1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_COMPILER_H
3#define __LINUX_COMPILER_H
4
5#include <linux/compiler_types.h>
6
7#ifndef __ASSEMBLY__
8
9#ifdef __KERNEL__
10
11/*
12 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13 * to disable branch tracing on a per file basis.
14 */
15void ftrace_likely_update(struct ftrace_likely_data *f, int val,
16			  int expect, int is_constant);
17#if defined(CONFIG_TRACE_BRANCH_PROFILING) \
18    && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
19#define likely_notrace(x)	__builtin_expect(!!(x), 1)
20#define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
21
22#define __branch_check__(x, expect, is_constant) ({			\
23			long ______r;					\
24			static struct ftrace_likely_data		\
25				__aligned(4)				\
26				__section("_ftrace_annotated_branch")	\
27				______f = {				\
28				.data.func = __func__,			\
29				.data.file = __FILE__,			\
30				.data.line = __LINE__,			\
31			};						\
32			______r = __builtin_expect(!!(x), expect);	\
33			ftrace_likely_update(&______f, ______r,		\
34					     expect, is_constant);	\
35			______r;					\
36		})
37
38/*
39 * Using __builtin_constant_p(x) to ignore cases where the return
40 * value is always the same.  This idea is taken from a similar patch
41 * written by Daniel Walker.
42 */
43# ifndef likely
44#  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
45# endif
46# ifndef unlikely
47#  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
48# endif
49
50#ifdef CONFIG_PROFILE_ALL_BRANCHES
51/*
52 * "Define 'is'", Bill Clinton
53 * "Define 'if'", Steven Rostedt
54 */
55#define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
56
57#define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
58
59#define __trace_if_value(cond) ({			\
60	static struct ftrace_branch_data		\
61		__aligned(4)				\
62		__section("_ftrace_branch")		\
63		__if_trace = {				\
64			.func = __func__,		\
65			.file = __FILE__,		\
66			.line = __LINE__,		\
67		};					\
68	(cond) ?					\
69		(__if_trace.miss_hit[1]++,1) :		\
70		(__if_trace.miss_hit[0]++,0);		\
71})
72
73#endif /* CONFIG_PROFILE_ALL_BRANCHES */
74
75#else
76# define likely(x)	__builtin_expect(!!(x), 1)
77# define unlikely(x)	__builtin_expect(!!(x), 0)
78# define likely_notrace(x)	likely(x)
79# define unlikely_notrace(x)	unlikely(x)
80#endif
81
82/* Optimization barrier */
83#ifndef barrier
84/* The "volatile" is due to gcc bugs */
85# define barrier() __asm__ __volatile__("": : :"memory")
86#endif
87
88#ifndef barrier_data
89/*
90 * This version is i.e. to prevent dead stores elimination on @ptr
91 * where gcc and llvm may behave differently when otherwise using
92 * normal barrier(): while gcc behavior gets along with a normal
93 * barrier(), llvm needs an explicit input variable to be assumed
94 * clobbered. The issue is as follows: while the inline asm might
95 * access any memory it wants, the compiler could have fit all of
96 * @ptr into memory registers instead, and since @ptr never escaped
97 * from that, it proved that the inline asm wasn't touching any of
98 * it. This version works well with both compilers, i.e. we're telling
99 * the compiler that the inline asm absolutely may see the contents
100 * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
101 */
102# define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
103#endif
104
105/* workaround for GCC PR82365 if needed */
106#ifndef barrier_before_unreachable
107# define barrier_before_unreachable() do { } while (0)
108#endif
109
110/* Unreachable code */
111#ifdef CONFIG_OBJTOOL
112/*
113 * These macros help objtool understand GCC code flow for unreachable code.
114 * The __COUNTER__ based labels are a hack to make each instance of the macros
115 * unique, to convince GCC not to merge duplicate inline asm statements.
116 */
117#define __stringify_label(n) #n
118
119#define __annotate_reachable(c) ({					\
120	asm volatile(__stringify_label(c) ":\n\t"			\
121			".pushsection .discard.reachable\n\t"		\
122			".long " __stringify_label(c) "b - .\n\t"	\
123			".popsection\n\t");				\
124})
125#define annotate_reachable() __annotate_reachable(__COUNTER__)
126
127#define __annotate_unreachable(c) ({					\
128	asm volatile(__stringify_label(c) ":\n\t"			\
129		     ".pushsection .discard.unreachable\n\t"		\
130		     ".long " __stringify_label(c) "b - .\n\t"		\
131		     ".popsection\n\t" : : "i" (c));			\
132})
133#define annotate_unreachable() __annotate_unreachable(__COUNTER__)
134
135/* Annotate a C jump table to allow objtool to follow the code flow */
136#define __annotate_jump_table __section(".rodata..c_jump_table")
137
138#else /* !CONFIG_OBJTOOL */
139#define annotate_reachable()
140#define annotate_unreachable()
141#define __annotate_jump_table
142#endif /* CONFIG_OBJTOOL */
143
144#ifndef unreachable
145# define unreachable() do {		\
146	annotate_unreachable();		\
147	__builtin_unreachable();	\
148} while (0)
149#endif
150
151/*
152 * KENTRY - kernel entry point
153 * This can be used to annotate symbols (functions or data) that are used
154 * without their linker symbol being referenced explicitly. For example,
155 * interrupt vector handlers, or functions in the kernel image that are found
156 * programatically.
157 *
158 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
159 * are handled in their own way (with KEEP() in linker scripts).
160 *
161 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
162 * linker script. For example an architecture could KEEP() its entire
163 * boot/exception vector code rather than annotate each function and data.
164 */
165#ifndef KENTRY
166# define KENTRY(sym)						\
167	extern typeof(sym) sym;					\
168	static const unsigned long __kentry_##sym		\
169	__used							\
170	__attribute__((__section__("___kentry+" #sym)))		\
171	= (unsigned long)&sym;
172#endif
173
174#ifndef RELOC_HIDE
175# define RELOC_HIDE(ptr, off)					\
176  ({ unsigned long __ptr;					\
177     __ptr = (unsigned long) (ptr);				\
178    (typeof(ptr)) (__ptr + (off)); })
179#endif
180
181#define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)
182
183#ifndef OPTIMIZER_HIDE_VAR
184/* Make the optimizer believe the variable can be manipulated arbitrarily. */
185#define OPTIMIZER_HIDE_VAR(var)						\
186	__asm__ ("" : "=r" (var) : "0" (var))
187#endif
188
189#define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __COUNTER__)
190
191/**
192 * data_race - mark an expression as containing intentional data races
193 *
194 * This data_race() macro is useful for situations in which data races
195 * should be forgiven.  One example is diagnostic code that accesses
196 * shared variables but is not a part of the core synchronization design.
197 *
198 * This macro *does not* affect normal code generation, but is a hint
199 * to tooling that data races here are to be ignored.
200 */
201#define data_race(expr)							\
202({									\
203	__unqual_scalar_typeof(({ expr; })) __v = ({			\
204		__kcsan_disable_current();				\
205		expr;							\
206	});								\
207	__kcsan_enable_current();					\
208	__v;								\
209})
210
211#endif /* __KERNEL__ */
212
213/*
214 * Force the compiler to emit 'sym' as a symbol, so that we can reference
215 * it from inline assembler. Necessary in case 'sym' could be inlined
216 * otherwise, or eliminated entirely due to lack of references that are
217 * visible to the compiler.
218 */
219#define ___ADDRESSABLE(sym, __attrs) \
220	static void * __used __attrs \
221	__UNIQUE_ID(__PASTE(__addressable_,sym)) = (void *)(uintptr_t)&sym;
222#define __ADDRESSABLE(sym) \
223	___ADDRESSABLE(sym, __section(".discard.addressable"))
224
225/**
226 * offset_to_ptr - convert a relative memory offset to an absolute pointer
227 * @off:	the address of the 32-bit offset value
228 */
229static inline void *offset_to_ptr(const int *off)
230{
231	return (void *)((unsigned long)off + *off);
232}
233
234#endif /* __ASSEMBLY__ */
235
236/* &a[0] degrades to a pointer: a different type from an array */
237#define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
238
239/*
240 * This returns a constant expression while determining if an argument is
241 * a constant expression, most importantly without evaluating the argument.
242 * Glory to Martin Uecker <Martin.Uecker@med.uni-goettingen.de>
243 *
244 * Details:
245 * - sizeof() return an integer constant expression, and does not evaluate
246 *   the value of its operand; it only examines the type of its operand.
247 * - The results of comparing two integer constant expressions is also
248 *   an integer constant expression.
249 * - The first literal "8" isn't important. It could be any literal value.
250 * - The second literal "8" is to avoid warnings about unaligned pointers;
251 *   this could otherwise just be "1".
252 * - (long)(x) is used to avoid warnings about 64-bit types on 32-bit
253 *   architectures.
254 * - The C Standard defines "null pointer constant", "(void *)0", as
255 *   distinct from other void pointers.
256 * - If (x) is an integer constant expression, then the "* 0l" resolves
257 *   it into an integer constant expression of value 0. Since it is cast to
258 *   "void *", this makes the second operand a null pointer constant.
259 * - If (x) is not an integer constant expression, then the second operand
260 *   resolves to a void pointer (but not a null pointer constant: the value
261 *   is not an integer constant 0).
262 * - The conditional operator's third operand, "(int *)8", is an object
263 *   pointer (to type "int").
264 * - The behavior (including the return type) of the conditional operator
265 *   ("operand1 ? operand2 : operand3") depends on the kind of expressions
266 *   given for the second and third operands. This is the central mechanism
267 *   of the macro:
268 *   - When one operand is a null pointer constant (i.e. when x is an integer
269 *     constant expression) and the other is an object pointer (i.e. our
270 *     third operand), the conditional operator returns the type of the
271 *     object pointer operand (i.e. "int *"). Here, within the sizeof(), we
272 *     would then get:
273 *       sizeof(*((int *)(...))  == sizeof(int)  == 4
274 *   - When one operand is a void pointer (i.e. when x is not an integer
275 *     constant expression) and the other is an object pointer (i.e. our
276 *     third operand), the conditional operator returns a "void *" type.
277 *     Here, within the sizeof(), we would then get:
278 *       sizeof(*((void *)(...)) == sizeof(void) == 1
279 * - The equality comparison to "sizeof(int)" therefore depends on (x):
280 *     sizeof(int) == sizeof(int)     (x) was a constant expression
281 *     sizeof(int) != sizeof(void)    (x) was not a constant expression
282 */
283#define __is_constexpr(x) \
284	(sizeof(int) == sizeof(*(8 ? ((void *)((long)(x) * 0l)) : (int *)8)))
285
286/*
287 * Whether 'type' is a signed type or an unsigned type. Supports scalar types,
288 * bool and also pointer types.
289 */
290#define is_signed_type(type) (((type)(-1)) < (__force type)1)
291#define is_unsigned_type(type) (!is_signed_type(type))
292
293/*
294 * This is needed in functions which generate the stack canary, see
295 * arch/x86/kernel/smpboot.c::start_secondary() for an example.
296 */
297#define prevent_tail_call_optimization()	mb()
298
299#include <asm/rwonce.h>
300
301#endif /* __LINUX_COMPILER_H */
302