static inline void hlist_splice_init(struct hlist_head *from,
1131				     struct hlist_node *last,
1132				     struct hlist_head *to)
1133{
1134	if (to->first)
1135		to->first->pprev = &last->next;
1136	last->next = to->first;
1137	to->first = from->first;
1138	from->first->pprev = &to->first;
1139	from->first = NULL;
1140}
1141
1142#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1143
1144#define hlist_for_each(pos, head) \
1145	for (pos = (head)->first; pos ; pos = pos->next)
1146
1147#define hlist_for_each_safe(pos, n, head) \
1148	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1149	     pos = n)
1150
1151#define hlist_entry_safe(ptr, type, member) \
1152	({ typeof(ptr) ____ptr = (ptr); \
1153	   ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
1154	})
1155
1156/**
1157 * hlist_for_each_entry	- iterate over list of given type
1158 * @pos:	the type * to use as a loop cursor.
1159 * @head:	the head for your list.
1160 * @member:	the name of the hlist_node within the struct.
1161 */
1162#define hlist_for_each_entry(pos, head, member)				\
1163	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
1164	     pos;							\
1165	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1166
1167/**
1168 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1169 * @pos:	the type * to use as a loop cursor.
1170 * @member:	the name of the hlist_node within the struct.
1171 */
1172#define hlist_for_each_entry_continue(pos, member)			\
1173	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1174	     pos;							\
1175	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1176
1177/**
1178 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1179 * @pos:	the type * to use as a loop cursor.
1180 * @member:	the name of the hlist_node within the struct.
1181 */
1182#define hlist_for_each_entry_from(pos, member)				\
1183	for (; pos;							\
1184	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1185
1186/**
1187 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1188 * @pos:	the type * to use as a loop cursor.
1189 * @n:		a &struct hlist_node to use as temporary storage
1190 * @head:	the head for your list.
1191 * @member:	the name of the hlist_node within the struct.
1192 */
1193#define hlist_for_each_entry_safe(pos, n, head, member) 		\
1194	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1195	     pos && ({ n = pos->member.next; 1; });			\
1196	     pos = hlist_entry_safe(n, typeof(*pos), member))
1197
1198/**
1199 * hlist_count_nodes - count nodes in the hlist
1200 * @head:	the head for your hlist.
1201 */
1202static inline size_t hlist_count_nodes(struct hlist_head *head)
1203{
1204	struct hlist_node *pos;
1205	size_t count = 0;
1206
1207	hlist_for_each(pos, head)
1208		count++;
1209
1210	return count;
1211}
1212
1213#endif
1214