1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5#ifndef LINUX_DMAENGINE_H
6#define LINUX_DMAENGINE_H
7
8#include <linux/device.h>
9#include <linux/err.h>
10#include <linux/uio.h>
11#include <linux/bug.h>
12#include <linux/scatterlist.h>
13#include <linux/bitmap.h>
14#include <linux/types.h>
15#include <asm/page.h>
16
17/**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22typedef s32 dma_cookie_t;
23#define DMA_MIN_COOKIE	1
24
25static inline int dma_submit_error(dma_cookie_t cookie)
26{
27	return cookie < 0 ? cookie : 0;
28}
29
30/**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37enum dma_status {
38	DMA_COMPLETE,
39	DMA_IN_PROGRESS,
40	DMA_PAUSED,
41	DMA_ERROR,
42	DMA_OUT_OF_ORDER,
43};
44
45/**
46 * enum dma_transaction_type - DMA transaction types/indexes
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49 * automatically set as dma devices are registered.
50 */
51enum dma_transaction_type {
52	DMA_MEMCPY,
53	DMA_XOR,
54	DMA_PQ,
55	DMA_XOR_VAL,
56	DMA_PQ_VAL,
57	DMA_MEMSET,
58	DMA_MEMSET_SG,
59	DMA_INTERRUPT,
60	DMA_PRIVATE,
61	DMA_ASYNC_TX,
62	DMA_SLAVE,
63	DMA_CYCLIC,
64	DMA_INTERLEAVE,
65	DMA_COMPLETION_NO_ORDER,
66	DMA_REPEAT,
67	DMA_LOAD_EOT,
68/* last transaction type for creation of the capabilities mask */
69	DMA_TX_TYPE_END,
70};
71
72/**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79enum dma_transfer_direction {
80	DMA_MEM_TO_MEM,
81	DMA_MEM_TO_DEV,
82	DMA_DEV_TO_MEM,
83	DMA_DEV_TO_DEV,
84	DMA_TRANS_NONE,
85};
86
87/**
88 * Interleaved Transfer Request
89 * ----------------------------
90 * A chunk is collection of contiguous bytes to be transferred.
91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92 * ICGs may or may not change between chunks.
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 *  that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 *  it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 *  type of transfer it is going to need during its lifetime and
100 *  set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 *    ==  Chunk size
107 *    ... ICG
108 */
109
110/**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 *	 chunk and before first src/dst address for next chunk.
116 *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 *	 chunk and before the first dst address for next chunk.
120 *	 Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 *	 chunk and before the first src address for next chunk.
123 *	 Ignored if src_inc is true and src_sgl is false.
124 */
125struct data_chunk {
126	size_t size;
127	size_t icg;
128	size_t dst_icg;
129	size_t src_icg;
130};
131
132/**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 *	 and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 *		Otherwise, source is read contiguously (icg ignored).
142 *		Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 *		Otherwise, destination is filled contiguously (icg ignored).
145 *		Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150struct dma_interleaved_template {
151	dma_addr_t src_start;
152	dma_addr_t dst_start;
153	enum dma_transfer_direction dir;
154	bool src_inc;
155	bool dst_inc;
156	bool src_sgl;
157	bool dst_sgl;
158	size_t numf;
159	size_t frame_size;
160	struct data_chunk sgl[];
161};
162
163/**
164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165 *  control completion, and communicate status.
166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167 *  this transaction
168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169 *  acknowledges receipt, i.e. has a chance to establish any dependency
170 *  chains
171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174 *  sources that were the result of a previous operation, in the case of a PQ
175 *  operation it continues the calculation with new sources
176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177 *  on the result of this operation
178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179 *  cleared or freed
180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181 *  data and the descriptor should be in different format from normal
182 *  data descriptors.
183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184 *  repeated when it ends until a transaction is issued on the same channel
185 *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186 *  interleaved transactions and is ignored for all other transaction types.
187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188 *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189 *  repeated transaction ends. Not setting this flag when the previously queued
190 *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191 *  to never be processed and stay in the issued queue forever. The flag is
192 *  ignored if the previous transaction is not a repeated transaction.
193 */
194enum dma_ctrl_flags {
195	DMA_PREP_INTERRUPT = (1 << 0),
196	DMA_CTRL_ACK = (1 << 1),
197	DMA_PREP_PQ_DISABLE_P = (1 << 2),
198	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199	DMA_PREP_CONTINUE = (1 << 4),
200	DMA_PREP_FENCE = (1 << 5),
201	DMA_CTRL_REUSE = (1 << 6),
202	DMA_PREP_CMD = (1 << 7),
203	DMA_PREP_REPEAT = (1 << 8),
204	DMA_PREP_LOAD_EOT = (1 << 9),
205};
206
207/**
208 * enum sum_check_bits - bit position of pq_check_flags
209 */
210enum sum_check_bits {
211	SUM_CHECK_P = 0,
212	SUM_CHECK_Q = 1,
213};
214
215/**
216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219 */
220enum sum_check_flags {
221	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223};
224
225
226/**
227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228 * See linux/cpumask.h
229 */
230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231
232/**
233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
235 *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
236 *  helper) to the descriptor.
237 *
238 * Client drivers interested to use this mode can follow:
239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
240 *   1. prepare the descriptor (dmaengine_prep_*)
241 *	construct the metadata in the client's buffer
242 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
243 *	descriptor
244 *   3. submit the transfer
245 * - DMA_DEV_TO_MEM:
246 *   1. prepare the descriptor (dmaengine_prep_*)
247 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
248 *	descriptor
249 *   3. submit the transfer
250 *   4. when the transfer is completed, the metadata should be available in the
251 *	attached buffer
252 *
253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
254 *  driver. The client driver can ask for the pointer, maximum size and the
255 *  currently used size of the metadata and can directly update or read it.
256 *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
257 *  provided as helper functions.
258 *
259 *  Note: the metadata area for the descriptor is no longer valid after the
260 *  transfer has been completed (valid up to the point when the completion
261 *  callback returns if used).
262 *
263 * Client drivers interested to use this mode can follow:
264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
265 *   1. prepare the descriptor (dmaengine_prep_*)
266 *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
267 *	metadata area
268 *   3. update the metadata at the pointer
269 *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
270 *	of data the client has placed into the metadata buffer
271 *   5. submit the transfer
272 * - DMA_DEV_TO_MEM:
273 *   1. prepare the descriptor (dmaengine_prep_*)
274 *   2. submit the transfer
275 *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
276 *	pointer to the engine's metadata area
277 *   4. Read out the metadata from the pointer
278 *
279 * Note: the two mode is not compatible and clients must use one mode for a
280 * descriptor.
281 */
282enum dma_desc_metadata_mode {
283	DESC_METADATA_NONE = 0,
284	DESC_METADATA_CLIENT = BIT(0),
285	DESC_METADATA_ENGINE = BIT(1),
286};
287
288/**
289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
290 * @memcpy_count: transaction counter
291 * @bytes_transferred: byte counter
292 */
293struct dma_chan_percpu {
294	/* stats */
295	unsigned long memcpy_count;
296	unsigned long bytes_transferred;
297};
298
299/**
300 * struct dma_router - DMA router structure
301 * @dev: pointer to the DMA router device
302 * @route_free: function to be called when the route can be disconnected
303 */
304struct dma_router {
305	struct device *dev;
306	void (*route_free)(struct device *dev, void *route_data);
307};
308
309/**
310 * struct dma_chan - devices supply DMA channels, clients use them
311 * @device: ptr to the dma device who supplies this channel, always !%NULL
312 * @slave: ptr to the device using this channel
313 * @cookie: last cookie value returned to client
314 * @completed_cookie: last completed cookie for this channel
315 * @chan_id: channel ID for sysfs
316 * @dev: class device for sysfs
317 * @name: backlink name for sysfs
318 * @dbg_client_name: slave name for debugfs in format:
319 *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
320 * @device_node: used to add this to the device chan list
321 * @local: per-cpu pointer to a struct dma_chan_percpu
322 * @client_count: how many clients are using this channel
323 * @table_count: number of appearances in the mem-to-mem allocation table
324 * @router: pointer to the DMA router structure
325 * @route_data: channel specific data for the router
326 * @private: private data for certain client-channel associations
327 */
328struct dma_chan {
329	struct dma_device *device;
330	struct device *slave;
331	dma_cookie_t cookie;
332	dma_cookie_t completed_cookie;
333
334	/* sysfs */
335	int chan_id;
336	struct dma_chan_dev *dev;
337	const char *name;
338#ifdef CONFIG_DEBUG_FS
339	char *dbg_client_name;
340#endif
341
342	struct list_head device_node;
343	struct dma_chan_percpu __percpu *local;
344	int client_count;
345	int table_count;
346
347	/* DMA router */
348	struct dma_router *router;
349	void *route_data;
350
351	void *private;
352};
353
354/**
355 * struct dma_chan_dev - relate sysfs device node to backing channel device
356 * @chan: driver channel device
357 * @device: sysfs device
358 * @dev_id: parent dma_device dev_id
359 * @chan_dma_dev: The channel is using custom/different dma-mapping
360 * compared to the parent dma_device
361 */
362struct dma_chan_dev {
363	struct dma_chan *chan;
364	struct device device;
365	int dev_id;
366	bool chan_dma_dev;
367};
368
369/**
370 * enum dma_slave_buswidth - defines bus width of the DMA slave
371 * device, source or target buses
372 */
373enum dma_slave_buswidth {
374	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
375	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
376	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
377	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
378	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
379	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
380	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
381	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
382	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
383	DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
384};
385
386/**
387 * struct dma_slave_config - dma slave channel runtime config
388 * @direction: whether the data shall go in or out on this slave
389 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
390 * legal values. DEPRECATED, drivers should use the direction argument
391 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
392 * the dir field in the dma_interleaved_template structure.
393 * @src_addr: this is the physical address where DMA slave data
394 * should be read (RX), if the source is memory this argument is
395 * ignored.
396 * @dst_addr: this is the physical address where DMA slave data
397 * should be written (TX), if the destination is memory this argument
398 * is ignored.
399 * @src_addr_width: this is the width in bytes of the source (RX)
400 * register where DMA data shall be read. If the source
401 * is memory this may be ignored depending on architecture.
402 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
403 * @dst_addr_width: same as src_addr_width but for destination
404 * target (TX) mutatis mutandis.
405 * @src_maxburst: the maximum number of words (note: words, as in
406 * units of the src_addr_width member, not bytes) that can be sent
407 * in one burst to the device. Typically something like half the
408 * FIFO depth on I/O peripherals so you don't overflow it. This
409 * may or may not be applicable on memory sources.
410 * @dst_maxburst: same as src_maxburst but for destination target
411 * mutatis mutandis.
412 * @src_port_window_size: The length of the register area in words the data need
413 * to be accessed on the device side. It is only used for devices which is using
414 * an area instead of a single register to receive the data. Typically the DMA
415 * loops in this area in order to transfer the data.
416 * @dst_port_window_size: same as src_port_window_size but for the destination
417 * port.
418 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
419 * with 'true' if peripheral should be flow controller. Direction will be
420 * selected at Runtime.
421 * @peripheral_config: peripheral configuration for programming peripheral
422 * for dmaengine transfer
423 * @peripheral_size: peripheral configuration buffer size
424 *
425 * This struct is passed in as configuration data to a DMA engine
426 * in order to set up a certain channel for DMA transport at runtime.
427 * The DMA device/engine has to provide support for an additional
428 * callback in the dma_device structure, device_config and this struct
429 * will then be passed in as an argument to the function.
430 *
431 * The rationale for adding configuration information to this struct is as
432 * follows: if it is likely that more than one DMA slave controllers in
433 * the world will support the configuration option, then make it generic.
434 * If not: if it is fixed so that it be sent in static from the platform
435 * data, then prefer to do that.
436 */
437struct dma_slave_config {
438	enum dma_transfer_direction direction;
439	phys_addr_t src_addr;
440	phys_addr_t dst_addr;
441	enum dma_slave_buswidth src_addr_width;
442	enum dma_slave_buswidth dst_addr_width;
443	u32 src_maxburst;
444	u32 dst_maxburst;
445	u32 src_port_window_size;
446	u32 dst_port_window_size;
447	bool device_fc;
448	void *peripheral_config;
449	size_t peripheral_size;
450};
451
452/**
453 * enum dma_residue_granularity - Granularity of the reported transfer residue
454 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
455 *  DMA channel is only able to tell whether a descriptor has been completed or
456 *  not, which means residue reporting is not supported by this channel. The
457 *  residue field of the dma_tx_state field will always be 0.
458 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
459 *  completed segment of the transfer (For cyclic transfers this is after each
460 *  period). This is typically implemented by having the hardware generate an
461 *  interrupt after each transferred segment and then the drivers updates the
462 *  outstanding residue by the size of the segment. Another possibility is if
463 *  the hardware supports scatter-gather and the segment descriptor has a field
464 *  which gets set after the segment has been completed. The driver then counts
465 *  the number of segments without the flag set to compute the residue.
466 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
467 *  burst. This is typically only supported if the hardware has a progress
468 *  register of some sort (E.g. a register with the current read/write address
469 *  or a register with the amount of bursts/beats/bytes that have been
470 *  transferred or still need to be transferred).
471 */
472enum dma_residue_granularity {
473	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
474	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
475	DMA_RESIDUE_GRANULARITY_BURST = 2,
476};
477
478/**
479 * struct dma_slave_caps - expose capabilities of a slave channel only
480 * @src_addr_widths: bit mask of src addr widths the channel supports.
481 *	Width is specified in bytes, e.g. for a channel supporting
482 *	a width of 4 the mask should have BIT(4) set.
483 * @dst_addr_widths: bit mask of dst addr widths the channel supports
484 * @directions: bit mask of slave directions the channel supports.
485 *	Since the enum dma_transfer_direction is not defined as bit flag for
486 *	each type, the dma controller should set BIT(<TYPE>) and same
487 *	should be checked by controller as well
488 * @min_burst: min burst capability per-transfer
489 * @max_burst: max burst capability per-transfer
490 * @max_sg_burst: max number of SG list entries executed in a single burst
491 *	DMA tansaction with no software intervention for reinitialization.
492 *	Zero value means unlimited number of entries.
493 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
494 *	       for resume later)
495 * @cmd_resume: true, if resume is supported
496 * @cmd_terminate: true, if terminate cmd is supported
497 * @residue_granularity: granularity of the reported transfer residue
498 * @descriptor_reuse: if a descriptor can be reused by client and
499 * resubmitted multiple times
500 */
501struct dma_slave_caps {
502	u32 src_addr_widths;
503	u32 dst_addr_widths;
504	u32 directions;
505	u32 min_burst;
506	u32 max_burst;
507	u32 max_sg_burst;
508	bool cmd_pause;
509	bool cmd_resume;
510	bool cmd_terminate;
511	enum dma_residue_granularity residue_granularity;
512	bool descriptor_reuse;
513};
514
515static inline const char *dma_chan_name(struct dma_chan *chan)
516{
517	return dev_name(&chan->dev->device);
518}
519
520/**
521 * typedef dma_filter_fn - callback filter for dma_request_channel
522 * @chan: channel to be reviewed
523 * @filter_param: opaque parameter passed through dma_request_channel
524 *
525 * When this optional parameter is specified in a call to dma_request_channel a
526 * suitable channel is passed to this routine for further dispositioning before
527 * being returned.  Where 'suitable' indicates a non-busy channel that
528 * satisfies the given capability mask.  It returns 'true' to indicate that the
529 * channel is suitable.
530 */
531typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
532
533typedef void (*dma_async_tx_callback)(void *dma_async_param);
534
535enum dmaengine_tx_result {
536	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
537	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
538	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
539	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
540};
541
542struct dmaengine_result {
543	enum dmaengine_tx_result result;
544	u32 residue;
545};
546
547typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
548				const struct dmaengine_result *result);
549
550struct dmaengine_unmap_data {
551#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
552	u16 map_cnt;
553#else
554	u8 map_cnt;
555#endif
556	u8 to_cnt;
557	u8 from_cnt;
558	u8 bidi_cnt;
559	struct device *dev;
560	struct kref kref;
561	size_t len;
562	dma_addr_t addr[];
563};
564
565struct dma_async_tx_descriptor;
566
567struct dma_descriptor_metadata_ops {
568	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
569		      size_t len);
570
571	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
572			 size_t *payload_len, size_t *max_len);
573	int (*set_len)(struct dma_async_tx_descriptor *desc,
574		       size_t payload_len);
575};
576
577/**
578 * struct dma_async_tx_descriptor - async transaction descriptor
579 * ---dma generic offload fields---
580 * @cookie: tracking cookie for this transaction, set to -EBUSY if
581 *	this tx is sitting on a dependency list
582 * @flags: flags to augment operation preparation, control completion, and
583 *	communicate status
584 * @phys: physical address of the descriptor
585 * @chan: target channel for this operation
586 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
587 * descriptor pending. To be pushed on .issue_pending() call
588 * @callback: routine to call after this operation is complete
589 * @callback_param: general parameter to pass to the callback routine
590 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
591 *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
592 *	DESC_METADATA_NONE
593 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
594 *	DMA driver if metadata mode is supported with the descriptor
595 * ---async_tx api specific fields---
596 * @next: at completion submit this descriptor
597 * @parent: pointer to the next level up in the dependency chain
598 * @lock: protect the parent and next pointers
599 */
600struct dma_async_tx_descriptor {
601	dma_cookie_t cookie;
602	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
603	dma_addr_t phys;
604	struct dma_chan *chan;
605	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
606	int (*desc_free)(struct dma_async_tx_descriptor *tx);
607	dma_async_tx_callback callback;
608	dma_async_tx_callback_result callback_result;
609	void *callback_param;
610	struct dmaengine_unmap_data *unmap;
611	enum dma_desc_metadata_mode desc_metadata_mode;
612	struct dma_descriptor_metadata_ops *metadata_ops;
613#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
614	struct dma_async_tx_descriptor *next;
615	struct dma_async_tx_descriptor *parent;
616	spinlock_t lock;
617#endif
618};
619
620#ifdef CONFIG_DMA_ENGINE
621static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
622				 struct dmaengine_unmap_data *unmap)
623{
624	kref_get(&unmap->kref);
625	tx->unmap = unmap;
626}
627
628struct dmaengine_unmap_data *
629dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
630void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
631#else
632static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
633				 struct dmaengine_unmap_data *unmap)
634{
635}
636static inline struct dmaengine_unmap_data *
637dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
638{
639	return NULL;
640}
641static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
642{
643}
644#endif
645
646static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
647{
648	if (!tx->unmap)
649		return;
650
651	dmaengine_unmap_put(tx->unmap);
652	tx->unmap = NULL;
653}
654
655#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
656static inline void txd_lock(struct dma_async_tx_descriptor *txd)
657{
658}
659static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
660{
661}
662static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
663{
664	BUG();
665}
666static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
667{
668}
669static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
670{
671}
672static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
673{
674	return NULL;
675}
676static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
677{
678	return NULL;
679}
680
681#else
682static inline void txd_lock(struct dma_async_tx_descriptor *txd)
683{
684	spin_lock_bh(&txd->lock);
685}
686static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
687{
688	spin_unlock_bh(&txd->lock);
689}
690static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
691{
692	txd->next = next;
693	next->parent = txd;
694}
695static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
696{
697	txd->parent = NULL;
698}
699static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
700{
701	txd->next = NULL;
702}
703static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
704{
705	return txd->parent;
706}
707static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
708{
709	return txd->next;
710}
711#endif
712
713/**
714 * struct dma_tx_state - filled in to report the status of
715 * a transfer.
716 * @last: last completed DMA cookie
717 * @used: last issued DMA cookie (i.e. the one in progress)
718 * @residue: the remaining number of bytes left to transmit
719 *	on the selected transfer for states DMA_IN_PROGRESS and
720 *	DMA_PAUSED if this is implemented in the driver, else 0
721 * @in_flight_bytes: amount of data in bytes cached by the DMA.
722 */
723struct dma_tx_state {
724	dma_cookie_t last;
725	dma_cookie_t used;
726	u32 residue;
727	u32 in_flight_bytes;
728};
729
730/**
731 * enum dmaengine_alignment - defines alignment of the DMA async tx
732 * buffers
733 */
734enum dmaengine_alignment {
735	DMAENGINE_ALIGN_1_BYTE = 0,
736	DMAENGINE_ALIGN_2_BYTES = 1,
737	DMAENGINE_ALIGN_4_BYTES = 2,
738	DMAENGINE_ALIGN_8_BYTES = 3,
739	DMAENGINE_ALIGN_16_BYTES = 4,
740	DMAENGINE_ALIGN_32_BYTES = 5,
741	DMAENGINE_ALIGN_64_BYTES = 6,
742	DMAENGINE_ALIGN_128_BYTES = 7,
743	DMAENGINE_ALIGN_256_BYTES = 8,
744};
745
746/**
747 * struct dma_slave_map - associates slave device and it's slave channel with
748 * parameter to be used by a filter function
749 * @devname: name of the device
750 * @slave: slave channel name
751 * @param: opaque parameter to pass to struct dma_filter.fn
752 */
753struct dma_slave_map {
754	const char *devname;
755	const char *slave;
756	void *param;
757};
758
759/**
760 * struct dma_filter - information for slave device/channel to filter_fn/param
761 * mapping
762 * @fn: filter function callback
763 * @mapcnt: number of slave device/channel in the map
764 * @map: array of channel to filter mapping data
765 */
766struct dma_filter {
767	dma_filter_fn fn;
768	int mapcnt;
769	const struct dma_slave_map *map;
770};
771
772/**
773 * struct dma_device - info on the entity supplying DMA services
774 * @ref: reference is taken and put every time a channel is allocated or freed
775 * @chancnt: how many DMA channels are supported
776 * @privatecnt: how many DMA channels are requested by dma_request_channel
777 * @channels: the list of struct dma_chan
778 * @global_node: list_head for global dma_device_list
779 * @filter: information for device/slave to filter function/param mapping
780 * @cap_mask: one or more dma_capability flags
781 * @desc_metadata_modes: supported metadata modes by the DMA device
782 * @max_xor: maximum number of xor sources, 0 if no capability
783 * @max_pq: maximum number of PQ sources and PQ-continue capability
784 * @copy_align: alignment shift for memcpy operations
785 * @xor_align: alignment shift for xor operations
786 * @pq_align: alignment shift for pq operations
787 * @fill_align: alignment shift for memset operations
788 * @dev_id: unique device ID
789 * @dev: struct device reference for dma mapping api
790 * @owner: owner module (automatically set based on the provided dev)
791 * @chan_ida: unique channel ID
792 * @src_addr_widths: bit mask of src addr widths the device supports
793 *	Width is specified in bytes, e.g. for a device supporting
794 *	a width of 4 the mask should have BIT(4) set.
795 * @dst_addr_widths: bit mask of dst addr widths the device supports
796 * @directions: bit mask of slave directions the device supports.
797 *	Since the enum dma_transfer_direction is not defined as bit flag for
798 *	each type, the dma controller should set BIT(<TYPE>) and same
799 *	should be checked by controller as well
800 * @min_burst: min burst capability per-transfer
801 * @max_burst: max burst capability per-transfer
802 * @max_sg_burst: max number of SG list entries executed in a single burst
803 *	DMA tansaction with no software intervention for reinitialization.
804 *	Zero value means unlimited number of entries.
805 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
806 * @residue_granularity: granularity of the transfer residue reported
807 *	by tx_status
808 * @device_alloc_chan_resources: allocate resources and return the
809 *	number of allocated descriptors
810 * @device_router_config: optional callback for DMA router configuration
811 * @device_free_chan_resources: release DMA channel's resources
812 * @device_prep_dma_memcpy: prepares a memcpy operation
813 * @device_prep_dma_xor: prepares a xor operation
814 * @device_prep_dma_xor_val: prepares a xor validation operation
815 * @device_prep_dma_pq: prepares a pq operation
816 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
817 * @device_prep_dma_memset: prepares a memset operation
818 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
819 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
820 * @device_prep_slave_sg: prepares a slave dma operation
821 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
822 *	The function takes a buffer of size buf_len. The callback function will
823 *	be called after period_len bytes have been transferred.
824 * @device_prep_interleaved_dma: Transfer expression in a generic way.
825 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
826 * @device_caps: May be used to override the generic DMA slave capabilities
827 *	with per-channel specific ones
828 * @device_config: Pushes a new configuration to a channel, return 0 or an error
829 *	code
830 * @device_pause: Pauses any transfer happening on a channel. Returns
831 *	0 or an error code
832 * @device_resume: Resumes any transfer on a channel previously
833 *	paused. Returns 0 or an error code
834 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
835 *	or an error code
836 * @device_synchronize: Synchronizes the termination of a transfers to the
837 *  current context.
838 * @device_tx_status: poll for transaction completion, the optional
839 *	txstate parameter can be supplied with a pointer to get a
840 *	struct with auxiliary transfer status information, otherwise the call
841 *	will just return a simple status code
842 * @device_issue_pending: push pending transactions to hardware
843 * @device_release: called sometime atfer dma_async_device_unregister() is
844 *     called and there are no further references to this structure. This
845 *     must be implemented to free resources however many existing drivers
846 *     do not and are therefore not safe to unbind while in use.
847 * @dbg_summary_show: optional routine to show contents in debugfs; default code
848 *     will be used when this is omitted, but custom code can show extra,
849 *     controller specific information.
850 * @dbg_dev_root: the root folder in debugfs for this device
851 */
852struct dma_device {
853	struct kref ref;
854	unsigned int chancnt;
855	unsigned int privatecnt;
856	struct list_head channels;
857	struct list_head global_node;
858	struct dma_filter filter;
859	dma_cap_mask_t cap_mask;
860	enum dma_desc_metadata_mode desc_metadata_modes;
861	unsigned short max_xor;
862	unsigned short max_pq;
863	enum dmaengine_alignment copy_align;
864	enum dmaengine_alignment xor_align;
865	enum dmaengine_alignment pq_align;
866	enum dmaengine_alignment fill_align;
867	#define DMA_HAS_PQ_CONTINUE (1 << 15)
868
869	int dev_id;
870	struct device *dev;
871	struct module *owner;
872	struct ida chan_ida;
873
874	u32 src_addr_widths;
875	u32 dst_addr_widths;
876	u32 directions;
877	u32 min_burst;
878	u32 max_burst;
879	u32 max_sg_burst;
880	bool descriptor_reuse;
881	enum dma_residue_granularity residue_granularity;
882
883	int (*device_alloc_chan_resources)(struct dma_chan *chan);
884	int (*device_router_config)(struct dma_chan *chan);
885	void (*device_free_chan_resources)(struct dma_chan *chan);
886
887	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
888		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
889		size_t len, unsigned long flags);
890	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
891		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
892		unsigned int src_cnt, size_t len, unsigned long flags);
893	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
894		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
895		size_t len, enum sum_check_flags *result, unsigned long flags);
896	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
897		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
898		unsigned int src_cnt, const unsigned char *scf,
899		size_t len, unsigned long flags);
900	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
901		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
902		unsigned int src_cnt, const unsigned char *scf, size_t len,
903		enum sum_check_flags *pqres, unsigned long flags);
904	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
905		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
906		unsigned long flags);
907	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
908		struct dma_chan *chan, struct scatterlist *sg,
909		unsigned int nents, int value, unsigned long flags);
910	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
911		struct dma_chan *chan, unsigned long flags);
912
913	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
914		struct dma_chan *chan, struct scatterlist *sgl,
915		unsigned int sg_len, enum dma_transfer_direction direction,
916		unsigned long flags, void *context);
917	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
918		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
919		size_t period_len, enum dma_transfer_direction direction,
920		unsigned long flags);
921	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
922		struct dma_chan *chan, struct dma_interleaved_template *xt,
923		unsigned long flags);
924	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
925		struct dma_chan *chan, dma_addr_t dst, u64 data,
926		unsigned long flags);
927
928	void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
929	int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config);
930	int (*device_pause)(struct dma_chan *chan);
931	int (*device_resume)(struct dma_chan *chan);
932	int (*device_terminate_all)(struct dma_chan *chan);
933	void (*device_synchronize)(struct dma_chan *chan);
934
935	enum dma_status (*device_tx_status)(struct dma_chan *chan,
936					    dma_cookie_t cookie,
937					    struct dma_tx_state *txstate);
938	void (*device_issue_pending)(struct dma_chan *chan);
939	void (*device_release)(struct dma_device *dev);
940	/* debugfs support */
941	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
942	struct dentry *dbg_dev_root;
943};
944
945static inline int dmaengine_slave_config(struct dma_chan *chan,
946					  struct dma_slave_config *config)
947{
948	if (chan->device->device_config)
949		return chan->device->device_config(chan, config);
950
951	return -ENOSYS;
952}
953
954static inline bool is_slave_direction(enum dma_transfer_direction direction)
955{
956	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) ||
957	       (direction == DMA_DEV_TO_DEV);
958}
959
960static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
961	struct dma_chan *chan, dma_addr_t buf, size_t len,
962	enum dma_transfer_direction dir, unsigned long flags)
963{
964	struct scatterlist sg;
965	sg_init_table(&sg, 1);
966	sg_dma_address(&sg) = buf;
967	sg_dma_len(&sg) = len;
968
969	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
970		return NULL;
971
972	return chan->device->device_prep_slave_sg(chan, &sg, 1,
973						  dir, flags, NULL);
974}
975
976static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
977	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
978	enum dma_transfer_direction dir, unsigned long flags)
979{
980	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
981		return NULL;
982
983	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
984						  dir, flags, NULL);
985}
986
987#ifdef CONFIG_RAPIDIO_DMA_ENGINE
988struct rio_dma_ext;
989static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
990	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
991	enum dma_transfer_direction dir, unsigned long flags,
992	struct rio_dma_ext *rio_ext)
993{
994	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
995		return NULL;
996
997	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
998						  dir, flags, rio_ext);
999}
1000#endif
1001
1002static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1003		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1004		size_t period_len, enum dma_transfer_direction dir,
1005		unsigned long flags)
1006{
1007	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1008		return NULL;
1009
1010	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1011						period_len, dir, flags);
1012}
1013
1014static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1015		struct dma_chan *chan, struct dma_interleaved_template *xt,
1016		unsigned long flags)
1017{
1018	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1019		return NULL;
1020	if (flags & DMA_PREP_REPEAT &&
1021	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1022		return NULL;
1023
1024	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1025}
1026
1027/**
1028 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
1029 * @chan: The channel to be used for this descriptor
1030 * @dest: Address of buffer to be set
1031 * @value: Treated as a single byte value that fills the destination buffer
1032 * @len: The total size of dest
1033 * @flags: DMA engine flags
1034 */
1035static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1036		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1037		unsigned long flags)
1038{
1039	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1040		return NULL;
1041
1042	return chan->device->device_prep_dma_memset(chan, dest, value,
1043						    len, flags);
1044}
1045
1046static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1047		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1048		size_t len, unsigned long flags)
1049{
1050	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1051		return NULL;
1052
1053	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1054						    len, flags);
1055}
1056
1057static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1058		enum dma_desc_metadata_mode mode)
1059{
1060	if (!chan)
1061		return false;
1062
1063	return !!(chan->device->desc_metadata_modes & mode);
1064}
1065
1066#ifdef CONFIG_DMA_ENGINE
1067int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1068				   void *data, size_t len);
1069void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1070				      size_t *payload_len, size_t *max_len);
1071int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1072				    size_t payload_len);
1073#else /* CONFIG_DMA_ENGINE */
1074static inline int dmaengine_desc_attach_metadata(
1075		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1076{
1077	return -EINVAL;
1078}
1079static inline void *dmaengine_desc_get_metadata_ptr(
1080		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1081		size_t *max_len)
1082{
1083	return NULL;
1084}
1085static inline int dmaengine_desc_set_metadata_len(
1086		struct dma_async_tx_descriptor *desc, size_t payload_len)
1087{
1088	return -EINVAL;
1089}
1090#endif /* CONFIG_DMA_ENGINE */
1091
1092/**
1093 * dmaengine_terminate_all() - Terminate all active DMA transfers
1094 * @chan: The channel for which to terminate the transfers
1095 *
1096 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1097 * dmaengine_terminate_async() instead.
1098 */
1099static inline int dmaengine_terminate_all(struct dma_chan *chan)
1100{
1101	if (chan->device->device_terminate_all)
1102		return chan->device->device_terminate_all(chan);
1103
1104	return -ENOSYS;
1105}
1106
1107/**
1108 * dmaengine_terminate_async() - Terminate all active DMA transfers
1109 * @chan: The channel for which to terminate the transfers
1110 *
1111 * Calling this function will terminate all active and pending descriptors
1112 * that have previously been submitted to the channel. It is not guaranteed
1113 * though that the transfer for the active descriptor has stopped when the
1114 * function returns. Furthermore it is possible the complete callback of a
1115 * submitted transfer is still running when this function returns.
1116 *
1117 * dmaengine_synchronize() needs to be called before it is safe to free
1118 * any memory that is accessed by previously submitted descriptors or before
1119 * freeing any resources accessed from within the completion callback of any
1120 * previously submitted descriptors.
1121 *
1122 * This function can be called from atomic context as well as from within a
1123 * complete callback of a descriptor submitted on the same channel.
1124 *
1125 * If none of the two conditions above apply consider using
1126 * dmaengine_terminate_sync() instead.
1127 */
1128static inline int dmaengine_terminate_async(struct dma_chan *chan)
1129{
1130	if (chan->device->device_terminate_all)
1131		return chan->device->device_terminate_all(chan);
1132
1133	return -EINVAL;
1134}
1135
1136/**
1137 * dmaengine_synchronize() - Synchronize DMA channel termination
1138 * @chan: The channel to synchronize
1139 *
1140 * Synchronizes to the DMA channel termination to the current context. When this
1141 * function returns it is guaranteed that all transfers for previously issued
1142 * descriptors have stopped and it is safe to free the memory associated
1143 * with them. Furthermore it is guaranteed that all complete callback functions
1144 * for a previously submitted descriptor have finished running and it is safe to
1145 * free resources accessed from within the complete callbacks.
1146 *
1147 * The behavior of this function is undefined if dma_async_issue_pending() has
1148 * been called between dmaengine_terminate_async() and this function.
1149 *
1150 * This function must only be called from non-atomic context and must not be
1151 * called from within a complete callback of a descriptor submitted on the same
1152 * channel.
1153 */
1154static inline void dmaengine_synchronize(struct dma_chan *chan)
1155{
1156	might_sleep();
1157
1158	if (chan->device->device_synchronize)
1159		chan->device->device_synchronize(chan);
1160}
1161
1162/**
1163 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1164 * @chan: The channel for which to terminate the transfers
1165 *
1166 * Calling this function will terminate all active and pending transfers
1167 * that have previously been submitted to the channel. It is similar to
1168 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1169 * stopped and that all complete callbacks have finished running when the
1170 * function returns.
1171 *
1172 * This function must only be called from non-atomic context and must not be
1173 * called from within a complete callback of a descriptor submitted on the same
1174 * channel.
1175 */
1176static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1177{
1178	int ret;
1179
1180	ret = dmaengine_terminate_async(chan);
1181	if (ret)
1182		return ret;
1183
1184	dmaengine_synchronize(chan);
1185
1186	return 0;
1187}
1188
1189static inline int dmaengine_pause(struct dma_chan *chan)
1190{
1191	if (chan->device->device_pause)
1192		return chan->device->device_pause(chan);
1193
1194	return -ENOSYS;
1195}
1196
1197static inline int dmaengine_resume(struct dma_chan *chan)
1198{
1199	if (chan->device->device_resume)
1200		return chan->device->device_resume(chan);
1201
1202	return -ENOSYS;
1203}
1204
1205static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1206	dma_cookie_t cookie, struct dma_tx_state *state)
1207{
1208	return chan->device->device_tx_status(chan, cookie, state);
1209}
1210
1211static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1212{
1213	return desc->tx_submit(desc);
1214}
1215
1216static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1217					 size_t off1, size_t off2, size_t len)
1218{
1219	return !(((1 << align) - 1) & (off1 | off2 | len));
1220}
1221
1222static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1223				       size_t off2, size_t len)
1224{
1225	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1226}
1227
1228static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1229				      size_t off2, size_t len)
1230{
1231	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1232}
1233
1234static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1235				     size_t off2, size_t len)
1236{
1237	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1238}
1239
1240static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1241				       size_t off2, size_t len)
1242{
1243	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1244}
1245
1246static inline void
1247dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1248{
1249	dma->max_pq = maxpq;
1250	if (has_pq_continue)
1251		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1252}
1253
1254static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1255{
1256	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1257}
1258
1259static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1260{
1261	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1262
1263	return (flags & mask) == mask;
1264}
1265
1266static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1267{
1268	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1269}
1270
1271static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1272{
1273	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1274}
1275
1276/* dma_maxpq - reduce maxpq in the face of continued operations
1277 * @dma - dma device with PQ capability
1278 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1279 *
1280 * When an engine does not support native continuation we need 3 extra
1281 * source slots to reuse P and Q with the following coefficients:
1282 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1283 * 2/ {01} * Q : use Q to continue Q' calculation
1284 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1285 *
1286 * In the case where P is disabled we only need 1 extra source:
1287 * 1/ {01} * Q : use Q to continue Q' calculation
1288 */
1289static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1290{
1291	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1292		return dma_dev_to_maxpq(dma);
1293	if (dmaf_p_disabled_continue(flags))
1294		return dma_dev_to_maxpq(dma) - 1;
1295	if (dmaf_continue(flags))
1296		return dma_dev_to_maxpq(dma) - 3;
1297	BUG();
1298}
1299
1300static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1301				      size_t dir_icg)
1302{
1303	if (inc) {
1304		if (dir_icg)
1305			return dir_icg;
1306		if (sgl)
1307			return icg;
1308	}
1309
1310	return 0;
1311}
1312
1313static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1314					   struct data_chunk *chunk)
1315{
1316	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1317				 chunk->icg, chunk->dst_icg);
1318}
1319
1320static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1321					   struct data_chunk *chunk)
1322{
1323	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1324				 chunk->icg, chunk->src_icg);
1325}
1326
1327/* --- public DMA engine API --- */
1328
1329#ifdef CONFIG_DMA_ENGINE
1330void dmaengine_get(void);
1331void dmaengine_put(void);
1332#else
1333static inline void dmaengine_get(void)
1334{
1335}
1336static inline void dmaengine_put(void)
1337{
1338}
1339#endif
1340
1341#ifdef CONFIG_ASYNC_TX_DMA
1342#define async_dmaengine_get()	dmaengine_get()
1343#define async_dmaengine_put()	dmaengine_put()
1344#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1345#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1346#else
1347#define async_dma_find_channel(type) dma_find_channel(type)
1348#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1349#else
1350static inline void async_dmaengine_get(void)
1351{
1352}
1353static inline void async_dmaengine_put(void)
1354{
1355}
1356static inline struct dma_chan *
1357async_dma_find_channel(enum dma_transaction_type type)
1358{
1359	return NULL;
1360}
1361#endif /* CONFIG_ASYNC_TX_DMA */
1362void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1363				  struct dma_chan *chan);
1364
1365static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1366{
1367	tx->flags |= DMA_CTRL_ACK;
1368}
1369
1370static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1371{
1372	tx->flags &= ~DMA_CTRL_ACK;
1373}
1374
1375static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1376{
1377	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1378}
1379
1380#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1381static inline void
1382__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1383{
1384	set_bit(tx_type, dstp->bits);
1385}
1386
1387#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1388static inline void
1389__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1390{
1391	clear_bit(tx_type, dstp->bits);
1392}
1393
1394#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1395static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1396{
1397	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1398}
1399
1400#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1401static inline int
1402__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1403{
1404	return test_bit(tx_type, srcp->bits);
1405}
1406
1407#define for_each_dma_cap_mask(cap, mask) \
1408	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1409
1410/**
1411 * dma_async_issue_pending - flush pending transactions to HW
1412 * @chan: target DMA channel
1413 *
1414 * This allows drivers to push copies to HW in batches,
1415 * reducing MMIO writes where possible.
1416 */
1417static inline void dma_async_issue_pending(struct dma_chan *chan)
1418{
1419	chan->device->device_issue_pending(chan);
1420}
1421
1422/**
1423 * dma_async_is_tx_complete - poll for transaction completion
1424 * @chan: DMA channel
1425 * @cookie: transaction identifier to check status of
1426 * @last: returns last completed cookie, can be NULL
1427 * @used: returns last issued cookie, can be NULL
1428 *
1429 * If @last and @used are passed in, upon return they reflect the driver
1430 * internal state and can be used with dma_async_is_complete() to check
1431 * the status of multiple cookies without re-checking hardware state.
1432 */
1433static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1434	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1435{
1436	struct dma_tx_state state;
1437	enum dma_status status;
1438
1439	status = chan->device->device_tx_status(chan, cookie, &state);
1440	if (last)
1441		*last = state.last;
1442	if (used)
1443		*used = state.used;
1444	return status;
1445}
1446
1447/**
1448 * dma_async_is_complete - test a cookie against chan state
1449 * @cookie: transaction identifier to test status of
1450 * @last_complete: last know completed transaction
1451 * @last_used: last cookie value handed out
1452 *
1453 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1454 * the test logic is separated for lightweight testing of multiple cookies
1455 */
1456static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1457			dma_cookie_t last_complete, dma_cookie_t last_used)
1458{
1459	if (last_complete <= last_used) {
1460		if ((cookie <= last_complete) || (cookie > last_used))
1461			return DMA_COMPLETE;
1462	} else {
1463		if ((cookie <= last_complete) && (cookie > last_used))
1464			return DMA_COMPLETE;
1465	}
1466	return DMA_IN_PROGRESS;
1467}
1468
1469static inline void
1470dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1471{
1472	if (!st)
1473		return;
1474
1475	st->last = last;
1476	st->used = used;
1477	st->residue = residue;
1478}
1479
1480#ifdef CONFIG_DMA_ENGINE
1481struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1482enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1483enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1484void dma_issue_pending_all(void);
1485struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1486				       dma_filter_fn fn, void *fn_param,
1487				       struct device_node *np);
1488
1489struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1490struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1491
1492void dma_release_channel(struct dma_chan *chan);
1493int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1494#else
1495static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1496{
1497	return NULL;
1498}
1499static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1500{
1501	return DMA_COMPLETE;
1502}
1503static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1504{
1505	return DMA_COMPLETE;
1506}
1507static inline void dma_issue_pending_all(void)
1508{
1509}
1510static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1511						     dma_filter_fn fn,
1512						     void *fn_param,
1513						     struct device_node *np)
1514{
1515	return NULL;
1516}
1517static inline struct dma_chan *dma_request_chan(struct device *dev,
1518						const char *name)
1519{
1520	return ERR_PTR(-ENODEV);
1521}
1522static inline struct dma_chan *dma_request_chan_by_mask(
1523						const dma_cap_mask_t *mask)
1524{
1525	return ERR_PTR(-ENODEV);
1526}
1527static inline void dma_release_channel(struct dma_chan *chan)
1528{
1529}
1530static inline int dma_get_slave_caps(struct dma_chan *chan,
1531				     struct dma_slave_caps *caps)
1532{
1533	return -ENXIO;
1534}
1535#endif
1536
1537static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1538{
1539	struct dma_slave_caps caps;
1540	int ret;
1541
1542	ret = dma_get_slave_caps(tx->chan, &caps);
1543	if (ret)
1544		return ret;
1545
1546	if (!caps.descriptor_reuse)
1547		return -EPERM;
1548
1549	tx->flags |= DMA_CTRL_REUSE;
1550	return 0;
1551}
1552
1553static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1554{
1555	tx->flags &= ~DMA_CTRL_REUSE;
1556}
1557
1558static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1559{
1560	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1561}
1562
1563static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1564{
1565	/* this is supported for reusable desc, so check that */
1566	if (!dmaengine_desc_test_reuse(desc))
1567		return -EPERM;
1568
1569	return desc->desc_free(desc);
1570}
1571
1572/* --- DMA device --- */
1573
1574int dma_async_device_register(struct dma_device *device);
1575int dmaenginem_async_device_register(struct dma_device *device);
1576void dma_async_device_unregister(struct dma_device *device);
1577int dma_async_device_channel_register(struct dma_device *device,
1578				      struct dma_chan *chan);
1579void dma_async_device_channel_unregister(struct dma_device *device,
1580					 struct dma_chan *chan);
1581void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1582#define dma_request_channel(mask, x, y) \
1583	__dma_request_channel(&(mask), x, y, NULL)
1584
1585/* Deprecated, please use dma_request_chan() directly */
1586static inline struct dma_chan * __deprecated
1587dma_request_slave_channel(struct device *dev, const char *name)
1588{
1589	struct dma_chan *ch = dma_request_chan(dev, name);
1590
1591	return IS_ERR(ch) ? NULL : ch;
1592}
1593
1594static inline struct dma_chan
1595*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1596				  dma_filter_fn fn, void *fn_param,
1597				  struct device *dev, const char *name)
1598{
1599	struct dma_chan *chan;
1600
1601	chan = dma_request_slave_channel(dev, name);
1602	if (chan)
1603		return chan;
1604
1605	if (!fn || !fn_param)
1606		return NULL;
1607
1608	return __dma_request_channel(&mask, fn, fn_param, NULL);
1609}
1610
1611static inline char *
1612dmaengine_get_direction_text(enum dma_transfer_direction dir)
1613{
1614	switch (dir) {
1615	case DMA_DEV_TO_MEM:
1616		return "DEV_TO_MEM";
1617	case DMA_MEM_TO_DEV:
1618		return "MEM_TO_DEV";
1619	case DMA_MEM_TO_MEM:
1620		return "MEM_TO_MEM";
1621	case DMA_DEV_TO_DEV:
1622		return "DEV_TO_DEV";
1623	default:
1624		return "invalid";
1625	}
1626}
1627
1628static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1629{
1630	if (chan->dev->chan_dma_dev)
1631		return &chan->dev->device;
1632
1633	return chan->device->dev;
1634}
1635
1636#endif /* DMAENGINE_H */
1637