1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 *   Haiyang Zhang <haiyangz@microsoft.com>
8 *   Hank Janssen  <hjanssen@microsoft.com>
9 *   K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12#ifndef _HYPERV_H
13#define _HYPERV_H
14
15#include <uapi/linux/hyperv.h>
16
17#include <linux/mm.h>
18#include <linux/types.h>
19#include <linux/scatterlist.h>
20#include <linux/list.h>
21#include <linux/timer.h>
22#include <linux/completion.h>
23#include <linux/device.h>
24#include <linux/mod_devicetable.h>
25#include <linux/interrupt.h>
26#include <linux/reciprocal_div.h>
27#include <asm/hyperv-tlfs.h>
28
29#define MAX_PAGE_BUFFER_COUNT				32
30#define MAX_MULTIPAGE_BUFFER_COUNT			32 /* 128K */
31
32#pragma pack(push, 1)
33
34/*
35 * Types for GPADL, decides is how GPADL header is created.
36 *
37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38 * same as HV_HYP_PAGE_SIZE.
39 *
40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43 * HV_HYP_PAGE will be different between different types of GPADL, for example
44 * if PAGE_SIZE is 64K:
45 *
46 * BUFFER:
47 *
48 * gva:    |--       64k      --|--       64k      --| ... |
49 * gpa:    | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50 * index:  0    1    2     15   16   17   18 .. 31   32 ...
51 *         |    |    ...   |    |    |   ...    |   ...
52 *         v    V          V    V    V          V
53 * gpadl:  | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54 * index:  0    1    2 ... 15   16   17   18 .. 31   32 ...
55 *
56 * RING:
57 *
58 *         | header  |           data           | header  |     data      |
59 * gva:    |-- 64k --|--       64k      --| ... |-- 64k --|-- 64k --| ... |
60 * gpa:    | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61 * index:  0    1    16   17   18    31   ...   n   n+1  n+16 ...         2n
62 *         |         /    /          /          |         /               /
63 *         |        /    /          /           |        /               /
64 *         |       /    /   ...    /    ...     |       /      ...      /
65 *         |      /    /          /             |      /               /
66 *         |     /    /          /              |     /               /
67 *         V    V    V          V               V    V               v
68 * gpadl:  | 4k | 4k |   ...    |    ...        | 4k | 4k |  ...     |
69 * index:  0    1    2   ...    16   ...       n-15 n-14 n-13  ...  2n-30
70 */
71enum hv_gpadl_type {
72	HV_GPADL_BUFFER,
73	HV_GPADL_RING
74};
75
76/* Single-page buffer */
77struct hv_page_buffer {
78	u32 len;
79	u32 offset;
80	u64 pfn;
81};
82
83/* Multiple-page buffer */
84struct hv_multipage_buffer {
85	/* Length and Offset determines the # of pfns in the array */
86	u32 len;
87	u32 offset;
88	u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89};
90
91/*
92 * Multiple-page buffer array; the pfn array is variable size:
93 * The number of entries in the PFN array is determined by
94 * "len" and "offset".
95 */
96struct hv_mpb_array {
97	/* Length and Offset determines the # of pfns in the array */
98	u32 len;
99	u32 offset;
100	u64 pfn_array[];
101};
102
103/* 0x18 includes the proprietary packet header */
104#define MAX_PAGE_BUFFER_PACKET		(0x18 +			\
105					(sizeof(struct hv_page_buffer) * \
106					 MAX_PAGE_BUFFER_COUNT))
107#define MAX_MULTIPAGE_BUFFER_PACKET	(0x18 +			\
108					 sizeof(struct hv_multipage_buffer))
109
110
111#pragma pack(pop)
112
113struct hv_ring_buffer {
114	/* Offset in bytes from the start of ring data below */
115	u32 write_index;
116
117	/* Offset in bytes from the start of ring data below */
118	u32 read_index;
119
120	u32 interrupt_mask;
121
122	/*
123	 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124	 * driven flow management. The feature bit feat_pending_send_sz
125	 * is set by the host on the host->guest ring buffer, and by the
126	 * guest on the guest->host ring buffer.
127	 *
128	 * The meaning of the feature bit is a bit complex in that it has
129	 * semantics that apply to both ring buffers.  If the guest sets
130	 * the feature bit in the guest->host ring buffer, the guest is
131	 * telling the host that:
132	 * 1) It will set the pending_send_sz field in the guest->host ring
133	 *    buffer when it is waiting for space to become available, and
134	 * 2) It will read the pending_send_sz field in the host->guest
135	 *    ring buffer and interrupt the host when it frees enough space
136	 *
137	 * Similarly, if the host sets the feature bit in the host->guest
138	 * ring buffer, the host is telling the guest that:
139	 * 1) It will set the pending_send_sz field in the host->guest ring
140	 *    buffer when it is waiting for space to become available, and
141	 * 2) It will read the pending_send_sz field in the guest->host
142	 *    ring buffer and interrupt the guest when it frees enough space
143	 *
144	 * If either the guest or host does not set the feature bit that it
145	 * owns, that guest or host must do polling if it encounters a full
146	 * ring buffer, and not signal the other end with an interrupt.
147	 */
148	u32 pending_send_sz;
149	u32 reserved1[12];
150	union {
151		struct {
152			u32 feat_pending_send_sz:1;
153		};
154		u32 value;
155	} feature_bits;
156
157	/* Pad it to PAGE_SIZE so that data starts on page boundary */
158	u8	reserved2[PAGE_SIZE - 68];
159
160	/*
161	 * Ring data starts here + RingDataStartOffset
162	 * !!! DO NOT place any fields below this !!!
163	 */
164	u8 buffer[];
165} __packed;
166
167
168/*
169 * If the requested ring buffer size is at least 8 times the size of the
170 * header, steal space from the ring buffer for the header. Otherwise, add
171 * space for the header so that is doesn't take too much of the ring buffer
172 * space.
173 *
174 * The factor of 8 is somewhat arbitrary. The goal is to prevent adding a
175 * relatively small header (4 Kbytes on x86) to a large-ish power-of-2 ring
176 * buffer size (such as 128 Kbytes) and so end up making a nearly twice as
177 * large allocation that will be almost half wasted. As a contrasting example,
178 * on ARM64 with 64 Kbyte page size, we don't want to take 64 Kbytes for the
179 * header from a 128 Kbyte allocation, leaving only 64 Kbytes for the ring.
180 * In this latter case, we must add 64 Kbytes for the header and not worry
181 * about what's wasted.
182 */
183#define VMBUS_HEADER_ADJ(payload_sz) \
184	((payload_sz) >=  8 * sizeof(struct hv_ring_buffer) ? \
185	0 : sizeof(struct hv_ring_buffer))
186
187/* Calculate the proper size of a ringbuffer, it must be page-aligned */
188#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(VMBUS_HEADER_ADJ(payload_sz) + \
189					       (payload_sz))
190
191struct hv_ring_buffer_info {
192	struct hv_ring_buffer *ring_buffer;
193	u32 ring_size;			/* Include the shared header */
194	struct reciprocal_value ring_size_div10_reciprocal;
195	spinlock_t ring_lock;
196
197	u32 ring_datasize;		/* < ring_size */
198	u32 priv_read_index;
199	/*
200	 * The ring buffer mutex lock. This lock prevents the ring buffer from
201	 * being freed while the ring buffer is being accessed.
202	 */
203	struct mutex ring_buffer_mutex;
204
205	/* Buffer that holds a copy of an incoming host packet */
206	void *pkt_buffer;
207	u32 pkt_buffer_size;
208};
209
210
211static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
212{
213	u32 read_loc, write_loc, dsize, read;
214
215	dsize = rbi->ring_datasize;
216	read_loc = rbi->ring_buffer->read_index;
217	write_loc = READ_ONCE(rbi->ring_buffer->write_index);
218
219	read = write_loc >= read_loc ? (write_loc - read_loc) :
220		(dsize - read_loc) + write_loc;
221
222	return read;
223}
224
225static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
226{
227	u32 read_loc, write_loc, dsize, write;
228
229	dsize = rbi->ring_datasize;
230	read_loc = READ_ONCE(rbi->ring_buffer->read_index);
231	write_loc = rbi->ring_buffer->write_index;
232
233	write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
234		read_loc - write_loc;
235	return write;
236}
237
238static inline u32 hv_get_avail_to_write_percent(
239		const struct hv_ring_buffer_info *rbi)
240{
241	u32 avail_write = hv_get_bytes_to_write(rbi);
242
243	return reciprocal_divide(
244			(avail_write  << 3) + (avail_write << 1),
245			rbi->ring_size_div10_reciprocal);
246}
247
248/*
249 * VMBUS version is 32 bit entity broken up into
250 * two 16 bit quantities: major_number. minor_number.
251 *
252 * 0 . 13 (Windows Server 2008)
253 * 1 . 1  (Windows 7, WS2008 R2)
254 * 2 . 4  (Windows 8, WS2012)
255 * 3 . 0  (Windows 8.1, WS2012 R2)
256 * 4 . 0  (Windows 10)
257 * 4 . 1  (Windows 10 RS3)
258 * 5 . 0  (Newer Windows 10)
259 * 5 . 1  (Windows 10 RS4)
260 * 5 . 2  (Windows Server 2019, RS5)
261 * 5 . 3  (Windows Server 2022)
262 *
263 * The WS2008 and WIN7 versions are listed here for
264 * completeness but are no longer supported in the
265 * Linux kernel.
266 */
267
268#define VERSION_WS2008  ((0 << 16) | (13))
269#define VERSION_WIN7    ((1 << 16) | (1))
270#define VERSION_WIN8    ((2 << 16) | (4))
271#define VERSION_WIN8_1    ((3 << 16) | (0))
272#define VERSION_WIN10 ((4 << 16) | (0))
273#define VERSION_WIN10_V4_1 ((4 << 16) | (1))
274#define VERSION_WIN10_V5 ((5 << 16) | (0))
275#define VERSION_WIN10_V5_1 ((5 << 16) | (1))
276#define VERSION_WIN10_V5_2 ((5 << 16) | (2))
277#define VERSION_WIN10_V5_3 ((5 << 16) | (3))
278
279/* Make maximum size of pipe payload of 16K */
280#define MAX_PIPE_DATA_PAYLOAD		(sizeof(u8) * 16384)
281
282/* Define PipeMode values. */
283#define VMBUS_PIPE_TYPE_BYTE		0x00000000
284#define VMBUS_PIPE_TYPE_MESSAGE		0x00000004
285
286/* The size of the user defined data buffer for non-pipe offers. */
287#define MAX_USER_DEFINED_BYTES		120
288
289/* The size of the user defined data buffer for pipe offers. */
290#define MAX_PIPE_USER_DEFINED_BYTES	116
291
292/*
293 * At the center of the Channel Management library is the Channel Offer. This
294 * struct contains the fundamental information about an offer.
295 */
296struct vmbus_channel_offer {
297	guid_t if_type;
298	guid_t if_instance;
299
300	/*
301	 * These two fields are not currently used.
302	 */
303	u64 reserved1;
304	u64 reserved2;
305
306	u16 chn_flags;
307	u16 mmio_megabytes;		/* in bytes * 1024 * 1024 */
308
309	union {
310		/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
311		struct {
312			unsigned char user_def[MAX_USER_DEFINED_BYTES];
313		} std;
314
315		/*
316		 * Pipes:
317		 * The following structure is an integrated pipe protocol, which
318		 * is implemented on top of standard user-defined data. Pipe
319		 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
320		 * use.
321		 */
322		struct {
323			u32  pipe_mode;
324			unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
325		} pipe;
326	} u;
327	/*
328	 * The sub_channel_index is defined in Win8: a value of zero means a
329	 * primary channel and a value of non-zero means a sub-channel.
330	 *
331	 * Before Win8, the field is reserved, meaning it's always zero.
332	 */
333	u16 sub_channel_index;
334	u16 reserved3;
335} __packed;
336
337/* Server Flags */
338#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE	1
339#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES	2
340#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS		4
341#define VMBUS_CHANNEL_NAMED_PIPE_MODE			0x10
342#define VMBUS_CHANNEL_LOOPBACK_OFFER			0x100
343#define VMBUS_CHANNEL_PARENT_OFFER			0x200
344#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION	0x400
345#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER		0x2000
346
347struct vmpacket_descriptor {
348	u16 type;
349	u16 offset8;
350	u16 len8;
351	u16 flags;
352	u64 trans_id;
353} __packed;
354
355struct vmpacket_header {
356	u32 prev_pkt_start_offset;
357	struct vmpacket_descriptor descriptor;
358} __packed;
359
360struct vmtransfer_page_range {
361	u32 byte_count;
362	u32 byte_offset;
363} __packed;
364
365struct vmtransfer_page_packet_header {
366	struct vmpacket_descriptor d;
367	u16 xfer_pageset_id;
368	u8  sender_owns_set;
369	u8 reserved;
370	u32 range_cnt;
371	struct vmtransfer_page_range ranges[];
372} __packed;
373
374struct vmgpadl_packet_header {
375	struct vmpacket_descriptor d;
376	u32 gpadl;
377	u32 reserved;
378} __packed;
379
380struct vmadd_remove_transfer_page_set {
381	struct vmpacket_descriptor d;
382	u32 gpadl;
383	u16 xfer_pageset_id;
384	u16 reserved;
385} __packed;
386
387/*
388 * This structure defines a range in guest physical space that can be made to
389 * look virtually contiguous.
390 */
391struct gpa_range {
392	u32 byte_count;
393	u32 byte_offset;
394	u64 pfn_array[];
395};
396
397/*
398 * This is the format for an Establish Gpadl packet, which contains a handle by
399 * which this GPADL will be known and a set of GPA ranges associated with it.
400 * This can be converted to a MDL by the guest OS.  If there are multiple GPA
401 * ranges, then the resulting MDL will be "chained," representing multiple VA
402 * ranges.
403 */
404struct vmestablish_gpadl {
405	struct vmpacket_descriptor d;
406	u32 gpadl;
407	u32 range_cnt;
408	struct gpa_range range[1];
409} __packed;
410
411/*
412 * This is the format for a Teardown Gpadl packet, which indicates that the
413 * GPADL handle in the Establish Gpadl packet will never be referenced again.
414 */
415struct vmteardown_gpadl {
416	struct vmpacket_descriptor d;
417	u32 gpadl;
418	u32 reserved;	/* for alignment to a 8-byte boundary */
419} __packed;
420
421/*
422 * This is the format for a GPA-Direct packet, which contains a set of GPA
423 * ranges, in addition to commands and/or data.
424 */
425struct vmdata_gpa_direct {
426	struct vmpacket_descriptor d;
427	u32 reserved;
428	u32 range_cnt;
429	struct gpa_range range[1];
430} __packed;
431
432/* This is the format for a Additional Data Packet. */
433struct vmadditional_data {
434	struct vmpacket_descriptor d;
435	u64 total_bytes;
436	u32 offset;
437	u32 byte_cnt;
438	unsigned char data[1];
439} __packed;
440
441union vmpacket_largest_possible_header {
442	struct vmpacket_descriptor simple_hdr;
443	struct vmtransfer_page_packet_header xfer_page_hdr;
444	struct vmgpadl_packet_header gpadl_hdr;
445	struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
446	struct vmestablish_gpadl establish_gpadl_hdr;
447	struct vmteardown_gpadl teardown_gpadl_hdr;
448	struct vmdata_gpa_direct data_gpa_direct_hdr;
449};
450
451#define VMPACKET_DATA_START_ADDRESS(__packet)	\
452	(void *)(((unsigned char *)__packet) +	\
453	 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
454
455#define VMPACKET_DATA_LENGTH(__packet)		\
456	((((struct vmpacket_descriptor)__packet)->len8 -	\
457	  ((struct vmpacket_descriptor)__packet)->offset8) * 8)
458
459#define VMPACKET_TRANSFER_MODE(__packet)	\
460	(((struct IMPACT)__packet)->type)
461
462enum vmbus_packet_type {
463	VM_PKT_INVALID				= 0x0,
464	VM_PKT_SYNCH				= 0x1,
465	VM_PKT_ADD_XFER_PAGESET			= 0x2,
466	VM_PKT_RM_XFER_PAGESET			= 0x3,
467	VM_PKT_ESTABLISH_GPADL			= 0x4,
468	VM_PKT_TEARDOWN_GPADL			= 0x5,
469	VM_PKT_DATA_INBAND			= 0x6,
470	VM_PKT_DATA_USING_XFER_PAGES		= 0x7,
471	VM_PKT_DATA_USING_GPADL			= 0x8,
472	VM_PKT_DATA_USING_GPA_DIRECT		= 0x9,
473	VM_PKT_CANCEL_REQUEST			= 0xa,
474	VM_PKT_COMP				= 0xb,
475	VM_PKT_DATA_USING_ADDITIONAL_PKT	= 0xc,
476	VM_PKT_ADDITIONAL_DATA			= 0xd
477};
478
479#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED	1
480
481
482/* Version 1 messages */
483enum vmbus_channel_message_type {
484	CHANNELMSG_INVALID			=  0,
485	CHANNELMSG_OFFERCHANNEL		=  1,
486	CHANNELMSG_RESCIND_CHANNELOFFER	=  2,
487	CHANNELMSG_REQUESTOFFERS		=  3,
488	CHANNELMSG_ALLOFFERS_DELIVERED	=  4,
489	CHANNELMSG_OPENCHANNEL		=  5,
490	CHANNELMSG_OPENCHANNEL_RESULT		=  6,
491	CHANNELMSG_CLOSECHANNEL		=  7,
492	CHANNELMSG_GPADL_HEADER		=  8,
493	CHANNELMSG_GPADL_BODY			=  9,
494	CHANNELMSG_GPADL_CREATED		= 10,
495	CHANNELMSG_GPADL_TEARDOWN		= 11,
496	CHANNELMSG_GPADL_TORNDOWN		= 12,
497	CHANNELMSG_RELID_RELEASED		= 13,
498	CHANNELMSG_INITIATE_CONTACT		= 14,
499	CHANNELMSG_VERSION_RESPONSE		= 15,
500	CHANNELMSG_UNLOAD			= 16,
501	CHANNELMSG_UNLOAD_RESPONSE		= 17,
502	CHANNELMSG_18				= 18,
503	CHANNELMSG_19				= 19,
504	CHANNELMSG_20				= 20,
505	CHANNELMSG_TL_CONNECT_REQUEST		= 21,
506	CHANNELMSG_MODIFYCHANNEL		= 22,
507	CHANNELMSG_TL_CONNECT_RESULT		= 23,
508	CHANNELMSG_MODIFYCHANNEL_RESPONSE	= 24,
509	CHANNELMSG_COUNT
510};
511
512/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
513#define INVALID_RELID	U32_MAX
514
515struct vmbus_channel_message_header {
516	enum vmbus_channel_message_type msgtype;
517	u32 padding;
518} __packed;
519
520/* Query VMBus Version parameters */
521struct vmbus_channel_query_vmbus_version {
522	struct vmbus_channel_message_header header;
523	u32 version;
524} __packed;
525
526/* VMBus Version Supported parameters */
527struct vmbus_channel_version_supported {
528	struct vmbus_channel_message_header header;
529	u8 version_supported;
530} __packed;
531
532/* Offer Channel parameters */
533struct vmbus_channel_offer_channel {
534	struct vmbus_channel_message_header header;
535	struct vmbus_channel_offer offer;
536	u32 child_relid;
537	u8 monitorid;
538	/*
539	 * win7 and beyond splits this field into a bit field.
540	 */
541	u8 monitor_allocated:1;
542	u8 reserved:7;
543	/*
544	 * These are new fields added in win7 and later.
545	 * Do not access these fields without checking the
546	 * negotiated protocol.
547	 *
548	 * If "is_dedicated_interrupt" is set, we must not set the
549	 * associated bit in the channel bitmap while sending the
550	 * interrupt to the host.
551	 *
552	 * connection_id is to be used in signaling the host.
553	 */
554	u16 is_dedicated_interrupt:1;
555	u16 reserved1:15;
556	u32 connection_id;
557} __packed;
558
559/* Rescind Offer parameters */
560struct vmbus_channel_rescind_offer {
561	struct vmbus_channel_message_header header;
562	u32 child_relid;
563} __packed;
564
565/*
566 * Request Offer -- no parameters, SynIC message contains the partition ID
567 * Set Snoop -- no parameters, SynIC message contains the partition ID
568 * Clear Snoop -- no parameters, SynIC message contains the partition ID
569 * All Offers Delivered -- no parameters, SynIC message contains the partition
570 *		           ID
571 * Flush Client -- no parameters, SynIC message contains the partition ID
572 */
573
574/* Open Channel parameters */
575struct vmbus_channel_open_channel {
576	struct vmbus_channel_message_header header;
577
578	/* Identifies the specific VMBus channel that is being opened. */
579	u32 child_relid;
580
581	/* ID making a particular open request at a channel offer unique. */
582	u32 openid;
583
584	/* GPADL for the channel's ring buffer. */
585	u32 ringbuffer_gpadlhandle;
586
587	/*
588	 * Starting with win8, this field will be used to specify
589	 * the target virtual processor on which to deliver the interrupt for
590	 * the host to guest communication.
591	 * Prior to win8, incoming channel interrupts would only
592	 * be delivered on cpu 0. Setting this value to 0 would
593	 * preserve the earlier behavior.
594	 */
595	u32 target_vp;
596
597	/*
598	 * The upstream ring buffer begins at offset zero in the memory
599	 * described by RingBufferGpadlHandle. The downstream ring buffer
600	 * follows it at this offset (in pages).
601	 */
602	u32 downstream_ringbuffer_pageoffset;
603
604	/* User-specific data to be passed along to the server endpoint. */
605	unsigned char userdata[MAX_USER_DEFINED_BYTES];
606} __packed;
607
608/* Open Channel Result parameters */
609struct vmbus_channel_open_result {
610	struct vmbus_channel_message_header header;
611	u32 child_relid;
612	u32 openid;
613	u32 status;
614} __packed;
615
616/* Modify Channel Result parameters */
617struct vmbus_channel_modifychannel_response {
618	struct vmbus_channel_message_header header;
619	u32 child_relid;
620	u32 status;
621} __packed;
622
623/* Close channel parameters; */
624struct vmbus_channel_close_channel {
625	struct vmbus_channel_message_header header;
626	u32 child_relid;
627} __packed;
628
629/* Channel Message GPADL */
630#define GPADL_TYPE_RING_BUFFER		1
631#define GPADL_TYPE_SERVER_SAVE_AREA	2
632#define GPADL_TYPE_TRANSACTION		8
633
634/*
635 * The number of PFNs in a GPADL message is defined by the number of
636 * pages that would be spanned by ByteCount and ByteOffset.  If the
637 * implied number of PFNs won't fit in this packet, there will be a
638 * follow-up packet that contains more.
639 */
640struct vmbus_channel_gpadl_header {
641	struct vmbus_channel_message_header header;
642	u32 child_relid;
643	u32 gpadl;
644	u16 range_buflen;
645	u16 rangecount;
646	struct gpa_range range[];
647} __packed;
648
649/* This is the followup packet that contains more PFNs. */
650struct vmbus_channel_gpadl_body {
651	struct vmbus_channel_message_header header;
652	u32 msgnumber;
653	u32 gpadl;
654	u64 pfn[];
655} __packed;
656
657struct vmbus_channel_gpadl_created {
658	struct vmbus_channel_message_header header;
659	u32 child_relid;
660	u32 gpadl;
661	u32 creation_status;
662} __packed;
663
664struct vmbus_channel_gpadl_teardown {
665	struct vmbus_channel_message_header header;
666	u32 child_relid;
667	u32 gpadl;
668} __packed;
669
670struct vmbus_channel_gpadl_torndown {
671	struct vmbus_channel_message_header header;
672	u32 gpadl;
673} __packed;
674
675struct vmbus_channel_relid_released {
676	struct vmbus_channel_message_header header;
677	u32 child_relid;
678} __packed;
679
680struct vmbus_channel_initiate_contact {
681	struct vmbus_channel_message_header header;
682	u32 vmbus_version_requested;
683	u32 target_vcpu; /* The VCPU the host should respond to */
684	union {
685		u64 interrupt_page;
686		struct {
687			u8	msg_sint;
688			u8	msg_vtl;
689			u8	reserved[6];
690		};
691	};
692	u64 monitor_page1;
693	u64 monitor_page2;
694} __packed;
695
696/* Hyper-V socket: guest's connect()-ing to host */
697struct vmbus_channel_tl_connect_request {
698	struct vmbus_channel_message_header header;
699	guid_t guest_endpoint_id;
700	guid_t host_service_id;
701} __packed;
702
703/* Modify Channel parameters, cf. vmbus_send_modifychannel() */
704struct vmbus_channel_modifychannel {
705	struct vmbus_channel_message_header header;
706	u32 child_relid;
707	u32 target_vp;
708} __packed;
709
710struct vmbus_channel_version_response {
711	struct vmbus_channel_message_header header;
712	u8 version_supported;
713
714	u8 connection_state;
715	u16 padding;
716
717	/*
718	 * On new hosts that support VMBus protocol 5.0, we must use
719	 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
720	 * and for subsequent messages, we must use the Message Connection ID
721	 * field in the host-returned Version Response Message.
722	 *
723	 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
724	 */
725	u32 msg_conn_id;
726} __packed;
727
728enum vmbus_channel_state {
729	CHANNEL_OFFER_STATE,
730	CHANNEL_OPENING_STATE,
731	CHANNEL_OPEN_STATE,
732	CHANNEL_OPENED_STATE,
733};
734
735/*
736 * Represents each channel msg on the vmbus connection This is a
737 * variable-size data structure depending on the msg type itself
738 */
739struct vmbus_channel_msginfo {
740	/* Bookkeeping stuff */
741	struct list_head msglistentry;
742
743	/* So far, this is only used to handle gpadl body message */
744	struct list_head submsglist;
745
746	/* Synchronize the request/response if needed */
747	struct completion  waitevent;
748	struct vmbus_channel *waiting_channel;
749	union {
750		struct vmbus_channel_version_supported version_supported;
751		struct vmbus_channel_open_result open_result;
752		struct vmbus_channel_gpadl_torndown gpadl_torndown;
753		struct vmbus_channel_gpadl_created gpadl_created;
754		struct vmbus_channel_version_response version_response;
755		struct vmbus_channel_modifychannel_response modify_response;
756	} response;
757
758	u32 msgsize;
759	/*
760	 * The channel message that goes out on the "wire".
761	 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
762	 */
763	unsigned char msg[];
764};
765
766struct vmbus_close_msg {
767	struct vmbus_channel_msginfo info;
768	struct vmbus_channel_close_channel msg;
769};
770
771/* Define connection identifier type. */
772union hv_connection_id {
773	u32 asu32;
774	struct {
775		u32 id:24;
776		u32 reserved:8;
777	} u;
778};
779
780enum vmbus_device_type {
781	HV_IDE = 0,
782	HV_SCSI,
783	HV_FC,
784	HV_NIC,
785	HV_ND,
786	HV_PCIE,
787	HV_FB,
788	HV_KBD,
789	HV_MOUSE,
790	HV_KVP,
791	HV_TS,
792	HV_HB,
793	HV_SHUTDOWN,
794	HV_FCOPY,
795	HV_BACKUP,
796	HV_DM,
797	HV_UNKNOWN,
798};
799
800/*
801 * Provides request ids for VMBus. Encapsulates guest memory
802 * addresses and stores the next available slot in req_arr
803 * to generate new ids in constant time.
804 */
805struct vmbus_requestor {
806	u64 *req_arr;
807	unsigned long *req_bitmap; /* is a given slot available? */
808	u32 size;
809	u64 next_request_id;
810	spinlock_t req_lock; /* provides atomicity */
811};
812
813#define VMBUS_NO_RQSTOR U64_MAX
814#define VMBUS_RQST_ERROR (U64_MAX - 1)
815#define VMBUS_RQST_ADDR_ANY U64_MAX
816/* NetVSC-specific */
817#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
818/* StorVSC-specific */
819#define VMBUS_RQST_INIT (U64_MAX - 2)
820#define VMBUS_RQST_RESET (U64_MAX - 3)
821
822struct vmbus_device {
823	u16  dev_type;
824	guid_t guid;
825	bool perf_device;
826	bool allowed_in_isolated;
827};
828
829#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
830
831struct vmbus_gpadl {
832	u32 gpadl_handle;
833	u32 size;
834	void *buffer;
835	bool decrypted;
836};
837
838struct vmbus_channel {
839	struct list_head listentry;
840
841	struct hv_device *device_obj;
842
843	enum vmbus_channel_state state;
844
845	struct vmbus_channel_offer_channel offermsg;
846	/*
847	 * These are based on the OfferMsg.MonitorId.
848	 * Save it here for easy access.
849	 */
850	u8 monitor_grp;
851	u8 monitor_bit;
852
853	bool rescind; /* got rescind msg */
854	bool rescind_ref; /* got rescind msg, got channel reference */
855	struct completion rescind_event;
856
857	struct vmbus_gpadl ringbuffer_gpadlhandle;
858
859	/* Allocated memory for ring buffer */
860	struct page *ringbuffer_page;
861	u32 ringbuffer_pagecount;
862	u32 ringbuffer_send_offset;
863	struct hv_ring_buffer_info outbound;	/* send to parent */
864	struct hv_ring_buffer_info inbound;	/* receive from parent */
865
866	struct vmbus_close_msg close_msg;
867
868	/* Statistics */
869	u64	interrupts;	/* Host to Guest interrupts */
870	u64	sig_events;	/* Guest to Host events */
871
872	/*
873	 * Guest to host interrupts caused by the outbound ring buffer changing
874	 * from empty to not empty.
875	 */
876	u64 intr_out_empty;
877
878	/*
879	 * Indicates that a full outbound ring buffer was encountered. The flag
880	 * is set to true when a full outbound ring buffer is encountered and
881	 * set to false when a write to the outbound ring buffer is completed.
882	 */
883	bool out_full_flag;
884
885	/* Channel callback's invoked in softirq context */
886	struct tasklet_struct callback_event;
887	void (*onchannel_callback)(void *context);
888	void *channel_callback_context;
889
890	void (*change_target_cpu_callback)(struct vmbus_channel *channel,
891			u32 old, u32 new);
892
893	/*
894	 * Synchronize channel scheduling and channel removal; see the inline
895	 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
896	 */
897	spinlock_t sched_lock;
898
899	/*
900	 * A channel can be marked for one of three modes of reading:
901	 *   BATCHED - callback called from taslket and should read
902	 *            channel until empty. Interrupts from the host
903	 *            are masked while read is in process (default).
904	 *   DIRECT - callback called from tasklet (softirq).
905	 *   ISR - callback called in interrupt context and must
906	 *         invoke its own deferred processing.
907	 *         Host interrupts are disabled and must be re-enabled
908	 *         when ring is empty.
909	 */
910	enum hv_callback_mode {
911		HV_CALL_BATCHED,
912		HV_CALL_DIRECT,
913		HV_CALL_ISR
914	} callback_mode;
915
916	bool is_dedicated_interrupt;
917	u64 sig_event;
918
919	/*
920	 * Starting with win8, this field will be used to specify the
921	 * target CPU on which to deliver the interrupt for the host
922	 * to guest communication.
923	 *
924	 * Prior to win8, incoming channel interrupts would only be
925	 * delivered on CPU 0. Setting this value to 0 would preserve
926	 * the earlier behavior.
927	 */
928	u32 target_cpu;
929	/*
930	 * Support for sub-channels. For high performance devices,
931	 * it will be useful to have multiple sub-channels to support
932	 * a scalable communication infrastructure with the host.
933	 * The support for sub-channels is implemented as an extension
934	 * to the current infrastructure.
935	 * The initial offer is considered the primary channel and this
936	 * offer message will indicate if the host supports sub-channels.
937	 * The guest is free to ask for sub-channels to be offered and can
938	 * open these sub-channels as a normal "primary" channel. However,
939	 * all sub-channels will have the same type and instance guids as the
940	 * primary channel. Requests sent on a given channel will result in a
941	 * response on the same channel.
942	 */
943
944	/*
945	 * Sub-channel creation callback. This callback will be called in
946	 * process context when a sub-channel offer is received from the host.
947	 * The guest can open the sub-channel in the context of this callback.
948	 */
949	void (*sc_creation_callback)(struct vmbus_channel *new_sc);
950
951	/*
952	 * Channel rescind callback. Some channels (the hvsock ones), need to
953	 * register a callback which is invoked in vmbus_onoffer_rescind().
954	 */
955	void (*chn_rescind_callback)(struct vmbus_channel *channel);
956
957	/*
958	 * All Sub-channels of a primary channel are linked here.
959	 */
960	struct list_head sc_list;
961	/*
962	 * The primary channel this sub-channel belongs to.
963	 * This will be NULL for the primary channel.
964	 */
965	struct vmbus_channel *primary_channel;
966	/*
967	 * Support per-channel state for use by vmbus drivers.
968	 */
969	void *per_channel_state;
970
971	/*
972	 * Defer freeing channel until after all cpu's have
973	 * gone through grace period.
974	 */
975	struct rcu_head rcu;
976
977	/*
978	 * For sysfs per-channel properties.
979	 */
980	struct kobject			kobj;
981
982	/*
983	 * For performance critical channels (storage, networking
984	 * etc,), Hyper-V has a mechanism to enhance the throughput
985	 * at the expense of latency:
986	 * When the host is to be signaled, we just set a bit in a shared page
987	 * and this bit will be inspected by the hypervisor within a certain
988	 * window and if the bit is set, the host will be signaled. The window
989	 * of time is the monitor latency - currently around 100 usecs. This
990	 * mechanism improves throughput by:
991	 *
992	 * A) Making the host more efficient - each time it wakes up,
993	 *    potentially it will process more number of packets. The
994	 *    monitor latency allows a batch to build up.
995	 * B) By deferring the hypercall to signal, we will also minimize
996	 *    the interrupts.
997	 *
998	 * Clearly, these optimizations improve throughput at the expense of
999	 * latency. Furthermore, since the channel is shared for both
1000	 * control and data messages, control messages currently suffer
1001	 * unnecessary latency adversely impacting performance and boot
1002	 * time. To fix this issue, permit tagging the channel as being
1003	 * in "low latency" mode. In this mode, we will bypass the monitor
1004	 * mechanism.
1005	 */
1006	bool low_latency;
1007
1008	bool probe_done;
1009
1010	/*
1011	 * Cache the device ID here for easy access; this is useful, in
1012	 * particular, in situations where the channel's device_obj has
1013	 * not been allocated/initialized yet.
1014	 */
1015	u16 device_id;
1016
1017	/*
1018	 * We must offload the handling of the primary/sub channels
1019	 * from the single-threaded vmbus_connection.work_queue to
1020	 * two different workqueue, otherwise we can block
1021	 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
1022	 */
1023	struct work_struct add_channel_work;
1024
1025	/*
1026	 * Guest to host interrupts caused by the inbound ring buffer changing
1027	 * from full to not full while a packet is waiting.
1028	 */
1029	u64 intr_in_full;
1030
1031	/*
1032	 * The total number of write operations that encountered a full
1033	 * outbound ring buffer.
1034	 */
1035	u64 out_full_total;
1036
1037	/*
1038	 * The number of write operations that were the first to encounter a
1039	 * full outbound ring buffer.
1040	 */
1041	u64 out_full_first;
1042
1043	/* enabling/disabling fuzz testing on the channel (default is false)*/
1044	bool fuzz_testing_state;
1045
1046	/*
1047	 * Interrupt delay will delay the guest from emptying the ring buffer
1048	 * for a specific amount of time. The delay is in microseconds and will
1049	 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1050	 * The  Message delay will delay guest reading on a per message basis
1051	 * in microseconds between 1 to 1000 with the default being 0
1052	 * (no delay).
1053	 */
1054	u32 fuzz_testing_interrupt_delay;
1055	u32 fuzz_testing_message_delay;
1056
1057	/* callback to generate a request ID from a request address */
1058	u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1059	/* callback to retrieve a request address from a request ID */
1060	u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1061
1062	/* request/transaction ids for VMBus */
1063	struct vmbus_requestor requestor;
1064	u32 rqstor_size;
1065
1066	/* The max size of a packet on this channel */
1067	u32 max_pkt_size;
1068};
1069
1070#define lock_requestor(channel, flags)					\
1071do {									\
1072	struct vmbus_requestor *rqstor = &(channel)->requestor;		\
1073									\
1074	spin_lock_irqsave(&rqstor->req_lock, flags);			\
1075} while (0)
1076
1077static __always_inline void unlock_requestor(struct vmbus_channel *channel,
1078					     unsigned long flags)
1079{
1080	struct vmbus_requestor *rqstor = &channel->requestor;
1081
1082	spin_unlock_irqrestore(&rqstor->req_lock, flags);
1083}
1084
1085u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1086u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1087			       u64 rqst_addr);
1088u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1089			     u64 rqst_addr);
1090u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1091
1092static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o)
1093{
1094	return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1095}
1096
1097static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1098{
1099	return is_hvsock_offer(&c->offermsg);
1100}
1101
1102static inline bool is_sub_channel(const struct vmbus_channel *c)
1103{
1104	return c->offermsg.offer.sub_channel_index != 0;
1105}
1106
1107static inline void set_channel_read_mode(struct vmbus_channel *c,
1108					enum hv_callback_mode mode)
1109{
1110	c->callback_mode = mode;
1111}
1112
1113static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1114{
1115	c->per_channel_state = s;
1116}
1117
1118static inline void *get_per_channel_state(struct vmbus_channel *c)
1119{
1120	return c->per_channel_state;
1121}
1122
1123static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1124						 u32 size)
1125{
1126	unsigned long flags;
1127
1128	if (size) {
1129		spin_lock_irqsave(&c->outbound.ring_lock, flags);
1130		++c->out_full_total;
1131
1132		if (!c->out_full_flag) {
1133			++c->out_full_first;
1134			c->out_full_flag = true;
1135		}
1136		spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
1137	} else {
1138		c->out_full_flag = false;
1139	}
1140
1141	c->outbound.ring_buffer->pending_send_sz = size;
1142}
1143
1144void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1145
1146int vmbus_request_offers(void);
1147
1148/*
1149 * APIs for managing sub-channels.
1150 */
1151
1152void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1153			void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1154
1155void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1156		void (*chn_rescind_cb)(struct vmbus_channel *));
1157
1158/* The format must be the same as struct vmdata_gpa_direct */
1159struct vmbus_channel_packet_page_buffer {
1160	u16 type;
1161	u16 dataoffset8;
1162	u16 length8;
1163	u16 flags;
1164	u64 transactionid;
1165	u32 reserved;
1166	u32 rangecount;
1167	struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1168} __packed;
1169
1170/* The format must be the same as struct vmdata_gpa_direct */
1171struct vmbus_channel_packet_multipage_buffer {
1172	u16 type;
1173	u16 dataoffset8;
1174	u16 length8;
1175	u16 flags;
1176	u64 transactionid;
1177	u32 reserved;
1178	u32 rangecount;		/* Always 1 in this case */
1179	struct hv_multipage_buffer range;
1180} __packed;
1181
1182/* The format must be the same as struct vmdata_gpa_direct */
1183struct vmbus_packet_mpb_array {
1184	u16 type;
1185	u16 dataoffset8;
1186	u16 length8;
1187	u16 flags;
1188	u64 transactionid;
1189	u32 reserved;
1190	u32 rangecount;         /* Always 1 in this case */
1191	struct hv_mpb_array range;
1192} __packed;
1193
1194int vmbus_alloc_ring(struct vmbus_channel *channel,
1195		     u32 send_size, u32 recv_size);
1196void vmbus_free_ring(struct vmbus_channel *channel);
1197
1198int vmbus_connect_ring(struct vmbus_channel *channel,
1199		       void (*onchannel_callback)(void *context),
1200		       void *context);
1201int vmbus_disconnect_ring(struct vmbus_channel *channel);
1202
1203extern int vmbus_open(struct vmbus_channel *channel,
1204			    u32 send_ringbuffersize,
1205			    u32 recv_ringbuffersize,
1206			    void *userdata,
1207			    u32 userdatalen,
1208			    void (*onchannel_callback)(void *context),
1209			    void *context);
1210
1211extern void vmbus_close(struct vmbus_channel *channel);
1212
1213extern int vmbus_sendpacket_getid(struct vmbus_channel *channel,
1214				  void *buffer,
1215				  u32 bufferLen,
1216				  u64 requestid,
1217				  u64 *trans_id,
1218				  enum vmbus_packet_type type,
1219				  u32 flags);
1220extern int vmbus_sendpacket(struct vmbus_channel *channel,
1221				  void *buffer,
1222				  u32 bufferLen,
1223				  u64 requestid,
1224				  enum vmbus_packet_type type,
1225				  u32 flags);
1226
1227extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1228					    struct hv_page_buffer pagebuffers[],
1229					    u32 pagecount,
1230					    void *buffer,
1231					    u32 bufferlen,
1232					    u64 requestid);
1233
1234extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1235				     struct vmbus_packet_mpb_array *mpb,
1236				     u32 desc_size,
1237				     void *buffer,
1238				     u32 bufferlen,
1239				     u64 requestid);
1240
1241extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1242				      void *kbuffer,
1243				      u32 size,
1244				      struct vmbus_gpadl *gpadl);
1245
1246extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1247				     struct vmbus_gpadl *gpadl);
1248
1249void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1250
1251extern int vmbus_recvpacket(struct vmbus_channel *channel,
1252				  void *buffer,
1253				  u32 bufferlen,
1254				  u32 *buffer_actual_len,
1255				  u64 *requestid);
1256
1257extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1258				     void *buffer,
1259				     u32 bufferlen,
1260				     u32 *buffer_actual_len,
1261				     u64 *requestid);
1262
1263/* Base driver object */
1264struct hv_driver {
1265	const char *name;
1266
1267	/*
1268	 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1269	 * channel flag, actually doesn't mean a synthetic device because the
1270	 * offer's if_type/if_instance can change for every new hvsock
1271	 * connection.
1272	 *
1273	 * However, to facilitate the notification of new-offer/rescind-offer
1274	 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1275	 * a special vmbus device, and hence we need the below flag to
1276	 * indicate if the driver is the hvsock driver or not: we need to
1277	 * specially treat the hvosck offer & driver in vmbus_match().
1278	 */
1279	bool hvsock;
1280
1281	/* the device type supported by this driver */
1282	guid_t dev_type;
1283	const struct hv_vmbus_device_id *id_table;
1284
1285	struct device_driver driver;
1286
1287	/* dynamic device GUID's */
1288	struct  {
1289		spinlock_t lock;
1290		struct list_head list;
1291	} dynids;
1292
1293	int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1294	void (*remove)(struct hv_device *dev);
1295	void (*shutdown)(struct hv_device *);
1296
1297	int (*suspend)(struct hv_device *);
1298	int (*resume)(struct hv_device *);
1299
1300};
1301
1302/* Base device object */
1303struct hv_device {
1304	/* the device type id of this device */
1305	guid_t dev_type;
1306
1307	/* the device instance id of this device */
1308	guid_t dev_instance;
1309	u16 vendor_id;
1310	u16 device_id;
1311
1312	struct device device;
1313	/*
1314	 * Driver name to force a match.  Do not set directly, because core
1315	 * frees it.  Use driver_set_override() to set or clear it.
1316	 */
1317	const char *driver_override;
1318
1319	struct vmbus_channel *channel;
1320	struct kset	     *channels_kset;
1321	struct device_dma_parameters dma_parms;
1322	u64 dma_mask;
1323
1324	/* place holder to keep track of the dir for hv device in debugfs */
1325	struct dentry *debug_dir;
1326
1327};
1328
1329
1330#define device_to_hv_device(d)	container_of_const(d, struct hv_device, device)
1331
1332static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1333{
1334	return container_of(d, struct hv_driver, driver);
1335}
1336
1337static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1338{
1339	dev_set_drvdata(&dev->device, data);
1340}
1341
1342static inline void *hv_get_drvdata(struct hv_device *dev)
1343{
1344	return dev_get_drvdata(&dev->device);
1345}
1346
1347struct hv_ring_buffer_debug_info {
1348	u32 current_interrupt_mask;
1349	u32 current_read_index;
1350	u32 current_write_index;
1351	u32 bytes_avail_toread;
1352	u32 bytes_avail_towrite;
1353};
1354
1355
1356int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1357				struct hv_ring_buffer_debug_info *debug_info);
1358
1359bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel);
1360
1361/* Vmbus interface */
1362#define vmbus_driver_register(driver)	\
1363	__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1364int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1365					 struct module *owner,
1366					 const char *mod_name);
1367void vmbus_driver_unregister(struct hv_driver *hv_driver);
1368
1369void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1370
1371int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1372			resource_size_t min, resource_size_t max,
1373			resource_size_t size, resource_size_t align,
1374			bool fb_overlap_ok);
1375void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1376
1377/*
1378 * GUID definitions of various offer types - services offered to the guest.
1379 */
1380
1381/*
1382 * Network GUID
1383 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1384 */
1385#define HV_NIC_GUID \
1386	.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1387			  0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1388
1389/*
1390 * IDE GUID
1391 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1392 */
1393#define HV_IDE_GUID \
1394	.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1395			  0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1396
1397/*
1398 * SCSI GUID
1399 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1400 */
1401#define HV_SCSI_GUID \
1402	.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1403			  0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1404
1405/*
1406 * Shutdown GUID
1407 * {0e0b6031-5213-4934-818b-38d90ced39db}
1408 */
1409#define HV_SHUTDOWN_GUID \
1410	.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1411			  0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1412
1413/*
1414 * Time Synch GUID
1415 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1416 */
1417#define HV_TS_GUID \
1418	.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1419			  0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1420
1421/*
1422 * Heartbeat GUID
1423 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1424 */
1425#define HV_HEART_BEAT_GUID \
1426	.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1427			  0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1428
1429/*
1430 * KVP GUID
1431 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1432 */
1433#define HV_KVP_GUID \
1434	.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1435			  0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1436
1437/*
1438 * Dynamic memory GUID
1439 * {525074dc-8985-46e2-8057-a307dc18a502}
1440 */
1441#define HV_DM_GUID \
1442	.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1443			  0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1444
1445/*
1446 * Mouse GUID
1447 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1448 */
1449#define HV_MOUSE_GUID \
1450	.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1451			  0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1452
1453/*
1454 * Keyboard GUID
1455 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1456 */
1457#define HV_KBD_GUID \
1458	.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1459			  0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1460
1461/*
1462 * VSS (Backup/Restore) GUID
1463 */
1464#define HV_VSS_GUID \
1465	.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1466			  0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1467/*
1468 * Synthetic Video GUID
1469 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1470 */
1471#define HV_SYNTHVID_GUID \
1472	.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1473			  0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1474
1475/*
1476 * Synthetic FC GUID
1477 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1478 */
1479#define HV_SYNTHFC_GUID \
1480	.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1481			  0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1482
1483/*
1484 * Guest File Copy Service
1485 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1486 */
1487
1488#define HV_FCOPY_GUID \
1489	.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1490			  0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1491
1492/*
1493 * NetworkDirect. This is the guest RDMA service.
1494 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1495 */
1496#define HV_ND_GUID \
1497	.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1498			  0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1499
1500/*
1501 * PCI Express Pass Through
1502 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1503 */
1504
1505#define HV_PCIE_GUID \
1506	.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1507			  0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1508
1509/*
1510 * Linux doesn't support these 4 devices: the first two are for
1511 * Automatic Virtual Machine Activation, the third is for
1512 * Remote Desktop Virtualization, and the fourth is Initial
1513 * Machine Configuration (IMC) used only by Windows guests.
1514 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1515 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1516 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1517 * {c376c1c3-d276-48d2-90a9-c04748072c60}
1518 */
1519
1520#define HV_AVMA1_GUID \
1521	.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1522			  0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1523
1524#define HV_AVMA2_GUID \
1525	.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1526			  0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1527
1528#define HV_RDV_GUID \
1529	.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1530			  0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1531
1532#define HV_IMC_GUID \
1533	.guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \
1534			  0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60)
1535
1536/*
1537 * Common header for Hyper-V ICs
1538 */
1539
1540#define ICMSGTYPE_NEGOTIATE		0
1541#define ICMSGTYPE_HEARTBEAT		1
1542#define ICMSGTYPE_KVPEXCHANGE		2
1543#define ICMSGTYPE_SHUTDOWN		3
1544#define ICMSGTYPE_TIMESYNC		4
1545#define ICMSGTYPE_VSS			5
1546#define ICMSGTYPE_FCOPY			7
1547
1548#define ICMSGHDRFLAG_TRANSACTION	1
1549#define ICMSGHDRFLAG_REQUEST		2
1550#define ICMSGHDRFLAG_RESPONSE		4
1551
1552
1553/*
1554 * While we want to handle util services as regular devices,
1555 * there is only one instance of each of these services; so
1556 * we statically allocate the service specific state.
1557 */
1558
1559struct hv_util_service {
1560	u8 *recv_buffer;
1561	void *channel;
1562	void (*util_cb)(void *);
1563	int (*util_init)(struct hv_util_service *);
1564	void (*util_deinit)(void);
1565	int (*util_pre_suspend)(void);
1566	int (*util_pre_resume)(void);
1567};
1568
1569struct vmbuspipe_hdr {
1570	u32 flags;
1571	u32 msgsize;
1572} __packed;
1573
1574struct ic_version {
1575	u16 major;
1576	u16 minor;
1577} __packed;
1578
1579struct icmsg_hdr {
1580	struct ic_version icverframe;
1581	u16 icmsgtype;
1582	struct ic_version icvermsg;
1583	u16 icmsgsize;
1584	u32 status;
1585	u8 ictransaction_id;
1586	u8 icflags;
1587	u8 reserved[2];
1588} __packed;
1589
1590#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1591#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1592#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1593	(ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1594	 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1595
1596struct icmsg_negotiate {
1597	u16 icframe_vercnt;
1598	u16 icmsg_vercnt;
1599	u32 reserved;
1600	struct ic_version icversion_data[]; /* any size array */
1601} __packed;
1602
1603struct shutdown_msg_data {
1604	u32 reason_code;
1605	u32 timeout_seconds;
1606	u32 flags;
1607	u8  display_message[2048];
1608} __packed;
1609
1610struct heartbeat_msg_data {
1611	u64 seq_num;
1612	u32 reserved[8];
1613} __packed;
1614
1615/* Time Sync IC defs */
1616#define ICTIMESYNCFLAG_PROBE	0
1617#define ICTIMESYNCFLAG_SYNC	1
1618#define ICTIMESYNCFLAG_SAMPLE	2
1619
1620#ifdef __x86_64__
1621#define WLTIMEDELTA	116444736000000000L	/* in 100ns unit */
1622#else
1623#define WLTIMEDELTA	116444736000000000LL
1624#endif
1625
1626struct ictimesync_data {
1627	u64 parenttime;
1628	u64 childtime;
1629	u64 roundtriptime;
1630	u8 flags;
1631} __packed;
1632
1633struct ictimesync_ref_data {
1634	u64 parenttime;
1635	u64 vmreferencetime;
1636	u8 flags;
1637	char leapflags;
1638	char stratum;
1639	u8 reserved[3];
1640} __packed;
1641
1642struct hyperv_service_callback {
1643	u8 msg_type;
1644	char *log_msg;
1645	guid_t data;
1646	struct vmbus_channel *channel;
1647	void (*callback)(void *context);
1648};
1649
1650struct hv_dma_range {
1651	dma_addr_t dma;
1652	u32 mapping_size;
1653};
1654
1655#define MAX_SRV_VER	0x7ffffff
1656extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1657				const int *fw_version, int fw_vercnt,
1658				const int *srv_version, int srv_vercnt,
1659				int *nego_fw_version, int *nego_srv_version);
1660
1661void hv_process_channel_removal(struct vmbus_channel *channel);
1662
1663void vmbus_setevent(struct vmbus_channel *channel);
1664/*
1665 * Negotiated version with the Host.
1666 */
1667
1668extern __u32 vmbus_proto_version;
1669
1670int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1671				  const guid_t *shv_host_servie_id);
1672int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1673void vmbus_set_event(struct vmbus_channel *channel);
1674
1675/* Get the start of the ring buffer. */
1676static inline void *
1677hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1678{
1679	return ring_info->ring_buffer->buffer;
1680}
1681
1682/*
1683 * Mask off host interrupt callback notifications
1684 */
1685static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1686{
1687	rbi->ring_buffer->interrupt_mask = 1;
1688
1689	/* make sure mask update is not reordered */
1690	virt_mb();
1691}
1692
1693/*
1694 * Re-enable host callback and return number of outstanding bytes
1695 */
1696static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1697{
1698
1699	rbi->ring_buffer->interrupt_mask = 0;
1700
1701	/* make sure mask update is not reordered */
1702	virt_mb();
1703
1704	/*
1705	 * Now check to see if the ring buffer is still empty.
1706	 * If it is not, we raced and we need to process new
1707	 * incoming messages.
1708	 */
1709	return hv_get_bytes_to_read(rbi);
1710}
1711
1712/*
1713 * An API to support in-place processing of incoming VMBUS packets.
1714 */
1715
1716/* Get data payload associated with descriptor */
1717static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1718{
1719	return (void *)((unsigned long)desc + (desc->offset8 << 3));
1720}
1721
1722/* Get data size associated with descriptor */
1723static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1724{
1725	return (desc->len8 << 3) - (desc->offset8 << 3);
1726}
1727
1728/* Get packet length associated with descriptor */
1729static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc)
1730{
1731	return desc->len8 << 3;
1732}
1733
1734struct vmpacket_descriptor *
1735hv_pkt_iter_first(struct vmbus_channel *channel);
1736
1737struct vmpacket_descriptor *
1738__hv_pkt_iter_next(struct vmbus_channel *channel,
1739		   const struct vmpacket_descriptor *pkt);
1740
1741void hv_pkt_iter_close(struct vmbus_channel *channel);
1742
1743static inline struct vmpacket_descriptor *
1744hv_pkt_iter_next(struct vmbus_channel *channel,
1745		 const struct vmpacket_descriptor *pkt)
1746{
1747	struct vmpacket_descriptor *nxt;
1748
1749	nxt = __hv_pkt_iter_next(channel, pkt);
1750	if (!nxt)
1751		hv_pkt_iter_close(channel);
1752
1753	return nxt;
1754}
1755
1756#define foreach_vmbus_pkt(pkt, channel) \
1757	for (pkt = hv_pkt_iter_first(channel); pkt; \
1758	    pkt = hv_pkt_iter_next(channel, pkt))
1759
1760/*
1761 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1762 * sends requests to read and write blocks. Each block must be 128 bytes or
1763 * smaller. Optionally, the VF driver can register a callback function which
1764 * will be invoked when the host says that one or more of the first 64 block
1765 * IDs is "invalid" which means that the VF driver should reread them.
1766 */
1767#define HV_CONFIG_BLOCK_SIZE_MAX 128
1768
1769int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1770			unsigned int block_id, unsigned int *bytes_returned);
1771int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1772			 unsigned int block_id);
1773int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1774				void (*block_invalidate)(void *context,
1775							 u64 block_mask));
1776
1777struct hyperv_pci_block_ops {
1778	int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1779			  unsigned int block_id, unsigned int *bytes_returned);
1780	int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1781			   unsigned int block_id);
1782	int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1783				  void (*block_invalidate)(void *context,
1784							   u64 block_mask));
1785};
1786
1787extern struct hyperv_pci_block_ops hvpci_block_ops;
1788
1789static inline unsigned long virt_to_hvpfn(void *addr)
1790{
1791	phys_addr_t paddr;
1792
1793	if (is_vmalloc_addr(addr))
1794		paddr = page_to_phys(vmalloc_to_page(addr)) +
1795				     offset_in_page(addr);
1796	else
1797		paddr = __pa(addr);
1798
1799	return  paddr >> HV_HYP_PAGE_SHIFT;
1800}
1801
1802#define NR_HV_HYP_PAGES_IN_PAGE	(PAGE_SIZE / HV_HYP_PAGE_SIZE)
1803#define offset_in_hvpage(ptr)	((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1804#define HVPFN_UP(x)	(((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1805#define HVPFN_DOWN(x)	((x) >> HV_HYP_PAGE_SHIFT)
1806#define page_to_hvpfn(page)	(page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1807
1808#endif /* _HYPERV_H */
1809