1/* SPDX-License-Identifier: GPL-2.0 */
2
3/*
4 * This file contains definitions from Hyper-V Hypervisor Top-Level Functional
5 * Specification (TLFS):
6 * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
7 */
8
9#ifndef _ASM_GENERIC_HYPERV_TLFS_H
10#define _ASM_GENERIC_HYPERV_TLFS_H
11
12#include <linux/types.h>
13#include <linux/bits.h>
14#include <linux/time64.h>
15
16/*
17 * While not explicitly listed in the TLFS, Hyper-V always runs with a page size
18 * of 4096. These definitions are used when communicating with Hyper-V using
19 * guest physical pages and guest physical page addresses, since the guest page
20 * size may not be 4096 on all architectures.
21 */
22#define HV_HYP_PAGE_SHIFT      12
23#define HV_HYP_PAGE_SIZE       BIT(HV_HYP_PAGE_SHIFT)
24#define HV_HYP_PAGE_MASK       (~(HV_HYP_PAGE_SIZE - 1))
25
26/*
27 * Hyper-V provides two categories of flags relevant to guest VMs.  The
28 * "Features" category indicates specific functionality that is available
29 * to guests on this particular instance of Hyper-V. The "Features"
30 * are presented in four groups, each of which is 32 bits. The group A
31 * and B definitions are common across architectures and are listed here.
32 * However, not all flags are relevant on all architectures.
33 *
34 * Groups C and D vary across architectures and are listed in the
35 * architecture specific portion of hyperv-tlfs.h. Some of these flags exist
36 * on multiple architectures, but the bit positions are different so they
37 * cannot appear in the generic portion of hyperv-tlfs.h.
38 *
39 * The "Enlightenments" category provides recommendations on whether to use
40 * specific enlightenments that are available. The Enlighenments are a single
41 * group of 32 bits, but they vary across architectures and are listed in
42 * the architecture specific portion of hyperv-tlfs.h.
43 */
44
45/*
46 * Group A Features.
47 */
48
49/* VP Runtime register available */
50#define HV_MSR_VP_RUNTIME_AVAILABLE		BIT(0)
51/* Partition Reference Counter available*/
52#define HV_MSR_TIME_REF_COUNT_AVAILABLE		BIT(1)
53/* Basic SynIC register available */
54#define HV_MSR_SYNIC_AVAILABLE			BIT(2)
55/* Synthetic Timer registers available */
56#define HV_MSR_SYNTIMER_AVAILABLE		BIT(3)
57/* Virtual APIC assist and VP assist page registers available */
58#define HV_MSR_APIC_ACCESS_AVAILABLE		BIT(4)
59/* Hypercall and Guest OS ID registers available*/
60#define HV_MSR_HYPERCALL_AVAILABLE		BIT(5)
61/* Access virtual processor index register available*/
62#define HV_MSR_VP_INDEX_AVAILABLE		BIT(6)
63/* Virtual system reset register available*/
64#define HV_MSR_RESET_AVAILABLE			BIT(7)
65/* Access statistics page registers available */
66#define HV_MSR_STAT_PAGES_AVAILABLE		BIT(8)
67/* Partition reference TSC register is available */
68#define HV_MSR_REFERENCE_TSC_AVAILABLE		BIT(9)
69/* Partition Guest IDLE register is available */
70#define HV_MSR_GUEST_IDLE_AVAILABLE		BIT(10)
71/* Partition local APIC and TSC frequency registers available */
72#define HV_ACCESS_FREQUENCY_MSRS		BIT(11)
73/* AccessReenlightenmentControls privilege */
74#define HV_ACCESS_REENLIGHTENMENT		BIT(13)
75/* AccessTscInvariantControls privilege */
76#define HV_ACCESS_TSC_INVARIANT			BIT(15)
77
78/*
79 * Group B features.
80 */
81#define HV_CREATE_PARTITIONS			BIT(0)
82#define HV_ACCESS_PARTITION_ID			BIT(1)
83#define HV_ACCESS_MEMORY_POOL			BIT(2)
84#define HV_ADJUST_MESSAGE_BUFFERS		BIT(3)
85#define HV_POST_MESSAGES			BIT(4)
86#define HV_SIGNAL_EVENTS			BIT(5)
87#define HV_CREATE_PORT				BIT(6)
88#define HV_CONNECT_PORT				BIT(7)
89#define HV_ACCESS_STATS				BIT(8)
90#define HV_DEBUGGING				BIT(11)
91#define HV_CPU_MANAGEMENT			BIT(12)
92#define HV_ENABLE_EXTENDED_HYPERCALLS		BIT(20)
93#define HV_ISOLATION				BIT(22)
94
95/*
96 * TSC page layout.
97 */
98struct ms_hyperv_tsc_page {
99	volatile u32 tsc_sequence;
100	u32 reserved1;
101	volatile u64 tsc_scale;
102	volatile s64 tsc_offset;
103} __packed;
104
105union hv_reference_tsc_msr {
106	u64 as_uint64;
107	struct {
108		u64 enable:1;
109		u64 reserved:11;
110		u64 pfn:52;
111	} __packed;
112};
113
114/*
115 * The guest OS needs to register the guest ID with the hypervisor.
116 * The guest ID is a 64 bit entity and the structure of this ID is
117 * specified in the Hyper-V specification:
118 *
119 * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx
120 *
121 * While the current guideline does not specify how Linux guest ID(s)
122 * need to be generated, our plan is to publish the guidelines for
123 * Linux and other guest operating systems that currently are hosted
124 * on Hyper-V. The implementation here conforms to this yet
125 * unpublished guidelines.
126 *
127 *
128 * Bit(s)
129 * 63 - Indicates if the OS is Open Source or not; 1 is Open Source
130 * 62:56 - Os Type; Linux is 0x100
131 * 55:48 - Distro specific identification
132 * 47:16 - Linux kernel version number
133 * 15:0  - Distro specific identification
134 *
135 *
136 */
137
138#define HV_LINUX_VENDOR_ID              0x8100
139
140/*
141 * Crash notification flags.
142 */
143#define HV_CRASH_CTL_CRASH_NOTIFY_MSG		BIT_ULL(62)
144#define HV_CRASH_CTL_CRASH_NOTIFY		BIT_ULL(63)
145
146/* Declare the various hypercall operations. */
147#define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE	0x0002
148#define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST	0x0003
149#define HVCALL_ENABLE_VP_VTL			0x000f
150#define HVCALL_NOTIFY_LONG_SPIN_WAIT		0x0008
151#define HVCALL_SEND_IPI				0x000b
152#define HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX	0x0013
153#define HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX	0x0014
154#define HVCALL_SEND_IPI_EX			0x0015
155#define HVCALL_GET_PARTITION_ID			0x0046
156#define HVCALL_DEPOSIT_MEMORY			0x0048
157#define HVCALL_CREATE_VP			0x004e
158#define HVCALL_GET_VP_REGISTERS			0x0050
159#define HVCALL_SET_VP_REGISTERS			0x0051
160#define HVCALL_POST_MESSAGE			0x005c
161#define HVCALL_SIGNAL_EVENT			0x005d
162#define HVCALL_POST_DEBUG_DATA			0x0069
163#define HVCALL_RETRIEVE_DEBUG_DATA		0x006a
164#define HVCALL_RESET_DEBUG_SESSION		0x006b
165#define HVCALL_ADD_LOGICAL_PROCESSOR		0x0076
166#define HVCALL_MAP_DEVICE_INTERRUPT		0x007c
167#define HVCALL_UNMAP_DEVICE_INTERRUPT		0x007d
168#define HVCALL_RETARGET_INTERRUPT		0x007e
169#define HVCALL_START_VP				0x0099
170#define HVCALL_GET_VP_ID_FROM_APIC_ID		0x009a
171#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af
172#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0
173#define HVCALL_MODIFY_SPARSE_GPA_PAGE_HOST_VISIBILITY 0x00db
174#define HVCALL_MMIO_READ			0x0106
175#define HVCALL_MMIO_WRITE			0x0107
176
177/* Extended hypercalls */
178#define HV_EXT_CALL_QUERY_CAPABILITIES		0x8001
179#define HV_EXT_CALL_MEMORY_HEAT_HINT		0x8003
180
181#define HV_FLUSH_ALL_PROCESSORS			BIT(0)
182#define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES	BIT(1)
183#define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY	BIT(2)
184#define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT	BIT(3)
185
186/* Extended capability bits */
187#define HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT BIT(8)
188
189enum HV_GENERIC_SET_FORMAT {
190	HV_GENERIC_SET_SPARSE_4K,
191	HV_GENERIC_SET_ALL,
192};
193
194#define HV_PARTITION_ID_SELF		((u64)-1)
195#define HV_VP_INDEX_SELF		((u32)-2)
196
197#define HV_HYPERCALL_RESULT_MASK	GENMASK_ULL(15, 0)
198#define HV_HYPERCALL_FAST_BIT		BIT(16)
199#define HV_HYPERCALL_VARHEAD_OFFSET	17
200#define HV_HYPERCALL_VARHEAD_MASK	GENMASK_ULL(26, 17)
201#define HV_HYPERCALL_RSVD0_MASK		GENMASK_ULL(31, 27)
202#define HV_HYPERCALL_NESTED		BIT_ULL(31)
203#define HV_HYPERCALL_REP_COMP_OFFSET	32
204#define HV_HYPERCALL_REP_COMP_1		BIT_ULL(32)
205#define HV_HYPERCALL_REP_COMP_MASK	GENMASK_ULL(43, 32)
206#define HV_HYPERCALL_RSVD1_MASK		GENMASK_ULL(47, 44)
207#define HV_HYPERCALL_REP_START_OFFSET	48
208#define HV_HYPERCALL_REP_START_MASK	GENMASK_ULL(59, 48)
209#define HV_HYPERCALL_RSVD2_MASK		GENMASK_ULL(63, 60)
210#define HV_HYPERCALL_RSVD_MASK		(HV_HYPERCALL_RSVD0_MASK | \
211					 HV_HYPERCALL_RSVD1_MASK | \
212					 HV_HYPERCALL_RSVD2_MASK)
213
214/* hypercall status code */
215#define HV_STATUS_SUCCESS			0
216#define HV_STATUS_INVALID_HYPERCALL_CODE	2
217#define HV_STATUS_INVALID_HYPERCALL_INPUT	3
218#define HV_STATUS_INVALID_ALIGNMENT		4
219#define HV_STATUS_INVALID_PARAMETER		5
220#define HV_STATUS_ACCESS_DENIED			6
221#define HV_STATUS_OPERATION_DENIED		8
222#define HV_STATUS_INSUFFICIENT_MEMORY		11
223#define HV_STATUS_INVALID_PORT_ID		17
224#define HV_STATUS_INVALID_CONNECTION_ID		18
225#define HV_STATUS_INSUFFICIENT_BUFFERS		19
226#define HV_STATUS_TIME_OUT                      120
227#define HV_STATUS_VTL_ALREADY_ENABLED		134
228
229/*
230 * The Hyper-V TimeRefCount register and the TSC
231 * page provide a guest VM clock with 100ns tick rate
232 */
233#define HV_CLOCK_HZ (NSEC_PER_SEC/100)
234
235/* Define the number of synthetic interrupt sources. */
236#define HV_SYNIC_SINT_COUNT		(16)
237/* Define the expected SynIC version. */
238#define HV_SYNIC_VERSION_1		(0x1)
239/* Valid SynIC vectors are 16-255. */
240#define HV_SYNIC_FIRST_VALID_VECTOR	(16)
241
242#define HV_SYNIC_CONTROL_ENABLE		(1ULL << 0)
243#define HV_SYNIC_SIMP_ENABLE		(1ULL << 0)
244#define HV_SYNIC_SIEFP_ENABLE		(1ULL << 0)
245#define HV_SYNIC_SINT_MASKED		(1ULL << 16)
246#define HV_SYNIC_SINT_AUTO_EOI		(1ULL << 17)
247#define HV_SYNIC_SINT_VECTOR_MASK	(0xFF)
248
249#define HV_SYNIC_STIMER_COUNT		(4)
250
251/* Define synthetic interrupt controller message constants. */
252#define HV_MESSAGE_SIZE			(256)
253#define HV_MESSAGE_PAYLOAD_BYTE_COUNT	(240)
254#define HV_MESSAGE_PAYLOAD_QWORD_COUNT	(30)
255
256/*
257 * Define hypervisor message types. Some of the message types
258 * are x86/x64 specific, but there's no good way to separate
259 * them out into the arch-specific version of hyperv-tlfs.h
260 * because C doesn't provide a way to extend enum types.
261 * Keeping them all in the arch neutral hyperv-tlfs.h seems
262 * the least messy compromise.
263 */
264enum hv_message_type {
265	HVMSG_NONE			= 0x00000000,
266
267	/* Memory access messages. */
268	HVMSG_UNMAPPED_GPA		= 0x80000000,
269	HVMSG_GPA_INTERCEPT		= 0x80000001,
270
271	/* Timer notification messages. */
272	HVMSG_TIMER_EXPIRED		= 0x80000010,
273
274	/* Error messages. */
275	HVMSG_INVALID_VP_REGISTER_VALUE	= 0x80000020,
276	HVMSG_UNRECOVERABLE_EXCEPTION	= 0x80000021,
277	HVMSG_UNSUPPORTED_FEATURE	= 0x80000022,
278
279	/* Trace buffer complete messages. */
280	HVMSG_EVENTLOG_BUFFERCOMPLETE	= 0x80000040,
281
282	/* Platform-specific processor intercept messages. */
283	HVMSG_X64_IOPORT_INTERCEPT	= 0x80010000,
284	HVMSG_X64_MSR_INTERCEPT		= 0x80010001,
285	HVMSG_X64_CPUID_INTERCEPT	= 0x80010002,
286	HVMSG_X64_EXCEPTION_INTERCEPT	= 0x80010003,
287	HVMSG_X64_APIC_EOI		= 0x80010004,
288	HVMSG_X64_LEGACY_FP_ERROR	= 0x80010005
289};
290
291/* Define synthetic interrupt controller message flags. */
292union hv_message_flags {
293	__u8 asu8;
294	struct {
295		__u8 msg_pending:1;
296		__u8 reserved:7;
297	} __packed;
298};
299
300/* Define port identifier type. */
301union hv_port_id {
302	__u32 asu32;
303	struct {
304		__u32 id:24;
305		__u32 reserved:8;
306	} __packed u;
307};
308
309/* Define synthetic interrupt controller message header. */
310struct hv_message_header {
311	__u32 message_type;
312	__u8 payload_size;
313	union hv_message_flags message_flags;
314	__u8 reserved[2];
315	union {
316		__u64 sender;
317		union hv_port_id port;
318	};
319} __packed;
320
321/* Define synthetic interrupt controller message format. */
322struct hv_message {
323	struct hv_message_header header;
324	union {
325		__u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT];
326	} u;
327} __packed;
328
329/* Define the synthetic interrupt message page layout. */
330struct hv_message_page {
331	struct hv_message sint_message[HV_SYNIC_SINT_COUNT];
332} __packed;
333
334/* Define timer message payload structure. */
335struct hv_timer_message_payload {
336	__u32 timer_index;
337	__u32 reserved;
338	__u64 expiration_time;	/* When the timer expired */
339	__u64 delivery_time;	/* When the message was delivered */
340} __packed;
341
342
343/* Define synthetic interrupt controller flag constants. */
344#define HV_EVENT_FLAGS_COUNT		(256 * 8)
345#define HV_EVENT_FLAGS_LONG_COUNT	(256 / sizeof(unsigned long))
346
347/*
348 * Synthetic timer configuration.
349 */
350union hv_stimer_config {
351	u64 as_uint64;
352	struct {
353		u64 enable:1;
354		u64 periodic:1;
355		u64 lazy:1;
356		u64 auto_enable:1;
357		u64 apic_vector:8;
358		u64 direct_mode:1;
359		u64 reserved_z0:3;
360		u64 sintx:4;
361		u64 reserved_z1:44;
362	} __packed;
363};
364
365
366/* Define the synthetic interrupt controller event flags format. */
367union hv_synic_event_flags {
368	unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT];
369};
370
371/* Define SynIC control register. */
372union hv_synic_scontrol {
373	u64 as_uint64;
374	struct {
375		u64 enable:1;
376		u64 reserved:63;
377	} __packed;
378};
379
380/* Define synthetic interrupt source. */
381union hv_synic_sint {
382	u64 as_uint64;
383	struct {
384		u64 vector:8;
385		u64 reserved1:8;
386		u64 masked:1;
387		u64 auto_eoi:1;
388		u64 polling:1;
389		u64 reserved2:45;
390	} __packed;
391};
392
393/* Define the format of the SIMP register */
394union hv_synic_simp {
395	u64 as_uint64;
396	struct {
397		u64 simp_enabled:1;
398		u64 preserved:11;
399		u64 base_simp_gpa:52;
400	} __packed;
401};
402
403/* Define the format of the SIEFP register */
404union hv_synic_siefp {
405	u64 as_uint64;
406	struct {
407		u64 siefp_enabled:1;
408		u64 preserved:11;
409		u64 base_siefp_gpa:52;
410	} __packed;
411};
412
413struct hv_vpset {
414	u64 format;
415	u64 valid_bank_mask;
416	u64 bank_contents[];
417} __packed;
418
419/* The maximum number of sparse vCPU banks which can be encoded by 'struct hv_vpset' */
420#define HV_MAX_SPARSE_VCPU_BANKS (64)
421/* The number of vCPUs in one sparse bank */
422#define HV_VCPUS_PER_SPARSE_BANK (64)
423
424/* HvCallSendSyntheticClusterIpi hypercall */
425struct hv_send_ipi {
426	u32 vector;
427	u32 reserved;
428	u64 cpu_mask;
429} __packed;
430
431/* HvCallSendSyntheticClusterIpiEx hypercall */
432struct hv_send_ipi_ex {
433	u32 vector;
434	u32 reserved;
435	struct hv_vpset vp_set;
436} __packed;
437
438/* HvFlushGuestPhysicalAddressSpace hypercalls */
439struct hv_guest_mapping_flush {
440	u64 address_space;
441	u64 flags;
442} __packed;
443
444/*
445 *  HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited
446 *  by the bitwidth of "additional_pages" in union hv_gpa_page_range.
447 */
448#define HV_MAX_FLUSH_PAGES (2048)
449#define HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB		0
450#define HV_GPA_PAGE_RANGE_PAGE_SIZE_1GB		1
451
452/* HvFlushGuestPhysicalAddressList, HvExtCallMemoryHeatHint hypercall */
453union hv_gpa_page_range {
454	u64 address_space;
455	struct {
456		u64 additional_pages:11;
457		u64 largepage:1;
458		u64 basepfn:52;
459	} page;
460	struct {
461		u64 reserved:12;
462		u64 page_size:1;
463		u64 reserved1:8;
464		u64 base_large_pfn:43;
465	};
466};
467
468/*
469 * All input flush parameters should be in single page. The max flush
470 * count is equal with how many entries of union hv_gpa_page_range can
471 * be populated into the input parameter page.
472 */
473#define HV_MAX_FLUSH_REP_COUNT ((HV_HYP_PAGE_SIZE - 2 * sizeof(u64)) /	\
474				sizeof(union hv_gpa_page_range))
475
476struct hv_guest_mapping_flush_list {
477	u64 address_space;
478	u64 flags;
479	union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT];
480};
481
482/* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
483struct hv_tlb_flush {
484	u64 address_space;
485	u64 flags;
486	u64 processor_mask;
487	u64 gva_list[];
488} __packed;
489
490/* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
491struct hv_tlb_flush_ex {
492	u64 address_space;
493	u64 flags;
494	struct hv_vpset hv_vp_set;
495	u64 gva_list[];
496} __packed;
497
498/* HvGetPartitionId hypercall (output only) */
499struct hv_get_partition_id {
500	u64 partition_id;
501} __packed;
502
503/* HvDepositMemory hypercall */
504struct hv_deposit_memory {
505	u64 partition_id;
506	u64 gpa_page_list[];
507} __packed;
508
509struct hv_proximity_domain_flags {
510	u32 proximity_preferred : 1;
511	u32 reserved : 30;
512	u32 proximity_info_valid : 1;
513} __packed;
514
515struct hv_proximity_domain_info {
516	u32 domain_id;
517	struct hv_proximity_domain_flags flags;
518} __packed;
519
520struct hv_lp_startup_status {
521	u64 hv_status;
522	u64 substatus1;
523	u64 substatus2;
524	u64 substatus3;
525	u64 substatus4;
526	u64 substatus5;
527	u64 substatus6;
528} __packed;
529
530/* HvAddLogicalProcessor hypercall */
531struct hv_input_add_logical_processor {
532	u32 lp_index;
533	u32 apic_id;
534	struct hv_proximity_domain_info proximity_domain_info;
535} __packed;
536
537struct hv_output_add_logical_processor {
538	struct hv_lp_startup_status startup_status;
539} __packed;
540
541enum HV_SUBNODE_TYPE
542{
543    HvSubnodeAny = 0,
544    HvSubnodeSocket = 1,
545    HvSubnodeAmdNode = 2,
546    HvSubnodeL3 = 3,
547    HvSubnodeCount = 4,
548    HvSubnodeInvalid = -1
549};
550
551/* HvCreateVp hypercall */
552struct hv_create_vp {
553	u64 partition_id;
554	u32 vp_index;
555	u8 padding[3];
556	u8 subnode_type;
557	u64 subnode_id;
558	struct hv_proximity_domain_info proximity_domain_info;
559	u64 flags;
560} __packed;
561
562enum hv_interrupt_source {
563	HV_INTERRUPT_SOURCE_MSI = 1, /* MSI and MSI-X */
564	HV_INTERRUPT_SOURCE_IOAPIC,
565};
566
567union hv_ioapic_rte {
568	u64 as_uint64;
569
570	struct {
571		u32 vector:8;
572		u32 delivery_mode:3;
573		u32 destination_mode:1;
574		u32 delivery_status:1;
575		u32 interrupt_polarity:1;
576		u32 remote_irr:1;
577		u32 trigger_mode:1;
578		u32 interrupt_mask:1;
579		u32 reserved1:15;
580
581		u32 reserved2:24;
582		u32 destination_id:8;
583	};
584
585	struct {
586		u32 low_uint32;
587		u32 high_uint32;
588	};
589} __packed;
590
591struct hv_interrupt_entry {
592	u32 source;
593	u32 reserved1;
594	union {
595		union hv_msi_entry msi_entry;
596		union hv_ioapic_rte ioapic_rte;
597	};
598} __packed;
599
600/*
601 * flags for hv_device_interrupt_target.flags
602 */
603#define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
604#define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
605
606struct hv_device_interrupt_target {
607	u32 vector;
608	u32 flags;
609	union {
610		u64 vp_mask;
611		struct hv_vpset vp_set;
612	};
613} __packed;
614
615struct hv_retarget_device_interrupt {
616	u64 partition_id;		/* use "self" */
617	u64 device_id;
618	struct hv_interrupt_entry int_entry;
619	u64 reserved2;
620	struct hv_device_interrupt_target int_target;
621} __packed __aligned(8);
622
623/*
624 * These Hyper-V registers provide information equivalent to the CPUID
625 * instruction on x86/x64.
626 */
627#define HV_REGISTER_HYPERVISOR_VERSION		0x00000100 /*CPUID 0x40000002 */
628#define HV_REGISTER_FEATURES			0x00000200 /*CPUID 0x40000003 */
629#define HV_REGISTER_ENLIGHTENMENTS		0x00000201 /*CPUID 0x40000004 */
630
631/*
632 * Synthetic register definitions equivalent to MSRs on x86/x64
633 */
634#define HV_REGISTER_GUEST_CRASH_P0	0x00000210
635#define HV_REGISTER_GUEST_CRASH_P1	0x00000211
636#define HV_REGISTER_GUEST_CRASH_P2	0x00000212
637#define HV_REGISTER_GUEST_CRASH_P3	0x00000213
638#define HV_REGISTER_GUEST_CRASH_P4	0x00000214
639#define HV_REGISTER_GUEST_CRASH_CTL	0x00000215
640
641#define HV_REGISTER_GUEST_OS_ID		0x00090002
642#define HV_REGISTER_VP_INDEX		0x00090003
643#define HV_REGISTER_TIME_REF_COUNT	0x00090004
644#define HV_REGISTER_REFERENCE_TSC	0x00090017
645
646#define HV_REGISTER_SINT0		0x000A0000
647#define HV_REGISTER_SCONTROL		0x000A0010
648#define HV_REGISTER_SIEFP		0x000A0012
649#define HV_REGISTER_SIMP		0x000A0013
650#define HV_REGISTER_EOM			0x000A0014
651
652#define HV_REGISTER_STIMER0_CONFIG	0x000B0000
653#define HV_REGISTER_STIMER0_COUNT	0x000B0001
654
655/* HvGetVpRegisters hypercall input with variable size reg name list*/
656struct hv_get_vp_registers_input {
657	struct {
658		u64 partitionid;
659		u32 vpindex;
660		u8  inputvtl;
661		u8  padding[3];
662	} header;
663	struct input {
664		u32 name0;
665		u32 name1;
666	} element[];
667} __packed;
668
669/* HvGetVpRegisters returns an array of these output elements */
670struct hv_get_vp_registers_output {
671	union {
672		struct {
673			u32 a;
674			u32 b;
675			u32 c;
676			u32 d;
677		} as32 __packed;
678		struct {
679			u64 low;
680			u64 high;
681		} as64 __packed;
682	};
683};
684
685/* HvSetVpRegisters hypercall with variable size reg name/value list*/
686struct hv_set_vp_registers_input {
687	struct {
688		u64 partitionid;
689		u32 vpindex;
690		u8  inputvtl;
691		u8  padding[3];
692	} header;
693	struct {
694		u32 name;
695		u32 padding1;
696		u64 padding2;
697		u64 valuelow;
698		u64 valuehigh;
699	} element[];
700} __packed;
701
702enum hv_device_type {
703	HV_DEVICE_TYPE_LOGICAL = 0,
704	HV_DEVICE_TYPE_PCI = 1,
705	HV_DEVICE_TYPE_IOAPIC = 2,
706	HV_DEVICE_TYPE_ACPI = 3,
707};
708
709typedef u16 hv_pci_rid;
710typedef u16 hv_pci_segment;
711typedef u64 hv_logical_device_id;
712union hv_pci_bdf {
713	u16 as_uint16;
714
715	struct {
716		u8 function:3;
717		u8 device:5;
718		u8 bus;
719	};
720} __packed;
721
722union hv_pci_bus_range {
723	u16 as_uint16;
724
725	struct {
726		u8 subordinate_bus;
727		u8 secondary_bus;
728	};
729} __packed;
730
731union hv_device_id {
732	u64 as_uint64;
733
734	struct {
735		u64 reserved0:62;
736		u64 device_type:2;
737	};
738
739	/* HV_DEVICE_TYPE_LOGICAL */
740	struct {
741		u64 id:62;
742		u64 device_type:2;
743	} logical;
744
745	/* HV_DEVICE_TYPE_PCI */
746	struct {
747		union {
748			hv_pci_rid rid;
749			union hv_pci_bdf bdf;
750		};
751
752		hv_pci_segment segment;
753		union hv_pci_bus_range shadow_bus_range;
754
755		u16 phantom_function_bits:2;
756		u16 source_shadow:1;
757
758		u16 rsvdz0:11;
759		u16 device_type:2;
760	} pci;
761
762	/* HV_DEVICE_TYPE_IOAPIC */
763	struct {
764		u8 ioapic_id;
765		u8 rsvdz0;
766		u16 rsvdz1;
767		u16 rsvdz2;
768
769		u16 rsvdz3:14;
770		u16 device_type:2;
771	} ioapic;
772
773	/* HV_DEVICE_TYPE_ACPI */
774	struct {
775		u32 input_mapping_base;
776		u32 input_mapping_count:30;
777		u32 device_type:2;
778	} acpi;
779} __packed;
780
781enum hv_interrupt_trigger_mode {
782	HV_INTERRUPT_TRIGGER_MODE_EDGE = 0,
783	HV_INTERRUPT_TRIGGER_MODE_LEVEL = 1,
784};
785
786struct hv_device_interrupt_descriptor {
787	u32 interrupt_type;
788	u32 trigger_mode;
789	u32 vector_count;
790	u32 reserved;
791	struct hv_device_interrupt_target target;
792} __packed;
793
794struct hv_input_map_device_interrupt {
795	u64 partition_id;
796	u64 device_id;
797	u64 flags;
798	struct hv_interrupt_entry logical_interrupt_entry;
799	struct hv_device_interrupt_descriptor interrupt_descriptor;
800} __packed;
801
802struct hv_output_map_device_interrupt {
803	struct hv_interrupt_entry interrupt_entry;
804} __packed;
805
806struct hv_input_unmap_device_interrupt {
807	u64 partition_id;
808	u64 device_id;
809	struct hv_interrupt_entry interrupt_entry;
810} __packed;
811
812#define HV_SOURCE_SHADOW_NONE               0x0
813#define HV_SOURCE_SHADOW_BRIDGE_BUS_RANGE   0x1
814
815/*
816 * Version info reported by hypervisor
817 */
818union hv_hypervisor_version_info {
819	struct {
820		u32 build_number;
821
822		u32 minor_version : 16;
823		u32 major_version : 16;
824
825		u32 service_pack;
826
827		u32 service_number : 24;
828		u32 service_branch : 8;
829	};
830	struct {
831		u32 eax;
832		u32 ebx;
833		u32 ecx;
834		u32 edx;
835	};
836};
837
838/*
839 * The whole argument should fit in a page to be able to pass to the hypervisor
840 * in one hypercall.
841 */
842#define HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES  \
843	((HV_HYP_PAGE_SIZE - sizeof(struct hv_memory_hint)) / \
844		sizeof(union hv_gpa_page_range))
845
846/* HvExtCallMemoryHeatHint hypercall */
847#define HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD	2
848struct hv_memory_hint {
849	u64 type:2;
850	u64 reserved:62;
851	union hv_gpa_page_range ranges[];
852} __packed;
853
854/* Data structures for HVCALL_MMIO_READ and HVCALL_MMIO_WRITE */
855#define HV_HYPERCALL_MMIO_MAX_DATA_LENGTH 64
856
857struct hv_mmio_read_input {
858	u64 gpa;
859	u32 size;
860	u32 reserved;
861} __packed;
862
863struct hv_mmio_read_output {
864	u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH];
865} __packed;
866
867struct hv_mmio_write_input {
868	u64 gpa;
869	u32 size;
870	u32 reserved;
871	u8 data[HV_HYPERCALL_MMIO_MAX_DATA_LENGTH];
872} __packed;
873
874#endif
875