1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_extent_busy.h"
15#include "xfs_quota.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_defer.h"
23#include "xfs_inode.h"
24#include "xfs_dquot_item.h"
25#include "xfs_dquot.h"
26#include "xfs_icache.h"
27#include "xfs_rtbitmap.h"
28
29struct kmem_cache	*xfs_trans_cache;
30
31#if defined(CONFIG_TRACEPOINTS)
32static void
33xfs_trans_trace_reservations(
34	struct xfs_mount	*mp)
35{
36	struct xfs_trans_res	*res;
37	struct xfs_trans_res	*end_res;
38	int			i;
39
40	res = (struct xfs_trans_res *)M_RES(mp);
41	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
42	for (i = 0; res < end_res; i++, res++)
43		trace_xfs_trans_resv_calc(mp, i, res);
44}
45#else
46# define xfs_trans_trace_reservations(mp)
47#endif
48
49/*
50 * Initialize the precomputed transaction reservation values
51 * in the mount structure.
52 */
53void
54xfs_trans_init(
55	struct xfs_mount	*mp)
56{
57	xfs_trans_resv_calc(mp, M_RES(mp));
58	xfs_trans_trace_reservations(mp);
59}
60
61/*
62 * Free the transaction structure.  If there is more clean up
63 * to do when the structure is freed, add it here.
64 */
65STATIC void
66xfs_trans_free(
67	struct xfs_trans	*tp)
68{
69	xfs_extent_busy_sort(&tp->t_busy);
70	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
71
72	trace_xfs_trans_free(tp, _RET_IP_);
73	xfs_trans_clear_context(tp);
74	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
75		sb_end_intwrite(tp->t_mountp->m_super);
76	xfs_trans_free_dqinfo(tp);
77	kmem_cache_free(xfs_trans_cache, tp);
78}
79
80/*
81 * This is called to create a new transaction which will share the
82 * permanent log reservation of the given transaction.  The remaining
83 * unused block and rt extent reservations are also inherited.  This
84 * implies that the original transaction is no longer allowed to allocate
85 * blocks.  Locks and log items, however, are no inherited.  They must
86 * be added to the new transaction explicitly.
87 */
88STATIC struct xfs_trans *
89xfs_trans_dup(
90	struct xfs_trans	*tp)
91{
92	struct xfs_trans	*ntp;
93
94	trace_xfs_trans_dup(tp, _RET_IP_);
95
96	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
97
98	/*
99	 * Initialize the new transaction structure.
100	 */
101	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
102	ntp->t_mountp = tp->t_mountp;
103	INIT_LIST_HEAD(&ntp->t_items);
104	INIT_LIST_HEAD(&ntp->t_busy);
105	INIT_LIST_HEAD(&ntp->t_dfops);
106	ntp->t_highest_agno = NULLAGNUMBER;
107
108	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
109	ASSERT(tp->t_ticket != NULL);
110
111	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
112		       (tp->t_flags & XFS_TRANS_RESERVE) |
113		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
114		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
115	/* We gave our writer reference to the new transaction */
116	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
117	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
118
119	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
120	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
121	tp->t_blk_res = tp->t_blk_res_used;
122
123	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
124	tp->t_rtx_res = tp->t_rtx_res_used;
125
126	xfs_trans_switch_context(tp, ntp);
127
128	/* move deferred ops over to the new tp */
129	xfs_defer_move(ntp, tp);
130
131	xfs_trans_dup_dqinfo(tp, ntp);
132	return ntp;
133}
134
135/*
136 * This is called to reserve free disk blocks and log space for the
137 * given transaction.  This must be done before allocating any resources
138 * within the transaction.
139 *
140 * This will return ENOSPC if there are not enough blocks available.
141 * It will sleep waiting for available log space.
142 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
143 * is used by long running transactions.  If any one of the reservations
144 * fails then they will all be backed out.
145 *
146 * This does not do quota reservations. That typically is done by the
147 * caller afterwards.
148 */
149static int
150xfs_trans_reserve(
151	struct xfs_trans	*tp,
152	struct xfs_trans_res	*resp,
153	uint			blocks,
154	uint			rtextents)
155{
156	struct xfs_mount	*mp = tp->t_mountp;
157	int			error = 0;
158	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
159
160	/*
161	 * Attempt to reserve the needed disk blocks by decrementing
162	 * the number needed from the number available.  This will
163	 * fail if the count would go below zero.
164	 */
165	if (blocks > 0) {
166		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
167		if (error != 0)
168			return -ENOSPC;
169		tp->t_blk_res += blocks;
170	}
171
172	/*
173	 * Reserve the log space needed for this transaction.
174	 */
175	if (resp->tr_logres > 0) {
176		bool	permanent = false;
177
178		ASSERT(tp->t_log_res == 0 ||
179		       tp->t_log_res == resp->tr_logres);
180		ASSERT(tp->t_log_count == 0 ||
181		       tp->t_log_count == resp->tr_logcount);
182
183		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
184			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
185			permanent = true;
186		} else {
187			ASSERT(tp->t_ticket == NULL);
188			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
189		}
190
191		if (tp->t_ticket != NULL) {
192			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
193			error = xfs_log_regrant(mp, tp->t_ticket);
194		} else {
195			error = xfs_log_reserve(mp, resp->tr_logres,
196						resp->tr_logcount,
197						&tp->t_ticket, permanent);
198		}
199
200		if (error)
201			goto undo_blocks;
202
203		tp->t_log_res = resp->tr_logres;
204		tp->t_log_count = resp->tr_logcount;
205	}
206
207	/*
208	 * Attempt to reserve the needed realtime extents by decrementing
209	 * the number needed from the number available.  This will
210	 * fail if the count would go below zero.
211	 */
212	if (rtextents > 0) {
213		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
214		if (error) {
215			error = -ENOSPC;
216			goto undo_log;
217		}
218		tp->t_rtx_res += rtextents;
219	}
220
221	return 0;
222
223	/*
224	 * Error cases jump to one of these labels to undo any
225	 * reservations which have already been performed.
226	 */
227undo_log:
228	if (resp->tr_logres > 0) {
229		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
230		tp->t_ticket = NULL;
231		tp->t_log_res = 0;
232		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
233	}
234
235undo_blocks:
236	if (blocks > 0) {
237		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
238		tp->t_blk_res = 0;
239	}
240	return error;
241}
242
243int
244xfs_trans_alloc(
245	struct xfs_mount	*mp,
246	struct xfs_trans_res	*resp,
247	uint			blocks,
248	uint			rtextents,
249	uint			flags,
250	struct xfs_trans	**tpp)
251{
252	struct xfs_trans	*tp;
253	bool			want_retry = true;
254	int			error;
255
256	/*
257	 * Allocate the handle before we do our freeze accounting and setting up
258	 * GFP_NOFS allocation context so that we avoid lockdep false positives
259	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
260	 */
261retry:
262	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
263	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
264		sb_start_intwrite(mp->m_super);
265	xfs_trans_set_context(tp);
266
267	/*
268	 * Zero-reservation ("empty") transactions can't modify anything, so
269	 * they're allowed to run while we're frozen.
270	 */
271	WARN_ON(resp->tr_logres > 0 &&
272		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
273	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
274	       xfs_has_lazysbcount(mp));
275
276	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
277	tp->t_flags = flags;
278	tp->t_mountp = mp;
279	INIT_LIST_HEAD(&tp->t_items);
280	INIT_LIST_HEAD(&tp->t_busy);
281	INIT_LIST_HEAD(&tp->t_dfops);
282	tp->t_highest_agno = NULLAGNUMBER;
283
284	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
285	if (error == -ENOSPC && want_retry) {
286		xfs_trans_cancel(tp);
287
288		/*
289		 * We weren't able to reserve enough space for the transaction.
290		 * Flush the other speculative space allocations to free space.
291		 * Do not perform a synchronous scan because callers can hold
292		 * other locks.
293		 */
294		error = xfs_blockgc_flush_all(mp);
295		if (error)
296			return error;
297		want_retry = false;
298		goto retry;
299	}
300	if (error) {
301		xfs_trans_cancel(tp);
302		return error;
303	}
304
305	trace_xfs_trans_alloc(tp, _RET_IP_);
306
307	*tpp = tp;
308	return 0;
309}
310
311/*
312 * Create an empty transaction with no reservation.  This is a defensive
313 * mechanism for routines that query metadata without actually modifying them --
314 * if the metadata being queried is somehow cross-linked (think a btree block
315 * pointer that points higher in the tree), we risk deadlock.  However, blocks
316 * grabbed as part of a transaction can be re-grabbed.  The verifiers will
317 * notice the corrupt block and the operation will fail back to userspace
318 * without deadlocking.
319 *
320 * Note the zero-length reservation; this transaction MUST be cancelled without
321 * any dirty data.
322 *
323 * Callers should obtain freeze protection to avoid a conflict with fs freezing
324 * where we can be grabbing buffers at the same time that freeze is trying to
325 * drain the buffer LRU list.
326 */
327int
328xfs_trans_alloc_empty(
329	struct xfs_mount		*mp,
330	struct xfs_trans		**tpp)
331{
332	struct xfs_trans_res		resv = {0};
333
334	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
335}
336
337/*
338 * Record the indicated change to the given field for application
339 * to the file system's superblock when the transaction commits.
340 * For now, just store the change in the transaction structure.
341 *
342 * Mark the transaction structure to indicate that the superblock
343 * needs to be updated before committing.
344 *
345 * Because we may not be keeping track of allocated/free inodes and
346 * used filesystem blocks in the superblock, we do not mark the
347 * superblock dirty in this transaction if we modify these fields.
348 * We still need to update the transaction deltas so that they get
349 * applied to the incore superblock, but we don't want them to
350 * cause the superblock to get locked and logged if these are the
351 * only fields in the superblock that the transaction modifies.
352 */
353void
354xfs_trans_mod_sb(
355	xfs_trans_t	*tp,
356	uint		field,
357	int64_t		delta)
358{
359	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
360	xfs_mount_t	*mp = tp->t_mountp;
361
362	switch (field) {
363	case XFS_TRANS_SB_ICOUNT:
364		tp->t_icount_delta += delta;
365		if (xfs_has_lazysbcount(mp))
366			flags &= ~XFS_TRANS_SB_DIRTY;
367		break;
368	case XFS_TRANS_SB_IFREE:
369		tp->t_ifree_delta += delta;
370		if (xfs_has_lazysbcount(mp))
371			flags &= ~XFS_TRANS_SB_DIRTY;
372		break;
373	case XFS_TRANS_SB_FDBLOCKS:
374		/*
375		 * Track the number of blocks allocated in the transaction.
376		 * Make sure it does not exceed the number reserved. If so,
377		 * shutdown as this can lead to accounting inconsistency.
378		 */
379		if (delta < 0) {
380			tp->t_blk_res_used += (uint)-delta;
381			if (tp->t_blk_res_used > tp->t_blk_res)
382				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
383		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
384			int64_t	blkres_delta;
385
386			/*
387			 * Return freed blocks directly to the reservation
388			 * instead of the global pool, being careful not to
389			 * overflow the trans counter. This is used to preserve
390			 * reservation across chains of transaction rolls that
391			 * repeatedly free and allocate blocks.
392			 */
393			blkres_delta = min_t(int64_t, delta,
394					     UINT_MAX - tp->t_blk_res);
395			tp->t_blk_res += blkres_delta;
396			delta -= blkres_delta;
397		}
398		tp->t_fdblocks_delta += delta;
399		if (xfs_has_lazysbcount(mp))
400			flags &= ~XFS_TRANS_SB_DIRTY;
401		break;
402	case XFS_TRANS_SB_RES_FDBLOCKS:
403		/*
404		 * The allocation has already been applied to the
405		 * in-core superblock's counter.  This should only
406		 * be applied to the on-disk superblock.
407		 */
408		tp->t_res_fdblocks_delta += delta;
409		if (xfs_has_lazysbcount(mp))
410			flags &= ~XFS_TRANS_SB_DIRTY;
411		break;
412	case XFS_TRANS_SB_FREXTENTS:
413		/*
414		 * Track the number of blocks allocated in the
415		 * transaction.  Make sure it does not exceed the
416		 * number reserved.
417		 */
418		if (delta < 0) {
419			tp->t_rtx_res_used += (uint)-delta;
420			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
421		}
422		tp->t_frextents_delta += delta;
423		break;
424	case XFS_TRANS_SB_RES_FREXTENTS:
425		/*
426		 * The allocation has already been applied to the
427		 * in-core superblock's counter.  This should only
428		 * be applied to the on-disk superblock.
429		 */
430		ASSERT(delta < 0);
431		tp->t_res_frextents_delta += delta;
432		break;
433	case XFS_TRANS_SB_DBLOCKS:
434		tp->t_dblocks_delta += delta;
435		break;
436	case XFS_TRANS_SB_AGCOUNT:
437		ASSERT(delta > 0);
438		tp->t_agcount_delta += delta;
439		break;
440	case XFS_TRANS_SB_IMAXPCT:
441		tp->t_imaxpct_delta += delta;
442		break;
443	case XFS_TRANS_SB_REXTSIZE:
444		tp->t_rextsize_delta += delta;
445		break;
446	case XFS_TRANS_SB_RBMBLOCKS:
447		tp->t_rbmblocks_delta += delta;
448		break;
449	case XFS_TRANS_SB_RBLOCKS:
450		tp->t_rblocks_delta += delta;
451		break;
452	case XFS_TRANS_SB_REXTENTS:
453		tp->t_rextents_delta += delta;
454		break;
455	case XFS_TRANS_SB_REXTSLOG:
456		tp->t_rextslog_delta += delta;
457		break;
458	default:
459		ASSERT(0);
460		return;
461	}
462
463	tp->t_flags |= flags;
464}
465
466/*
467 * xfs_trans_apply_sb_deltas() is called from the commit code
468 * to bring the superblock buffer into the current transaction
469 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
470 *
471 * For now we just look at each field allowed to change and change
472 * it if necessary.
473 */
474STATIC void
475xfs_trans_apply_sb_deltas(
476	xfs_trans_t	*tp)
477{
478	struct xfs_dsb	*sbp;
479	struct xfs_buf	*bp;
480	int		whole = 0;
481
482	bp = xfs_trans_getsb(tp);
483	sbp = bp->b_addr;
484
485	/*
486	 * Only update the superblock counters if we are logging them
487	 */
488	if (!xfs_has_lazysbcount((tp->t_mountp))) {
489		if (tp->t_icount_delta)
490			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
491		if (tp->t_ifree_delta)
492			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
493		if (tp->t_fdblocks_delta)
494			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
495		if (tp->t_res_fdblocks_delta)
496			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
497	}
498
499	/*
500	 * Updating frextents requires careful handling because it does not
501	 * behave like the lazysb counters because we cannot rely on log
502	 * recovery in older kenels to recompute the value from the rtbitmap.
503	 * This means that the ondisk frextents must be consistent with the
504	 * rtbitmap.
505	 *
506	 * Therefore, log the frextents change to the ondisk superblock and
507	 * update the incore superblock so that future calls to xfs_log_sb
508	 * write the correct value ondisk.
509	 *
510	 * Don't touch m_frextents because it includes incore reservations,
511	 * and those are handled by the unreserve function.
512	 */
513	if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
514		struct xfs_mount	*mp = tp->t_mountp;
515		int64_t			rtxdelta;
516
517		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
518
519		spin_lock(&mp->m_sb_lock);
520		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
521		mp->m_sb.sb_frextents += rtxdelta;
522		spin_unlock(&mp->m_sb_lock);
523	}
524
525	if (tp->t_dblocks_delta) {
526		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
527		whole = 1;
528	}
529	if (tp->t_agcount_delta) {
530		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
531		whole = 1;
532	}
533	if (tp->t_imaxpct_delta) {
534		sbp->sb_imax_pct += tp->t_imaxpct_delta;
535		whole = 1;
536	}
537	if (tp->t_rextsize_delta) {
538		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
539		whole = 1;
540	}
541	if (tp->t_rbmblocks_delta) {
542		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
543		whole = 1;
544	}
545	if (tp->t_rblocks_delta) {
546		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
547		whole = 1;
548	}
549	if (tp->t_rextents_delta) {
550		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
551		whole = 1;
552	}
553	if (tp->t_rextslog_delta) {
554		sbp->sb_rextslog += tp->t_rextslog_delta;
555		whole = 1;
556	}
557
558	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
559	if (whole)
560		/*
561		 * Log the whole thing, the fields are noncontiguous.
562		 */
563		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
564	else
565		/*
566		 * Since all the modifiable fields are contiguous, we
567		 * can get away with this.
568		 */
569		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
570				  offsetof(struct xfs_dsb, sb_frextents) +
571				  sizeof(sbp->sb_frextents) - 1);
572}
573
574/*
575 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
576 * apply superblock counter changes to the in-core superblock.  The
577 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
578 * applied to the in-core superblock.  The idea is that that has already been
579 * done.
580 *
581 * If we are not logging superblock counters, then the inode allocated/free and
582 * used block counts are not updated in the on disk superblock. In this case,
583 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
584 * still need to update the incore superblock with the changes.
585 *
586 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
587 * so we don't need to take the counter lock on every update.
588 */
589#define XFS_ICOUNT_BATCH	128
590
591void
592xfs_trans_unreserve_and_mod_sb(
593	struct xfs_trans	*tp)
594{
595	struct xfs_mount	*mp = tp->t_mountp;
596	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
597	int64_t			blkdelta = 0;
598	int64_t			rtxdelta = 0;
599	int64_t			idelta = 0;
600	int64_t			ifreedelta = 0;
601	int			error;
602
603	/* calculate deltas */
604	if (tp->t_blk_res > 0)
605		blkdelta = tp->t_blk_res;
606	if ((tp->t_fdblocks_delta != 0) &&
607	    (xfs_has_lazysbcount(mp) ||
608	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
609	        blkdelta += tp->t_fdblocks_delta;
610
611	if (tp->t_rtx_res > 0)
612		rtxdelta = tp->t_rtx_res;
613	if ((tp->t_frextents_delta != 0) &&
614	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
615		rtxdelta += tp->t_frextents_delta;
616
617	if (xfs_has_lazysbcount(mp) ||
618	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
619		idelta = tp->t_icount_delta;
620		ifreedelta = tp->t_ifree_delta;
621	}
622
623	/* apply the per-cpu counters */
624	if (blkdelta) {
625		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
626		ASSERT(!error);
627	}
628
629	if (idelta)
630		percpu_counter_add_batch(&mp->m_icount, idelta,
631					 XFS_ICOUNT_BATCH);
632
633	if (ifreedelta)
634		percpu_counter_add(&mp->m_ifree, ifreedelta);
635
636	if (rtxdelta) {
637		error = xfs_mod_frextents(mp, rtxdelta);
638		ASSERT(!error);
639	}
640
641	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
642		return;
643
644	/* apply remaining deltas */
645	spin_lock(&mp->m_sb_lock);
646	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
647	mp->m_sb.sb_icount += idelta;
648	mp->m_sb.sb_ifree += ifreedelta;
649	/*
650	 * Do not touch sb_frextents here because we are dealing with incore
651	 * reservation.  sb_frextents is not part of the lazy sb counters so it
652	 * must be consistent with the ondisk rtbitmap and must never include
653	 * incore reservations.
654	 */
655	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
656	mp->m_sb.sb_agcount += tp->t_agcount_delta;
657	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
658	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
659	if (tp->t_rextsize_delta) {
660		mp->m_rtxblklog = log2_if_power2(mp->m_sb.sb_rextsize);
661		mp->m_rtxblkmask = mask64_if_power2(mp->m_sb.sb_rextsize);
662	}
663	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
664	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
665	mp->m_sb.sb_rextents += tp->t_rextents_delta;
666	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
667	spin_unlock(&mp->m_sb_lock);
668
669	/*
670	 * Debug checks outside of the spinlock so they don't lock up the
671	 * machine if they fail.
672	 */
673	ASSERT(mp->m_sb.sb_imax_pct >= 0);
674	ASSERT(mp->m_sb.sb_rextslog >= 0);
675	return;
676}
677
678/* Add the given log item to the transaction's list of log items. */
679void
680xfs_trans_add_item(
681	struct xfs_trans	*tp,
682	struct xfs_log_item	*lip)
683{
684	ASSERT(lip->li_log == tp->t_mountp->m_log);
685	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
686	ASSERT(list_empty(&lip->li_trans));
687	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
688
689	list_add_tail(&lip->li_trans, &tp->t_items);
690	trace_xfs_trans_add_item(tp, _RET_IP_);
691}
692
693/*
694 * Unlink the log item from the transaction. the log item is no longer
695 * considered dirty in this transaction, as the linked transaction has
696 * finished, either by abort or commit completion.
697 */
698void
699xfs_trans_del_item(
700	struct xfs_log_item	*lip)
701{
702	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
703	list_del_init(&lip->li_trans);
704}
705
706/* Detach and unlock all of the items in a transaction */
707static void
708xfs_trans_free_items(
709	struct xfs_trans	*tp,
710	bool			abort)
711{
712	struct xfs_log_item	*lip, *next;
713
714	trace_xfs_trans_free_items(tp, _RET_IP_);
715
716	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
717		xfs_trans_del_item(lip);
718		if (abort)
719			set_bit(XFS_LI_ABORTED, &lip->li_flags);
720		if (lip->li_ops->iop_release)
721			lip->li_ops->iop_release(lip);
722	}
723}
724
725static inline void
726xfs_log_item_batch_insert(
727	struct xfs_ail		*ailp,
728	struct xfs_ail_cursor	*cur,
729	struct xfs_log_item	**log_items,
730	int			nr_items,
731	xfs_lsn_t		commit_lsn)
732{
733	int	i;
734
735	spin_lock(&ailp->ail_lock);
736	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
737	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
738
739	for (i = 0; i < nr_items; i++) {
740		struct xfs_log_item *lip = log_items[i];
741
742		if (lip->li_ops->iop_unpin)
743			lip->li_ops->iop_unpin(lip, 0);
744	}
745}
746
747/*
748 * Bulk operation version of xfs_trans_committed that takes a log vector of
749 * items to insert into the AIL. This uses bulk AIL insertion techniques to
750 * minimise lock traffic.
751 *
752 * If we are called with the aborted flag set, it is because a log write during
753 * a CIL checkpoint commit has failed. In this case, all the items in the
754 * checkpoint have already gone through iop_committed and iop_committing, which
755 * means that checkpoint commit abort handling is treated exactly the same
756 * as an iclog write error even though we haven't started any IO yet. Hence in
757 * this case all we need to do is iop_committed processing, followed by an
758 * iop_unpin(aborted) call.
759 *
760 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
761 * at the end of the AIL, the insert cursor avoids the need to walk
762 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
763 * call. This saves a lot of needless list walking and is a net win, even
764 * though it slightly increases that amount of AIL lock traffic to set it up
765 * and tear it down.
766 */
767void
768xfs_trans_committed_bulk(
769	struct xfs_ail		*ailp,
770	struct list_head	*lv_chain,
771	xfs_lsn_t		commit_lsn,
772	bool			aborted)
773{
774#define LOG_ITEM_BATCH_SIZE	32
775	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
776	struct xfs_log_vec	*lv;
777	struct xfs_ail_cursor	cur;
778	int			i = 0;
779
780	spin_lock(&ailp->ail_lock);
781	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
782	spin_unlock(&ailp->ail_lock);
783
784	/* unpin all the log items */
785	list_for_each_entry(lv, lv_chain, lv_list) {
786		struct xfs_log_item	*lip = lv->lv_item;
787		xfs_lsn_t		item_lsn;
788
789		if (aborted)
790			set_bit(XFS_LI_ABORTED, &lip->li_flags);
791
792		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
793			lip->li_ops->iop_release(lip);
794			continue;
795		}
796
797		if (lip->li_ops->iop_committed)
798			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
799		else
800			item_lsn = commit_lsn;
801
802		/* item_lsn of -1 means the item needs no further processing */
803		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
804			continue;
805
806		/*
807		 * if we are aborting the operation, no point in inserting the
808		 * object into the AIL as we are in a shutdown situation.
809		 */
810		if (aborted) {
811			ASSERT(xlog_is_shutdown(ailp->ail_log));
812			if (lip->li_ops->iop_unpin)
813				lip->li_ops->iop_unpin(lip, 1);
814			continue;
815		}
816
817		if (item_lsn != commit_lsn) {
818
819			/*
820			 * Not a bulk update option due to unusual item_lsn.
821			 * Push into AIL immediately, rechecking the lsn once
822			 * we have the ail lock. Then unpin the item. This does
823			 * not affect the AIL cursor the bulk insert path is
824			 * using.
825			 */
826			spin_lock(&ailp->ail_lock);
827			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
828				xfs_trans_ail_update(ailp, lip, item_lsn);
829			else
830				spin_unlock(&ailp->ail_lock);
831			if (lip->li_ops->iop_unpin)
832				lip->li_ops->iop_unpin(lip, 0);
833			continue;
834		}
835
836		/* Item is a candidate for bulk AIL insert.  */
837		log_items[i++] = lv->lv_item;
838		if (i >= LOG_ITEM_BATCH_SIZE) {
839			xfs_log_item_batch_insert(ailp, &cur, log_items,
840					LOG_ITEM_BATCH_SIZE, commit_lsn);
841			i = 0;
842		}
843	}
844
845	/* make sure we insert the remainder! */
846	if (i)
847		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
848
849	spin_lock(&ailp->ail_lock);
850	xfs_trans_ail_cursor_done(&cur);
851	spin_unlock(&ailp->ail_lock);
852}
853
854/*
855 * Sort transaction items prior to running precommit operations. This will
856 * attempt to order the items such that they will always be locked in the same
857 * order. Items that have no sort function are moved to the end of the list
858 * and so are locked last.
859 *
860 * This may need refinement as different types of objects add sort functions.
861 *
862 * Function is more complex than it needs to be because we are comparing 64 bit
863 * values and the function only returns 32 bit values.
864 */
865static int
866xfs_trans_precommit_sort(
867	void			*unused_arg,
868	const struct list_head	*a,
869	const struct list_head	*b)
870{
871	struct xfs_log_item	*lia = container_of(a,
872					struct xfs_log_item, li_trans);
873	struct xfs_log_item	*lib = container_of(b,
874					struct xfs_log_item, li_trans);
875	int64_t			diff;
876
877	/*
878	 * If both items are non-sortable, leave them alone. If only one is
879	 * sortable, move the non-sortable item towards the end of the list.
880	 */
881	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
882		return 0;
883	if (!lia->li_ops->iop_sort)
884		return 1;
885	if (!lib->li_ops->iop_sort)
886		return -1;
887
888	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
889	if (diff < 0)
890		return -1;
891	if (diff > 0)
892		return 1;
893	return 0;
894}
895
896/*
897 * Run transaction precommit functions.
898 *
899 * If there is an error in any of the callouts, then stop immediately and
900 * trigger a shutdown to abort the transaction. There is no recovery possible
901 * from errors at this point as the transaction is dirty....
902 */
903static int
904xfs_trans_run_precommits(
905	struct xfs_trans	*tp)
906{
907	struct xfs_mount	*mp = tp->t_mountp;
908	struct xfs_log_item	*lip, *n;
909	int			error = 0;
910
911	/*
912	 * Sort the item list to avoid ABBA deadlocks with other transactions
913	 * running precommit operations that lock multiple shared items such as
914	 * inode cluster buffers.
915	 */
916	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
917
918	/*
919	 * Precommit operations can remove the log item from the transaction
920	 * if the log item exists purely to delay modifications until they
921	 * can be ordered against other operations. Hence we have to use
922	 * list_for_each_entry_safe() here.
923	 */
924	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
925		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
926			continue;
927		if (lip->li_ops->iop_precommit) {
928			error = lip->li_ops->iop_precommit(tp, lip);
929			if (error)
930				break;
931		}
932	}
933	if (error)
934		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
935	return error;
936}
937
938/*
939 * Commit the given transaction to the log.
940 *
941 * XFS disk error handling mechanism is not based on a typical
942 * transaction abort mechanism. Logically after the filesystem
943 * gets marked 'SHUTDOWN', we can't let any new transactions
944 * be durable - ie. committed to disk - because some metadata might
945 * be inconsistent. In such cases, this returns an error, and the
946 * caller may assume that all locked objects joined to the transaction
947 * have already been unlocked as if the commit had succeeded.
948 * Do not reference the transaction structure after this call.
949 */
950static int
951__xfs_trans_commit(
952	struct xfs_trans	*tp,
953	bool			regrant)
954{
955	struct xfs_mount	*mp = tp->t_mountp;
956	struct xlog		*log = mp->m_log;
957	xfs_csn_t		commit_seq = 0;
958	int			error = 0;
959	int			sync = tp->t_flags & XFS_TRANS_SYNC;
960
961	trace_xfs_trans_commit(tp, _RET_IP_);
962
963	error = xfs_trans_run_precommits(tp);
964	if (error) {
965		if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
966			xfs_defer_cancel(tp);
967		goto out_unreserve;
968	}
969
970	/*
971	 * Finish deferred items on final commit. Only permanent transactions
972	 * should ever have deferred ops.
973	 */
974	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
975		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
976	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
977		error = xfs_defer_finish_noroll(&tp);
978		if (error)
979			goto out_unreserve;
980
981		/* Run precommits from final tx in defer chain. */
982		error = xfs_trans_run_precommits(tp);
983		if (error)
984			goto out_unreserve;
985	}
986
987	/*
988	 * If there is nothing to be logged by the transaction,
989	 * then unlock all of the items associated with the
990	 * transaction and free the transaction structure.
991	 * Also make sure to return any reserved blocks to
992	 * the free pool.
993	 */
994	if (!(tp->t_flags & XFS_TRANS_DIRTY))
995		goto out_unreserve;
996
997	/*
998	 * We must check against log shutdown here because we cannot abort log
999	 * items and leave them dirty, inconsistent and unpinned in memory while
1000	 * the log is active. This leaves them open to being written back to
1001	 * disk, and that will lead to on-disk corruption.
1002	 */
1003	if (xlog_is_shutdown(log)) {
1004		error = -EIO;
1005		goto out_unreserve;
1006	}
1007
1008	ASSERT(tp->t_ticket != NULL);
1009
1010	/*
1011	 * If we need to update the superblock, then do it now.
1012	 */
1013	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1014		xfs_trans_apply_sb_deltas(tp);
1015	xfs_trans_apply_dquot_deltas(tp);
1016
1017	xlog_cil_commit(log, tp, &commit_seq, regrant);
1018
1019	xfs_trans_free(tp);
1020
1021	/*
1022	 * If the transaction needs to be synchronous, then force the
1023	 * log out now and wait for it.
1024	 */
1025	if (sync) {
1026		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1027		XFS_STATS_INC(mp, xs_trans_sync);
1028	} else {
1029		XFS_STATS_INC(mp, xs_trans_async);
1030	}
1031
1032	return error;
1033
1034out_unreserve:
1035	xfs_trans_unreserve_and_mod_sb(tp);
1036
1037	/*
1038	 * It is indeed possible for the transaction to be not dirty but
1039	 * the dqinfo portion to be.  All that means is that we have some
1040	 * (non-persistent) quota reservations that need to be unreserved.
1041	 */
1042	xfs_trans_unreserve_and_mod_dquots(tp);
1043	if (tp->t_ticket) {
1044		if (regrant && !xlog_is_shutdown(log))
1045			xfs_log_ticket_regrant(log, tp->t_ticket);
1046		else
1047			xfs_log_ticket_ungrant(log, tp->t_ticket);
1048		tp->t_ticket = NULL;
1049	}
1050	xfs_trans_free_items(tp, !!error);
1051	xfs_trans_free(tp);
1052
1053	XFS_STATS_INC(mp, xs_trans_empty);
1054	return error;
1055}
1056
1057int
1058xfs_trans_commit(
1059	struct xfs_trans	*tp)
1060{
1061	return __xfs_trans_commit(tp, false);
1062}
1063
1064/*
1065 * Unlock all of the transaction's items and free the transaction.  If the
1066 * transaction is dirty, we must shut down the filesystem because there is no
1067 * way to restore them to their previous state.
1068 *
1069 * If the transaction has made a log reservation, make sure to release it as
1070 * well.
1071 *
1072 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1073 * be called after the transaction has effectively been aborted due to the mount
1074 * being shut down. However, if the mount has not been shut down and the
1075 * transaction is dirty we will shut the mount down and, in doing so, that
1076 * guarantees that the log is shut down, too. Hence we don't need to be as
1077 * careful with shutdown state and dirty items here as we need to be in
1078 * xfs_trans_commit().
1079 */
1080void
1081xfs_trans_cancel(
1082	struct xfs_trans	*tp)
1083{
1084	struct xfs_mount	*mp = tp->t_mountp;
1085	struct xlog		*log = mp->m_log;
1086	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1087
1088	trace_xfs_trans_cancel(tp, _RET_IP_);
1089
1090	/*
1091	 * It's never valid to cancel a transaction with deferred ops attached,
1092	 * because the transaction is effectively dirty.  Complain about this
1093	 * loudly before freeing the in-memory defer items and shutting down the
1094	 * filesystem.
1095	 */
1096	if (!list_empty(&tp->t_dfops)) {
1097		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1098		dirty = true;
1099		xfs_defer_cancel(tp);
1100	}
1101
1102	/*
1103	 * See if the caller is relying on us to shut down the filesystem. We
1104	 * only want an error report if there isn't already a shutdown in
1105	 * progress, so we only need to check against the mount shutdown state
1106	 * here.
1107	 */
1108	if (dirty && !xfs_is_shutdown(mp)) {
1109		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1110		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1111	}
1112#ifdef DEBUG
1113	/* Log items need to be consistent until the log is shut down. */
1114	if (!dirty && !xlog_is_shutdown(log)) {
1115		struct xfs_log_item *lip;
1116
1117		list_for_each_entry(lip, &tp->t_items, li_trans)
1118			ASSERT(!xlog_item_is_intent_done(lip));
1119	}
1120#endif
1121	xfs_trans_unreserve_and_mod_sb(tp);
1122	xfs_trans_unreserve_and_mod_dquots(tp);
1123
1124	if (tp->t_ticket) {
1125		xfs_log_ticket_ungrant(log, tp->t_ticket);
1126		tp->t_ticket = NULL;
1127	}
1128
1129	xfs_trans_free_items(tp, dirty);
1130	xfs_trans_free(tp);
1131}
1132
1133/*
1134 * Roll from one trans in the sequence of PERMANENT transactions to
1135 * the next: permanent transactions are only flushed out when
1136 * committed with xfs_trans_commit(), but we still want as soon
1137 * as possible to let chunks of it go to the log. So we commit the
1138 * chunk we've been working on and get a new transaction to continue.
1139 */
1140int
1141xfs_trans_roll(
1142	struct xfs_trans	**tpp)
1143{
1144	struct xfs_trans	*trans = *tpp;
1145	struct xfs_trans_res	tres;
1146	int			error;
1147
1148	trace_xfs_trans_roll(trans, _RET_IP_);
1149
1150	/*
1151	 * Copy the critical parameters from one trans to the next.
1152	 */
1153	tres.tr_logres = trans->t_log_res;
1154	tres.tr_logcount = trans->t_log_count;
1155
1156	*tpp = xfs_trans_dup(trans);
1157
1158	/*
1159	 * Commit the current transaction.
1160	 * If this commit failed, then it'd just unlock those items that
1161	 * are not marked ihold. That also means that a filesystem shutdown
1162	 * is in progress. The caller takes the responsibility to cancel
1163	 * the duplicate transaction that gets returned.
1164	 */
1165	error = __xfs_trans_commit(trans, true);
1166	if (error)
1167		return error;
1168
1169	/*
1170	 * Reserve space in the log for the next transaction.
1171	 * This also pushes items in the "AIL", the list of logged items,
1172	 * out to disk if they are taking up space at the tail of the log
1173	 * that we want to use.  This requires that either nothing be locked
1174	 * across this call, or that anything that is locked be logged in
1175	 * the prior and the next transactions.
1176	 */
1177	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1178	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1179}
1180
1181/*
1182 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1183 *
1184 * The caller must ensure that the on-disk dquots attached to this inode have
1185 * already been allocated and initialized.  The caller is responsible for
1186 * releasing ILOCK_EXCL if a new transaction is returned.
1187 */
1188int
1189xfs_trans_alloc_inode(
1190	struct xfs_inode	*ip,
1191	struct xfs_trans_res	*resv,
1192	unsigned int		dblocks,
1193	unsigned int		rblocks,
1194	bool			force,
1195	struct xfs_trans	**tpp)
1196{
1197	struct xfs_trans	*tp;
1198	struct xfs_mount	*mp = ip->i_mount;
1199	bool			retried = false;
1200	int			error;
1201
1202retry:
1203	error = xfs_trans_alloc(mp, resv, dblocks,
1204			xfs_extlen_to_rtxlen(mp, rblocks),
1205			force ? XFS_TRANS_RESERVE : 0, &tp);
1206	if (error)
1207		return error;
1208
1209	xfs_ilock(ip, XFS_ILOCK_EXCL);
1210	xfs_trans_ijoin(tp, ip, 0);
1211
1212	error = xfs_qm_dqattach_locked(ip, false);
1213	if (error) {
1214		/* Caller should have allocated the dquots! */
1215		ASSERT(error != -ENOENT);
1216		goto out_cancel;
1217	}
1218
1219	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1220	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1221		xfs_trans_cancel(tp);
1222		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1223		xfs_blockgc_free_quota(ip, 0);
1224		retried = true;
1225		goto retry;
1226	}
1227	if (error)
1228		goto out_cancel;
1229
1230	*tpp = tp;
1231	return 0;
1232
1233out_cancel:
1234	xfs_trans_cancel(tp);
1235	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1236	return error;
1237}
1238
1239/*
1240 * Try to reserve more blocks for a transaction.
1241 *
1242 * This is for callers that need to attach resources to a transaction, scan
1243 * those resources to determine the space reservation requirements, and then
1244 * modify the attached resources.  In other words, online repair.  This can
1245 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1246 * without shutting down the fs.
1247 */
1248int
1249xfs_trans_reserve_more(
1250	struct xfs_trans	*tp,
1251	unsigned int		blocks,
1252	unsigned int		rtextents)
1253{
1254	struct xfs_trans_res	resv = { };
1255
1256	return xfs_trans_reserve(tp, &resv, blocks, rtextents);
1257}
1258
1259/*
1260 * Try to reserve more blocks and file quota for a transaction.  Same
1261 * conditions of usage as xfs_trans_reserve_more.
1262 */
1263int
1264xfs_trans_reserve_more_inode(
1265	struct xfs_trans	*tp,
1266	struct xfs_inode	*ip,
1267	unsigned int		dblocks,
1268	unsigned int		rblocks,
1269	bool			force_quota)
1270{
1271	struct xfs_trans_res	resv = { };
1272	struct xfs_mount	*mp = ip->i_mount;
1273	unsigned int		rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1274	int			error;
1275
1276	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1277
1278	error = xfs_trans_reserve(tp, &resv, dblocks, rtx);
1279	if (error)
1280		return error;
1281
1282	if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1283		return 0;
1284
1285	if (tp->t_flags & XFS_TRANS_RESERVE)
1286		force_quota = true;
1287
1288	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1289			force_quota);
1290	if (!error)
1291		return 0;
1292
1293	/* Quota failed, give back the new reservation. */
1294	xfs_mod_fdblocks(mp, dblocks, tp->t_flags & XFS_TRANS_RESERVE);
1295	tp->t_blk_res -= dblocks;
1296	xfs_mod_frextents(mp, rtx);
1297	tp->t_rtx_res -= rtx;
1298	return error;
1299}
1300
1301/*
1302 * Allocate an transaction in preparation for inode creation by reserving quota
1303 * against the given dquots.  Callers are not required to hold any inode locks.
1304 */
1305int
1306xfs_trans_alloc_icreate(
1307	struct xfs_mount	*mp,
1308	struct xfs_trans_res	*resv,
1309	struct xfs_dquot	*udqp,
1310	struct xfs_dquot	*gdqp,
1311	struct xfs_dquot	*pdqp,
1312	unsigned int		dblocks,
1313	struct xfs_trans	**tpp)
1314{
1315	struct xfs_trans	*tp;
1316	bool			retried = false;
1317	int			error;
1318
1319retry:
1320	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1321	if (error)
1322		return error;
1323
1324	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1325	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1326		xfs_trans_cancel(tp);
1327		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1328		retried = true;
1329		goto retry;
1330	}
1331	if (error) {
1332		xfs_trans_cancel(tp);
1333		return error;
1334	}
1335
1336	*tpp = tp;
1337	return 0;
1338}
1339
1340/*
1341 * Allocate an transaction, lock and join the inode to it, and reserve quota
1342 * in preparation for inode attribute changes that include uid, gid, or prid
1343 * changes.
1344 *
1345 * The caller must ensure that the on-disk dquots attached to this inode have
1346 * already been allocated and initialized.  The ILOCK will be dropped when the
1347 * transaction is committed or cancelled.
1348 */
1349int
1350xfs_trans_alloc_ichange(
1351	struct xfs_inode	*ip,
1352	struct xfs_dquot	*new_udqp,
1353	struct xfs_dquot	*new_gdqp,
1354	struct xfs_dquot	*new_pdqp,
1355	bool			force,
1356	struct xfs_trans	**tpp)
1357{
1358	struct xfs_trans	*tp;
1359	struct xfs_mount	*mp = ip->i_mount;
1360	struct xfs_dquot	*udqp;
1361	struct xfs_dquot	*gdqp;
1362	struct xfs_dquot	*pdqp;
1363	bool			retried = false;
1364	int			error;
1365
1366retry:
1367	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1368	if (error)
1369		return error;
1370
1371	xfs_ilock(ip, XFS_ILOCK_EXCL);
1372	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1373
1374	error = xfs_qm_dqattach_locked(ip, false);
1375	if (error) {
1376		/* Caller should have allocated the dquots! */
1377		ASSERT(error != -ENOENT);
1378		goto out_cancel;
1379	}
1380
1381	/*
1382	 * For each quota type, skip quota reservations if the inode's dquots
1383	 * now match the ones that came from the caller, or the caller didn't
1384	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1385	 * perform a blockgc scan, so we must preserve the caller's arguments.
1386	 */
1387	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1388	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1389	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1390	if (udqp || gdqp || pdqp) {
1391		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1392
1393		if (force)
1394			qflags |= XFS_QMOPT_FORCE_RES;
1395
1396		/*
1397		 * Reserve enough quota to handle blocks on disk and reserved
1398		 * for a delayed allocation.  We'll actually transfer the
1399		 * delalloc reservation between dquots at chown time, even
1400		 * though that part is only semi-transactional.
1401		 */
1402		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1403				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1404				1, qflags);
1405		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1406			xfs_trans_cancel(tp);
1407			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1408			retried = true;
1409			goto retry;
1410		}
1411		if (error)
1412			goto out_cancel;
1413	}
1414
1415	*tpp = tp;
1416	return 0;
1417
1418out_cancel:
1419	xfs_trans_cancel(tp);
1420	return error;
1421}
1422
1423/*
1424 * Allocate an transaction, lock and join the directory and child inodes to it,
1425 * and reserve quota for a directory update.  If there isn't sufficient space,
1426 * @dblocks will be set to zero for a reservationless directory update and
1427 * @nospace_error will be set to a negative errno describing the space
1428 * constraint we hit.
1429 *
1430 * The caller must ensure that the on-disk dquots attached to this inode have
1431 * already been allocated and initialized.  The ILOCKs will be dropped when the
1432 * transaction is committed or cancelled.
1433 */
1434int
1435xfs_trans_alloc_dir(
1436	struct xfs_inode	*dp,
1437	struct xfs_trans_res	*resv,
1438	struct xfs_inode	*ip,
1439	unsigned int		*dblocks,
1440	struct xfs_trans	**tpp,
1441	int			*nospace_error)
1442{
1443	struct xfs_trans	*tp;
1444	struct xfs_mount	*mp = ip->i_mount;
1445	unsigned int		resblks;
1446	bool			retried = false;
1447	int			error;
1448
1449retry:
1450	*nospace_error = 0;
1451	resblks = *dblocks;
1452	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1453	if (error == -ENOSPC) {
1454		*nospace_error = error;
1455		resblks = 0;
1456		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1457	}
1458	if (error)
1459		return error;
1460
1461	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1462
1463	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1464	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1465
1466	error = xfs_qm_dqattach_locked(dp, false);
1467	if (error) {
1468		/* Caller should have allocated the dquots! */
1469		ASSERT(error != -ENOENT);
1470		goto out_cancel;
1471	}
1472
1473	error = xfs_qm_dqattach_locked(ip, false);
1474	if (error) {
1475		/* Caller should have allocated the dquots! */
1476		ASSERT(error != -ENOENT);
1477		goto out_cancel;
1478	}
1479
1480	if (resblks == 0)
1481		goto done;
1482
1483	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1484	if (error == -EDQUOT || error == -ENOSPC) {
1485		if (!retried) {
1486			xfs_trans_cancel(tp);
1487			xfs_blockgc_free_quota(dp, 0);
1488			retried = true;
1489			goto retry;
1490		}
1491
1492		*nospace_error = error;
1493		resblks = 0;
1494		error = 0;
1495	}
1496	if (error)
1497		goto out_cancel;
1498
1499done:
1500	*tpp = tp;
1501	*dblocks = resblks;
1502	return 0;
1503
1504out_cancel:
1505	xfs_trans_cancel(tp);
1506	return error;
1507}
1508