1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fscrypt.h: declarations for per-file encryption
4 *
5 * Filesystems that implement per-file encryption must include this header
6 * file.
7 *
8 * Copyright (C) 2015, Google, Inc.
9 *
10 * Written by Michael Halcrow, 2015.
11 * Modified by Jaegeuk Kim, 2015.
12 */
13#ifndef _LINUX_FSCRYPT_H
14#define _LINUX_FSCRYPT_H
15
16#include <linux/fs.h>
17#include <linux/mm.h>
18#include <linux/slab.h>
19#include <uapi/linux/fscrypt.h>
20
21/*
22 * The lengths of all file contents blocks must be divisible by this value.
23 * This is needed to ensure that all contents encryption modes will work, as
24 * some of the supported modes don't support arbitrarily byte-aligned messages.
25 *
26 * Since the needed alignment is 16 bytes, most filesystems will meet this
27 * requirement naturally, as typical block sizes are powers of 2.  However, if a
28 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
29 * compression), then it will need to pad to this alignment before encryption.
30 */
31#define FSCRYPT_CONTENTS_ALIGNMENT 16
32
33union fscrypt_policy;
34struct fscrypt_inode_info;
35struct fs_parameter;
36struct seq_file;
37
38struct fscrypt_str {
39	unsigned char *name;
40	u32 len;
41};
42
43struct fscrypt_name {
44	const struct qstr *usr_fname;
45	struct fscrypt_str disk_name;
46	u32 hash;
47	u32 minor_hash;
48	struct fscrypt_str crypto_buf;
49	bool is_nokey_name;
50};
51
52#define FSTR_INIT(n, l)		{ .name = n, .len = l }
53#define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
54#define fname_name(p)		((p)->disk_name.name)
55#define fname_len(p)		((p)->disk_name.len)
56
57/* Maximum value for the third parameter of fscrypt_operations.set_context(). */
58#define FSCRYPT_SET_CONTEXT_MAX_SIZE	40
59
60#ifdef CONFIG_FS_ENCRYPTION
61
62/* Crypto operations for filesystems */
63struct fscrypt_operations {
64
65	/*
66	 * If set, then fs/crypto/ will allocate a global bounce page pool the
67	 * first time an encryption key is set up for a file.  The bounce page
68	 * pool is required by the following functions:
69	 *
70	 * - fscrypt_encrypt_pagecache_blocks()
71	 * - fscrypt_zeroout_range() for files not using inline crypto
72	 *
73	 * If the filesystem doesn't use those, it doesn't need to set this.
74	 */
75	unsigned int needs_bounce_pages : 1;
76
77	/*
78	 * If set, then fs/crypto/ will allow the use of encryption settings
79	 * that assume inode numbers fit in 32 bits (i.e.
80	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
81	 * prerequisites for these settings are also met.  This is only useful
82	 * if the filesystem wants to support inline encryption hardware that is
83	 * limited to 32-bit or 64-bit data unit numbers and where programming
84	 * keyslots is very slow.
85	 */
86	unsigned int has_32bit_inodes : 1;
87
88	/*
89	 * If set, then fs/crypto/ will allow users to select a crypto data unit
90	 * size that is less than the filesystem block size.  This is done via
91	 * the log2_data_unit_size field of the fscrypt policy.  This flag is
92	 * not compatible with filesystems that encrypt variable-length blocks
93	 * (i.e. blocks that aren't all equal to filesystem's block size), for
94	 * example as a result of compression.  It's also not compatible with
95	 * the fscrypt_encrypt_block_inplace() and
96	 * fscrypt_decrypt_block_inplace() functions.
97	 */
98	unsigned int supports_subblock_data_units : 1;
99
100	/*
101	 * This field exists only for backwards compatibility reasons and should
102	 * only be set by the filesystems that are setting it already.  It
103	 * contains the filesystem-specific key description prefix that is
104	 * accepted for "logon" keys for v1 fscrypt policies.  This
105	 * functionality is deprecated in favor of the generic prefix
106	 * "fscrypt:", which itself is deprecated in favor of the filesystem
107	 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY.  Filesystems that
108	 * are newly adding fscrypt support should not set this field.
109	 */
110	const char *legacy_key_prefix;
111
112	/*
113	 * Get the fscrypt context of the given inode.
114	 *
115	 * @inode: the inode whose context to get
116	 * @ctx: the buffer into which to get the context
117	 * @len: length of the @ctx buffer in bytes
118	 *
119	 * Return: On success, returns the length of the context in bytes; this
120	 *	   may be less than @len.  On failure, returns -ENODATA if the
121	 *	   inode doesn't have a context, -ERANGE if the context is
122	 *	   longer than @len, or another -errno code.
123	 */
124	int (*get_context)(struct inode *inode, void *ctx, size_t len);
125
126	/*
127	 * Set an fscrypt context on the given inode.
128	 *
129	 * @inode: the inode whose context to set.  The inode won't already have
130	 *	   an fscrypt context.
131	 * @ctx: the context to set
132	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
133	 * @fs_data: If called from fscrypt_set_context(), this will be the
134	 *	     value the filesystem passed to fscrypt_set_context().
135	 *	     Otherwise (i.e. when called from
136	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
137	 *
138	 * i_rwsem will be held for write.
139	 *
140	 * Return: 0 on success, -errno on failure.
141	 */
142	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
143			   void *fs_data);
144
145	/*
146	 * Get the dummy fscrypt policy in use on the filesystem (if any).
147	 *
148	 * Filesystems only need to implement this function if they support the
149	 * test_dummy_encryption mount option.
150	 *
151	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
152	 *	   mounted with test_dummy_encryption; otherwise NULL.
153	 */
154	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
155
156	/*
157	 * Check whether a directory is empty.  i_rwsem will be held for write.
158	 */
159	bool (*empty_dir)(struct inode *inode);
160
161	/*
162	 * Check whether the filesystem's inode numbers and UUID are stable,
163	 * meaning that they will never be changed even by offline operations
164	 * such as filesystem shrinking and therefore can be used in the
165	 * encryption without the possibility of files becoming unreadable.
166	 *
167	 * Filesystems only need to implement this function if they want to
168	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
169	 * flags are designed to work around the limitations of UFS and eMMC
170	 * inline crypto hardware, and they shouldn't be used in scenarios where
171	 * such hardware isn't being used.
172	 *
173	 * Leaving this NULL is equivalent to always returning false.
174	 */
175	bool (*has_stable_inodes)(struct super_block *sb);
176
177	/*
178	 * Return an array of pointers to the block devices to which the
179	 * filesystem may write encrypted file contents, NULL if the filesystem
180	 * only has a single such block device, or an ERR_PTR() on error.
181	 *
182	 * On successful non-NULL return, *num_devs is set to the number of
183	 * devices in the returned array.  The caller must free the returned
184	 * array using kfree().
185	 *
186	 * If the filesystem can use multiple block devices (other than block
187	 * devices that aren't used for encrypted file contents, such as
188	 * external journal devices), and wants to support inline encryption,
189	 * then it must implement this function.  Otherwise it's not needed.
190	 */
191	struct block_device **(*get_devices)(struct super_block *sb,
192					     unsigned int *num_devs);
193};
194
195int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
196
197static inline struct fscrypt_inode_info *
198fscrypt_get_inode_info(const struct inode *inode)
199{
200	/*
201	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
202	 * I.e., another task may publish ->i_crypt_info concurrently, executing
203	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
204	 * ACQUIRE the memory the other task published.
205	 */
206	return smp_load_acquire(&inode->i_crypt_info);
207}
208
209/**
210 * fscrypt_needs_contents_encryption() - check whether an inode needs
211 *					 contents encryption
212 * @inode: the inode to check
213 *
214 * Return: %true iff the inode is an encrypted regular file and the kernel was
215 * built with fscrypt support.
216 *
217 * If you need to know whether the encrypt bit is set even when the kernel was
218 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
219 */
220static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
221{
222	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
223}
224
225/*
226 * When d_splice_alias() moves a directory's no-key alias to its
227 * plaintext alias as a result of the encryption key being added,
228 * DCACHE_NOKEY_NAME must be cleared and there might be an opportunity
229 * to disable d_revalidate.  Note that we don't have to support the
230 * inverse operation because fscrypt doesn't allow no-key names to be
231 * the source or target of a rename().
232 */
233static inline void fscrypt_handle_d_move(struct dentry *dentry)
234{
235	/*
236	 * VFS calls fscrypt_handle_d_move even for non-fscrypt
237	 * filesystems.
238	 */
239	if (dentry->d_flags & DCACHE_NOKEY_NAME) {
240		dentry->d_flags &= ~DCACHE_NOKEY_NAME;
241
242		/*
243		 * Other filesystem features might be handling dentry
244		 * revalidation, in which case it cannot be disabled.
245		 */
246		if (dentry->d_op->d_revalidate == fscrypt_d_revalidate)
247			dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
248	}
249}
250
251/**
252 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
253 * @dentry: the dentry to check
254 *
255 * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
256 * dentry that was created in an encrypted directory that hasn't had its
257 * encryption key added yet.  Such dentries may be either positive or negative.
258 *
259 * When a filesystem is asked to create a new filename in an encrypted directory
260 * and the new filename's dentry is a no-key dentry, it must fail the operation
261 * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
262 * ->rename(), and ->link().  (However, ->rename() and ->link() are already
263 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
264 *
265 * This is necessary because creating a filename requires the directory's
266 * encryption key, but just checking for the key on the directory inode during
267 * the final filesystem operation doesn't guarantee that the key was available
268 * during the preceding dentry lookup.  And the key must have already been
269 * available during the dentry lookup in order for it to have been checked
270 * whether the filename already exists in the directory and for the new file's
271 * dentry not to be invalidated due to it incorrectly having the no-key flag.
272 *
273 * Return: %true if the dentry is a no-key name
274 */
275static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
276{
277	return dentry->d_flags & DCACHE_NOKEY_NAME;
278}
279
280static inline void fscrypt_prepare_dentry(struct dentry *dentry,
281					  bool is_nokey_name)
282{
283	/*
284	 * This code tries to only take ->d_lock when necessary to write
285	 * to ->d_flags.  We shouldn't be peeking on d_flags for
286	 * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case
287	 * there is a race, the worst it can happen is that we fail to
288	 * unset DCACHE_OP_REVALIDATE and pay the cost of an extra
289	 * d_revalidate.
290	 */
291	if (is_nokey_name) {
292		spin_lock(&dentry->d_lock);
293		dentry->d_flags |= DCACHE_NOKEY_NAME;
294		spin_unlock(&dentry->d_lock);
295	} else if (dentry->d_flags & DCACHE_OP_REVALIDATE &&
296		   dentry->d_op->d_revalidate == fscrypt_d_revalidate) {
297		/*
298		 * Unencrypted dentries and encrypted dentries where the
299		 * key is available are always valid from fscrypt
300		 * perspective. Avoid the cost of calling
301		 * fscrypt_d_revalidate unnecessarily.
302		 */
303		spin_lock(&dentry->d_lock);
304		dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
305		spin_unlock(&dentry->d_lock);
306	}
307}
308
309/* crypto.c */
310void fscrypt_enqueue_decrypt_work(struct work_struct *);
311
312struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
313					      unsigned int len,
314					      unsigned int offs,
315					      gfp_t gfp_flags);
316int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
317				  unsigned int len, unsigned int offs,
318				  u64 lblk_num, gfp_t gfp_flags);
319
320int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
321				     size_t offs);
322int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
323				  unsigned int len, unsigned int offs,
324				  u64 lblk_num);
325
326static inline bool fscrypt_is_bounce_page(struct page *page)
327{
328	return page->mapping == NULL;
329}
330
331static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
332{
333	return (struct page *)page_private(bounce_page);
334}
335
336static inline bool fscrypt_is_bounce_folio(struct folio *folio)
337{
338	return folio->mapping == NULL;
339}
340
341static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
342{
343	return bounce_folio->private;
344}
345
346void fscrypt_free_bounce_page(struct page *bounce_page);
347
348/* policy.c */
349int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
350int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
351int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
352int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
353int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
354int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
355int fscrypt_set_context(struct inode *inode, void *fs_data);
356
357struct fscrypt_dummy_policy {
358	const union fscrypt_policy *policy;
359};
360
361int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
362				    struct fscrypt_dummy_policy *dummy_policy);
363bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
364				  const struct fscrypt_dummy_policy *p2);
365void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
366					struct super_block *sb);
367static inline bool
368fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
369{
370	return dummy_policy->policy != NULL;
371}
372static inline void
373fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
374{
375	kfree(dummy_policy->policy);
376	dummy_policy->policy = NULL;
377}
378
379/* keyring.c */
380void fscrypt_destroy_keyring(struct super_block *sb);
381int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
382int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
383int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
384int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
385
386/* keysetup.c */
387int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
388			      bool *encrypt_ret);
389void fscrypt_put_encryption_info(struct inode *inode);
390void fscrypt_free_inode(struct inode *inode);
391int fscrypt_drop_inode(struct inode *inode);
392
393/* fname.c */
394int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
395			  u8 *out, unsigned int olen);
396bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
397				  u32 max_len, u32 *encrypted_len_ret);
398int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
399			   int lookup, struct fscrypt_name *fname);
400
401static inline void fscrypt_free_filename(struct fscrypt_name *fname)
402{
403	kfree(fname->crypto_buf.name);
404}
405
406int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
407			       struct fscrypt_str *crypto_str);
408void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
409int fscrypt_fname_disk_to_usr(const struct inode *inode,
410			      u32 hash, u32 minor_hash,
411			      const struct fscrypt_str *iname,
412			      struct fscrypt_str *oname);
413bool fscrypt_match_name(const struct fscrypt_name *fname,
414			const u8 *de_name, u32 de_name_len);
415u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
416
417/* bio.c */
418bool fscrypt_decrypt_bio(struct bio *bio);
419int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
420			  sector_t pblk, unsigned int len);
421
422/* hooks.c */
423int fscrypt_file_open(struct inode *inode, struct file *filp);
424int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
425			   struct dentry *dentry);
426int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
427			     struct inode *new_dir, struct dentry *new_dentry,
428			     unsigned int flags);
429int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
430			     struct fscrypt_name *fname);
431int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
432int __fscrypt_prepare_readdir(struct inode *dir);
433int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
434int fscrypt_prepare_setflags(struct inode *inode,
435			     unsigned int oldflags, unsigned int flags);
436int fscrypt_prepare_symlink(struct inode *dir, const char *target,
437			    unsigned int len, unsigned int max_len,
438			    struct fscrypt_str *disk_link);
439int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
440			      unsigned int len, struct fscrypt_str *disk_link);
441const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
442				unsigned int max_size,
443				struct delayed_call *done);
444int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
445static inline void fscrypt_set_ops(struct super_block *sb,
446				   const struct fscrypt_operations *s_cop)
447{
448	sb->s_cop = s_cop;
449}
450#else  /* !CONFIG_FS_ENCRYPTION */
451
452static inline struct fscrypt_inode_info *
453fscrypt_get_inode_info(const struct inode *inode)
454{
455	return NULL;
456}
457
458static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
459{
460	return false;
461}
462
463static inline void fscrypt_handle_d_move(struct dentry *dentry)
464{
465}
466
467static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
468{
469	return false;
470}
471
472static inline void fscrypt_prepare_dentry(struct dentry *dentry,
473					  bool is_nokey_name)
474{
475}
476
477/* crypto.c */
478static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
479{
480}
481
482static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
483							    unsigned int len,
484							    unsigned int offs,
485							    gfp_t gfp_flags)
486{
487	return ERR_PTR(-EOPNOTSUPP);
488}
489
490static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
491						struct page *page,
492						unsigned int len,
493						unsigned int offs, u64 lblk_num,
494						gfp_t gfp_flags)
495{
496	return -EOPNOTSUPP;
497}
498
499static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
500						   size_t len, size_t offs)
501{
502	return -EOPNOTSUPP;
503}
504
505static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
506						struct page *page,
507						unsigned int len,
508						unsigned int offs, u64 lblk_num)
509{
510	return -EOPNOTSUPP;
511}
512
513static inline bool fscrypt_is_bounce_page(struct page *page)
514{
515	return false;
516}
517
518static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
519{
520	WARN_ON_ONCE(1);
521	return ERR_PTR(-EINVAL);
522}
523
524static inline bool fscrypt_is_bounce_folio(struct folio *folio)
525{
526	return false;
527}
528
529static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
530{
531	WARN_ON_ONCE(1);
532	return ERR_PTR(-EINVAL);
533}
534
535static inline void fscrypt_free_bounce_page(struct page *bounce_page)
536{
537}
538
539/* policy.c */
540static inline int fscrypt_ioctl_set_policy(struct file *filp,
541					   const void __user *arg)
542{
543	return -EOPNOTSUPP;
544}
545
546static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
547{
548	return -EOPNOTSUPP;
549}
550
551static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
552					      void __user *arg)
553{
554	return -EOPNOTSUPP;
555}
556
557static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
558{
559	return -EOPNOTSUPP;
560}
561
562static inline int fscrypt_has_permitted_context(struct inode *parent,
563						struct inode *child)
564{
565	return 0;
566}
567
568static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
569{
570	return -EOPNOTSUPP;
571}
572
573struct fscrypt_dummy_policy {
574};
575
576static inline int
577fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
578				    struct fscrypt_dummy_policy *dummy_policy)
579{
580	return -EINVAL;
581}
582
583static inline bool
584fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
585			     const struct fscrypt_dummy_policy *p2)
586{
587	return true;
588}
589
590static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
591						      char sep,
592						      struct super_block *sb)
593{
594}
595
596static inline bool
597fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
598{
599	return false;
600}
601
602static inline void
603fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
604{
605}
606
607/* keyring.c */
608static inline void fscrypt_destroy_keyring(struct super_block *sb)
609{
610}
611
612static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
613{
614	return -EOPNOTSUPP;
615}
616
617static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
618{
619	return -EOPNOTSUPP;
620}
621
622static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
623						     void __user *arg)
624{
625	return -EOPNOTSUPP;
626}
627
628static inline int fscrypt_ioctl_get_key_status(struct file *filp,
629					       void __user *arg)
630{
631	return -EOPNOTSUPP;
632}
633
634/* keysetup.c */
635
636static inline int fscrypt_prepare_new_inode(struct inode *dir,
637					    struct inode *inode,
638					    bool *encrypt_ret)
639{
640	if (IS_ENCRYPTED(dir))
641		return -EOPNOTSUPP;
642	return 0;
643}
644
645static inline void fscrypt_put_encryption_info(struct inode *inode)
646{
647	return;
648}
649
650static inline void fscrypt_free_inode(struct inode *inode)
651{
652}
653
654static inline int fscrypt_drop_inode(struct inode *inode)
655{
656	return 0;
657}
658
659 /* fname.c */
660static inline int fscrypt_setup_filename(struct inode *dir,
661					 const struct qstr *iname,
662					 int lookup, struct fscrypt_name *fname)
663{
664	if (IS_ENCRYPTED(dir))
665		return -EOPNOTSUPP;
666
667	memset(fname, 0, sizeof(*fname));
668	fname->usr_fname = iname;
669	fname->disk_name.name = (unsigned char *)iname->name;
670	fname->disk_name.len = iname->len;
671	return 0;
672}
673
674static inline void fscrypt_free_filename(struct fscrypt_name *fname)
675{
676	return;
677}
678
679static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
680					     struct fscrypt_str *crypto_str)
681{
682	return -EOPNOTSUPP;
683}
684
685static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
686{
687	return;
688}
689
690static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
691					    u32 hash, u32 minor_hash,
692					    const struct fscrypt_str *iname,
693					    struct fscrypt_str *oname)
694{
695	return -EOPNOTSUPP;
696}
697
698static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
699				      const u8 *de_name, u32 de_name_len)
700{
701	/* Encryption support disabled; use standard comparison */
702	if (de_name_len != fname->disk_name.len)
703		return false;
704	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
705}
706
707static inline u64 fscrypt_fname_siphash(const struct inode *dir,
708					const struct qstr *name)
709{
710	WARN_ON_ONCE(1);
711	return 0;
712}
713
714static inline int fscrypt_d_revalidate(struct dentry *dentry,
715				       unsigned int flags)
716{
717	return 1;
718}
719
720/* bio.c */
721static inline bool fscrypt_decrypt_bio(struct bio *bio)
722{
723	return true;
724}
725
726static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
727					sector_t pblk, unsigned int len)
728{
729	return -EOPNOTSUPP;
730}
731
732/* hooks.c */
733
734static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
735{
736	if (IS_ENCRYPTED(inode))
737		return -EOPNOTSUPP;
738	return 0;
739}
740
741static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
742					 struct dentry *dentry)
743{
744	return -EOPNOTSUPP;
745}
746
747static inline int __fscrypt_prepare_rename(struct inode *old_dir,
748					   struct dentry *old_dentry,
749					   struct inode *new_dir,
750					   struct dentry *new_dentry,
751					   unsigned int flags)
752{
753	return -EOPNOTSUPP;
754}
755
756static inline int __fscrypt_prepare_lookup(struct inode *dir,
757					   struct dentry *dentry,
758					   struct fscrypt_name *fname)
759{
760	return -EOPNOTSUPP;
761}
762
763static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
764						 struct dentry *dentry)
765{
766	return -EOPNOTSUPP;
767}
768
769static inline int __fscrypt_prepare_readdir(struct inode *dir)
770{
771	return -EOPNOTSUPP;
772}
773
774static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
775					    struct iattr *attr)
776{
777	return -EOPNOTSUPP;
778}
779
780static inline int fscrypt_prepare_setflags(struct inode *inode,
781					   unsigned int oldflags,
782					   unsigned int flags)
783{
784	return 0;
785}
786
787static inline int fscrypt_prepare_symlink(struct inode *dir,
788					  const char *target,
789					  unsigned int len,
790					  unsigned int max_len,
791					  struct fscrypt_str *disk_link)
792{
793	if (IS_ENCRYPTED(dir))
794		return -EOPNOTSUPP;
795	disk_link->name = (unsigned char *)target;
796	disk_link->len = len + 1;
797	if (disk_link->len > max_len)
798		return -ENAMETOOLONG;
799	return 0;
800}
801
802static inline int __fscrypt_encrypt_symlink(struct inode *inode,
803					    const char *target,
804					    unsigned int len,
805					    struct fscrypt_str *disk_link)
806{
807	return -EOPNOTSUPP;
808}
809
810static inline const char *fscrypt_get_symlink(struct inode *inode,
811					      const void *caddr,
812					      unsigned int max_size,
813					      struct delayed_call *done)
814{
815	return ERR_PTR(-EOPNOTSUPP);
816}
817
818static inline int fscrypt_symlink_getattr(const struct path *path,
819					  struct kstat *stat)
820{
821	return -EOPNOTSUPP;
822}
823
824static inline void fscrypt_set_ops(struct super_block *sb,
825				   const struct fscrypt_operations *s_cop)
826{
827}
828
829#endif	/* !CONFIG_FS_ENCRYPTION */
830
831/* inline_crypt.c */
832#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
833
834bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
835
836void fscrypt_set_bio_crypt_ctx(struct bio *bio,
837			       const struct inode *inode, u64 first_lblk,
838			       gfp_t gfp_mask);
839
840void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
841				  const struct buffer_head *first_bh,
842				  gfp_t gfp_mask);
843
844bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
845			   u64 next_lblk);
846
847bool fscrypt_mergeable_bio_bh(struct bio *bio,
848			      const struct buffer_head *next_bh);
849
850bool fscrypt_dio_supported(struct inode *inode);
851
852u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
853
854#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
855
856static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
857{
858	return false;
859}
860
861static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
862					     const struct inode *inode,
863					     u64 first_lblk, gfp_t gfp_mask) { }
864
865static inline void fscrypt_set_bio_crypt_ctx_bh(
866					 struct bio *bio,
867					 const struct buffer_head *first_bh,
868					 gfp_t gfp_mask) { }
869
870static inline bool fscrypt_mergeable_bio(struct bio *bio,
871					 const struct inode *inode,
872					 u64 next_lblk)
873{
874	return true;
875}
876
877static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
878					    const struct buffer_head *next_bh)
879{
880	return true;
881}
882
883static inline bool fscrypt_dio_supported(struct inode *inode)
884{
885	return !fscrypt_needs_contents_encryption(inode);
886}
887
888static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
889					  u64 nr_blocks)
890{
891	return nr_blocks;
892}
893#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
894
895/**
896 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
897 *					encryption
898 * @inode: an inode. If encrypted, its key must be set up.
899 *
900 * Return: true if the inode requires file contents encryption and if the
901 *	   encryption should be done in the block layer via blk-crypto rather
902 *	   than in the filesystem layer.
903 */
904static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
905{
906	return fscrypt_needs_contents_encryption(inode) &&
907	       __fscrypt_inode_uses_inline_crypto(inode);
908}
909
910/**
911 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
912 *					  encryption
913 * @inode: an inode. If encrypted, its key must be set up.
914 *
915 * Return: true if the inode requires file contents encryption and if the
916 *	   encryption should be done in the filesystem layer rather than in the
917 *	   block layer via blk-crypto.
918 */
919static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
920{
921	return fscrypt_needs_contents_encryption(inode) &&
922	       !__fscrypt_inode_uses_inline_crypto(inode);
923}
924
925/**
926 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
927 * @inode: the inode to check
928 *
929 * Return: %true if the inode has had its encryption key set up, else %false.
930 *
931 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
932 * set up the key first.
933 */
934static inline bool fscrypt_has_encryption_key(const struct inode *inode)
935{
936	return fscrypt_get_inode_info(inode) != NULL;
937}
938
939/**
940 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
941 *			    directory
942 * @old_dentry: an existing dentry for the inode being linked
943 * @dir: the target directory
944 * @dentry: negative dentry for the target filename
945 *
946 * A new link can only be added to an encrypted directory if the directory's
947 * encryption key is available --- since otherwise we'd have no way to encrypt
948 * the filename.
949 *
950 * We also verify that the link will not violate the constraint that all files
951 * in an encrypted directory tree use the same encryption policy.
952 *
953 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
954 * -EXDEV if the link would result in an inconsistent encryption policy, or
955 * another -errno code.
956 */
957static inline int fscrypt_prepare_link(struct dentry *old_dentry,
958				       struct inode *dir,
959				       struct dentry *dentry)
960{
961	if (IS_ENCRYPTED(dir))
962		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
963	return 0;
964}
965
966/**
967 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
968 *			      directories
969 * @old_dir: source directory
970 * @old_dentry: dentry for source file
971 * @new_dir: target directory
972 * @new_dentry: dentry for target location (may be negative unless exchanging)
973 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
974 *
975 * Prepare for ->rename() where the source and/or target directories may be
976 * encrypted.  A new link can only be added to an encrypted directory if the
977 * directory's encryption key is available --- since otherwise we'd have no way
978 * to encrypt the filename.  A rename to an existing name, on the other hand,
979 * *is* cryptographically possible without the key.  However, we take the more
980 * conservative approach and just forbid all no-key renames.
981 *
982 * We also verify that the rename will not violate the constraint that all files
983 * in an encrypted directory tree use the same encryption policy.
984 *
985 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
986 * rename would cause inconsistent encryption policies, or another -errno code.
987 */
988static inline int fscrypt_prepare_rename(struct inode *old_dir,
989					 struct dentry *old_dentry,
990					 struct inode *new_dir,
991					 struct dentry *new_dentry,
992					 unsigned int flags)
993{
994	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
995		return __fscrypt_prepare_rename(old_dir, old_dentry,
996						new_dir, new_dentry, flags);
997	return 0;
998}
999
1000/**
1001 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
1002 *			      directory
1003 * @dir: directory being searched
1004 * @dentry: filename being looked up
1005 * @fname: (output) the name to use to search the on-disk directory
1006 *
1007 * Prepare for ->lookup() in a directory which may be encrypted by determining
1008 * the name that will actually be used to search the directory on-disk.  If the
1009 * directory's encryption policy is supported by this kernel and its encryption
1010 * key is available, then the lookup is assumed to be by plaintext name;
1011 * otherwise, it is assumed to be by no-key name.
1012 *
1013 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
1014 * name.  In this case the filesystem must assign the dentry a dentry_operations
1015 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
1016 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
1017 * directory's encryption key is later added.
1018 *
1019 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
1020 * filename isn't a valid no-key name, so a negative dentry should be created;
1021 * or another -errno code.
1022 */
1023static inline int fscrypt_prepare_lookup(struct inode *dir,
1024					 struct dentry *dentry,
1025					 struct fscrypt_name *fname)
1026{
1027	if (IS_ENCRYPTED(dir))
1028		return __fscrypt_prepare_lookup(dir, dentry, fname);
1029
1030	memset(fname, 0, sizeof(*fname));
1031	fname->usr_fname = &dentry->d_name;
1032	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
1033	fname->disk_name.len = dentry->d_name.len;
1034
1035	fscrypt_prepare_dentry(dentry, false);
1036
1037	return 0;
1038}
1039
1040/**
1041 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
1042 * @dir: the directory inode
1043 *
1044 * If the directory is encrypted and it doesn't already have its encryption key
1045 * set up, try to set it up so that the filenames will be listed in plaintext
1046 * form rather than in no-key form.
1047 *
1048 * Return: 0 on success; -errno on error.  Note that the encryption key being
1049 *	   unavailable is not considered an error.  It is also not an error if
1050 *	   the encryption policy is unsupported by this kernel; that is treated
1051 *	   like the key being unavailable, so that files can still be deleted.
1052 */
1053static inline int fscrypt_prepare_readdir(struct inode *dir)
1054{
1055	if (IS_ENCRYPTED(dir))
1056		return __fscrypt_prepare_readdir(dir);
1057	return 0;
1058}
1059
1060/**
1061 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
1062 *			       attributes
1063 * @dentry: dentry through which the inode is being changed
1064 * @attr: attributes to change
1065 *
1066 * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
1067 * most attribute changes are allowed even without the encryption key.  However,
1068 * without the encryption key we do have to forbid truncates.  This is needed
1069 * because the size being truncated to may not be a multiple of the filesystem
1070 * block size, and in that case we'd have to decrypt the final block, zero the
1071 * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
1072 * filesystem block boundary, but it's simpler to just forbid all truncates ---
1073 * and we already forbid all other contents modifications without the key.)
1074 *
1075 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
1076 * if a problem occurred while setting up the encryption key.
1077 */
1078static inline int fscrypt_prepare_setattr(struct dentry *dentry,
1079					  struct iattr *attr)
1080{
1081	if (IS_ENCRYPTED(d_inode(dentry)))
1082		return __fscrypt_prepare_setattr(dentry, attr);
1083	return 0;
1084}
1085
1086/**
1087 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
1088 * @inode: symlink inode
1089 * @target: plaintext symlink target
1090 * @len: length of @target excluding null terminator
1091 * @disk_link: (in/out) the on-disk symlink target being prepared
1092 *
1093 * If the symlink target needs to be encrypted, then this function encrypts it
1094 * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
1095 * previously to compute @disk_link->len.  If the filesystem did not allocate a
1096 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
1097 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
1098 *
1099 * Return: 0 on success, -errno on failure
1100 */
1101static inline int fscrypt_encrypt_symlink(struct inode *inode,
1102					  const char *target,
1103					  unsigned int len,
1104					  struct fscrypt_str *disk_link)
1105{
1106	if (IS_ENCRYPTED(inode))
1107		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
1108	return 0;
1109}
1110
1111/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
1112static inline void fscrypt_finalize_bounce_page(struct page **pagep)
1113{
1114	struct page *page = *pagep;
1115
1116	if (fscrypt_is_bounce_page(page)) {
1117		*pagep = fscrypt_pagecache_page(page);
1118		fscrypt_free_bounce_page(page);
1119	}
1120}
1121
1122#endif	/* _LINUX_FSCRYPT_H */
1123