1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_DMA_MAPPING_H
3#define _LINUX_DMA_MAPPING_H
4
5#include <linux/cache.h>
6#include <linux/sizes.h>
7#include <linux/string.h>
8#include <linux/device.h>
9#include <linux/err.h>
10#include <linux/dma-direction.h>
11#include <linux/scatterlist.h>
12#include <linux/bug.h>
13#include <linux/mem_encrypt.h>
14
15/**
16 * List of possible attributes associated with a DMA mapping. The semantics
17 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
18 */
19
20/*
21 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
22 * may be weakly ordered, that is that reads and writes may pass each other.
23 */
24#define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
25/*
26 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
27 * buffered to improve performance.
28 */
29#define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
30/*
31 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
32 * virtual mapping for the allocated buffer.
33 */
34#define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
35/*
36 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
37 * the CPU cache for the given buffer assuming that it has been already
38 * transferred to 'device' domain.
39 */
40#define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
41/*
42 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
43 * in physical memory.
44 */
45#define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
46/*
47 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
48 * that it's probably not worth the time to try to allocate memory to in a way
49 * that gives better TLB efficiency.
50 */
51#define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)
52/*
53 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
54 * allocation failure reports (similarly to __GFP_NOWARN).
55 */
56#define DMA_ATTR_NO_WARN	(1UL << 8)
57
58/*
59 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
60 * accessible at an elevated privilege level (and ideally inaccessible or
61 * at least read-only at lesser-privileged levels).
62 */
63#define DMA_ATTR_PRIVILEGED		(1UL << 9)
64
65/*
66 * A dma_addr_t can hold any valid DMA or bus address for the platform.  It can
67 * be given to a device to use as a DMA source or target.  It is specific to a
68 * given device and there may be a translation between the CPU physical address
69 * space and the bus address space.
70 *
71 * DMA_MAPPING_ERROR is the magic error code if a mapping failed.  It should not
72 * be used directly in drivers, but checked for using dma_mapping_error()
73 * instead.
74 */
75#define DMA_MAPPING_ERROR		(~(dma_addr_t)0)
76
77#define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
78
79#ifdef CONFIG_DMA_API_DEBUG
80void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
81void debug_dma_map_single(struct device *dev, const void *addr,
82		unsigned long len);
83#else
84static inline void debug_dma_mapping_error(struct device *dev,
85		dma_addr_t dma_addr)
86{
87}
88static inline void debug_dma_map_single(struct device *dev, const void *addr,
89		unsigned long len)
90{
91}
92#endif /* CONFIG_DMA_API_DEBUG */
93
94#ifdef CONFIG_HAS_DMA
95static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
96{
97	debug_dma_mapping_error(dev, dma_addr);
98
99	if (unlikely(dma_addr == DMA_MAPPING_ERROR))
100		return -ENOMEM;
101	return 0;
102}
103
104dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
105		size_t offset, size_t size, enum dma_data_direction dir,
106		unsigned long attrs);
107void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
108		enum dma_data_direction dir, unsigned long attrs);
109unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
110		int nents, enum dma_data_direction dir, unsigned long attrs);
111void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
112				      int nents, enum dma_data_direction dir,
113				      unsigned long attrs);
114int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
115		enum dma_data_direction dir, unsigned long attrs);
116dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
117		size_t size, enum dma_data_direction dir, unsigned long attrs);
118void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
119		enum dma_data_direction dir, unsigned long attrs);
120void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
121		enum dma_data_direction dir);
122void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
123		size_t size, enum dma_data_direction dir);
124void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
125		    int nelems, enum dma_data_direction dir);
126void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
127		       int nelems, enum dma_data_direction dir);
128void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
129		gfp_t flag, unsigned long attrs);
130void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
131		dma_addr_t dma_handle, unsigned long attrs);
132void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
133		gfp_t gfp, unsigned long attrs);
134void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
135		dma_addr_t dma_handle);
136int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
137		void *cpu_addr, dma_addr_t dma_addr, size_t size,
138		unsigned long attrs);
139int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
140		void *cpu_addr, dma_addr_t dma_addr, size_t size,
141		unsigned long attrs);
142bool dma_can_mmap(struct device *dev);
143bool dma_pci_p2pdma_supported(struct device *dev);
144int dma_set_mask(struct device *dev, u64 mask);
145int dma_set_coherent_mask(struct device *dev, u64 mask);
146u64 dma_get_required_mask(struct device *dev);
147bool dma_addressing_limited(struct device *dev);
148size_t dma_max_mapping_size(struct device *dev);
149size_t dma_opt_mapping_size(struct device *dev);
150bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
151unsigned long dma_get_merge_boundary(struct device *dev);
152struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
153		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
154void dma_free_noncontiguous(struct device *dev, size_t size,
155		struct sg_table *sgt, enum dma_data_direction dir);
156void *dma_vmap_noncontiguous(struct device *dev, size_t size,
157		struct sg_table *sgt);
158void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
159int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
160		size_t size, struct sg_table *sgt);
161#else /* CONFIG_HAS_DMA */
162static inline dma_addr_t dma_map_page_attrs(struct device *dev,
163		struct page *page, size_t offset, size_t size,
164		enum dma_data_direction dir, unsigned long attrs)
165{
166	return DMA_MAPPING_ERROR;
167}
168static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
169		size_t size, enum dma_data_direction dir, unsigned long attrs)
170{
171}
172static inline unsigned int dma_map_sg_attrs(struct device *dev,
173		struct scatterlist *sg, int nents, enum dma_data_direction dir,
174		unsigned long attrs)
175{
176	return 0;
177}
178static inline void dma_unmap_sg_attrs(struct device *dev,
179		struct scatterlist *sg, int nents, enum dma_data_direction dir,
180		unsigned long attrs)
181{
182}
183static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
184		enum dma_data_direction dir, unsigned long attrs)
185{
186	return -EOPNOTSUPP;
187}
188static inline dma_addr_t dma_map_resource(struct device *dev,
189		phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
190		unsigned long attrs)
191{
192	return DMA_MAPPING_ERROR;
193}
194static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
195		size_t size, enum dma_data_direction dir, unsigned long attrs)
196{
197}
198static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
199		size_t size, enum dma_data_direction dir)
200{
201}
202static inline void dma_sync_single_for_device(struct device *dev,
203		dma_addr_t addr, size_t size, enum dma_data_direction dir)
204{
205}
206static inline void dma_sync_sg_for_cpu(struct device *dev,
207		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
208{
209}
210static inline void dma_sync_sg_for_device(struct device *dev,
211		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
212{
213}
214static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
215{
216	return -ENOMEM;
217}
218static inline void *dma_alloc_attrs(struct device *dev, size_t size,
219		dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
220{
221	return NULL;
222}
223static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
224		dma_addr_t dma_handle, unsigned long attrs)
225{
226}
227static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
228		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
229{
230	return NULL;
231}
232static inline void dmam_free_coherent(struct device *dev, size_t size,
233		void *vaddr, dma_addr_t dma_handle)
234{
235}
236static inline int dma_get_sgtable_attrs(struct device *dev,
237		struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
238		size_t size, unsigned long attrs)
239{
240	return -ENXIO;
241}
242static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
243		void *cpu_addr, dma_addr_t dma_addr, size_t size,
244		unsigned long attrs)
245{
246	return -ENXIO;
247}
248static inline bool dma_can_mmap(struct device *dev)
249{
250	return false;
251}
252static inline bool dma_pci_p2pdma_supported(struct device *dev)
253{
254	return false;
255}
256static inline int dma_set_mask(struct device *dev, u64 mask)
257{
258	return -EIO;
259}
260static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
261{
262	return -EIO;
263}
264static inline u64 dma_get_required_mask(struct device *dev)
265{
266	return 0;
267}
268static inline bool dma_addressing_limited(struct device *dev)
269{
270	return false;
271}
272static inline size_t dma_max_mapping_size(struct device *dev)
273{
274	return 0;
275}
276static inline size_t dma_opt_mapping_size(struct device *dev)
277{
278	return 0;
279}
280static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
281{
282	return false;
283}
284static inline unsigned long dma_get_merge_boundary(struct device *dev)
285{
286	return 0;
287}
288static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
289		size_t size, enum dma_data_direction dir, gfp_t gfp,
290		unsigned long attrs)
291{
292	return NULL;
293}
294static inline void dma_free_noncontiguous(struct device *dev, size_t size,
295		struct sg_table *sgt, enum dma_data_direction dir)
296{
297}
298static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
299		struct sg_table *sgt)
300{
301	return NULL;
302}
303static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
304{
305}
306static inline int dma_mmap_noncontiguous(struct device *dev,
307		struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
308{
309	return -EINVAL;
310}
311#endif /* CONFIG_HAS_DMA */
312
313struct page *dma_alloc_pages(struct device *dev, size_t size,
314		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
315void dma_free_pages(struct device *dev, size_t size, struct page *page,
316		dma_addr_t dma_handle, enum dma_data_direction dir);
317int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
318		size_t size, struct page *page);
319
320static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
321		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
322{
323	struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
324	return page ? page_address(page) : NULL;
325}
326
327static inline void dma_free_noncoherent(struct device *dev, size_t size,
328		void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
329{
330	dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
331}
332
333static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
334		size_t size, enum dma_data_direction dir, unsigned long attrs)
335{
336	/* DMA must never operate on areas that might be remapped. */
337	if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
338			  "rejecting DMA map of vmalloc memory\n"))
339		return DMA_MAPPING_ERROR;
340	debug_dma_map_single(dev, ptr, size);
341	return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
342			size, dir, attrs);
343}
344
345static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
346		size_t size, enum dma_data_direction dir, unsigned long attrs)
347{
348	return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
349}
350
351static inline void dma_sync_single_range_for_cpu(struct device *dev,
352		dma_addr_t addr, unsigned long offset, size_t size,
353		enum dma_data_direction dir)
354{
355	return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
356}
357
358static inline void dma_sync_single_range_for_device(struct device *dev,
359		dma_addr_t addr, unsigned long offset, size_t size,
360		enum dma_data_direction dir)
361{
362	return dma_sync_single_for_device(dev, addr + offset, size, dir);
363}
364
365/**
366 * dma_unmap_sgtable - Unmap the given buffer for DMA
367 * @dev:	The device for which to perform the DMA operation
368 * @sgt:	The sg_table object describing the buffer
369 * @dir:	DMA direction
370 * @attrs:	Optional DMA attributes for the unmap operation
371 *
372 * Unmaps a buffer described by a scatterlist stored in the given sg_table
373 * object for the @dir DMA operation by the @dev device. After this function
374 * the ownership of the buffer is transferred back to the CPU domain.
375 */
376static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
377		enum dma_data_direction dir, unsigned long attrs)
378{
379	dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
380}
381
382/**
383 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
384 * @dev:	The device for which to perform the DMA operation
385 * @sgt:	The sg_table object describing the buffer
386 * @dir:	DMA direction
387 *
388 * Performs the needed cache synchronization and moves the ownership of the
389 * buffer back to the CPU domain, so it is safe to perform any access to it
390 * by the CPU. Before doing any further DMA operations, one has to transfer
391 * the ownership of the buffer back to the DMA domain by calling the
392 * dma_sync_sgtable_for_device().
393 */
394static inline void dma_sync_sgtable_for_cpu(struct device *dev,
395		struct sg_table *sgt, enum dma_data_direction dir)
396{
397	dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
398}
399
400/**
401 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
402 * @dev:	The device for which to perform the DMA operation
403 * @sgt:	The sg_table object describing the buffer
404 * @dir:	DMA direction
405 *
406 * Performs the needed cache synchronization and moves the ownership of the
407 * buffer back to the DMA domain, so it is safe to perform the DMA operation.
408 * Once finished, one has to call dma_sync_sgtable_for_cpu() or
409 * dma_unmap_sgtable().
410 */
411static inline void dma_sync_sgtable_for_device(struct device *dev,
412		struct sg_table *sgt, enum dma_data_direction dir)
413{
414	dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
415}
416
417#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
418#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
419#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
420#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
421#define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
422#define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
423#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
424#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
425
426bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size);
427
428static inline void *dma_alloc_coherent(struct device *dev, size_t size,
429		dma_addr_t *dma_handle, gfp_t gfp)
430{
431	return dma_alloc_attrs(dev, size, dma_handle, gfp,
432			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
433}
434
435static inline void dma_free_coherent(struct device *dev, size_t size,
436		void *cpu_addr, dma_addr_t dma_handle)
437{
438	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
439}
440
441
442static inline u64 dma_get_mask(struct device *dev)
443{
444	if (dev->dma_mask && *dev->dma_mask)
445		return *dev->dma_mask;
446	return DMA_BIT_MASK(32);
447}
448
449/*
450 * Set both the DMA mask and the coherent DMA mask to the same thing.
451 * Note that we don't check the return value from dma_set_coherent_mask()
452 * as the DMA API guarantees that the coherent DMA mask can be set to
453 * the same or smaller than the streaming DMA mask.
454 */
455static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
456{
457	int rc = dma_set_mask(dev, mask);
458	if (rc == 0)
459		dma_set_coherent_mask(dev, mask);
460	return rc;
461}
462
463/*
464 * Similar to the above, except it deals with the case where the device
465 * does not have dev->dma_mask appropriately setup.
466 */
467static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
468{
469	dev->dma_mask = &dev->coherent_dma_mask;
470	return dma_set_mask_and_coherent(dev, mask);
471}
472
473static inline unsigned int dma_get_max_seg_size(struct device *dev)
474{
475	if (dev->dma_parms && dev->dma_parms->max_segment_size)
476		return dev->dma_parms->max_segment_size;
477	return SZ_64K;
478}
479
480static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
481{
482	if (dev->dma_parms) {
483		dev->dma_parms->max_segment_size = size;
484		return 0;
485	}
486	return -EIO;
487}
488
489static inline unsigned long dma_get_seg_boundary(struct device *dev)
490{
491	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
492		return dev->dma_parms->segment_boundary_mask;
493	return ULONG_MAX;
494}
495
496/**
497 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
498 * @dev: device to guery the boundary for
499 * @page_shift: ilog() of the IOMMU page size
500 *
501 * Return the segment boundary in IOMMU page units (which may be different from
502 * the CPU page size) for the passed in device.
503 *
504 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
505 * non-DMA API callers.
506 */
507static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
508		unsigned int page_shift)
509{
510	if (!dev)
511		return (U32_MAX >> page_shift) + 1;
512	return (dma_get_seg_boundary(dev) >> page_shift) + 1;
513}
514
515static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
516{
517	if (dev->dma_parms) {
518		dev->dma_parms->segment_boundary_mask = mask;
519		return 0;
520	}
521	return -EIO;
522}
523
524static inline unsigned int dma_get_min_align_mask(struct device *dev)
525{
526	if (dev->dma_parms)
527		return dev->dma_parms->min_align_mask;
528	return 0;
529}
530
531static inline int dma_set_min_align_mask(struct device *dev,
532		unsigned int min_align_mask)
533{
534	if (WARN_ON_ONCE(!dev->dma_parms))
535		return -EIO;
536	dev->dma_parms->min_align_mask = min_align_mask;
537	return 0;
538}
539
540#ifndef dma_get_cache_alignment
541static inline int dma_get_cache_alignment(void)
542{
543#ifdef ARCH_HAS_DMA_MINALIGN
544	return ARCH_DMA_MINALIGN;
545#endif
546	return 1;
547}
548#endif
549
550static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
551		dma_addr_t *dma_handle, gfp_t gfp)
552{
553	return dmam_alloc_attrs(dev, size, dma_handle, gfp,
554			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
555}
556
557static inline void *dma_alloc_wc(struct device *dev, size_t size,
558				 dma_addr_t *dma_addr, gfp_t gfp)
559{
560	unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
561
562	if (gfp & __GFP_NOWARN)
563		attrs |= DMA_ATTR_NO_WARN;
564
565	return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
566}
567
568static inline void dma_free_wc(struct device *dev, size_t size,
569			       void *cpu_addr, dma_addr_t dma_addr)
570{
571	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
572			      DMA_ATTR_WRITE_COMBINE);
573}
574
575static inline int dma_mmap_wc(struct device *dev,
576			      struct vm_area_struct *vma,
577			      void *cpu_addr, dma_addr_t dma_addr,
578			      size_t size)
579{
580	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
581			      DMA_ATTR_WRITE_COMBINE);
582}
583
584#ifdef CONFIG_NEED_DMA_MAP_STATE
585#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
586#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
587#define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
588#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
589#define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
590#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
591#else
592#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
593#define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
594#define dma_unmap_addr(PTR, ADDR_NAME)           (0)
595#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
596#define dma_unmap_len(PTR, LEN_NAME)             (0)
597#define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
598#endif
599
600#endif /* _LINUX_DMA_MAPPING_H */
601