1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_H
5#define _LINUX_BPF_H 1
6
7#include <uapi/linux/bpf.h>
8#include <uapi/linux/filter.h>
9
10#include <linux/workqueue.h>
11#include <linux/file.h>
12#include <linux/percpu.h>
13#include <linux/err.h>
14#include <linux/rbtree_latch.h>
15#include <linux/numa.h>
16#include <linux/mm_types.h>
17#include <linux/wait.h>
18#include <linux/refcount.h>
19#include <linux/mutex.h>
20#include <linux/module.h>
21#include <linux/kallsyms.h>
22#include <linux/capability.h>
23#include <linux/sched/mm.h>
24#include <linux/slab.h>
25#include <linux/percpu-refcount.h>
26#include <linux/stddef.h>
27#include <linux/bpfptr.h>
28#include <linux/btf.h>
29#include <linux/rcupdate_trace.h>
30#include <linux/static_call.h>
31#include <linux/memcontrol.h>
32#include <linux/cfi.h>
33
34struct bpf_verifier_env;
35struct bpf_verifier_log;
36struct perf_event;
37struct bpf_prog;
38struct bpf_prog_aux;
39struct bpf_map;
40struct bpf_arena;
41struct sock;
42struct seq_file;
43struct btf;
44struct btf_type;
45struct exception_table_entry;
46struct seq_operations;
47struct bpf_iter_aux_info;
48struct bpf_local_storage;
49struct bpf_local_storage_map;
50struct kobject;
51struct mem_cgroup;
52struct module;
53struct bpf_func_state;
54struct ftrace_ops;
55struct cgroup;
56struct bpf_token;
57struct user_namespace;
58struct super_block;
59struct inode;
60
61extern struct idr btf_idr;
62extern spinlock_t btf_idr_lock;
63extern struct kobject *btf_kobj;
64extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
65extern bool bpf_global_ma_set;
66
67typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
68typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
69					struct bpf_iter_aux_info *aux);
70typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
71typedef unsigned int (*bpf_func_t)(const void *,
72				   const struct bpf_insn *);
73struct bpf_iter_seq_info {
74	const struct seq_operations *seq_ops;
75	bpf_iter_init_seq_priv_t init_seq_private;
76	bpf_iter_fini_seq_priv_t fini_seq_private;
77	u32 seq_priv_size;
78};
79
80/* map is generic key/value storage optionally accessible by eBPF programs */
81struct bpf_map_ops {
82	/* funcs callable from userspace (via syscall) */
83	int (*map_alloc_check)(union bpf_attr *attr);
84	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
85	void (*map_release)(struct bpf_map *map, struct file *map_file);
86	void (*map_free)(struct bpf_map *map);
87	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
88	void (*map_release_uref)(struct bpf_map *map);
89	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
90	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
91				union bpf_attr __user *uattr);
92	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
93					  void *value, u64 flags);
94	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
95					   const union bpf_attr *attr,
96					   union bpf_attr __user *uattr);
97	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
98				const union bpf_attr *attr,
99				union bpf_attr __user *uattr);
100	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
101				union bpf_attr __user *uattr);
102
103	/* funcs callable from userspace and from eBPF programs */
104	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
105	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
106	long (*map_delete_elem)(struct bpf_map *map, void *key);
107	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
108	long (*map_pop_elem)(struct bpf_map *map, void *value);
109	long (*map_peek_elem)(struct bpf_map *map, void *value);
110	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
111
112	/* funcs called by prog_array and perf_event_array map */
113	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
114				int fd);
115	/* If need_defer is true, the implementation should guarantee that
116	 * the to-be-put element is still alive before the bpf program, which
117	 * may manipulate it, exists.
118	 */
119	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
120	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
121	u32 (*map_fd_sys_lookup_elem)(void *ptr);
122	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
123				  struct seq_file *m);
124	int (*map_check_btf)(const struct bpf_map *map,
125			     const struct btf *btf,
126			     const struct btf_type *key_type,
127			     const struct btf_type *value_type);
128
129	/* Prog poke tracking helpers. */
130	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
131	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
132	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
133			     struct bpf_prog *new);
134
135	/* Direct value access helpers. */
136	int (*map_direct_value_addr)(const struct bpf_map *map,
137				     u64 *imm, u32 off);
138	int (*map_direct_value_meta)(const struct bpf_map *map,
139				     u64 imm, u32 *off);
140	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
141	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
142			     struct poll_table_struct *pts);
143	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
144					       unsigned long len, unsigned long pgoff,
145					       unsigned long flags);
146
147	/* Functions called by bpf_local_storage maps */
148	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
149					void *owner, u32 size);
150	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
151					   void *owner, u32 size);
152	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
153
154	/* Misc helpers.*/
155	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
156
157	/* map_meta_equal must be implemented for maps that can be
158	 * used as an inner map.  It is a runtime check to ensure
159	 * an inner map can be inserted to an outer map.
160	 *
161	 * Some properties of the inner map has been used during the
162	 * verification time.  When inserting an inner map at the runtime,
163	 * map_meta_equal has to ensure the inserting map has the same
164	 * properties that the verifier has used earlier.
165	 */
166	bool (*map_meta_equal)(const struct bpf_map *meta0,
167			       const struct bpf_map *meta1);
168
169
170	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
171					      struct bpf_func_state *caller,
172					      struct bpf_func_state *callee);
173	long (*map_for_each_callback)(struct bpf_map *map,
174				     bpf_callback_t callback_fn,
175				     void *callback_ctx, u64 flags);
176
177	u64 (*map_mem_usage)(const struct bpf_map *map);
178
179	/* BTF id of struct allocated by map_alloc */
180	int *map_btf_id;
181
182	/* bpf_iter info used to open a seq_file */
183	const struct bpf_iter_seq_info *iter_seq_info;
184};
185
186enum {
187	/* Support at most 10 fields in a BTF type */
188	BTF_FIELDS_MAX	   = 10,
189};
190
191enum btf_field_type {
192	BPF_SPIN_LOCK  = (1 << 0),
193	BPF_TIMER      = (1 << 1),
194	BPF_KPTR_UNREF = (1 << 2),
195	BPF_KPTR_REF   = (1 << 3),
196	BPF_KPTR_PERCPU = (1 << 4),
197	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
198	BPF_LIST_HEAD  = (1 << 5),
199	BPF_LIST_NODE  = (1 << 6),
200	BPF_RB_ROOT    = (1 << 7),
201	BPF_RB_NODE    = (1 << 8),
202	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
203	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
204	BPF_REFCOUNT   = (1 << 9),
205};
206
207typedef void (*btf_dtor_kfunc_t)(void *);
208
209struct btf_field_kptr {
210	struct btf *btf;
211	struct module *module;
212	/* dtor used if btf_is_kernel(btf), otherwise the type is
213	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
214	 */
215	btf_dtor_kfunc_t dtor;
216	u32 btf_id;
217};
218
219struct btf_field_graph_root {
220	struct btf *btf;
221	u32 value_btf_id;
222	u32 node_offset;
223	struct btf_record *value_rec;
224};
225
226struct btf_field {
227	u32 offset;
228	u32 size;
229	enum btf_field_type type;
230	union {
231		struct btf_field_kptr kptr;
232		struct btf_field_graph_root graph_root;
233	};
234};
235
236struct btf_record {
237	u32 cnt;
238	u32 field_mask;
239	int spin_lock_off;
240	int timer_off;
241	int refcount_off;
242	struct btf_field fields[];
243};
244
245/* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
246struct bpf_rb_node_kern {
247	struct rb_node rb_node;
248	void *owner;
249} __attribute__((aligned(8)));
250
251/* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
252struct bpf_list_node_kern {
253	struct list_head list_head;
254	void *owner;
255} __attribute__((aligned(8)));
256
257struct bpf_map {
258	const struct bpf_map_ops *ops;
259	struct bpf_map *inner_map_meta;
260#ifdef CONFIG_SECURITY
261	void *security;
262#endif
263	enum bpf_map_type map_type;
264	u32 key_size;
265	u32 value_size;
266	u32 max_entries;
267	u64 map_extra; /* any per-map-type extra fields */
268	u32 map_flags;
269	u32 id;
270	struct btf_record *record;
271	int numa_node;
272	u32 btf_key_type_id;
273	u32 btf_value_type_id;
274	u32 btf_vmlinux_value_type_id;
275	struct btf *btf;
276#ifdef CONFIG_MEMCG_KMEM
277	struct obj_cgroup *objcg;
278#endif
279	char name[BPF_OBJ_NAME_LEN];
280	struct mutex freeze_mutex;
281	atomic64_t refcnt;
282	atomic64_t usercnt;
283	/* rcu is used before freeing and work is only used during freeing */
284	union {
285		struct work_struct work;
286		struct rcu_head rcu;
287	};
288	atomic64_t writecnt;
289	/* 'Ownership' of program-containing map is claimed by the first program
290	 * that is going to use this map or by the first program which FD is
291	 * stored in the map to make sure that all callers and callees have the
292	 * same prog type, JITed flag and xdp_has_frags flag.
293	 */
294	struct {
295		spinlock_t lock;
296		enum bpf_prog_type type;
297		bool jited;
298		bool xdp_has_frags;
299	} owner;
300	bool bypass_spec_v1;
301	bool frozen; /* write-once; write-protected by freeze_mutex */
302	bool free_after_mult_rcu_gp;
303	bool free_after_rcu_gp;
304	atomic64_t sleepable_refcnt;
305	s64 __percpu *elem_count;
306};
307
308static inline const char *btf_field_type_name(enum btf_field_type type)
309{
310	switch (type) {
311	case BPF_SPIN_LOCK:
312		return "bpf_spin_lock";
313	case BPF_TIMER:
314		return "bpf_timer";
315	case BPF_KPTR_UNREF:
316	case BPF_KPTR_REF:
317		return "kptr";
318	case BPF_KPTR_PERCPU:
319		return "percpu_kptr";
320	case BPF_LIST_HEAD:
321		return "bpf_list_head";
322	case BPF_LIST_NODE:
323		return "bpf_list_node";
324	case BPF_RB_ROOT:
325		return "bpf_rb_root";
326	case BPF_RB_NODE:
327		return "bpf_rb_node";
328	case BPF_REFCOUNT:
329		return "bpf_refcount";
330	default:
331		WARN_ON_ONCE(1);
332		return "unknown";
333	}
334}
335
336static inline u32 btf_field_type_size(enum btf_field_type type)
337{
338	switch (type) {
339	case BPF_SPIN_LOCK:
340		return sizeof(struct bpf_spin_lock);
341	case BPF_TIMER:
342		return sizeof(struct bpf_timer);
343	case BPF_KPTR_UNREF:
344	case BPF_KPTR_REF:
345	case BPF_KPTR_PERCPU:
346		return sizeof(u64);
347	case BPF_LIST_HEAD:
348		return sizeof(struct bpf_list_head);
349	case BPF_LIST_NODE:
350		return sizeof(struct bpf_list_node);
351	case BPF_RB_ROOT:
352		return sizeof(struct bpf_rb_root);
353	case BPF_RB_NODE:
354		return sizeof(struct bpf_rb_node);
355	case BPF_REFCOUNT:
356		return sizeof(struct bpf_refcount);
357	default:
358		WARN_ON_ONCE(1);
359		return 0;
360	}
361}
362
363static inline u32 btf_field_type_align(enum btf_field_type type)
364{
365	switch (type) {
366	case BPF_SPIN_LOCK:
367		return __alignof__(struct bpf_spin_lock);
368	case BPF_TIMER:
369		return __alignof__(struct bpf_timer);
370	case BPF_KPTR_UNREF:
371	case BPF_KPTR_REF:
372	case BPF_KPTR_PERCPU:
373		return __alignof__(u64);
374	case BPF_LIST_HEAD:
375		return __alignof__(struct bpf_list_head);
376	case BPF_LIST_NODE:
377		return __alignof__(struct bpf_list_node);
378	case BPF_RB_ROOT:
379		return __alignof__(struct bpf_rb_root);
380	case BPF_RB_NODE:
381		return __alignof__(struct bpf_rb_node);
382	case BPF_REFCOUNT:
383		return __alignof__(struct bpf_refcount);
384	default:
385		WARN_ON_ONCE(1);
386		return 0;
387	}
388}
389
390static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
391{
392	memset(addr, 0, field->size);
393
394	switch (field->type) {
395	case BPF_REFCOUNT:
396		refcount_set((refcount_t *)addr, 1);
397		break;
398	case BPF_RB_NODE:
399		RB_CLEAR_NODE((struct rb_node *)addr);
400		break;
401	case BPF_LIST_HEAD:
402	case BPF_LIST_NODE:
403		INIT_LIST_HEAD((struct list_head *)addr);
404		break;
405	case BPF_RB_ROOT:
406		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
407	case BPF_SPIN_LOCK:
408	case BPF_TIMER:
409	case BPF_KPTR_UNREF:
410	case BPF_KPTR_REF:
411	case BPF_KPTR_PERCPU:
412		break;
413	default:
414		WARN_ON_ONCE(1);
415		return;
416	}
417}
418
419static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
420{
421	if (IS_ERR_OR_NULL(rec))
422		return false;
423	return rec->field_mask & type;
424}
425
426static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
427{
428	int i;
429
430	if (IS_ERR_OR_NULL(rec))
431		return;
432	for (i = 0; i < rec->cnt; i++)
433		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
434}
435
436/* 'dst' must be a temporary buffer and should not point to memory that is being
437 * used in parallel by a bpf program or bpf syscall, otherwise the access from
438 * the bpf program or bpf syscall may be corrupted by the reinitialization,
439 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
440 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
441 * program or bpf syscall.
442 */
443static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
444{
445	bpf_obj_init(map->record, dst);
446}
447
448/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
449 * forced to use 'long' read/writes to try to atomically copy long counters.
450 * Best-effort only.  No barriers here, since it _will_ race with concurrent
451 * updates from BPF programs. Called from bpf syscall and mostly used with
452 * size 8 or 16 bytes, so ask compiler to inline it.
453 */
454static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
455{
456	const long *lsrc = src;
457	long *ldst = dst;
458
459	size /= sizeof(long);
460	while (size--)
461		data_race(*ldst++ = *lsrc++);
462}
463
464/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
465static inline void bpf_obj_memcpy(struct btf_record *rec,
466				  void *dst, void *src, u32 size,
467				  bool long_memcpy)
468{
469	u32 curr_off = 0;
470	int i;
471
472	if (IS_ERR_OR_NULL(rec)) {
473		if (long_memcpy)
474			bpf_long_memcpy(dst, src, round_up(size, 8));
475		else
476			memcpy(dst, src, size);
477		return;
478	}
479
480	for (i = 0; i < rec->cnt; i++) {
481		u32 next_off = rec->fields[i].offset;
482		u32 sz = next_off - curr_off;
483
484		memcpy(dst + curr_off, src + curr_off, sz);
485		curr_off += rec->fields[i].size + sz;
486	}
487	memcpy(dst + curr_off, src + curr_off, size - curr_off);
488}
489
490static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
491{
492	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
493}
494
495static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
496{
497	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
498}
499
500static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
501{
502	u32 curr_off = 0;
503	int i;
504
505	if (IS_ERR_OR_NULL(rec)) {
506		memset(dst, 0, size);
507		return;
508	}
509
510	for (i = 0; i < rec->cnt; i++) {
511		u32 next_off = rec->fields[i].offset;
512		u32 sz = next_off - curr_off;
513
514		memset(dst + curr_off, 0, sz);
515		curr_off += rec->fields[i].size + sz;
516	}
517	memset(dst + curr_off, 0, size - curr_off);
518}
519
520static inline void zero_map_value(struct bpf_map *map, void *dst)
521{
522	bpf_obj_memzero(map->record, dst, map->value_size);
523}
524
525void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
526			   bool lock_src);
527void bpf_timer_cancel_and_free(void *timer);
528void bpf_list_head_free(const struct btf_field *field, void *list_head,
529			struct bpf_spin_lock *spin_lock);
530void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
531		      struct bpf_spin_lock *spin_lock);
532u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
533u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
534int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
535
536struct bpf_offload_dev;
537struct bpf_offloaded_map;
538
539struct bpf_map_dev_ops {
540	int (*map_get_next_key)(struct bpf_offloaded_map *map,
541				void *key, void *next_key);
542	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
543			       void *key, void *value);
544	int (*map_update_elem)(struct bpf_offloaded_map *map,
545			       void *key, void *value, u64 flags);
546	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
547};
548
549struct bpf_offloaded_map {
550	struct bpf_map map;
551	struct net_device *netdev;
552	const struct bpf_map_dev_ops *dev_ops;
553	void *dev_priv;
554	struct list_head offloads;
555};
556
557static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
558{
559	return container_of(map, struct bpf_offloaded_map, map);
560}
561
562static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
563{
564	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
565}
566
567static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
568{
569	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
570		map->ops->map_seq_show_elem;
571}
572
573int map_check_no_btf(const struct bpf_map *map,
574		     const struct btf *btf,
575		     const struct btf_type *key_type,
576		     const struct btf_type *value_type);
577
578bool bpf_map_meta_equal(const struct bpf_map *meta0,
579			const struct bpf_map *meta1);
580
581extern const struct bpf_map_ops bpf_map_offload_ops;
582
583/* bpf_type_flag contains a set of flags that are applicable to the values of
584 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
585 * or a memory is read-only. We classify types into two categories: base types
586 * and extended types. Extended types are base types combined with a type flag.
587 *
588 * Currently there are no more than 32 base types in arg_type, ret_type and
589 * reg_types.
590 */
591#define BPF_BASE_TYPE_BITS	8
592
593enum bpf_type_flag {
594	/* PTR may be NULL. */
595	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
596
597	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
598	 * compatible with both mutable and immutable memory.
599	 */
600	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
601
602	/* MEM points to BPF ring buffer reservation. */
603	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
604
605	/* MEM is in user address space. */
606	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
607
608	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
609	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
610	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
611	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
612	 * to the specified cpu.
613	 */
614	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
615
616	/* Indicates that the argument will be released. */
617	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
618
619	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
620	 * unreferenced and referenced kptr loaded from map value using a load
621	 * instruction, so that they can only be dereferenced but not escape the
622	 * BPF program into the kernel (i.e. cannot be passed as arguments to
623	 * kfunc or bpf helpers).
624	 */
625	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
626
627	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
628
629	/* DYNPTR points to memory local to the bpf program. */
630	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
631
632	/* DYNPTR points to a kernel-produced ringbuf record. */
633	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
634
635	/* Size is known at compile time. */
636	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
637
638	/* MEM is of an allocated object of type in program BTF. This is used to
639	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
640	 */
641	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
642
643	/* PTR was passed from the kernel in a trusted context, and may be
644	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
645	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
646	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
647	 * without invoking bpf_kptr_xchg(). What we really need to know is
648	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
649	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
650	 * helpers, they do not cover all possible instances of unsafe
651	 * pointers. For example, a pointer that was obtained from walking a
652	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
653	 * fact that it may be NULL, invalid, etc. This is due to backwards
654	 * compatibility requirements, as this was the behavior that was first
655	 * introduced when kptrs were added. The behavior is now considered
656	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
657	 *
658	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
659	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
660	 * For example, pointers passed to tracepoint arguments are considered
661	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
662	 * callbacks. As alluded to above, pointers that are obtained from
663	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
664	 * struct task_struct *task is PTR_TRUSTED, then accessing
665	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
666	 * in a BPF register. Similarly, pointers passed to certain programs
667	 * types such as kretprobes are not guaranteed to be valid, as they may
668	 * for example contain an object that was recently freed.
669	 */
670	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
671
672	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
673	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
674
675	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
676	 * Currently only valid for linked-list and rbtree nodes. If the nodes
677	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
678	 */
679	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
680
681	/* DYNPTR points to sk_buff */
682	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
683
684	/* DYNPTR points to xdp_buff */
685	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
686
687	__BPF_TYPE_FLAG_MAX,
688	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
689};
690
691#define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
692				 | DYNPTR_TYPE_XDP)
693
694/* Max number of base types. */
695#define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
696
697/* Max number of all types. */
698#define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
699
700/* function argument constraints */
701enum bpf_arg_type {
702	ARG_DONTCARE = 0,	/* unused argument in helper function */
703
704	/* the following constraints used to prototype
705	 * bpf_map_lookup/update/delete_elem() functions
706	 */
707	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
708	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
709	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
710
711	/* Used to prototype bpf_memcmp() and other functions that access data
712	 * on eBPF program stack
713	 */
714	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
715	ARG_PTR_TO_ARENA,
716
717	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
718	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
719
720	ARG_PTR_TO_CTX,		/* pointer to context */
721	ARG_ANYTHING,		/* any (initialized) argument is ok */
722	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
723	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
724	ARG_PTR_TO_INT,		/* pointer to int */
725	ARG_PTR_TO_LONG,	/* pointer to long */
726	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
727	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
728	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
729	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
730	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
731	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
732	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
733	ARG_PTR_TO_STACK,	/* pointer to stack */
734	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
735	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
736	ARG_PTR_TO_KPTR,	/* pointer to referenced kptr */
737	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
738	__BPF_ARG_TYPE_MAX,
739
740	/* Extended arg_types. */
741	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
742	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
743	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
744	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
745	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
746	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
747	/* pointer to memory does not need to be initialized, helper function must fill
748	 * all bytes or clear them in error case.
749	 */
750	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | ARG_PTR_TO_MEM,
751	/* Pointer to valid memory of size known at compile time. */
752	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
753
754	/* This must be the last entry. Its purpose is to ensure the enum is
755	 * wide enough to hold the higher bits reserved for bpf_type_flag.
756	 */
757	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
758};
759static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
760
761/* type of values returned from helper functions */
762enum bpf_return_type {
763	RET_INTEGER,			/* function returns integer */
764	RET_VOID,			/* function doesn't return anything */
765	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
766	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
767	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
768	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
769	RET_PTR_TO_MEM,			/* returns a pointer to memory */
770	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
771	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
772	__BPF_RET_TYPE_MAX,
773
774	/* Extended ret_types. */
775	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
776	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
777	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
778	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
779	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
780	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
781	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
782	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
783
784	/* This must be the last entry. Its purpose is to ensure the enum is
785	 * wide enough to hold the higher bits reserved for bpf_type_flag.
786	 */
787	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
788};
789static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
790
791/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
792 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
793 * instructions after verifying
794 */
795struct bpf_func_proto {
796	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
797	bool gpl_only;
798	bool pkt_access;
799	bool might_sleep;
800	enum bpf_return_type ret_type;
801	union {
802		struct {
803			enum bpf_arg_type arg1_type;
804			enum bpf_arg_type arg2_type;
805			enum bpf_arg_type arg3_type;
806			enum bpf_arg_type arg4_type;
807			enum bpf_arg_type arg5_type;
808		};
809		enum bpf_arg_type arg_type[5];
810	};
811	union {
812		struct {
813			u32 *arg1_btf_id;
814			u32 *arg2_btf_id;
815			u32 *arg3_btf_id;
816			u32 *arg4_btf_id;
817			u32 *arg5_btf_id;
818		};
819		u32 *arg_btf_id[5];
820		struct {
821			size_t arg1_size;
822			size_t arg2_size;
823			size_t arg3_size;
824			size_t arg4_size;
825			size_t arg5_size;
826		};
827		size_t arg_size[5];
828	};
829	int *ret_btf_id; /* return value btf_id */
830	bool (*allowed)(const struct bpf_prog *prog);
831};
832
833/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
834 * the first argument to eBPF programs.
835 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
836 */
837struct bpf_context;
838
839enum bpf_access_type {
840	BPF_READ = 1,
841	BPF_WRITE = 2
842};
843
844/* types of values stored in eBPF registers */
845/* Pointer types represent:
846 * pointer
847 * pointer + imm
848 * pointer + (u16) var
849 * pointer + (u16) var + imm
850 * if (range > 0) then [ptr, ptr + range - off) is safe to access
851 * if (id > 0) means that some 'var' was added
852 * if (off > 0) means that 'imm' was added
853 */
854enum bpf_reg_type {
855	NOT_INIT = 0,		 /* nothing was written into register */
856	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
857	PTR_TO_CTX,		 /* reg points to bpf_context */
858	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
859	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
860	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
861	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
862	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
863	PTR_TO_PACKET,		 /* reg points to skb->data */
864	PTR_TO_PACKET_END,	 /* skb->data + headlen */
865	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
866	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
867	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
868	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
869	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
870	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
871	/* PTR_TO_BTF_ID points to a kernel struct that does not need
872	 * to be null checked by the BPF program. This does not imply the
873	 * pointer is _not_ null and in practice this can easily be a null
874	 * pointer when reading pointer chains. The assumption is program
875	 * context will handle null pointer dereference typically via fault
876	 * handling. The verifier must keep this in mind and can make no
877	 * assumptions about null or non-null when doing branch analysis.
878	 * Further, when passed into helpers the helpers can not, without
879	 * additional context, assume the value is non-null.
880	 */
881	PTR_TO_BTF_ID,
882	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
883	 * been checked for null. Used primarily to inform the verifier
884	 * an explicit null check is required for this struct.
885	 */
886	PTR_TO_MEM,		 /* reg points to valid memory region */
887	PTR_TO_ARENA,
888	PTR_TO_BUF,		 /* reg points to a read/write buffer */
889	PTR_TO_FUNC,		 /* reg points to a bpf program function */
890	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
891	__BPF_REG_TYPE_MAX,
892
893	/* Extended reg_types. */
894	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
895	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
896	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
897	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
898	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
899
900	/* This must be the last entry. Its purpose is to ensure the enum is
901	 * wide enough to hold the higher bits reserved for bpf_type_flag.
902	 */
903	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
904};
905static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
906
907/* The information passed from prog-specific *_is_valid_access
908 * back to the verifier.
909 */
910struct bpf_insn_access_aux {
911	enum bpf_reg_type reg_type;
912	union {
913		int ctx_field_size;
914		struct {
915			struct btf *btf;
916			u32 btf_id;
917		};
918	};
919	struct bpf_verifier_log *log; /* for verbose logs */
920};
921
922static inline void
923bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
924{
925	aux->ctx_field_size = size;
926}
927
928static bool bpf_is_ldimm64(const struct bpf_insn *insn)
929{
930	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
931}
932
933static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
934{
935	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
936}
937
938struct bpf_prog_ops {
939	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
940			union bpf_attr __user *uattr);
941};
942
943struct bpf_reg_state;
944struct bpf_verifier_ops {
945	/* return eBPF function prototype for verification */
946	const struct bpf_func_proto *
947	(*get_func_proto)(enum bpf_func_id func_id,
948			  const struct bpf_prog *prog);
949
950	/* return true if 'size' wide access at offset 'off' within bpf_context
951	 * with 'type' (read or write) is allowed
952	 */
953	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
954				const struct bpf_prog *prog,
955				struct bpf_insn_access_aux *info);
956	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
957			    const struct bpf_prog *prog);
958	int (*gen_ld_abs)(const struct bpf_insn *orig,
959			  struct bpf_insn *insn_buf);
960	u32 (*convert_ctx_access)(enum bpf_access_type type,
961				  const struct bpf_insn *src,
962				  struct bpf_insn *dst,
963				  struct bpf_prog *prog, u32 *target_size);
964	int (*btf_struct_access)(struct bpf_verifier_log *log,
965				 const struct bpf_reg_state *reg,
966				 int off, int size);
967};
968
969struct bpf_prog_offload_ops {
970	/* verifier basic callbacks */
971	int (*insn_hook)(struct bpf_verifier_env *env,
972			 int insn_idx, int prev_insn_idx);
973	int (*finalize)(struct bpf_verifier_env *env);
974	/* verifier optimization callbacks (called after .finalize) */
975	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
976			    struct bpf_insn *insn);
977	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
978	/* program management callbacks */
979	int (*prepare)(struct bpf_prog *prog);
980	int (*translate)(struct bpf_prog *prog);
981	void (*destroy)(struct bpf_prog *prog);
982};
983
984struct bpf_prog_offload {
985	struct bpf_prog		*prog;
986	struct net_device	*netdev;
987	struct bpf_offload_dev	*offdev;
988	void			*dev_priv;
989	struct list_head	offloads;
990	bool			dev_state;
991	bool			opt_failed;
992	void			*jited_image;
993	u32			jited_len;
994};
995
996enum bpf_cgroup_storage_type {
997	BPF_CGROUP_STORAGE_SHARED,
998	BPF_CGROUP_STORAGE_PERCPU,
999	__BPF_CGROUP_STORAGE_MAX
1000};
1001
1002#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1003
1004/* The longest tracepoint has 12 args.
1005 * See include/trace/bpf_probe.h
1006 */
1007#define MAX_BPF_FUNC_ARGS 12
1008
1009/* The maximum number of arguments passed through registers
1010 * a single function may have.
1011 */
1012#define MAX_BPF_FUNC_REG_ARGS 5
1013
1014/* The argument is a structure. */
1015#define BTF_FMODEL_STRUCT_ARG		BIT(0)
1016
1017/* The argument is signed. */
1018#define BTF_FMODEL_SIGNED_ARG		BIT(1)
1019
1020struct btf_func_model {
1021	u8 ret_size;
1022	u8 ret_flags;
1023	u8 nr_args;
1024	u8 arg_size[MAX_BPF_FUNC_ARGS];
1025	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1026};
1027
1028/* Restore arguments before returning from trampoline to let original function
1029 * continue executing. This flag is used for fentry progs when there are no
1030 * fexit progs.
1031 */
1032#define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1033/* Call original function after fentry progs, but before fexit progs.
1034 * Makes sense for fentry/fexit, normal calls and indirect calls.
1035 */
1036#define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1037/* Skip current frame and return to parent.  Makes sense for fentry/fexit
1038 * programs only. Should not be used with normal calls and indirect calls.
1039 */
1040#define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1041/* Store IP address of the caller on the trampoline stack,
1042 * so it's available for trampoline's programs.
1043 */
1044#define BPF_TRAMP_F_IP_ARG		BIT(3)
1045/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1046#define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1047
1048/* Get original function from stack instead of from provided direct address.
1049 * Makes sense for trampolines with fexit or fmod_ret programs.
1050 */
1051#define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1052
1053/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1054 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1055 */
1056#define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1057
1058/* Indicate that current trampoline is in a tail call context. Then, it has to
1059 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1060 */
1061#define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1062
1063/*
1064 * Indicate the trampoline should be suitable to receive indirect calls;
1065 * without this indirectly calling the generated code can result in #UD/#CP,
1066 * depending on the CFI options.
1067 *
1068 * Used by bpf_struct_ops.
1069 *
1070 * Incompatible with FENTRY usage, overloads @func_addr argument.
1071 */
1072#define BPF_TRAMP_F_INDIRECT		BIT(8)
1073
1074/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1075 * bytes on x86.
1076 */
1077enum {
1078#if defined(__s390x__)
1079	BPF_MAX_TRAMP_LINKS = 27,
1080#else
1081	BPF_MAX_TRAMP_LINKS = 38,
1082#endif
1083};
1084
1085struct bpf_tramp_links {
1086	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1087	int nr_links;
1088};
1089
1090struct bpf_tramp_run_ctx;
1091
1092/* Different use cases for BPF trampoline:
1093 * 1. replace nop at the function entry (kprobe equivalent)
1094 *    flags = BPF_TRAMP_F_RESTORE_REGS
1095 *    fentry = a set of programs to run before returning from trampoline
1096 *
1097 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1098 *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1099 *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1100 *    fentry = a set of program to run before calling original function
1101 *    fexit = a set of program to run after original function
1102 *
1103 * 3. replace direct call instruction anywhere in the function body
1104 *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1105 *    With flags = 0
1106 *      fentry = a set of programs to run before returning from trampoline
1107 *    With flags = BPF_TRAMP_F_CALL_ORIG
1108 *      orig_call = original callback addr or direct function addr
1109 *      fentry = a set of program to run before calling original function
1110 *      fexit = a set of program to run after original function
1111 */
1112struct bpf_tramp_image;
1113int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1114				const struct btf_func_model *m, u32 flags,
1115				struct bpf_tramp_links *tlinks,
1116				void *func_addr);
1117void *arch_alloc_bpf_trampoline(unsigned int size);
1118void arch_free_bpf_trampoline(void *image, unsigned int size);
1119void arch_protect_bpf_trampoline(void *image, unsigned int size);
1120void arch_unprotect_bpf_trampoline(void *image, unsigned int size);
1121int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1122			     struct bpf_tramp_links *tlinks, void *func_addr);
1123
1124u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1125					     struct bpf_tramp_run_ctx *run_ctx);
1126void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1127					     struct bpf_tramp_run_ctx *run_ctx);
1128void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1129void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1130typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1131				      struct bpf_tramp_run_ctx *run_ctx);
1132typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1133				      struct bpf_tramp_run_ctx *run_ctx);
1134bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1135bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1136
1137struct bpf_ksym {
1138	unsigned long		 start;
1139	unsigned long		 end;
1140	char			 name[KSYM_NAME_LEN];
1141	struct list_head	 lnode;
1142	struct latch_tree_node	 tnode;
1143	bool			 prog;
1144};
1145
1146enum bpf_tramp_prog_type {
1147	BPF_TRAMP_FENTRY,
1148	BPF_TRAMP_FEXIT,
1149	BPF_TRAMP_MODIFY_RETURN,
1150	BPF_TRAMP_MAX,
1151	BPF_TRAMP_REPLACE, /* more than MAX */
1152};
1153
1154struct bpf_tramp_image {
1155	void *image;
1156	int size;
1157	struct bpf_ksym ksym;
1158	struct percpu_ref pcref;
1159	void *ip_after_call;
1160	void *ip_epilogue;
1161	union {
1162		struct rcu_head rcu;
1163		struct work_struct work;
1164	};
1165};
1166
1167struct bpf_trampoline {
1168	/* hlist for trampoline_table */
1169	struct hlist_node hlist;
1170	struct ftrace_ops *fops;
1171	/* serializes access to fields of this trampoline */
1172	struct mutex mutex;
1173	refcount_t refcnt;
1174	u32 flags;
1175	u64 key;
1176	struct {
1177		struct btf_func_model model;
1178		void *addr;
1179		bool ftrace_managed;
1180	} func;
1181	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1182	 * program by replacing one of its functions. func.addr is the address
1183	 * of the function it replaced.
1184	 */
1185	struct bpf_prog *extension_prog;
1186	/* list of BPF programs using this trampoline */
1187	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1188	/* Number of attached programs. A counter per kind. */
1189	int progs_cnt[BPF_TRAMP_MAX];
1190	/* Executable image of trampoline */
1191	struct bpf_tramp_image *cur_image;
1192};
1193
1194struct bpf_attach_target_info {
1195	struct btf_func_model fmodel;
1196	long tgt_addr;
1197	struct module *tgt_mod;
1198	const char *tgt_name;
1199	const struct btf_type *tgt_type;
1200};
1201
1202#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1203
1204struct bpf_dispatcher_prog {
1205	struct bpf_prog *prog;
1206	refcount_t users;
1207};
1208
1209struct bpf_dispatcher {
1210	/* dispatcher mutex */
1211	struct mutex mutex;
1212	void *func;
1213	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1214	int num_progs;
1215	void *image;
1216	void *rw_image;
1217	u32 image_off;
1218	struct bpf_ksym ksym;
1219#ifdef CONFIG_HAVE_STATIC_CALL
1220	struct static_call_key *sc_key;
1221	void *sc_tramp;
1222#endif
1223};
1224
1225#ifndef __bpfcall
1226#define __bpfcall __nocfi
1227#endif
1228
1229static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1230	const void *ctx,
1231	const struct bpf_insn *insnsi,
1232	bpf_func_t bpf_func)
1233{
1234	return bpf_func(ctx, insnsi);
1235}
1236
1237/* the implementation of the opaque uapi struct bpf_dynptr */
1238struct bpf_dynptr_kern {
1239	void *data;
1240	/* Size represents the number of usable bytes of dynptr data.
1241	 * If for example the offset is at 4 for a local dynptr whose data is
1242	 * of type u64, the number of usable bytes is 4.
1243	 *
1244	 * The upper 8 bits are reserved. It is as follows:
1245	 * Bits 0 - 23 = size
1246	 * Bits 24 - 30 = dynptr type
1247	 * Bit 31 = whether dynptr is read-only
1248	 */
1249	u32 size;
1250	u32 offset;
1251} __aligned(8);
1252
1253enum bpf_dynptr_type {
1254	BPF_DYNPTR_TYPE_INVALID,
1255	/* Points to memory that is local to the bpf program */
1256	BPF_DYNPTR_TYPE_LOCAL,
1257	/* Underlying data is a ringbuf record */
1258	BPF_DYNPTR_TYPE_RINGBUF,
1259	/* Underlying data is a sk_buff */
1260	BPF_DYNPTR_TYPE_SKB,
1261	/* Underlying data is a xdp_buff */
1262	BPF_DYNPTR_TYPE_XDP,
1263};
1264
1265int bpf_dynptr_check_size(u32 size);
1266u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1267const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1268void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1269
1270#ifdef CONFIG_BPF_JIT
1271int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1272int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1273struct bpf_trampoline *bpf_trampoline_get(u64 key,
1274					  struct bpf_attach_target_info *tgt_info);
1275void bpf_trampoline_put(struct bpf_trampoline *tr);
1276int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1277
1278/*
1279 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1280 * indirection with a direct call to the bpf program. If the architecture does
1281 * not have STATIC_CALL, avoid a double-indirection.
1282 */
1283#ifdef CONFIG_HAVE_STATIC_CALL
1284
1285#define __BPF_DISPATCHER_SC_INIT(_name)				\
1286	.sc_key = &STATIC_CALL_KEY(_name),			\
1287	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1288
1289#define __BPF_DISPATCHER_SC(name)				\
1290	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1291
1292#define __BPF_DISPATCHER_CALL(name)				\
1293	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1294
1295#define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1296	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1297
1298#else
1299#define __BPF_DISPATCHER_SC_INIT(name)
1300#define __BPF_DISPATCHER_SC(name)
1301#define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1302#define __BPF_DISPATCHER_UPDATE(_d, _new)
1303#endif
1304
1305#define BPF_DISPATCHER_INIT(_name) {				\
1306	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1307	.func = &_name##_func,					\
1308	.progs = {},						\
1309	.num_progs = 0,						\
1310	.image = NULL,						\
1311	.image_off = 0,						\
1312	.ksym = {						\
1313		.name  = #_name,				\
1314		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1315	},							\
1316	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1317}
1318
1319#define DEFINE_BPF_DISPATCHER(name)					\
1320	__BPF_DISPATCHER_SC(name);					\
1321	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1322		const void *ctx,					\
1323		const struct bpf_insn *insnsi,				\
1324		bpf_func_t bpf_func)					\
1325	{								\
1326		return __BPF_DISPATCHER_CALL(name);			\
1327	}								\
1328	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1329	struct bpf_dispatcher bpf_dispatcher_##name =			\
1330		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1331
1332#define DECLARE_BPF_DISPATCHER(name)					\
1333	unsigned int bpf_dispatcher_##name##_func(			\
1334		const void *ctx,					\
1335		const struct bpf_insn *insnsi,				\
1336		bpf_func_t bpf_func);					\
1337	extern struct bpf_dispatcher bpf_dispatcher_##name;
1338
1339#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1340#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1341void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1342				struct bpf_prog *to);
1343/* Called only from JIT-enabled code, so there's no need for stubs. */
1344void bpf_image_ksym_add(void *data, unsigned int size, struct bpf_ksym *ksym);
1345void bpf_image_ksym_del(struct bpf_ksym *ksym);
1346void bpf_ksym_add(struct bpf_ksym *ksym);
1347void bpf_ksym_del(struct bpf_ksym *ksym);
1348int bpf_jit_charge_modmem(u32 size);
1349void bpf_jit_uncharge_modmem(u32 size);
1350bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1351#else
1352static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1353					   struct bpf_trampoline *tr)
1354{
1355	return -ENOTSUPP;
1356}
1357static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1358					     struct bpf_trampoline *tr)
1359{
1360	return -ENOTSUPP;
1361}
1362static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1363							struct bpf_attach_target_info *tgt_info)
1364{
1365	return NULL;
1366}
1367static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1368#define DEFINE_BPF_DISPATCHER(name)
1369#define DECLARE_BPF_DISPATCHER(name)
1370#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1371#define BPF_DISPATCHER_PTR(name) NULL
1372static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1373					      struct bpf_prog *from,
1374					      struct bpf_prog *to) {}
1375static inline bool is_bpf_image_address(unsigned long address)
1376{
1377	return false;
1378}
1379static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1380{
1381	return false;
1382}
1383#endif
1384
1385struct bpf_func_info_aux {
1386	u16 linkage;
1387	bool unreliable;
1388	bool called : 1;
1389	bool verified : 1;
1390};
1391
1392enum bpf_jit_poke_reason {
1393	BPF_POKE_REASON_TAIL_CALL,
1394};
1395
1396/* Descriptor of pokes pointing /into/ the JITed image. */
1397struct bpf_jit_poke_descriptor {
1398	void *tailcall_target;
1399	void *tailcall_bypass;
1400	void *bypass_addr;
1401	void *aux;
1402	union {
1403		struct {
1404			struct bpf_map *map;
1405			u32 key;
1406		} tail_call;
1407	};
1408	bool tailcall_target_stable;
1409	u8 adj_off;
1410	u16 reason;
1411	u32 insn_idx;
1412};
1413
1414/* reg_type info for ctx arguments */
1415struct bpf_ctx_arg_aux {
1416	u32 offset;
1417	enum bpf_reg_type reg_type;
1418	struct btf *btf;
1419	u32 btf_id;
1420};
1421
1422struct btf_mod_pair {
1423	struct btf *btf;
1424	struct module *module;
1425};
1426
1427struct bpf_kfunc_desc_tab;
1428
1429struct bpf_prog_aux {
1430	atomic64_t refcnt;
1431	u32 used_map_cnt;
1432	u32 used_btf_cnt;
1433	u32 max_ctx_offset;
1434	u32 max_pkt_offset;
1435	u32 max_tp_access;
1436	u32 stack_depth;
1437	u32 id;
1438	u32 func_cnt; /* used by non-func prog as the number of func progs */
1439	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1440	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1441	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1442	u32 ctx_arg_info_size;
1443	u32 max_rdonly_access;
1444	u32 max_rdwr_access;
1445	struct btf *attach_btf;
1446	const struct bpf_ctx_arg_aux *ctx_arg_info;
1447	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1448	struct bpf_prog *dst_prog;
1449	struct bpf_trampoline *dst_trampoline;
1450	enum bpf_prog_type saved_dst_prog_type;
1451	enum bpf_attach_type saved_dst_attach_type;
1452	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1453	bool dev_bound; /* Program is bound to the netdev. */
1454	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1455	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1456	bool attach_tracing_prog; /* true if tracing another tracing program */
1457	bool func_proto_unreliable;
1458	bool tail_call_reachable;
1459	bool xdp_has_frags;
1460	bool exception_cb;
1461	bool exception_boundary;
1462	struct bpf_arena *arena;
1463	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1464	const struct btf_type *attach_func_proto;
1465	/* function name for valid attach_btf_id */
1466	const char *attach_func_name;
1467	struct bpf_prog **func;
1468	void *jit_data; /* JIT specific data. arch dependent */
1469	struct bpf_jit_poke_descriptor *poke_tab;
1470	struct bpf_kfunc_desc_tab *kfunc_tab;
1471	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1472	u32 size_poke_tab;
1473#ifdef CONFIG_FINEIBT
1474	struct bpf_ksym ksym_prefix;
1475#endif
1476	struct bpf_ksym ksym;
1477	const struct bpf_prog_ops *ops;
1478	struct bpf_map **used_maps;
1479	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1480	struct btf_mod_pair *used_btfs;
1481	struct bpf_prog *prog;
1482	struct user_struct *user;
1483	u64 load_time; /* ns since boottime */
1484	u32 verified_insns;
1485	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1486	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1487	char name[BPF_OBJ_NAME_LEN];
1488	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1489#ifdef CONFIG_SECURITY
1490	void *security;
1491#endif
1492	struct bpf_token *token;
1493	struct bpf_prog_offload *offload;
1494	struct btf *btf;
1495	struct bpf_func_info *func_info;
1496	struct bpf_func_info_aux *func_info_aux;
1497	/* bpf_line_info loaded from userspace.  linfo->insn_off
1498	 * has the xlated insn offset.
1499	 * Both the main and sub prog share the same linfo.
1500	 * The subprog can access its first linfo by
1501	 * using the linfo_idx.
1502	 */
1503	struct bpf_line_info *linfo;
1504	/* jited_linfo is the jited addr of the linfo.  It has a
1505	 * one to one mapping to linfo:
1506	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1507	 * Both the main and sub prog share the same jited_linfo.
1508	 * The subprog can access its first jited_linfo by
1509	 * using the linfo_idx.
1510	 */
1511	void **jited_linfo;
1512	u32 func_info_cnt;
1513	u32 nr_linfo;
1514	/* subprog can use linfo_idx to access its first linfo and
1515	 * jited_linfo.
1516	 * main prog always has linfo_idx == 0
1517	 */
1518	u32 linfo_idx;
1519	struct module *mod;
1520	u32 num_exentries;
1521	struct exception_table_entry *extable;
1522	union {
1523		struct work_struct work;
1524		struct rcu_head	rcu;
1525	};
1526};
1527
1528struct bpf_prog {
1529	u16			pages;		/* Number of allocated pages */
1530	u16			jited:1,	/* Is our filter JIT'ed? */
1531				jit_requested:1,/* archs need to JIT the prog */
1532				gpl_compatible:1, /* Is filter GPL compatible? */
1533				cb_access:1,	/* Is control block accessed? */
1534				dst_needed:1,	/* Do we need dst entry? */
1535				blinding_requested:1, /* needs constant blinding */
1536				blinded:1,	/* Was blinded */
1537				is_func:1,	/* program is a bpf function */
1538				kprobe_override:1, /* Do we override a kprobe? */
1539				has_callchain_buf:1, /* callchain buffer allocated? */
1540				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1541				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1542				call_get_func_ip:1, /* Do we call get_func_ip() */
1543				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1544				sleepable:1;	/* BPF program is sleepable */
1545	enum bpf_prog_type	type;		/* Type of BPF program */
1546	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1547	u32			len;		/* Number of filter blocks */
1548	u32			jited_len;	/* Size of jited insns in bytes */
1549	u8			tag[BPF_TAG_SIZE];
1550	struct bpf_prog_stats __percpu *stats;
1551	int __percpu		*active;
1552	unsigned int		(*bpf_func)(const void *ctx,
1553					    const struct bpf_insn *insn);
1554	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1555	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1556	/* Instructions for interpreter */
1557	union {
1558		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1559		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1560	};
1561};
1562
1563struct bpf_array_aux {
1564	/* Programs with direct jumps into programs part of this array. */
1565	struct list_head poke_progs;
1566	struct bpf_map *map;
1567	struct mutex poke_mutex;
1568	struct work_struct work;
1569};
1570
1571struct bpf_link {
1572	atomic64_t refcnt;
1573	u32 id;
1574	enum bpf_link_type type;
1575	const struct bpf_link_ops *ops;
1576	struct bpf_prog *prog;
1577	/* rcu is used before freeing, work can be used to schedule that
1578	 * RCU-based freeing before that, so they never overlap
1579	 */
1580	union {
1581		struct rcu_head rcu;
1582		struct work_struct work;
1583	};
1584};
1585
1586struct bpf_link_ops {
1587	void (*release)(struct bpf_link *link);
1588	/* deallocate link resources callback, called without RCU grace period
1589	 * waiting
1590	 */
1591	void (*dealloc)(struct bpf_link *link);
1592	/* deallocate link resources callback, called after RCU grace period;
1593	 * if underlying BPF program is sleepable we go through tasks trace
1594	 * RCU GP and then "classic" RCU GP
1595	 */
1596	void (*dealloc_deferred)(struct bpf_link *link);
1597	int (*detach)(struct bpf_link *link);
1598	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1599			   struct bpf_prog *old_prog);
1600	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1601	int (*fill_link_info)(const struct bpf_link *link,
1602			      struct bpf_link_info *info);
1603	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1604			  struct bpf_map *old_map);
1605};
1606
1607struct bpf_tramp_link {
1608	struct bpf_link link;
1609	struct hlist_node tramp_hlist;
1610	u64 cookie;
1611};
1612
1613struct bpf_shim_tramp_link {
1614	struct bpf_tramp_link link;
1615	struct bpf_trampoline *trampoline;
1616};
1617
1618struct bpf_tracing_link {
1619	struct bpf_tramp_link link;
1620	enum bpf_attach_type attach_type;
1621	struct bpf_trampoline *trampoline;
1622	struct bpf_prog *tgt_prog;
1623};
1624
1625struct bpf_link_primer {
1626	struct bpf_link *link;
1627	struct file *file;
1628	int fd;
1629	u32 id;
1630};
1631
1632struct bpf_mount_opts {
1633	kuid_t uid;
1634	kgid_t gid;
1635	umode_t mode;
1636
1637	/* BPF token-related delegation options */
1638	u64 delegate_cmds;
1639	u64 delegate_maps;
1640	u64 delegate_progs;
1641	u64 delegate_attachs;
1642};
1643
1644struct bpf_token {
1645	struct work_struct work;
1646	atomic64_t refcnt;
1647	struct user_namespace *userns;
1648	u64 allowed_cmds;
1649	u64 allowed_maps;
1650	u64 allowed_progs;
1651	u64 allowed_attachs;
1652#ifdef CONFIG_SECURITY
1653	void *security;
1654#endif
1655};
1656
1657struct bpf_struct_ops_value;
1658struct btf_member;
1659
1660#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1661/**
1662 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1663 *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1664 *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1665 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1666 *		  when determining whether the struct_ops progs in the
1667 *		  struct_ops map are valid.
1668 * @init: A callback that is invoked a single time, and before any other
1669 *	  callback, to initialize the structure. A nonzero return value means
1670 *	  the subsystem could not be initialized.
1671 * @check_member: When defined, a callback invoked by the verifier to allow
1672 *		  the subsystem to determine if an entry in the struct_ops map
1673 *		  is valid. A nonzero return value means that the map is
1674 *		  invalid and should be rejected by the verifier.
1675 * @init_member: A callback that is invoked for each member of the struct_ops
1676 *		 map to allow the subsystem to initialize the member. A nonzero
1677 *		 value means the member could not be initialized. This callback
1678 *		 is exclusive with the @type, @type_id, @value_type, and
1679 *		 @value_id fields.
1680 * @reg: A callback that is invoked when the struct_ops map has been
1681 *	 initialized and is being attached to. Zero means the struct_ops map
1682 *	 has been successfully registered and is live. A nonzero return value
1683 *	 means the struct_ops map could not be registered.
1684 * @unreg: A callback that is invoked when the struct_ops map should be
1685 *	   unregistered.
1686 * @update: A callback that is invoked when the live struct_ops map is being
1687 *	    updated to contain new values. This callback is only invoked when
1688 *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1689 *	    it is assumed that the struct_ops map cannot be updated.
1690 * @validate: A callback that is invoked after all of the members have been
1691 *	      initialized. This callback should perform static checks on the
1692 *	      map, meaning that it should either fail or succeed
1693 *	      deterministically. A struct_ops map that has been validated may
1694 *	      not necessarily succeed in being registered if the call to @reg
1695 *	      fails. For example, a valid struct_ops map may be loaded, but
1696 *	      then fail to be registered due to there being another active
1697 *	      struct_ops map on the system in the subsystem already. For this
1698 *	      reason, if this callback is not defined, the check is skipped as
1699 *	      the struct_ops map will have final verification performed in
1700 *	      @reg.
1701 * @type: BTF type.
1702 * @value_type: Value type.
1703 * @name: The name of the struct bpf_struct_ops object.
1704 * @func_models: Func models
1705 * @type_id: BTF type id.
1706 * @value_id: BTF value id.
1707 */
1708struct bpf_struct_ops {
1709	const struct bpf_verifier_ops *verifier_ops;
1710	int (*init)(struct btf *btf);
1711	int (*check_member)(const struct btf_type *t,
1712			    const struct btf_member *member,
1713			    const struct bpf_prog *prog);
1714	int (*init_member)(const struct btf_type *t,
1715			   const struct btf_member *member,
1716			   void *kdata, const void *udata);
1717	int (*reg)(void *kdata);
1718	void (*unreg)(void *kdata);
1719	int (*update)(void *kdata, void *old_kdata);
1720	int (*validate)(void *kdata);
1721	void *cfi_stubs;
1722	struct module *owner;
1723	const char *name;
1724	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1725};
1726
1727/* Every member of a struct_ops type has an instance even a member is not
1728 * an operator (function pointer). The "info" field will be assigned to
1729 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1730 * argument information required by the verifier to verify the program.
1731 *
1732 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1733 * corresponding entry for an given argument.
1734 */
1735struct bpf_struct_ops_arg_info {
1736	struct bpf_ctx_arg_aux *info;
1737	u32 cnt;
1738};
1739
1740struct bpf_struct_ops_desc {
1741	struct bpf_struct_ops *st_ops;
1742
1743	const struct btf_type *type;
1744	const struct btf_type *value_type;
1745	u32 type_id;
1746	u32 value_id;
1747
1748	/* Collection of argument information for each member */
1749	struct bpf_struct_ops_arg_info *arg_info;
1750};
1751
1752enum bpf_struct_ops_state {
1753	BPF_STRUCT_OPS_STATE_INIT,
1754	BPF_STRUCT_OPS_STATE_INUSE,
1755	BPF_STRUCT_OPS_STATE_TOBEFREE,
1756	BPF_STRUCT_OPS_STATE_READY,
1757};
1758
1759struct bpf_struct_ops_common_value {
1760	refcount_t refcnt;
1761	enum bpf_struct_ops_state state;
1762};
1763
1764#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1765/* This macro helps developer to register a struct_ops type and generate
1766 * type information correctly. Developers should use this macro to register
1767 * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1768 */
1769#define register_bpf_struct_ops(st_ops, type)				\
1770	({								\
1771		struct bpf_struct_ops_##type {				\
1772			struct bpf_struct_ops_common_value common;	\
1773			struct type data ____cacheline_aligned_in_smp;	\
1774		};							\
1775		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1776		__register_bpf_struct_ops(st_ops);			\
1777	})
1778#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1779bool bpf_struct_ops_get(const void *kdata);
1780void bpf_struct_ops_put(const void *kdata);
1781int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1782				       void *value);
1783int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1784				      struct bpf_tramp_link *link,
1785				      const struct btf_func_model *model,
1786				      void *stub_func,
1787				      void **image, u32 *image_off,
1788				      bool allow_alloc);
1789void bpf_struct_ops_image_free(void *image);
1790static inline bool bpf_try_module_get(const void *data, struct module *owner)
1791{
1792	if (owner == BPF_MODULE_OWNER)
1793		return bpf_struct_ops_get(data);
1794	else
1795		return try_module_get(owner);
1796}
1797static inline void bpf_module_put(const void *data, struct module *owner)
1798{
1799	if (owner == BPF_MODULE_OWNER)
1800		bpf_struct_ops_put(data);
1801	else
1802		module_put(owner);
1803}
1804int bpf_struct_ops_link_create(union bpf_attr *attr);
1805
1806#ifdef CONFIG_NET
1807/* Define it here to avoid the use of forward declaration */
1808struct bpf_dummy_ops_state {
1809	int val;
1810};
1811
1812struct bpf_dummy_ops {
1813	int (*test_1)(struct bpf_dummy_ops_state *cb);
1814	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1815		      char a3, unsigned long a4);
1816	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1817};
1818
1819int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1820			    union bpf_attr __user *uattr);
1821#endif
1822int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1823			     struct btf *btf,
1824			     struct bpf_verifier_log *log);
1825void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1826void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1827#else
1828#define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
1829static inline bool bpf_try_module_get(const void *data, struct module *owner)
1830{
1831	return try_module_get(owner);
1832}
1833static inline void bpf_module_put(const void *data, struct module *owner)
1834{
1835	module_put(owner);
1836}
1837static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1838						     void *key,
1839						     void *value)
1840{
1841	return -EINVAL;
1842}
1843static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1844{
1845	return -EOPNOTSUPP;
1846}
1847static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1848{
1849}
1850
1851static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1852{
1853}
1854
1855#endif
1856
1857#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1858int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1859				    int cgroup_atype);
1860void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1861#else
1862static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1863						  int cgroup_atype)
1864{
1865	return -EOPNOTSUPP;
1866}
1867static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1868{
1869}
1870#endif
1871
1872struct bpf_array {
1873	struct bpf_map map;
1874	u32 elem_size;
1875	u32 index_mask;
1876	struct bpf_array_aux *aux;
1877	union {
1878		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
1879		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
1880		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
1881	};
1882};
1883
1884#define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
1885#define MAX_TAIL_CALL_CNT 33
1886
1887/* Maximum number of loops for bpf_loop and bpf_iter_num.
1888 * It's enum to expose it (and thus make it discoverable) through BTF.
1889 */
1890enum {
1891	BPF_MAX_LOOPS = 8 * 1024 * 1024,
1892};
1893
1894#define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
1895				 BPF_F_RDONLY_PROG |	\
1896				 BPF_F_WRONLY |		\
1897				 BPF_F_WRONLY_PROG)
1898
1899#define BPF_MAP_CAN_READ	BIT(0)
1900#define BPF_MAP_CAN_WRITE	BIT(1)
1901
1902/* Maximum number of user-producer ring buffer samples that can be drained in
1903 * a call to bpf_user_ringbuf_drain().
1904 */
1905#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1906
1907static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1908{
1909	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1910
1911	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1912	 * not possible.
1913	 */
1914	if (access_flags & BPF_F_RDONLY_PROG)
1915		return BPF_MAP_CAN_READ;
1916	else if (access_flags & BPF_F_WRONLY_PROG)
1917		return BPF_MAP_CAN_WRITE;
1918	else
1919		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1920}
1921
1922static inline bool bpf_map_flags_access_ok(u32 access_flags)
1923{
1924	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1925	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1926}
1927
1928struct bpf_event_entry {
1929	struct perf_event *event;
1930	struct file *perf_file;
1931	struct file *map_file;
1932	struct rcu_head rcu;
1933};
1934
1935static inline bool map_type_contains_progs(struct bpf_map *map)
1936{
1937	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1938	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
1939	       map->map_type == BPF_MAP_TYPE_CPUMAP;
1940}
1941
1942bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1943int bpf_prog_calc_tag(struct bpf_prog *fp);
1944
1945const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1946const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1947
1948typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1949					unsigned long off, unsigned long len);
1950typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1951					const struct bpf_insn *src,
1952					struct bpf_insn *dst,
1953					struct bpf_prog *prog,
1954					u32 *target_size);
1955
1956u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1957		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1958
1959/* an array of programs to be executed under rcu_lock.
1960 *
1961 * Typical usage:
1962 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1963 *
1964 * the structure returned by bpf_prog_array_alloc() should be populated
1965 * with program pointers and the last pointer must be NULL.
1966 * The user has to keep refcnt on the program and make sure the program
1967 * is removed from the array before bpf_prog_put().
1968 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1969 * since other cpus are walking the array of pointers in parallel.
1970 */
1971struct bpf_prog_array_item {
1972	struct bpf_prog *prog;
1973	union {
1974		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1975		u64 bpf_cookie;
1976	};
1977};
1978
1979struct bpf_prog_array {
1980	struct rcu_head rcu;
1981	struct bpf_prog_array_item items[];
1982};
1983
1984struct bpf_empty_prog_array {
1985	struct bpf_prog_array hdr;
1986	struct bpf_prog *null_prog;
1987};
1988
1989/* to avoid allocating empty bpf_prog_array for cgroups that
1990 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1991 * It will not be modified the caller of bpf_prog_array_alloc()
1992 * (since caller requested prog_cnt == 0)
1993 * that pointer should be 'freed' by bpf_prog_array_free()
1994 */
1995extern struct bpf_empty_prog_array bpf_empty_prog_array;
1996
1997struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1998void bpf_prog_array_free(struct bpf_prog_array *progs);
1999/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2000void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2001int bpf_prog_array_length(struct bpf_prog_array *progs);
2002bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2003int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2004				__u32 __user *prog_ids, u32 cnt);
2005
2006void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2007				struct bpf_prog *old_prog);
2008int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2009int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2010			     struct bpf_prog *prog);
2011int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2012			     u32 *prog_ids, u32 request_cnt,
2013			     u32 *prog_cnt);
2014int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2015			struct bpf_prog *exclude_prog,
2016			struct bpf_prog *include_prog,
2017			u64 bpf_cookie,
2018			struct bpf_prog_array **new_array);
2019
2020struct bpf_run_ctx {};
2021
2022struct bpf_cg_run_ctx {
2023	struct bpf_run_ctx run_ctx;
2024	const struct bpf_prog_array_item *prog_item;
2025	int retval;
2026};
2027
2028struct bpf_trace_run_ctx {
2029	struct bpf_run_ctx run_ctx;
2030	u64 bpf_cookie;
2031	bool is_uprobe;
2032};
2033
2034struct bpf_tramp_run_ctx {
2035	struct bpf_run_ctx run_ctx;
2036	u64 bpf_cookie;
2037	struct bpf_run_ctx *saved_run_ctx;
2038};
2039
2040static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2041{
2042	struct bpf_run_ctx *old_ctx = NULL;
2043
2044#ifdef CONFIG_BPF_SYSCALL
2045	old_ctx = current->bpf_ctx;
2046	current->bpf_ctx = new_ctx;
2047#endif
2048	return old_ctx;
2049}
2050
2051static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2052{
2053#ifdef CONFIG_BPF_SYSCALL
2054	current->bpf_ctx = old_ctx;
2055#endif
2056}
2057
2058/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2059#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2060/* BPF program asks to set CN on the packet. */
2061#define BPF_RET_SET_CN						(1 << 0)
2062
2063typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2064
2065static __always_inline u32
2066bpf_prog_run_array(const struct bpf_prog_array *array,
2067		   const void *ctx, bpf_prog_run_fn run_prog)
2068{
2069	const struct bpf_prog_array_item *item;
2070	const struct bpf_prog *prog;
2071	struct bpf_run_ctx *old_run_ctx;
2072	struct bpf_trace_run_ctx run_ctx;
2073	u32 ret = 1;
2074
2075	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2076
2077	if (unlikely(!array))
2078		return ret;
2079
2080	run_ctx.is_uprobe = false;
2081
2082	migrate_disable();
2083	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2084	item = &array->items[0];
2085	while ((prog = READ_ONCE(item->prog))) {
2086		run_ctx.bpf_cookie = item->bpf_cookie;
2087		ret &= run_prog(prog, ctx);
2088		item++;
2089	}
2090	bpf_reset_run_ctx(old_run_ctx);
2091	migrate_enable();
2092	return ret;
2093}
2094
2095/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2096 *
2097 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2098 * overall. As a result, we must use the bpf_prog_array_free_sleepable
2099 * in order to use the tasks_trace rcu grace period.
2100 *
2101 * When a non-sleepable program is inside the array, we take the rcu read
2102 * section and disable preemption for that program alone, so it can access
2103 * rcu-protected dynamically sized maps.
2104 */
2105static __always_inline u32
2106bpf_prog_run_array_uprobe(const struct bpf_prog_array __rcu *array_rcu,
2107			  const void *ctx, bpf_prog_run_fn run_prog)
2108{
2109	const struct bpf_prog_array_item *item;
2110	const struct bpf_prog *prog;
2111	const struct bpf_prog_array *array;
2112	struct bpf_run_ctx *old_run_ctx;
2113	struct bpf_trace_run_ctx run_ctx;
2114	u32 ret = 1;
2115
2116	might_fault();
2117
2118	rcu_read_lock_trace();
2119	migrate_disable();
2120
2121	run_ctx.is_uprobe = true;
2122
2123	array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
2124	if (unlikely(!array))
2125		goto out;
2126	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2127	item = &array->items[0];
2128	while ((prog = READ_ONCE(item->prog))) {
2129		if (!prog->sleepable)
2130			rcu_read_lock();
2131
2132		run_ctx.bpf_cookie = item->bpf_cookie;
2133		ret &= run_prog(prog, ctx);
2134		item++;
2135
2136		if (!prog->sleepable)
2137			rcu_read_unlock();
2138	}
2139	bpf_reset_run_ctx(old_run_ctx);
2140out:
2141	migrate_enable();
2142	rcu_read_unlock_trace();
2143	return ret;
2144}
2145
2146#ifdef CONFIG_BPF_SYSCALL
2147DECLARE_PER_CPU(int, bpf_prog_active);
2148extern struct mutex bpf_stats_enabled_mutex;
2149
2150/*
2151 * Block execution of BPF programs attached to instrumentation (perf,
2152 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2153 * these events can happen inside a region which holds a map bucket lock
2154 * and can deadlock on it.
2155 */
2156static inline void bpf_disable_instrumentation(void)
2157{
2158	migrate_disable();
2159	this_cpu_inc(bpf_prog_active);
2160}
2161
2162static inline void bpf_enable_instrumentation(void)
2163{
2164	this_cpu_dec(bpf_prog_active);
2165	migrate_enable();
2166}
2167
2168extern const struct super_operations bpf_super_ops;
2169extern const struct file_operations bpf_map_fops;
2170extern const struct file_operations bpf_prog_fops;
2171extern const struct file_operations bpf_iter_fops;
2172
2173#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2174	extern const struct bpf_prog_ops _name ## _prog_ops; \
2175	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2176#define BPF_MAP_TYPE(_id, _ops) \
2177	extern const struct bpf_map_ops _ops;
2178#define BPF_LINK_TYPE(_id, _name)
2179#include <linux/bpf_types.h>
2180#undef BPF_PROG_TYPE
2181#undef BPF_MAP_TYPE
2182#undef BPF_LINK_TYPE
2183
2184extern const struct bpf_prog_ops bpf_offload_prog_ops;
2185extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2186extern const struct bpf_verifier_ops xdp_analyzer_ops;
2187
2188struct bpf_prog *bpf_prog_get(u32 ufd);
2189struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2190				       bool attach_drv);
2191void bpf_prog_add(struct bpf_prog *prog, int i);
2192void bpf_prog_sub(struct bpf_prog *prog, int i);
2193void bpf_prog_inc(struct bpf_prog *prog);
2194struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2195void bpf_prog_put(struct bpf_prog *prog);
2196
2197void bpf_prog_free_id(struct bpf_prog *prog);
2198void bpf_map_free_id(struct bpf_map *map);
2199
2200struct btf_field *btf_record_find(const struct btf_record *rec,
2201				  u32 offset, u32 field_mask);
2202void btf_record_free(struct btf_record *rec);
2203void bpf_map_free_record(struct bpf_map *map);
2204struct btf_record *btf_record_dup(const struct btf_record *rec);
2205bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2206void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2207void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2208void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2209
2210struct bpf_map *bpf_map_get(u32 ufd);
2211struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2212struct bpf_map *__bpf_map_get(struct fd f);
2213void bpf_map_inc(struct bpf_map *map);
2214void bpf_map_inc_with_uref(struct bpf_map *map);
2215struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2216struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2217void bpf_map_put_with_uref(struct bpf_map *map);
2218void bpf_map_put(struct bpf_map *map);
2219void *bpf_map_area_alloc(u64 size, int numa_node);
2220void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2221void bpf_map_area_free(void *base);
2222bool bpf_map_write_active(const struct bpf_map *map);
2223void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2224int  generic_map_lookup_batch(struct bpf_map *map,
2225			      const union bpf_attr *attr,
2226			      union bpf_attr __user *uattr);
2227int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2228			      const union bpf_attr *attr,
2229			      union bpf_attr __user *uattr);
2230int  generic_map_delete_batch(struct bpf_map *map,
2231			      const union bpf_attr *attr,
2232			      union bpf_attr __user *uattr);
2233struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2234struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2235
2236int bpf_map_alloc_pages(const struct bpf_map *map, gfp_t gfp, int nid,
2237			unsigned long nr_pages, struct page **page_array);
2238#ifdef CONFIG_MEMCG_KMEM
2239void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2240			   int node);
2241void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2242void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2243		       gfp_t flags);
2244void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2245				    size_t align, gfp_t flags);
2246#else
2247static inline void *
2248bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2249		     int node)
2250{
2251	return kmalloc_node(size, flags, node);
2252}
2253
2254static inline void *
2255bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
2256{
2257	return kzalloc(size, flags);
2258}
2259
2260static inline void *
2261bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size, gfp_t flags)
2262{
2263	return kvcalloc(n, size, flags);
2264}
2265
2266static inline void __percpu *
2267bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
2268		     gfp_t flags)
2269{
2270	return __alloc_percpu_gfp(size, align, flags);
2271}
2272#endif
2273
2274static inline int
2275bpf_map_init_elem_count(struct bpf_map *map)
2276{
2277	size_t size = sizeof(*map->elem_count), align = size;
2278	gfp_t flags = GFP_USER | __GFP_NOWARN;
2279
2280	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2281	if (!map->elem_count)
2282		return -ENOMEM;
2283
2284	return 0;
2285}
2286
2287static inline void
2288bpf_map_free_elem_count(struct bpf_map *map)
2289{
2290	free_percpu(map->elem_count);
2291}
2292
2293static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2294{
2295	this_cpu_inc(*map->elem_count);
2296}
2297
2298static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2299{
2300	this_cpu_dec(*map->elem_count);
2301}
2302
2303extern int sysctl_unprivileged_bpf_disabled;
2304
2305bool bpf_token_capable(const struct bpf_token *token, int cap);
2306
2307static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2308{
2309	return bpf_token_capable(token, CAP_PERFMON);
2310}
2311
2312static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2313{
2314	return bpf_token_capable(token, CAP_PERFMON);
2315}
2316
2317static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2318{
2319	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2320}
2321
2322static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2323{
2324	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2325}
2326
2327int bpf_map_new_fd(struct bpf_map *map, int flags);
2328int bpf_prog_new_fd(struct bpf_prog *prog);
2329
2330void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2331		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2332int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2333int bpf_link_settle(struct bpf_link_primer *primer);
2334void bpf_link_cleanup(struct bpf_link_primer *primer);
2335void bpf_link_inc(struct bpf_link *link);
2336void bpf_link_put(struct bpf_link *link);
2337int bpf_link_new_fd(struct bpf_link *link);
2338struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2339struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2340
2341void bpf_token_inc(struct bpf_token *token);
2342void bpf_token_put(struct bpf_token *token);
2343int bpf_token_create(union bpf_attr *attr);
2344struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2345
2346bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2347bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2348bool bpf_token_allow_prog_type(const struct bpf_token *token,
2349			       enum bpf_prog_type prog_type,
2350			       enum bpf_attach_type attach_type);
2351
2352int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2353int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2354struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2355			    umode_t mode);
2356
2357#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2358#define DEFINE_BPF_ITER_FUNC(target, args...)			\
2359	extern int bpf_iter_ ## target(args);			\
2360	int __init bpf_iter_ ## target(args) { return 0; }
2361
2362/*
2363 * The task type of iterators.
2364 *
2365 * For BPF task iterators, they can be parameterized with various
2366 * parameters to visit only some of tasks.
2367 *
2368 * BPF_TASK_ITER_ALL (default)
2369 *	Iterate over resources of every task.
2370 *
2371 * BPF_TASK_ITER_TID
2372 *	Iterate over resources of a task/tid.
2373 *
2374 * BPF_TASK_ITER_TGID
2375 *	Iterate over resources of every task of a process / task group.
2376 */
2377enum bpf_iter_task_type {
2378	BPF_TASK_ITER_ALL = 0,
2379	BPF_TASK_ITER_TID,
2380	BPF_TASK_ITER_TGID,
2381};
2382
2383struct bpf_iter_aux_info {
2384	/* for map_elem iter */
2385	struct bpf_map *map;
2386
2387	/* for cgroup iter */
2388	struct {
2389		struct cgroup *start; /* starting cgroup */
2390		enum bpf_cgroup_iter_order order;
2391	} cgroup;
2392	struct {
2393		enum bpf_iter_task_type	type;
2394		u32 pid;
2395	} task;
2396};
2397
2398typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2399					union bpf_iter_link_info *linfo,
2400					struct bpf_iter_aux_info *aux);
2401typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2402typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2403					struct seq_file *seq);
2404typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2405					 struct bpf_link_info *info);
2406typedef const struct bpf_func_proto *
2407(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2408			     const struct bpf_prog *prog);
2409
2410enum bpf_iter_feature {
2411	BPF_ITER_RESCHED	= BIT(0),
2412};
2413
2414#define BPF_ITER_CTX_ARG_MAX 2
2415struct bpf_iter_reg {
2416	const char *target;
2417	bpf_iter_attach_target_t attach_target;
2418	bpf_iter_detach_target_t detach_target;
2419	bpf_iter_show_fdinfo_t show_fdinfo;
2420	bpf_iter_fill_link_info_t fill_link_info;
2421	bpf_iter_get_func_proto_t get_func_proto;
2422	u32 ctx_arg_info_size;
2423	u32 feature;
2424	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2425	const struct bpf_iter_seq_info *seq_info;
2426};
2427
2428struct bpf_iter_meta {
2429	__bpf_md_ptr(struct seq_file *, seq);
2430	u64 session_id;
2431	u64 seq_num;
2432};
2433
2434struct bpf_iter__bpf_map_elem {
2435	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2436	__bpf_md_ptr(struct bpf_map *, map);
2437	__bpf_md_ptr(void *, key);
2438	__bpf_md_ptr(void *, value);
2439};
2440
2441int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2442void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2443bool bpf_iter_prog_supported(struct bpf_prog *prog);
2444const struct bpf_func_proto *
2445bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2446int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2447int bpf_iter_new_fd(struct bpf_link *link);
2448bool bpf_link_is_iter(struct bpf_link *link);
2449struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2450int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2451void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2452			      struct seq_file *seq);
2453int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2454				struct bpf_link_info *info);
2455
2456int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2457				   struct bpf_func_state *caller,
2458				   struct bpf_func_state *callee);
2459
2460int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2461int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2462int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2463			   u64 flags);
2464int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2465			    u64 flags);
2466
2467int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2468
2469int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2470				 void *key, void *value, u64 map_flags);
2471int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2472int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2473				void *key, void *value, u64 map_flags);
2474int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2475
2476int bpf_get_file_flag(int flags);
2477int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2478			     size_t actual_size);
2479
2480/* verify correctness of eBPF program */
2481int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2482
2483#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2484void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2485#endif
2486
2487struct btf *bpf_get_btf_vmlinux(void);
2488
2489/* Map specifics */
2490struct xdp_frame;
2491struct sk_buff;
2492struct bpf_dtab_netdev;
2493struct bpf_cpu_map_entry;
2494
2495void __dev_flush(void);
2496int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2497		    struct net_device *dev_rx);
2498int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2499		    struct net_device *dev_rx);
2500int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2501			  struct bpf_map *map, bool exclude_ingress);
2502int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2503			     struct bpf_prog *xdp_prog);
2504int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2505			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2506			   bool exclude_ingress);
2507
2508void __cpu_map_flush(void);
2509int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2510		    struct net_device *dev_rx);
2511int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2512			     struct sk_buff *skb);
2513
2514/* Return map's numa specified by userspace */
2515static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2516{
2517	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2518		attr->numa_node : NUMA_NO_NODE;
2519}
2520
2521struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2522int array_map_alloc_check(union bpf_attr *attr);
2523
2524int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2525			  union bpf_attr __user *uattr);
2526int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2527			  union bpf_attr __user *uattr);
2528int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2529			      const union bpf_attr *kattr,
2530			      union bpf_attr __user *uattr);
2531int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2532				     const union bpf_attr *kattr,
2533				     union bpf_attr __user *uattr);
2534int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2535			     const union bpf_attr *kattr,
2536			     union bpf_attr __user *uattr);
2537int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2538				const union bpf_attr *kattr,
2539				union bpf_attr __user *uattr);
2540int bpf_prog_test_run_nf(struct bpf_prog *prog,
2541			 const union bpf_attr *kattr,
2542			 union bpf_attr __user *uattr);
2543bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2544		    const struct bpf_prog *prog,
2545		    struct bpf_insn_access_aux *info);
2546
2547static inline bool bpf_tracing_ctx_access(int off, int size,
2548					  enum bpf_access_type type)
2549{
2550	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2551		return false;
2552	if (type != BPF_READ)
2553		return false;
2554	if (off % size != 0)
2555		return false;
2556	return true;
2557}
2558
2559static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2560					      enum bpf_access_type type,
2561					      const struct bpf_prog *prog,
2562					      struct bpf_insn_access_aux *info)
2563{
2564	if (!bpf_tracing_ctx_access(off, size, type))
2565		return false;
2566	return btf_ctx_access(off, size, type, prog, info);
2567}
2568
2569int btf_struct_access(struct bpf_verifier_log *log,
2570		      const struct bpf_reg_state *reg,
2571		      int off, int size, enum bpf_access_type atype,
2572		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2573bool btf_struct_ids_match(struct bpf_verifier_log *log,
2574			  const struct btf *btf, u32 id, int off,
2575			  const struct btf *need_btf, u32 need_type_id,
2576			  bool strict);
2577
2578int btf_distill_func_proto(struct bpf_verifier_log *log,
2579			   struct btf *btf,
2580			   const struct btf_type *func_proto,
2581			   const char *func_name,
2582			   struct btf_func_model *m);
2583
2584struct bpf_reg_state;
2585int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2586int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2587			 struct btf *btf, const struct btf_type *t);
2588const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2589				    int comp_idx, const char *tag_key);
2590int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2591			   int comp_idx, const char *tag_key, int last_id);
2592
2593struct bpf_prog *bpf_prog_by_id(u32 id);
2594struct bpf_link *bpf_link_by_id(u32 id);
2595
2596const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2597						 const struct bpf_prog *prog);
2598void bpf_task_storage_free(struct task_struct *task);
2599void bpf_cgrp_storage_free(struct cgroup *cgroup);
2600bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2601const struct btf_func_model *
2602bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2603			 const struct bpf_insn *insn);
2604int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2605		       u16 btf_fd_idx, u8 **func_addr);
2606
2607struct bpf_core_ctx {
2608	struct bpf_verifier_log *log;
2609	const struct btf *btf;
2610};
2611
2612bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2613				const struct bpf_reg_state *reg,
2614				const char *field_name, u32 btf_id, const char *suffix);
2615
2616bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2617			       const struct btf *reg_btf, u32 reg_id,
2618			       const struct btf *arg_btf, u32 arg_id);
2619
2620int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2621		   int relo_idx, void *insn);
2622
2623static inline bool unprivileged_ebpf_enabled(void)
2624{
2625	return !sysctl_unprivileged_bpf_disabled;
2626}
2627
2628/* Not all bpf prog type has the bpf_ctx.
2629 * For the bpf prog type that has initialized the bpf_ctx,
2630 * this function can be used to decide if a kernel function
2631 * is called by a bpf program.
2632 */
2633static inline bool has_current_bpf_ctx(void)
2634{
2635	return !!current->bpf_ctx;
2636}
2637
2638void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2639
2640void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2641		     enum bpf_dynptr_type type, u32 offset, u32 size);
2642void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2643void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2644
2645bool dev_check_flush(void);
2646bool cpu_map_check_flush(void);
2647#else /* !CONFIG_BPF_SYSCALL */
2648static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2649{
2650	return ERR_PTR(-EOPNOTSUPP);
2651}
2652
2653static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2654						     enum bpf_prog_type type,
2655						     bool attach_drv)
2656{
2657	return ERR_PTR(-EOPNOTSUPP);
2658}
2659
2660static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2661{
2662}
2663
2664static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2665{
2666}
2667
2668static inline void bpf_prog_put(struct bpf_prog *prog)
2669{
2670}
2671
2672static inline void bpf_prog_inc(struct bpf_prog *prog)
2673{
2674}
2675
2676static inline struct bpf_prog *__must_check
2677bpf_prog_inc_not_zero(struct bpf_prog *prog)
2678{
2679	return ERR_PTR(-EOPNOTSUPP);
2680}
2681
2682static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2683				 const struct bpf_link_ops *ops,
2684				 struct bpf_prog *prog)
2685{
2686}
2687
2688static inline int bpf_link_prime(struct bpf_link *link,
2689				 struct bpf_link_primer *primer)
2690{
2691	return -EOPNOTSUPP;
2692}
2693
2694static inline int bpf_link_settle(struct bpf_link_primer *primer)
2695{
2696	return -EOPNOTSUPP;
2697}
2698
2699static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2700{
2701}
2702
2703static inline void bpf_link_inc(struct bpf_link *link)
2704{
2705}
2706
2707static inline void bpf_link_put(struct bpf_link *link)
2708{
2709}
2710
2711static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2712{
2713	return -EOPNOTSUPP;
2714}
2715
2716static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2717{
2718	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2719}
2720
2721static inline void bpf_token_inc(struct bpf_token *token)
2722{
2723}
2724
2725static inline void bpf_token_put(struct bpf_token *token)
2726{
2727}
2728
2729static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2730{
2731	return ERR_PTR(-EOPNOTSUPP);
2732}
2733
2734static inline void __dev_flush(void)
2735{
2736}
2737
2738struct xdp_frame;
2739struct bpf_dtab_netdev;
2740struct bpf_cpu_map_entry;
2741
2742static inline
2743int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2744		    struct net_device *dev_rx)
2745{
2746	return 0;
2747}
2748
2749static inline
2750int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2751		    struct net_device *dev_rx)
2752{
2753	return 0;
2754}
2755
2756static inline
2757int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2758			  struct bpf_map *map, bool exclude_ingress)
2759{
2760	return 0;
2761}
2762
2763struct sk_buff;
2764
2765static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2766					   struct sk_buff *skb,
2767					   struct bpf_prog *xdp_prog)
2768{
2769	return 0;
2770}
2771
2772static inline
2773int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2774			   struct bpf_prog *xdp_prog, struct bpf_map *map,
2775			   bool exclude_ingress)
2776{
2777	return 0;
2778}
2779
2780static inline void __cpu_map_flush(void)
2781{
2782}
2783
2784static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2785				  struct xdp_frame *xdpf,
2786				  struct net_device *dev_rx)
2787{
2788	return 0;
2789}
2790
2791static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2792					   struct sk_buff *skb)
2793{
2794	return -EOPNOTSUPP;
2795}
2796
2797static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2798				enum bpf_prog_type type)
2799{
2800	return ERR_PTR(-EOPNOTSUPP);
2801}
2802
2803static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2804					const union bpf_attr *kattr,
2805					union bpf_attr __user *uattr)
2806{
2807	return -ENOTSUPP;
2808}
2809
2810static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2811					const union bpf_attr *kattr,
2812					union bpf_attr __user *uattr)
2813{
2814	return -ENOTSUPP;
2815}
2816
2817static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2818					    const union bpf_attr *kattr,
2819					    union bpf_attr __user *uattr)
2820{
2821	return -ENOTSUPP;
2822}
2823
2824static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2825						   const union bpf_attr *kattr,
2826						   union bpf_attr __user *uattr)
2827{
2828	return -ENOTSUPP;
2829}
2830
2831static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2832					      const union bpf_attr *kattr,
2833					      union bpf_attr __user *uattr)
2834{
2835	return -ENOTSUPP;
2836}
2837
2838static inline void bpf_map_put(struct bpf_map *map)
2839{
2840}
2841
2842static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2843{
2844	return ERR_PTR(-ENOTSUPP);
2845}
2846
2847static inline int btf_struct_access(struct bpf_verifier_log *log,
2848				    const struct bpf_reg_state *reg,
2849				    int off, int size, enum bpf_access_type atype,
2850				    u32 *next_btf_id, enum bpf_type_flag *flag,
2851				    const char **field_name)
2852{
2853	return -EACCES;
2854}
2855
2856static inline const struct bpf_func_proto *
2857bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
2858{
2859	return NULL;
2860}
2861
2862static inline void bpf_task_storage_free(struct task_struct *task)
2863{
2864}
2865
2866static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2867{
2868	return false;
2869}
2870
2871static inline const struct btf_func_model *
2872bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2873			 const struct bpf_insn *insn)
2874{
2875	return NULL;
2876}
2877
2878static inline int
2879bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2880		   u16 btf_fd_idx, u8 **func_addr)
2881{
2882	return -ENOTSUPP;
2883}
2884
2885static inline bool unprivileged_ebpf_enabled(void)
2886{
2887	return false;
2888}
2889
2890static inline bool has_current_bpf_ctx(void)
2891{
2892	return false;
2893}
2894
2895static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2896{
2897}
2898
2899static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2900{
2901}
2902
2903static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2904				   enum bpf_dynptr_type type, u32 offset, u32 size)
2905{
2906}
2907
2908static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
2909{
2910}
2911
2912static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
2913{
2914}
2915#endif /* CONFIG_BPF_SYSCALL */
2916
2917static __always_inline int
2918bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
2919{
2920	int ret = -EFAULT;
2921
2922	if (IS_ENABLED(CONFIG_BPF_EVENTS))
2923		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
2924	if (unlikely(ret < 0))
2925		memset(dst, 0, size);
2926	return ret;
2927}
2928
2929void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2930			  struct btf_mod_pair *used_btfs, u32 len);
2931
2932static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2933						 enum bpf_prog_type type)
2934{
2935	return bpf_prog_get_type_dev(ufd, type, false);
2936}
2937
2938void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2939			  struct bpf_map **used_maps, u32 len);
2940
2941bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2942
2943int bpf_prog_offload_compile(struct bpf_prog *prog);
2944void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
2945int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2946			       struct bpf_prog *prog);
2947
2948int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2949
2950int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2951int bpf_map_offload_update_elem(struct bpf_map *map,
2952				void *key, void *value, u64 flags);
2953int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2954int bpf_map_offload_get_next_key(struct bpf_map *map,
2955				 void *key, void *next_key);
2956
2957bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2958
2959struct bpf_offload_dev *
2960bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2961void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2962void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2963int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2964				    struct net_device *netdev);
2965void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2966				       struct net_device *netdev);
2967bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2968
2969void unpriv_ebpf_notify(int new_state);
2970
2971#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2972int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
2973			      struct bpf_prog_aux *prog_aux);
2974void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
2975int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
2976int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
2977void bpf_dev_bound_netdev_unregister(struct net_device *dev);
2978
2979static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2980{
2981	return aux->dev_bound;
2982}
2983
2984static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
2985{
2986	return aux->offload_requested;
2987}
2988
2989bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
2990
2991static inline bool bpf_map_is_offloaded(struct bpf_map *map)
2992{
2993	return unlikely(map->ops == &bpf_map_offload_ops);
2994}
2995
2996struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2997void bpf_map_offload_map_free(struct bpf_map *map);
2998u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
2999int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3000			      const union bpf_attr *kattr,
3001			      union bpf_attr __user *uattr);
3002
3003int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3004int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3005int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3006int sock_map_bpf_prog_query(const union bpf_attr *attr,
3007			    union bpf_attr __user *uattr);
3008
3009void sock_map_unhash(struct sock *sk);
3010void sock_map_destroy(struct sock *sk);
3011void sock_map_close(struct sock *sk, long timeout);
3012#else
3013static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3014					    struct bpf_prog_aux *prog_aux)
3015{
3016	return -EOPNOTSUPP;
3017}
3018
3019static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3020						u32 func_id)
3021{
3022	return NULL;
3023}
3024
3025static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3026					  union bpf_attr *attr)
3027{
3028	return -EOPNOTSUPP;
3029}
3030
3031static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3032					     struct bpf_prog *old_prog)
3033{
3034	return -EOPNOTSUPP;
3035}
3036
3037static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3038{
3039}
3040
3041static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3042{
3043	return false;
3044}
3045
3046static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3047{
3048	return false;
3049}
3050
3051static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3052{
3053	return false;
3054}
3055
3056static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3057{
3058	return false;
3059}
3060
3061static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3062{
3063	return ERR_PTR(-EOPNOTSUPP);
3064}
3065
3066static inline void bpf_map_offload_map_free(struct bpf_map *map)
3067{
3068}
3069
3070static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3071{
3072	return 0;
3073}
3074
3075static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3076					    const union bpf_attr *kattr,
3077					    union bpf_attr __user *uattr)
3078{
3079	return -ENOTSUPP;
3080}
3081
3082#ifdef CONFIG_BPF_SYSCALL
3083static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3084				       struct bpf_prog *prog)
3085{
3086	return -EINVAL;
3087}
3088
3089static inline int sock_map_prog_detach(const union bpf_attr *attr,
3090				       enum bpf_prog_type ptype)
3091{
3092	return -EOPNOTSUPP;
3093}
3094
3095static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3096					   u64 flags)
3097{
3098	return -EOPNOTSUPP;
3099}
3100
3101static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3102					  union bpf_attr __user *uattr)
3103{
3104	return -EINVAL;
3105}
3106#endif /* CONFIG_BPF_SYSCALL */
3107#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3108
3109static __always_inline void
3110bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3111{
3112	const struct bpf_prog_array_item *item;
3113	struct bpf_prog *prog;
3114
3115	if (unlikely(!array))
3116		return;
3117
3118	item = &array->items[0];
3119	while ((prog = READ_ONCE(item->prog))) {
3120		bpf_prog_inc_misses_counter(prog);
3121		item++;
3122	}
3123}
3124
3125#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3126void bpf_sk_reuseport_detach(struct sock *sk);
3127int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3128				       void *value);
3129int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3130				       void *value, u64 map_flags);
3131#else
3132static inline void bpf_sk_reuseport_detach(struct sock *sk)
3133{
3134}
3135
3136#ifdef CONFIG_BPF_SYSCALL
3137static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3138						     void *key, void *value)
3139{
3140	return -EOPNOTSUPP;
3141}
3142
3143static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3144						     void *key, void *value,
3145						     u64 map_flags)
3146{
3147	return -EOPNOTSUPP;
3148}
3149#endif /* CONFIG_BPF_SYSCALL */
3150#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3151
3152/* verifier prototypes for helper functions called from eBPF programs */
3153extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3154extern const struct bpf_func_proto bpf_map_update_elem_proto;
3155extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3156extern const struct bpf_func_proto bpf_map_push_elem_proto;
3157extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3158extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3159extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3160
3161extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3162extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3163extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3164extern const struct bpf_func_proto bpf_tail_call_proto;
3165extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3166extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3167extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3168extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3169extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3170extern const struct bpf_func_proto bpf_get_current_comm_proto;
3171extern const struct bpf_func_proto bpf_get_stackid_proto;
3172extern const struct bpf_func_proto bpf_get_stack_proto;
3173extern const struct bpf_func_proto bpf_get_task_stack_proto;
3174extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3175extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3176extern const struct bpf_func_proto bpf_sock_map_update_proto;
3177extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3178extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3179extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3180extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3181extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3182extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3183extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3184extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3185extern const struct bpf_func_proto bpf_spin_lock_proto;
3186extern const struct bpf_func_proto bpf_spin_unlock_proto;
3187extern const struct bpf_func_proto bpf_get_local_storage_proto;
3188extern const struct bpf_func_proto bpf_strtol_proto;
3189extern const struct bpf_func_proto bpf_strtoul_proto;
3190extern const struct bpf_func_proto bpf_tcp_sock_proto;
3191extern const struct bpf_func_proto bpf_jiffies64_proto;
3192extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3193extern const struct bpf_func_proto bpf_event_output_data_proto;
3194extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3195extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3196extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3197extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3198extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3199extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3200extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3201extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3202extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3203extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3204extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3205extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3206extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3207extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3208extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3209extern const struct bpf_func_proto bpf_copy_from_user_proto;
3210extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3211extern const struct bpf_func_proto bpf_snprintf_proto;
3212extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3213extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3214extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3215extern const struct bpf_func_proto bpf_sock_from_file_proto;
3216extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3217extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3218extern const struct bpf_func_proto bpf_task_storage_get_proto;
3219extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3220extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3221extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3222extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3223extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3224extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3225extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3226extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3227extern const struct bpf_func_proto bpf_find_vma_proto;
3228extern const struct bpf_func_proto bpf_loop_proto;
3229extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3230extern const struct bpf_func_proto bpf_set_retval_proto;
3231extern const struct bpf_func_proto bpf_get_retval_proto;
3232extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3233extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3234extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3235
3236const struct bpf_func_proto *tracing_prog_func_proto(
3237  enum bpf_func_id func_id, const struct bpf_prog *prog);
3238
3239/* Shared helpers among cBPF and eBPF. */
3240void bpf_user_rnd_init_once(void);
3241u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3242u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3243
3244#if defined(CONFIG_NET)
3245bool bpf_sock_common_is_valid_access(int off, int size,
3246				     enum bpf_access_type type,
3247				     struct bpf_insn_access_aux *info);
3248bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3249			      struct bpf_insn_access_aux *info);
3250u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3251				const struct bpf_insn *si,
3252				struct bpf_insn *insn_buf,
3253				struct bpf_prog *prog,
3254				u32 *target_size);
3255int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3256			       struct bpf_dynptr_kern *ptr);
3257#else
3258static inline bool bpf_sock_common_is_valid_access(int off, int size,
3259						   enum bpf_access_type type,
3260						   struct bpf_insn_access_aux *info)
3261{
3262	return false;
3263}
3264static inline bool bpf_sock_is_valid_access(int off, int size,
3265					    enum bpf_access_type type,
3266					    struct bpf_insn_access_aux *info)
3267{
3268	return false;
3269}
3270static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3271					      const struct bpf_insn *si,
3272					      struct bpf_insn *insn_buf,
3273					      struct bpf_prog *prog,
3274					      u32 *target_size)
3275{
3276	return 0;
3277}
3278static inline int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
3279					     struct bpf_dynptr_kern *ptr)
3280{
3281	return -EOPNOTSUPP;
3282}
3283#endif
3284
3285#ifdef CONFIG_INET
3286struct sk_reuseport_kern {
3287	struct sk_buff *skb;
3288	struct sock *sk;
3289	struct sock *selected_sk;
3290	struct sock *migrating_sk;
3291	void *data_end;
3292	u32 hash;
3293	u32 reuseport_id;
3294	bool bind_inany;
3295};
3296bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3297				  struct bpf_insn_access_aux *info);
3298
3299u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3300				    const struct bpf_insn *si,
3301				    struct bpf_insn *insn_buf,
3302				    struct bpf_prog *prog,
3303				    u32 *target_size);
3304
3305bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3306				  struct bpf_insn_access_aux *info);
3307
3308u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3309				    const struct bpf_insn *si,
3310				    struct bpf_insn *insn_buf,
3311				    struct bpf_prog *prog,
3312				    u32 *target_size);
3313#else
3314static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3315						enum bpf_access_type type,
3316						struct bpf_insn_access_aux *info)
3317{
3318	return false;
3319}
3320
3321static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3322						  const struct bpf_insn *si,
3323						  struct bpf_insn *insn_buf,
3324						  struct bpf_prog *prog,
3325						  u32 *target_size)
3326{
3327	return 0;
3328}
3329static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3330						enum bpf_access_type type,
3331						struct bpf_insn_access_aux *info)
3332{
3333	return false;
3334}
3335
3336static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3337						  const struct bpf_insn *si,
3338						  struct bpf_insn *insn_buf,
3339						  struct bpf_prog *prog,
3340						  u32 *target_size)
3341{
3342	return 0;
3343}
3344#endif /* CONFIG_INET */
3345
3346enum bpf_text_poke_type {
3347	BPF_MOD_CALL,
3348	BPF_MOD_JUMP,
3349};
3350
3351int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3352		       void *addr1, void *addr2);
3353
3354void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3355			       struct bpf_prog *new, struct bpf_prog *old);
3356
3357void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3358int bpf_arch_text_invalidate(void *dst, size_t len);
3359
3360struct btf_id_set;
3361bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3362
3363#define MAX_BPRINTF_VARARGS		12
3364#define MAX_BPRINTF_BUF			1024
3365
3366struct bpf_bprintf_data {
3367	u32 *bin_args;
3368	char *buf;
3369	bool get_bin_args;
3370	bool get_buf;
3371};
3372
3373int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3374			u32 num_args, struct bpf_bprintf_data *data);
3375void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3376
3377#ifdef CONFIG_BPF_LSM
3378void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3379void bpf_cgroup_atype_put(int cgroup_atype);
3380#else
3381static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
3382static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3383#endif /* CONFIG_BPF_LSM */
3384
3385struct key;
3386
3387#ifdef CONFIG_KEYS
3388struct bpf_key {
3389	struct key *key;
3390	bool has_ref;
3391};
3392#endif /* CONFIG_KEYS */
3393
3394static inline bool type_is_alloc(u32 type)
3395{
3396	return type & MEM_ALLOC;
3397}
3398
3399static inline gfp_t bpf_memcg_flags(gfp_t flags)
3400{
3401	if (memcg_bpf_enabled())
3402		return flags | __GFP_ACCOUNT;
3403	return flags;
3404}
3405
3406static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3407{
3408	return prog->aux->func_idx != 0;
3409}
3410
3411#endif /* _LINUX_BPF_H */
3412