1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_FORTIFY_STRING_H_
3#define _LINUX_FORTIFY_STRING_H_
4
5#include <linux/bitfield.h>
6#include <linux/bug.h>
7#include <linux/const.h>
8#include <linux/limits.h>
9
10#define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable
11#define __RENAME(x) __asm__(#x)
12
13#define FORTIFY_REASON_DIR(r)		FIELD_GET(BIT(0), r)
14#define FORTIFY_REASON_FUNC(r)		FIELD_GET(GENMASK(7, 1), r)
15#define FORTIFY_REASON(func, write)	(FIELD_PREP(BIT(0), write) | \
16					 FIELD_PREP(GENMASK(7, 1), func))
17
18#ifndef fortify_panic
19# define fortify_panic(func, write, avail, size, retfail)	\
20	 __fortify_panic(FORTIFY_REASON(func, write), avail, size)
21#endif
22
23#define FORTIFY_READ		 0
24#define FORTIFY_WRITE		 1
25
26#define EACH_FORTIFY_FUNC(macro)	\
27	macro(strncpy),			\
28	macro(strnlen),			\
29	macro(strlen),			\
30	macro(strscpy),			\
31	macro(strlcat),			\
32	macro(strcat),			\
33	macro(strncat),			\
34	macro(memset),			\
35	macro(memcpy),			\
36	macro(memmove),			\
37	macro(memscan),			\
38	macro(memcmp),			\
39	macro(memchr),			\
40	macro(memchr_inv),		\
41	macro(kmemdup),			\
42	macro(strcpy),			\
43	macro(UNKNOWN),
44
45#define MAKE_FORTIFY_FUNC(func)	FORTIFY_FUNC_##func
46
47enum fortify_func {
48	EACH_FORTIFY_FUNC(MAKE_FORTIFY_FUNC)
49};
50
51void __fortify_report(const u8 reason, const size_t avail, const size_t size);
52void __fortify_panic(const u8 reason, const size_t avail, const size_t size) __cold __noreturn;
53void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
54void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
55void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
56void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
57void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");
58
59#define __compiletime_strlen(p)					\
60({								\
61	char *__p = (char *)(p);				\
62	size_t __ret = SIZE_MAX;				\
63	const size_t __p_size = __member_size(p);		\
64	if (__p_size != SIZE_MAX &&				\
65	    __builtin_constant_p(*__p)) {			\
66		size_t __p_len = __p_size - 1;			\
67		if (__builtin_constant_p(__p[__p_len]) &&	\
68		    __p[__p_len] == '\0')			\
69			__ret = __builtin_strlen(__p);		\
70	}							\
71	__ret;							\
72})
73
74#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
75extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
76extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
77extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
78extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
79extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
80extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
81extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
82extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
83extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
84extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);
85#else
86
87#if defined(__SANITIZE_MEMORY__)
88/*
89 * For KMSAN builds all memcpy/memset/memmove calls should be replaced by the
90 * corresponding __msan_XXX functions.
91 */
92#include <linux/kmsan_string.h>
93#define __underlying_memcpy	__msan_memcpy
94#define __underlying_memmove	__msan_memmove
95#define __underlying_memset	__msan_memset
96#else
97#define __underlying_memcpy	__builtin_memcpy
98#define __underlying_memmove	__builtin_memmove
99#define __underlying_memset	__builtin_memset
100#endif
101
102#define __underlying_memchr	__builtin_memchr
103#define __underlying_memcmp	__builtin_memcmp
104#define __underlying_strcat	__builtin_strcat
105#define __underlying_strcpy	__builtin_strcpy
106#define __underlying_strlen	__builtin_strlen
107#define __underlying_strncat	__builtin_strncat
108#define __underlying_strncpy	__builtin_strncpy
109#endif
110
111/**
112 * unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking
113 *
114 * @dst: Destination memory address to write to
115 * @src: Source memory address to read from
116 * @bytes: How many bytes to write to @dst from @src
117 * @justification: Free-form text or comment describing why the use is needed
118 *
119 * This should be used for corner cases where the compiler cannot do the
120 * right thing, or during transitions between APIs, etc. It should be used
121 * very rarely, and includes a place for justification detailing where bounds
122 * checking has happened, and why existing solutions cannot be employed.
123 */
124#define unsafe_memcpy(dst, src, bytes, justification)		\
125	__underlying_memcpy(dst, src, bytes)
126
127/*
128 * Clang's use of __builtin_*object_size() within inlines needs hinting via
129 * __pass_*object_size(). The preference is to only ever use type 1 (member
130 * size, rather than struct size), but there remain some stragglers using
131 * type 0 that will be converted in the future.
132 */
133#if __has_builtin(__builtin_dynamic_object_size)
134#define POS			__pass_dynamic_object_size(1)
135#define POS0			__pass_dynamic_object_size(0)
136#else
137#define POS			__pass_object_size(1)
138#define POS0			__pass_object_size(0)
139#endif
140
141#define __compiletime_lessthan(bounds, length)	(	\
142	__builtin_constant_p((bounds) < (length)) &&	\
143	(bounds) < (length)				\
144)
145
146/**
147 * strncpy - Copy a string to memory with non-guaranteed NUL padding
148 *
149 * @p: pointer to destination of copy
150 * @q: pointer to NUL-terminated source string to copy
151 * @size: bytes to write at @p
152 *
153 * If strlen(@q) >= @size, the copy of @q will stop after @size bytes,
154 * and @p will NOT be NUL-terminated
155 *
156 * If strlen(@q) < @size, following the copy of @q, trailing NUL bytes
157 * will be written to @p until @size total bytes have been written.
158 *
159 * Do not use this function. While FORTIFY_SOURCE tries to avoid
160 * over-reads of @q, it cannot defend against writing unterminated
161 * results to @p. Using strncpy() remains ambiguous and fragile.
162 * Instead, please choose an alternative, so that the expectation
163 * of @p's contents is unambiguous:
164 *
165 * +--------------------+--------------------+------------+
166 * | **p** needs to be: | padded to **size** | not padded |
167 * +====================+====================+============+
168 * |     NUL-terminated | strscpy_pad()      | strscpy()  |
169 * +--------------------+--------------------+------------+
170 * | not NUL-terminated | strtomem_pad()     | strtomem() |
171 * +--------------------+--------------------+------------+
172 *
173 * Note strscpy*()'s differing return values for detecting truncation,
174 * and strtomem*()'s expectation that the destination is marked with
175 * __nonstring when it is a character array.
176 *
177 */
178__FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
179char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
180{
181	const size_t p_size = __member_size(p);
182
183	if (__compiletime_lessthan(p_size, size))
184		__write_overflow();
185	if (p_size < size)
186		fortify_panic(FORTIFY_FUNC_strncpy, FORTIFY_WRITE, p_size, size, p);
187	return __underlying_strncpy(p, q, size);
188}
189
190extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
191/**
192 * strnlen - Return bounded count of characters in a NUL-terminated string
193 *
194 * @p: pointer to NUL-terminated string to count.
195 * @maxlen: maximum number of characters to count.
196 *
197 * Returns number of characters in @p (NOT including the final NUL), or
198 * @maxlen, if no NUL has been found up to there.
199 *
200 */
201__FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
202{
203	const size_t p_size = __member_size(p);
204	const size_t p_len = __compiletime_strlen(p);
205	size_t ret;
206
207	/* We can take compile-time actions when maxlen is const. */
208	if (__builtin_constant_p(maxlen) && p_len != SIZE_MAX) {
209		/* If p is const, we can use its compile-time-known len. */
210		if (maxlen >= p_size)
211			return p_len;
212	}
213
214	/* Do not check characters beyond the end of p. */
215	ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size);
216	if (p_size <= ret && maxlen != ret)
217		fortify_panic(FORTIFY_FUNC_strnlen, FORTIFY_READ, p_size, ret + 1, ret);
218	return ret;
219}
220
221/*
222 * Defined after fortified strnlen to reuse it. However, it must still be
223 * possible for strlen() to be used on compile-time strings for use in
224 * static initializers (i.e. as a constant expression).
225 */
226/**
227 * strlen - Return count of characters in a NUL-terminated string
228 *
229 * @p: pointer to NUL-terminated string to count.
230 *
231 * Do not use this function unless the string length is known at
232 * compile-time. When @p is unterminated, this function may crash
233 * or return unexpected counts that could lead to memory content
234 * exposures. Prefer strnlen().
235 *
236 * Returns number of characters in @p (NOT including the final NUL).
237 *
238 */
239#define strlen(p)							\
240	__builtin_choose_expr(__is_constexpr(__builtin_strlen(p)),	\
241		__builtin_strlen(p), __fortify_strlen(p))
242__FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
243__kernel_size_t __fortify_strlen(const char * const POS p)
244{
245	const size_t p_size = __member_size(p);
246	__kernel_size_t ret;
247
248	/* Give up if we don't know how large p is. */
249	if (p_size == SIZE_MAX)
250		return __underlying_strlen(p);
251	ret = strnlen(p, p_size);
252	if (p_size <= ret)
253		fortify_panic(FORTIFY_FUNC_strlen, FORTIFY_READ, p_size, ret + 1, ret);
254	return ret;
255}
256
257/* Defined after fortified strnlen() to reuse it. */
258extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(sized_strscpy);
259__FORTIFY_INLINE ssize_t sized_strscpy(char * const POS p, const char * const POS q, size_t size)
260{
261	/* Use string size rather than possible enclosing struct size. */
262	const size_t p_size = __member_size(p);
263	const size_t q_size = __member_size(q);
264	size_t len;
265
266	/* If we cannot get size of p and q default to call strscpy. */
267	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
268		return __real_strscpy(p, q, size);
269
270	/*
271	 * If size can be known at compile time and is greater than
272	 * p_size, generate a compile time write overflow error.
273	 */
274	if (__compiletime_lessthan(p_size, size))
275		__write_overflow();
276
277	/* Short-circuit for compile-time known-safe lengths. */
278	if (__compiletime_lessthan(p_size, SIZE_MAX)) {
279		len = __compiletime_strlen(q);
280
281		if (len < SIZE_MAX && __compiletime_lessthan(len, size)) {
282			__underlying_memcpy(p, q, len + 1);
283			return len;
284		}
285	}
286
287	/*
288	 * This call protects from read overflow, because len will default to q
289	 * length if it smaller than size.
290	 */
291	len = strnlen(q, size);
292	/*
293	 * If len equals size, we will copy only size bytes which leads to
294	 * -E2BIG being returned.
295	 * Otherwise we will copy len + 1 because of the final '\O'.
296	 */
297	len = len == size ? size : len + 1;
298
299	/*
300	 * Generate a runtime write overflow error if len is greater than
301	 * p_size.
302	 */
303	if (p_size < len)
304		fortify_panic(FORTIFY_FUNC_strscpy, FORTIFY_WRITE, p_size, len, -E2BIG);
305
306	/*
307	 * We can now safely call vanilla strscpy because we are protected from:
308	 * 1. Read overflow thanks to call to strnlen().
309	 * 2. Write overflow thanks to above ifs.
310	 */
311	return __real_strscpy(p, q, len);
312}
313
314/* Defined after fortified strlen() to reuse it. */
315extern size_t __real_strlcat(char *p, const char *q, size_t avail) __RENAME(strlcat);
316/**
317 * strlcat - Append a string to an existing string
318 *
319 * @p: pointer to %NUL-terminated string to append to
320 * @q: pointer to %NUL-terminated string to append from
321 * @avail: Maximum bytes available in @p
322 *
323 * Appends %NUL-terminated string @q after the %NUL-terminated
324 * string at @p, but will not write beyond @avail bytes total,
325 * potentially truncating the copy from @q. @p will stay
326 * %NUL-terminated only if a %NUL already existed within
327 * the @avail bytes of @p. If so, the resulting number of
328 * bytes copied from @q will be at most "@avail - strlen(@p) - 1".
329 *
330 * Do not use this function. While FORTIFY_SOURCE tries to avoid
331 * read and write overflows, this is only possible when the sizes
332 * of @p and @q are known to the compiler. Prefer building the
333 * string with formatting, via scnprintf(), seq_buf, or similar.
334 *
335 * Returns total bytes that _would_ have been contained by @p
336 * regardless of truncation, similar to snprintf(). If return
337 * value is >= @avail, the string has been truncated.
338 *
339 */
340__FORTIFY_INLINE
341size_t strlcat(char * const POS p, const char * const POS q, size_t avail)
342{
343	const size_t p_size = __member_size(p);
344	const size_t q_size = __member_size(q);
345	size_t p_len, copy_len;
346	size_t actual, wanted;
347
348	/* Give up immediately if both buffer sizes are unknown. */
349	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
350		return __real_strlcat(p, q, avail);
351
352	p_len = strnlen(p, avail);
353	copy_len = strlen(q);
354	wanted = actual = p_len + copy_len;
355
356	/* Cannot append any more: report truncation. */
357	if (avail <= p_len)
358		return wanted;
359
360	/* Give up if string is already overflowed. */
361	if (p_size <= p_len)
362		fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_READ, p_size, p_len + 1, wanted);
363
364	if (actual >= avail) {
365		copy_len = avail - p_len - 1;
366		actual = p_len + copy_len;
367	}
368
369	/* Give up if copy will overflow. */
370	if (p_size <= actual)
371		fortify_panic(FORTIFY_FUNC_strlcat, FORTIFY_WRITE, p_size, actual + 1, wanted);
372	__underlying_memcpy(p + p_len, q, copy_len);
373	p[actual] = '\0';
374
375	return wanted;
376}
377
378/* Defined after fortified strlcat() to reuse it. */
379/**
380 * strcat - Append a string to an existing string
381 *
382 * @p: pointer to NUL-terminated string to append to
383 * @q: pointer to NUL-terminated source string to append from
384 *
385 * Do not use this function. While FORTIFY_SOURCE tries to avoid
386 * read and write overflows, this is only possible when the
387 * destination buffer size is known to the compiler. Prefer
388 * building the string with formatting, via scnprintf() or similar.
389 * At the very least, use strncat().
390 *
391 * Returns @p.
392 *
393 */
394__FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
395char *strcat(char * const POS p, const char *q)
396{
397	const size_t p_size = __member_size(p);
398	const size_t wanted = strlcat(p, q, p_size);
399
400	if (p_size <= wanted)
401		fortify_panic(FORTIFY_FUNC_strcat, FORTIFY_WRITE, p_size, wanted + 1, p);
402	return p;
403}
404
405/**
406 * strncat - Append a string to an existing string
407 *
408 * @p: pointer to NUL-terminated string to append to
409 * @q: pointer to source string to append from
410 * @count: Maximum bytes to read from @q
411 *
412 * Appends at most @count bytes from @q (stopping at the first
413 * NUL byte) after the NUL-terminated string at @p. @p will be
414 * NUL-terminated.
415 *
416 * Do not use this function. While FORTIFY_SOURCE tries to avoid
417 * read and write overflows, this is only possible when the sizes
418 * of @p and @q are known to the compiler. Prefer building the
419 * string with formatting, via scnprintf() or similar.
420 *
421 * Returns @p.
422 *
423 */
424/* Defined after fortified strlen() and strnlen() to reuse them. */
425__FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
426char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
427{
428	const size_t p_size = __member_size(p);
429	const size_t q_size = __member_size(q);
430	size_t p_len, copy_len, total;
431
432	if (p_size == SIZE_MAX && q_size == SIZE_MAX)
433		return __underlying_strncat(p, q, count);
434	p_len = strlen(p);
435	copy_len = strnlen(q, count);
436	total = p_len + copy_len + 1;
437	if (p_size < total)
438		fortify_panic(FORTIFY_FUNC_strncat, FORTIFY_WRITE, p_size, total, p);
439	__underlying_memcpy(p + p_len, q, copy_len);
440	p[p_len + copy_len] = '\0';
441	return p;
442}
443
444__FORTIFY_INLINE bool fortify_memset_chk(__kernel_size_t size,
445					 const size_t p_size,
446					 const size_t p_size_field)
447{
448	if (__builtin_constant_p(size)) {
449		/*
450		 * Length argument is a constant expression, so we
451		 * can perform compile-time bounds checking where
452		 * buffer sizes are also known at compile time.
453		 */
454
455		/* Error when size is larger than enclosing struct. */
456		if (__compiletime_lessthan(p_size_field, p_size) &&
457		    __compiletime_lessthan(p_size, size))
458			__write_overflow();
459
460		/* Warn when write size is larger than dest field. */
461		if (__compiletime_lessthan(p_size_field, size))
462			__write_overflow_field(p_size_field, size);
463	}
464	/*
465	 * At this point, length argument may not be a constant expression,
466	 * so run-time bounds checking can be done where buffer sizes are
467	 * known. (This is not an "else" because the above checks may only
468	 * be compile-time warnings, and we want to still warn for run-time
469	 * overflows.)
470	 */
471
472	/*
473	 * Always stop accesses beyond the struct that contains the
474	 * field, when the buffer's remaining size is known.
475	 * (The SIZE_MAX test is to optimize away checks where the buffer
476	 * lengths are unknown.)
477	 */
478	if (p_size != SIZE_MAX && p_size < size)
479		fortify_panic(FORTIFY_FUNC_memset, FORTIFY_WRITE, p_size, size, true);
480	return false;
481}
482
483#define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({	\
484	size_t __fortify_size = (size_t)(size);				\
485	fortify_memset_chk(__fortify_size, p_size, p_size_field),	\
486	__underlying_memset(p, c, __fortify_size);			\
487})
488
489/*
490 * __struct_size() vs __member_size() must be captured here to avoid
491 * evaluating argument side-effects further into the macro layers.
492 */
493#ifndef CONFIG_KMSAN
494#define memset(p, c, s) __fortify_memset_chk(p, c, s,			\
495		__struct_size(p), __member_size(p))
496#endif
497
498/*
499 * To make sure the compiler can enforce protection against buffer overflows,
500 * memcpy(), memmove(), and memset() must not be used beyond individual
501 * struct members. If you need to copy across multiple members, please use
502 * struct_group() to create a named mirror of an anonymous struct union.
503 * (e.g. see struct sk_buff.) Read overflow checking is currently only
504 * done when a write overflow is also present, or when building with W=1.
505 *
506 * Mitigation coverage matrix
507 *					Bounds checking at:
508 *					+-------+-------+-------+-------+
509 *					| Compile time  |   Run time    |
510 * memcpy() argument sizes:		| write | read  | write | read  |
511 *        dest     source   length      +-------+-------+-------+-------+
512 * memcpy(known,   known,   constant)	|   y   |   y   |  n/a  |  n/a  |
513 * memcpy(known,   unknown, constant)	|   y   |   n   |  n/a  |   V   |
514 * memcpy(known,   known,   dynamic)	|   n   |   n   |   B   |   B   |
515 * memcpy(known,   unknown, dynamic)	|   n   |   n   |   B   |   V   |
516 * memcpy(unknown, known,   constant)	|   n   |   y   |   V   |  n/a  |
517 * memcpy(unknown, unknown, constant)	|   n   |   n   |   V   |   V   |
518 * memcpy(unknown, known,   dynamic)	|   n   |   n   |   V   |   B   |
519 * memcpy(unknown, unknown, dynamic)	|   n   |   n   |   V   |   V   |
520 *					+-------+-------+-------+-------+
521 *
522 * y = perform deterministic compile-time bounds checking
523 * n = cannot perform deterministic compile-time bounds checking
524 * n/a = no run-time bounds checking needed since compile-time deterministic
525 * B = can perform run-time bounds checking (currently unimplemented)
526 * V = vulnerable to run-time overflow (will need refactoring to solve)
527 *
528 */
529__FORTIFY_INLINE bool fortify_memcpy_chk(__kernel_size_t size,
530					 const size_t p_size,
531					 const size_t q_size,
532					 const size_t p_size_field,
533					 const size_t q_size_field,
534					 const u8 func)
535{
536	if (__builtin_constant_p(size)) {
537		/*
538		 * Length argument is a constant expression, so we
539		 * can perform compile-time bounds checking where
540		 * buffer sizes are also known at compile time.
541		 */
542
543		/* Error when size is larger than enclosing struct. */
544		if (__compiletime_lessthan(p_size_field, p_size) &&
545		    __compiletime_lessthan(p_size, size))
546			__write_overflow();
547		if (__compiletime_lessthan(q_size_field, q_size) &&
548		    __compiletime_lessthan(q_size, size))
549			__read_overflow2();
550
551		/* Warn when write size argument larger than dest field. */
552		if (__compiletime_lessthan(p_size_field, size))
553			__write_overflow_field(p_size_field, size);
554		/*
555		 * Warn for source field over-read when building with W=1
556		 * or when an over-write happened, so both can be fixed at
557		 * the same time.
558		 */
559		if ((IS_ENABLED(KBUILD_EXTRA_WARN1) ||
560		     __compiletime_lessthan(p_size_field, size)) &&
561		    __compiletime_lessthan(q_size_field, size))
562			__read_overflow2_field(q_size_field, size);
563	}
564	/*
565	 * At this point, length argument may not be a constant expression,
566	 * so run-time bounds checking can be done where buffer sizes are
567	 * known. (This is not an "else" because the above checks may only
568	 * be compile-time warnings, and we want to still warn for run-time
569	 * overflows.)
570	 */
571
572	/*
573	 * Always stop accesses beyond the struct that contains the
574	 * field, when the buffer's remaining size is known.
575	 * (The SIZE_MAX test is to optimize away checks where the buffer
576	 * lengths are unknown.)
577	 */
578	if (p_size != SIZE_MAX && p_size < size)
579		fortify_panic(func, FORTIFY_WRITE, p_size, size, true);
580	else if (q_size != SIZE_MAX && q_size < size)
581		fortify_panic(func, FORTIFY_READ, p_size, size, true);
582
583	/*
584	 * Warn when writing beyond destination field size.
585	 *
586	 * We must ignore p_size_field == 0 for existing 0-element
587	 * fake flexible arrays, until they are all converted to
588	 * proper flexible arrays.
589	 *
590	 * The implementation of __builtin_*object_size() behaves
591	 * like sizeof() when not directly referencing a flexible
592	 * array member, which means there will be many bounds checks
593	 * that will appear at run-time, without a way for them to be
594	 * detected at compile-time (as can be done when the destination
595	 * is specifically the flexible array member).
596	 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832
597	 */
598	if (p_size_field != 0 && p_size_field != SIZE_MAX &&
599	    p_size != p_size_field && p_size_field < size)
600		return true;
601
602	return false;
603}
604
605#define __fortify_memcpy_chk(p, q, size, p_size, q_size,		\
606			     p_size_field, q_size_field, op) ({		\
607	const size_t __fortify_size = (size_t)(size);			\
608	const size_t __p_size = (p_size);				\
609	const size_t __q_size = (q_size);				\
610	const size_t __p_size_field = (p_size_field);			\
611	const size_t __q_size_field = (q_size_field);			\
612	WARN_ONCE(fortify_memcpy_chk(__fortify_size, __p_size,		\
613				     __q_size, __p_size_field,		\
614				     __q_size_field, FORTIFY_FUNC_ ##op), \
615		  #op ": detected field-spanning write (size %zu) of single %s (size %zu)\n", \
616		  __fortify_size,					\
617		  "field \"" #p "\" at " FILE_LINE,			\
618		  __p_size_field);					\
619	__underlying_##op(p, q, __fortify_size);			\
620})
621
622/*
623 * Notes about compile-time buffer size detection:
624 *
625 * With these types...
626 *
627 *	struct middle {
628 *		u16 a;
629 *		u8 middle_buf[16];
630 *		int b;
631 *	};
632 *	struct end {
633 *		u16 a;
634 *		u8 end_buf[16];
635 *	};
636 *	struct flex {
637 *		int a;
638 *		u8 flex_buf[];
639 *	};
640 *
641 *	void func(TYPE *ptr) { ... }
642 *
643 * Cases where destination size cannot be currently detected:
644 * - the size of ptr's object (seemingly by design, gcc & clang fail):
645 *	__builtin_object_size(ptr, 1) == SIZE_MAX
646 * - the size of flexible arrays in ptr's obj (by design, dynamic size):
647 *	__builtin_object_size(ptr->flex_buf, 1) == SIZE_MAX
648 * - the size of ANY array at the end of ptr's obj (gcc and clang bug):
649 *	__builtin_object_size(ptr->end_buf, 1) == SIZE_MAX
650 *	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
651 *
652 * Cases where destination size is currently detected:
653 * - the size of non-array members within ptr's object:
654 *	__builtin_object_size(ptr->a, 1) == 2
655 * - the size of non-flexible-array in the middle of ptr's obj:
656 *	__builtin_object_size(ptr->middle_buf, 1) == 16
657 *
658 */
659
660/*
661 * __struct_size() vs __member_size() must be captured here to avoid
662 * evaluating argument side-effects further into the macro layers.
663 */
664#define memcpy(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
665		__struct_size(p), __struct_size(q),			\
666		__member_size(p), __member_size(q),			\
667		memcpy)
668#define memmove(p, q, s)  __fortify_memcpy_chk(p, q, s,			\
669		__struct_size(p), __struct_size(q),			\
670		__member_size(p), __member_size(q),			\
671		memmove)
672
673extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
674__FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
675{
676	const size_t p_size = __struct_size(p);
677
678	if (__compiletime_lessthan(p_size, size))
679		__read_overflow();
680	if (p_size < size)
681		fortify_panic(FORTIFY_FUNC_memscan, FORTIFY_READ, p_size, size, NULL);
682	return __real_memscan(p, c, size);
683}
684
685__FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
686int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
687{
688	const size_t p_size = __struct_size(p);
689	const size_t q_size = __struct_size(q);
690
691	if (__builtin_constant_p(size)) {
692		if (__compiletime_lessthan(p_size, size))
693			__read_overflow();
694		if (__compiletime_lessthan(q_size, size))
695			__read_overflow2();
696	}
697	if (p_size < size)
698		fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, p_size, size, INT_MIN);
699	else if (q_size < size)
700		fortify_panic(FORTIFY_FUNC_memcmp, FORTIFY_READ, q_size, size, INT_MIN);
701	return __underlying_memcmp(p, q, size);
702}
703
704__FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
705void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
706{
707	const size_t p_size = __struct_size(p);
708
709	if (__compiletime_lessthan(p_size, size))
710		__read_overflow();
711	if (p_size < size)
712		fortify_panic(FORTIFY_FUNC_memchr, FORTIFY_READ, p_size, size, NULL);
713	return __underlying_memchr(p, c, size);
714}
715
716void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
717__FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
718{
719	const size_t p_size = __struct_size(p);
720
721	if (__compiletime_lessthan(p_size, size))
722		__read_overflow();
723	if (p_size < size)
724		fortify_panic(FORTIFY_FUNC_memchr_inv, FORTIFY_READ, p_size, size, NULL);
725	return __real_memchr_inv(p, c, size);
726}
727
728extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup)
729								    __realloc_size(2);
730__FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp)
731{
732	const size_t p_size = __struct_size(p);
733
734	if (__compiletime_lessthan(p_size, size))
735		__read_overflow();
736	if (p_size < size)
737		fortify_panic(FORTIFY_FUNC_kmemdup, FORTIFY_READ, p_size, size, NULL);
738	return __real_kmemdup(p, size, gfp);
739}
740
741/**
742 * strcpy - Copy a string into another string buffer
743 *
744 * @p: pointer to destination of copy
745 * @q: pointer to NUL-terminated source string to copy
746 *
747 * Do not use this function. While FORTIFY_SOURCE tries to avoid
748 * overflows, this is only possible when the sizes of @q and @p are
749 * known to the compiler. Prefer strscpy(), though note its different
750 * return values for detecting truncation.
751 *
752 * Returns @p.
753 *
754 */
755/* Defined after fortified strlen to reuse it. */
756__FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
757char *strcpy(char * const POS p, const char * const POS q)
758{
759	const size_t p_size = __member_size(p);
760	const size_t q_size = __member_size(q);
761	size_t size;
762
763	/* If neither buffer size is known, immediately give up. */
764	if (__builtin_constant_p(p_size) &&
765	    __builtin_constant_p(q_size) &&
766	    p_size == SIZE_MAX && q_size == SIZE_MAX)
767		return __underlying_strcpy(p, q);
768	size = strlen(q) + 1;
769	/* Compile-time check for const size overflow. */
770	if (__compiletime_lessthan(p_size, size))
771		__write_overflow();
772	/* Run-time check for dynamic size overflow. */
773	if (p_size < size)
774		fortify_panic(FORTIFY_FUNC_strcpy, FORTIFY_WRITE, p_size, size, p);
775	__underlying_memcpy(p, q, size);
776	return p;
777}
778
779/* Don't use these outside the FORITFY_SOURCE implementation */
780#undef __underlying_memchr
781#undef __underlying_memcmp
782#undef __underlying_strcat
783#undef __underlying_strcpy
784#undef __underlying_strlen
785#undef __underlying_strncat
786#undef __underlying_strncpy
787
788#undef POS
789#undef POS0
790
791#endif /* _LINUX_FORTIFY_STRING_H_ */
792