1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_errortag.h"
14#include "xfs_error.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
18#include "xfs_log_priv.h"
19#include "xfs_trace.h"
20#include "xfs_sysfs.h"
21#include "xfs_sb.h"
22#include "xfs_health.h"
23
24struct kmem_cache	*xfs_log_ticket_cache;
25
26/* Local miscellaneous function prototypes */
27STATIC struct xlog *
28xlog_alloc_log(
29	struct xfs_mount	*mp,
30	struct xfs_buftarg	*log_target,
31	xfs_daddr_t		blk_offset,
32	int			num_bblks);
33STATIC int
34xlog_space_left(
35	struct xlog		*log,
36	atomic64_t		*head);
37STATIC void
38xlog_dealloc_log(
39	struct xlog		*log);
40
41/* local state machine functions */
42STATIC void xlog_state_done_syncing(
43	struct xlog_in_core	*iclog);
44STATIC void xlog_state_do_callback(
45	struct xlog		*log);
46STATIC int
47xlog_state_get_iclog_space(
48	struct xlog		*log,
49	int			len,
50	struct xlog_in_core	**iclog,
51	struct xlog_ticket	*ticket,
52	int			*logoffsetp);
53STATIC void
54xlog_grant_push_ail(
55	struct xlog		*log,
56	int			need_bytes);
57STATIC void
58xlog_sync(
59	struct xlog		*log,
60	struct xlog_in_core	*iclog,
61	struct xlog_ticket	*ticket);
62#if defined(DEBUG)
63STATIC void
64xlog_verify_grant_tail(
65	struct xlog *log);
66STATIC void
67xlog_verify_iclog(
68	struct xlog		*log,
69	struct xlog_in_core	*iclog,
70	int			count);
71STATIC void
72xlog_verify_tail_lsn(
73	struct xlog		*log,
74	struct xlog_in_core	*iclog);
75#else
76#define xlog_verify_grant_tail(a)
77#define xlog_verify_iclog(a,b,c)
78#define xlog_verify_tail_lsn(a,b)
79#endif
80
81STATIC int
82xlog_iclogs_empty(
83	struct xlog		*log);
84
85static int
86xfs_log_cover(struct xfs_mount *);
87
88/*
89 * We need to make sure the buffer pointer returned is naturally aligned for the
90 * biggest basic data type we put into it. We have already accounted for this
91 * padding when sizing the buffer.
92 *
93 * However, this padding does not get written into the log, and hence we have to
94 * track the space used by the log vectors separately to prevent log space hangs
95 * due to inaccurate accounting (i.e. a leak) of the used log space through the
96 * CIL context ticket.
97 *
98 * We also add space for the xlog_op_header that describes this region in the
99 * log. This prepends the data region we return to the caller to copy their data
100 * into, so do all the static initialisation of the ophdr now. Because the ophdr
101 * is not 8 byte aligned, we have to be careful to ensure that we align the
102 * start of the buffer such that the region we return to the call is 8 byte
103 * aligned and packed against the tail of the ophdr.
104 */
105void *
106xlog_prepare_iovec(
107	struct xfs_log_vec	*lv,
108	struct xfs_log_iovec	**vecp,
109	uint			type)
110{
111	struct xfs_log_iovec	*vec = *vecp;
112	struct xlog_op_header	*oph;
113	uint32_t		len;
114	void			*buf;
115
116	if (vec) {
117		ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
118		vec++;
119	} else {
120		vec = &lv->lv_iovecp[0];
121	}
122
123	len = lv->lv_buf_len + sizeof(struct xlog_op_header);
124	if (!IS_ALIGNED(len, sizeof(uint64_t))) {
125		lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
126					sizeof(struct xlog_op_header);
127	}
128
129	vec->i_type = type;
130	vec->i_addr = lv->lv_buf + lv->lv_buf_len;
131
132	oph = vec->i_addr;
133	oph->oh_clientid = XFS_TRANSACTION;
134	oph->oh_res2 = 0;
135	oph->oh_flags = 0;
136
137	buf = vec->i_addr + sizeof(struct xlog_op_header);
138	ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
139
140	*vecp = vec;
141	return buf;
142}
143
144static void
145xlog_grant_sub_space(
146	struct xlog		*log,
147	atomic64_t		*head,
148	int			bytes)
149{
150	int64_t	head_val = atomic64_read(head);
151	int64_t new, old;
152
153	do {
154		int	cycle, space;
155
156		xlog_crack_grant_head_val(head_val, &cycle, &space);
157
158		space -= bytes;
159		if (space < 0) {
160			space += log->l_logsize;
161			cycle--;
162		}
163
164		old = head_val;
165		new = xlog_assign_grant_head_val(cycle, space);
166		head_val = atomic64_cmpxchg(head, old, new);
167	} while (head_val != old);
168}
169
170static void
171xlog_grant_add_space(
172	struct xlog		*log,
173	atomic64_t		*head,
174	int			bytes)
175{
176	int64_t	head_val = atomic64_read(head);
177	int64_t new, old;
178
179	do {
180		int		tmp;
181		int		cycle, space;
182
183		xlog_crack_grant_head_val(head_val, &cycle, &space);
184
185		tmp = log->l_logsize - space;
186		if (tmp > bytes)
187			space += bytes;
188		else {
189			space = bytes - tmp;
190			cycle++;
191		}
192
193		old = head_val;
194		new = xlog_assign_grant_head_val(cycle, space);
195		head_val = atomic64_cmpxchg(head, old, new);
196	} while (head_val != old);
197}
198
199STATIC void
200xlog_grant_head_init(
201	struct xlog_grant_head	*head)
202{
203	xlog_assign_grant_head(&head->grant, 1, 0);
204	INIT_LIST_HEAD(&head->waiters);
205	spin_lock_init(&head->lock);
206}
207
208STATIC void
209xlog_grant_head_wake_all(
210	struct xlog_grant_head	*head)
211{
212	struct xlog_ticket	*tic;
213
214	spin_lock(&head->lock);
215	list_for_each_entry(tic, &head->waiters, t_queue)
216		wake_up_process(tic->t_task);
217	spin_unlock(&head->lock);
218}
219
220static inline int
221xlog_ticket_reservation(
222	struct xlog		*log,
223	struct xlog_grant_head	*head,
224	struct xlog_ticket	*tic)
225{
226	if (head == &log->l_write_head) {
227		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
228		return tic->t_unit_res;
229	}
230
231	if (tic->t_flags & XLOG_TIC_PERM_RESERV)
232		return tic->t_unit_res * tic->t_cnt;
233
234	return tic->t_unit_res;
235}
236
237STATIC bool
238xlog_grant_head_wake(
239	struct xlog		*log,
240	struct xlog_grant_head	*head,
241	int			*free_bytes)
242{
243	struct xlog_ticket	*tic;
244	int			need_bytes;
245	bool			woken_task = false;
246
247	list_for_each_entry(tic, &head->waiters, t_queue) {
248
249		/*
250		 * There is a chance that the size of the CIL checkpoints in
251		 * progress at the last AIL push target calculation resulted in
252		 * limiting the target to the log head (l_last_sync_lsn) at the
253		 * time. This may not reflect where the log head is now as the
254		 * CIL checkpoints may have completed.
255		 *
256		 * Hence when we are woken here, it may be that the head of the
257		 * log that has moved rather than the tail. As the tail didn't
258		 * move, there still won't be space available for the
259		 * reservation we require.  However, if the AIL has already
260		 * pushed to the target defined by the old log head location, we
261		 * will hang here waiting for something else to update the AIL
262		 * push target.
263		 *
264		 * Therefore, if there isn't space to wake the first waiter on
265		 * the grant head, we need to push the AIL again to ensure the
266		 * target reflects both the current log tail and log head
267		 * position before we wait for the tail to move again.
268		 */
269
270		need_bytes = xlog_ticket_reservation(log, head, tic);
271		if (*free_bytes < need_bytes) {
272			if (!woken_task)
273				xlog_grant_push_ail(log, need_bytes);
274			return false;
275		}
276
277		*free_bytes -= need_bytes;
278		trace_xfs_log_grant_wake_up(log, tic);
279		wake_up_process(tic->t_task);
280		woken_task = true;
281	}
282
283	return true;
284}
285
286STATIC int
287xlog_grant_head_wait(
288	struct xlog		*log,
289	struct xlog_grant_head	*head,
290	struct xlog_ticket	*tic,
291	int			need_bytes) __releases(&head->lock)
292					    __acquires(&head->lock)
293{
294	list_add_tail(&tic->t_queue, &head->waiters);
295
296	do {
297		if (xlog_is_shutdown(log))
298			goto shutdown;
299		xlog_grant_push_ail(log, need_bytes);
300
301		__set_current_state(TASK_UNINTERRUPTIBLE);
302		spin_unlock(&head->lock);
303
304		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
305
306		trace_xfs_log_grant_sleep(log, tic);
307		schedule();
308		trace_xfs_log_grant_wake(log, tic);
309
310		spin_lock(&head->lock);
311		if (xlog_is_shutdown(log))
312			goto shutdown;
313	} while (xlog_space_left(log, &head->grant) < need_bytes);
314
315	list_del_init(&tic->t_queue);
316	return 0;
317shutdown:
318	list_del_init(&tic->t_queue);
319	return -EIO;
320}
321
322/*
323 * Atomically get the log space required for a log ticket.
324 *
325 * Once a ticket gets put onto head->waiters, it will only return after the
326 * needed reservation is satisfied.
327 *
328 * This function is structured so that it has a lock free fast path. This is
329 * necessary because every new transaction reservation will come through this
330 * path. Hence any lock will be globally hot if we take it unconditionally on
331 * every pass.
332 *
333 * As tickets are only ever moved on and off head->waiters under head->lock, we
334 * only need to take that lock if we are going to add the ticket to the queue
335 * and sleep. We can avoid taking the lock if the ticket was never added to
336 * head->waiters because the t_queue list head will be empty and we hold the
337 * only reference to it so it can safely be checked unlocked.
338 */
339STATIC int
340xlog_grant_head_check(
341	struct xlog		*log,
342	struct xlog_grant_head	*head,
343	struct xlog_ticket	*tic,
344	int			*need_bytes)
345{
346	int			free_bytes;
347	int			error = 0;
348
349	ASSERT(!xlog_in_recovery(log));
350
351	/*
352	 * If there are other waiters on the queue then give them a chance at
353	 * logspace before us.  Wake up the first waiters, if we do not wake
354	 * up all the waiters then go to sleep waiting for more free space,
355	 * otherwise try to get some space for this transaction.
356	 */
357	*need_bytes = xlog_ticket_reservation(log, head, tic);
358	free_bytes = xlog_space_left(log, &head->grant);
359	if (!list_empty_careful(&head->waiters)) {
360		spin_lock(&head->lock);
361		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
362		    free_bytes < *need_bytes) {
363			error = xlog_grant_head_wait(log, head, tic,
364						     *need_bytes);
365		}
366		spin_unlock(&head->lock);
367	} else if (free_bytes < *need_bytes) {
368		spin_lock(&head->lock);
369		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
370		spin_unlock(&head->lock);
371	}
372
373	return error;
374}
375
376bool
377xfs_log_writable(
378	struct xfs_mount	*mp)
379{
380	/*
381	 * Do not write to the log on norecovery mounts, if the data or log
382	 * devices are read-only, or if the filesystem is shutdown. Read-only
383	 * mounts allow internal writes for log recovery and unmount purposes,
384	 * so don't restrict that case.
385	 */
386	if (xfs_has_norecovery(mp))
387		return false;
388	if (xfs_readonly_buftarg(mp->m_ddev_targp))
389		return false;
390	if (xfs_readonly_buftarg(mp->m_log->l_targ))
391		return false;
392	if (xlog_is_shutdown(mp->m_log))
393		return false;
394	return true;
395}
396
397/*
398 * Replenish the byte reservation required by moving the grant write head.
399 */
400int
401xfs_log_regrant(
402	struct xfs_mount	*mp,
403	struct xlog_ticket	*tic)
404{
405	struct xlog		*log = mp->m_log;
406	int			need_bytes;
407	int			error = 0;
408
409	if (xlog_is_shutdown(log))
410		return -EIO;
411
412	XFS_STATS_INC(mp, xs_try_logspace);
413
414	/*
415	 * This is a new transaction on the ticket, so we need to change the
416	 * transaction ID so that the next transaction has a different TID in
417	 * the log. Just add one to the existing tid so that we can see chains
418	 * of rolling transactions in the log easily.
419	 */
420	tic->t_tid++;
421
422	xlog_grant_push_ail(log, tic->t_unit_res);
423
424	tic->t_curr_res = tic->t_unit_res;
425	if (tic->t_cnt > 0)
426		return 0;
427
428	trace_xfs_log_regrant(log, tic);
429
430	error = xlog_grant_head_check(log, &log->l_write_head, tic,
431				      &need_bytes);
432	if (error)
433		goto out_error;
434
435	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
436	trace_xfs_log_regrant_exit(log, tic);
437	xlog_verify_grant_tail(log);
438	return 0;
439
440out_error:
441	/*
442	 * If we are failing, make sure the ticket doesn't have any current
443	 * reservations.  We don't want to add this back when the ticket/
444	 * transaction gets cancelled.
445	 */
446	tic->t_curr_res = 0;
447	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
448	return error;
449}
450
451/*
452 * Reserve log space and return a ticket corresponding to the reservation.
453 *
454 * Each reservation is going to reserve extra space for a log record header.
455 * When writes happen to the on-disk log, we don't subtract the length of the
456 * log record header from any reservation.  By wasting space in each
457 * reservation, we prevent over allocation problems.
458 */
459int
460xfs_log_reserve(
461	struct xfs_mount	*mp,
462	int			unit_bytes,
463	int			cnt,
464	struct xlog_ticket	**ticp,
465	bool			permanent)
466{
467	struct xlog		*log = mp->m_log;
468	struct xlog_ticket	*tic;
469	int			need_bytes;
470	int			error = 0;
471
472	if (xlog_is_shutdown(log))
473		return -EIO;
474
475	XFS_STATS_INC(mp, xs_try_logspace);
476
477	ASSERT(*ticp == NULL);
478	tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
479	*ticp = tic;
480
481	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
482					    : tic->t_unit_res);
483
484	trace_xfs_log_reserve(log, tic);
485
486	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
487				      &need_bytes);
488	if (error)
489		goto out_error;
490
491	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
492	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
493	trace_xfs_log_reserve_exit(log, tic);
494	xlog_verify_grant_tail(log);
495	return 0;
496
497out_error:
498	/*
499	 * If we are failing, make sure the ticket doesn't have any current
500	 * reservations.  We don't want to add this back when the ticket/
501	 * transaction gets cancelled.
502	 */
503	tic->t_curr_res = 0;
504	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
505	return error;
506}
507
508/*
509 * Run all the pending iclog callbacks and wake log force waiters and iclog
510 * space waiters so they can process the newly set shutdown state. We really
511 * don't care what order we process callbacks here because the log is shut down
512 * and so state cannot change on disk anymore. However, we cannot wake waiters
513 * until the callbacks have been processed because we may be in unmount and
514 * we must ensure that all AIL operations the callbacks perform have completed
515 * before we tear down the AIL.
516 *
517 * We avoid processing actively referenced iclogs so that we don't run callbacks
518 * while the iclog owner might still be preparing the iclog for IO submssion.
519 * These will be caught by xlog_state_iclog_release() and call this function
520 * again to process any callbacks that may have been added to that iclog.
521 */
522static void
523xlog_state_shutdown_callbacks(
524	struct xlog		*log)
525{
526	struct xlog_in_core	*iclog;
527	LIST_HEAD(cb_list);
528
529	iclog = log->l_iclog;
530	do {
531		if (atomic_read(&iclog->ic_refcnt)) {
532			/* Reference holder will re-run iclog callbacks. */
533			continue;
534		}
535		list_splice_init(&iclog->ic_callbacks, &cb_list);
536		spin_unlock(&log->l_icloglock);
537
538		xlog_cil_process_committed(&cb_list);
539
540		spin_lock(&log->l_icloglock);
541		wake_up_all(&iclog->ic_write_wait);
542		wake_up_all(&iclog->ic_force_wait);
543	} while ((iclog = iclog->ic_next) != log->l_iclog);
544
545	wake_up_all(&log->l_flush_wait);
546}
547
548/*
549 * Flush iclog to disk if this is the last reference to the given iclog and the
550 * it is in the WANT_SYNC state.
551 *
552 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
553 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
554 * written to stable storage, and implies that a commit record is contained
555 * within the iclog. We need to ensure that the log tail does not move beyond
556 * the tail that the first commit record in the iclog ordered against, otherwise
557 * correct recovery of that checkpoint becomes dependent on future operations
558 * performed on this iclog.
559 *
560 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
561 * current tail into iclog. Once the iclog tail is set, future operations must
562 * not modify it, otherwise they potentially violate ordering constraints for
563 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
564 * the iclog will get zeroed on activation of the iclog after sync, so we
565 * always capture the tail lsn on the iclog on the first NEED_FUA release
566 * regardless of the number of active reference counts on this iclog.
567 */
568int
569xlog_state_release_iclog(
570	struct xlog		*log,
571	struct xlog_in_core	*iclog,
572	struct xlog_ticket	*ticket)
573{
574	xfs_lsn_t		tail_lsn;
575	bool			last_ref;
576
577	lockdep_assert_held(&log->l_icloglock);
578
579	trace_xlog_iclog_release(iclog, _RET_IP_);
580	/*
581	 * Grabbing the current log tail needs to be atomic w.r.t. the writing
582	 * of the tail LSN into the iclog so we guarantee that the log tail does
583	 * not move between the first time we know that the iclog needs to be
584	 * made stable and when we eventually submit it.
585	 */
586	if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
587	     (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
588	    !iclog->ic_header.h_tail_lsn) {
589		tail_lsn = xlog_assign_tail_lsn(log->l_mp);
590		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
591	}
592
593	last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
594
595	if (xlog_is_shutdown(log)) {
596		/*
597		 * If there are no more references to this iclog, process the
598		 * pending iclog callbacks that were waiting on the release of
599		 * this iclog.
600		 */
601		if (last_ref)
602			xlog_state_shutdown_callbacks(log);
603		return -EIO;
604	}
605
606	if (!last_ref)
607		return 0;
608
609	if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
610		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
611		return 0;
612	}
613
614	iclog->ic_state = XLOG_STATE_SYNCING;
615	xlog_verify_tail_lsn(log, iclog);
616	trace_xlog_iclog_syncing(iclog, _RET_IP_);
617
618	spin_unlock(&log->l_icloglock);
619	xlog_sync(log, iclog, ticket);
620	spin_lock(&log->l_icloglock);
621	return 0;
622}
623
624/*
625 * Mount a log filesystem
626 *
627 * mp		- ubiquitous xfs mount point structure
628 * log_target	- buftarg of on-disk log device
629 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
630 * num_bblocks	- Number of BBSIZE blocks in on-disk log
631 *
632 * Return error or zero.
633 */
634int
635xfs_log_mount(
636	xfs_mount_t		*mp,
637	struct xfs_buftarg	*log_target,
638	xfs_daddr_t		blk_offset,
639	int			num_bblks)
640{
641	struct xlog		*log;
642	int			error = 0;
643	int			min_logfsbs;
644
645	if (!xfs_has_norecovery(mp)) {
646		xfs_notice(mp, "Mounting V%d Filesystem %pU",
647			   XFS_SB_VERSION_NUM(&mp->m_sb),
648			   &mp->m_sb.sb_uuid);
649	} else {
650		xfs_notice(mp,
651"Mounting V%d filesystem %pU in no-recovery mode. Filesystem will be inconsistent.",
652			   XFS_SB_VERSION_NUM(&mp->m_sb),
653			   &mp->m_sb.sb_uuid);
654		ASSERT(xfs_is_readonly(mp));
655	}
656
657	log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
658	if (IS_ERR(log)) {
659		error = PTR_ERR(log);
660		goto out;
661	}
662	mp->m_log = log;
663
664	/*
665	 * Now that we have set up the log and it's internal geometry
666	 * parameters, we can validate the given log space and drop a critical
667	 * message via syslog if the log size is too small. A log that is too
668	 * small can lead to unexpected situations in transaction log space
669	 * reservation stage. The superblock verifier has already validated all
670	 * the other log geometry constraints, so we don't have to check those
671	 * here.
672	 *
673	 * Note: For v4 filesystems, we can't just reject the mount if the
674	 * validation fails.  This would mean that people would have to
675	 * downgrade their kernel just to remedy the situation as there is no
676	 * way to grow the log (short of black magic surgery with xfs_db).
677	 *
678	 * We can, however, reject mounts for V5 format filesystems, as the
679	 * mkfs binary being used to make the filesystem should never create a
680	 * filesystem with a log that is too small.
681	 */
682	min_logfsbs = xfs_log_calc_minimum_size(mp);
683	if (mp->m_sb.sb_logblocks < min_logfsbs) {
684		xfs_warn(mp,
685		"Log size %d blocks too small, minimum size is %d blocks",
686			 mp->m_sb.sb_logblocks, min_logfsbs);
687
688		/*
689		 * Log check errors are always fatal on v5; or whenever bad
690		 * metadata leads to a crash.
691		 */
692		if (xfs_has_crc(mp)) {
693			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
694			ASSERT(0);
695			error = -EINVAL;
696			goto out_free_log;
697		}
698		xfs_crit(mp, "Log size out of supported range.");
699		xfs_crit(mp,
700"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
701	}
702
703	/*
704	 * Initialize the AIL now we have a log.
705	 */
706	error = xfs_trans_ail_init(mp);
707	if (error) {
708		xfs_warn(mp, "AIL initialisation failed: error %d", error);
709		goto out_free_log;
710	}
711	log->l_ailp = mp->m_ail;
712
713	/*
714	 * skip log recovery on a norecovery mount.  pretend it all
715	 * just worked.
716	 */
717	if (!xfs_has_norecovery(mp)) {
718		error = xlog_recover(log);
719		if (error) {
720			xfs_warn(mp, "log mount/recovery failed: error %d",
721				error);
722			xlog_recover_cancel(log);
723			goto out_destroy_ail;
724		}
725	}
726
727	error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
728			       "log");
729	if (error)
730		goto out_destroy_ail;
731
732	/* Normal transactions can now occur */
733	clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
734
735	/*
736	 * Now the log has been fully initialised and we know were our
737	 * space grant counters are, we can initialise the permanent ticket
738	 * needed for delayed logging to work.
739	 */
740	xlog_cil_init_post_recovery(log);
741
742	return 0;
743
744out_destroy_ail:
745	xfs_trans_ail_destroy(mp);
746out_free_log:
747	xlog_dealloc_log(log);
748out:
749	return error;
750}
751
752/*
753 * Finish the recovery of the file system.  This is separate from the
754 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
755 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
756 * here.
757 *
758 * If we finish recovery successfully, start the background log work. If we are
759 * not doing recovery, then we have a RO filesystem and we don't need to start
760 * it.
761 */
762int
763xfs_log_mount_finish(
764	struct xfs_mount	*mp)
765{
766	struct xlog		*log = mp->m_log;
767	int			error = 0;
768
769	if (xfs_has_norecovery(mp)) {
770		ASSERT(xfs_is_readonly(mp));
771		return 0;
772	}
773
774	/*
775	 * During the second phase of log recovery, we need iget and
776	 * iput to behave like they do for an active filesystem.
777	 * xfs_fs_drop_inode needs to be able to prevent the deletion
778	 * of inodes before we're done replaying log items on those
779	 * inodes.  Turn it off immediately after recovery finishes
780	 * so that we don't leak the quota inodes if subsequent mount
781	 * activities fail.
782	 *
783	 * We let all inodes involved in redo item processing end up on
784	 * the LRU instead of being evicted immediately so that if we do
785	 * something to an unlinked inode, the irele won't cause
786	 * premature truncation and freeing of the inode, which results
787	 * in log recovery failure.  We have to evict the unreferenced
788	 * lru inodes after clearing SB_ACTIVE because we don't
789	 * otherwise clean up the lru if there's a subsequent failure in
790	 * xfs_mountfs, which leads to us leaking the inodes if nothing
791	 * else (e.g. quotacheck) references the inodes before the
792	 * mount failure occurs.
793	 */
794	mp->m_super->s_flags |= SB_ACTIVE;
795	xfs_log_work_queue(mp);
796	if (xlog_recovery_needed(log))
797		error = xlog_recover_finish(log);
798	mp->m_super->s_flags &= ~SB_ACTIVE;
799	evict_inodes(mp->m_super);
800
801	/*
802	 * Drain the buffer LRU after log recovery. This is required for v4
803	 * filesystems to avoid leaving around buffers with NULL verifier ops,
804	 * but we do it unconditionally to make sure we're always in a clean
805	 * cache state after mount.
806	 *
807	 * Don't push in the error case because the AIL may have pending intents
808	 * that aren't removed until recovery is cancelled.
809	 */
810	if (xlog_recovery_needed(log)) {
811		if (!error) {
812			xfs_log_force(mp, XFS_LOG_SYNC);
813			xfs_ail_push_all_sync(mp->m_ail);
814		}
815		xfs_notice(mp, "Ending recovery (logdev: %s)",
816				mp->m_logname ? mp->m_logname : "internal");
817	} else {
818		xfs_info(mp, "Ending clean mount");
819	}
820	xfs_buftarg_drain(mp->m_ddev_targp);
821
822	clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
823
824	/* Make sure the log is dead if we're returning failure. */
825	ASSERT(!error || xlog_is_shutdown(log));
826
827	return error;
828}
829
830/*
831 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
832 * the log.
833 */
834void
835xfs_log_mount_cancel(
836	struct xfs_mount	*mp)
837{
838	xlog_recover_cancel(mp->m_log);
839	xfs_log_unmount(mp);
840}
841
842/*
843 * Flush out the iclog to disk ensuring that device caches are flushed and
844 * the iclog hits stable storage before any completion waiters are woken.
845 */
846static inline int
847xlog_force_iclog(
848	struct xlog_in_core	*iclog)
849{
850	atomic_inc(&iclog->ic_refcnt);
851	iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
852	if (iclog->ic_state == XLOG_STATE_ACTIVE)
853		xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
854	return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
855}
856
857/*
858 * Cycle all the iclogbuf locks to make sure all log IO completion
859 * is done before we tear down these buffers.
860 */
861static void
862xlog_wait_iclog_completion(struct xlog *log)
863{
864	int		i;
865	struct xlog_in_core	*iclog = log->l_iclog;
866
867	for (i = 0; i < log->l_iclog_bufs; i++) {
868		down(&iclog->ic_sema);
869		up(&iclog->ic_sema);
870		iclog = iclog->ic_next;
871	}
872}
873
874/*
875 * Wait for the iclog and all prior iclogs to be written disk as required by the
876 * log force state machine. Waiting on ic_force_wait ensures iclog completions
877 * have been ordered and callbacks run before we are woken here, hence
878 * guaranteeing that all the iclogs up to this one are on stable storage.
879 */
880int
881xlog_wait_on_iclog(
882	struct xlog_in_core	*iclog)
883		__releases(iclog->ic_log->l_icloglock)
884{
885	struct xlog		*log = iclog->ic_log;
886
887	trace_xlog_iclog_wait_on(iclog, _RET_IP_);
888	if (!xlog_is_shutdown(log) &&
889	    iclog->ic_state != XLOG_STATE_ACTIVE &&
890	    iclog->ic_state != XLOG_STATE_DIRTY) {
891		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
892		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
893	} else {
894		spin_unlock(&log->l_icloglock);
895	}
896
897	if (xlog_is_shutdown(log))
898		return -EIO;
899	return 0;
900}
901
902/*
903 * Write out an unmount record using the ticket provided. We have to account for
904 * the data space used in the unmount ticket as this write is not done from a
905 * transaction context that has already done the accounting for us.
906 */
907static int
908xlog_write_unmount_record(
909	struct xlog		*log,
910	struct xlog_ticket	*ticket)
911{
912	struct  {
913		struct xlog_op_header ophdr;
914		struct xfs_unmount_log_format ulf;
915	} unmount_rec = {
916		.ophdr = {
917			.oh_clientid = XFS_LOG,
918			.oh_tid = cpu_to_be32(ticket->t_tid),
919			.oh_flags = XLOG_UNMOUNT_TRANS,
920		},
921		.ulf = {
922			.magic = XLOG_UNMOUNT_TYPE,
923		},
924	};
925	struct xfs_log_iovec reg = {
926		.i_addr = &unmount_rec,
927		.i_len = sizeof(unmount_rec),
928		.i_type = XLOG_REG_TYPE_UNMOUNT,
929	};
930	struct xfs_log_vec vec = {
931		.lv_niovecs = 1,
932		.lv_iovecp = &reg,
933	};
934	LIST_HEAD(lv_chain);
935	list_add(&vec.lv_list, &lv_chain);
936
937	BUILD_BUG_ON((sizeof(struct xlog_op_header) +
938		      sizeof(struct xfs_unmount_log_format)) !=
939							sizeof(unmount_rec));
940
941	/* account for space used by record data */
942	ticket->t_curr_res -= sizeof(unmount_rec);
943
944	return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
945}
946
947/*
948 * Mark the filesystem clean by writing an unmount record to the head of the
949 * log.
950 */
951static void
952xlog_unmount_write(
953	struct xlog		*log)
954{
955	struct xfs_mount	*mp = log->l_mp;
956	struct xlog_in_core	*iclog;
957	struct xlog_ticket	*tic = NULL;
958	int			error;
959
960	error = xfs_log_reserve(mp, 600, 1, &tic, 0);
961	if (error)
962		goto out_err;
963
964	error = xlog_write_unmount_record(log, tic);
965	/*
966	 * At this point, we're umounting anyway, so there's no point in
967	 * transitioning log state to shutdown. Just continue...
968	 */
969out_err:
970	if (error)
971		xfs_alert(mp, "%s: unmount record failed", __func__);
972
973	spin_lock(&log->l_icloglock);
974	iclog = log->l_iclog;
975	error = xlog_force_iclog(iclog);
976	xlog_wait_on_iclog(iclog);
977
978	if (tic) {
979		trace_xfs_log_umount_write(log, tic);
980		xfs_log_ticket_ungrant(log, tic);
981	}
982}
983
984static void
985xfs_log_unmount_verify_iclog(
986	struct xlog		*log)
987{
988	struct xlog_in_core	*iclog = log->l_iclog;
989
990	do {
991		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
992		ASSERT(iclog->ic_offset == 0);
993	} while ((iclog = iclog->ic_next) != log->l_iclog);
994}
995
996/*
997 * Unmount record used to have a string "Unmount filesystem--" in the
998 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
999 * We just write the magic number now since that particular field isn't
1000 * currently architecture converted and "Unmount" is a bit foo.
1001 * As far as I know, there weren't any dependencies on the old behaviour.
1002 */
1003static void
1004xfs_log_unmount_write(
1005	struct xfs_mount	*mp)
1006{
1007	struct xlog		*log = mp->m_log;
1008
1009	if (!xfs_log_writable(mp))
1010		return;
1011
1012	xfs_log_force(mp, XFS_LOG_SYNC);
1013
1014	if (xlog_is_shutdown(log))
1015		return;
1016
1017	/*
1018	 * If we think the summary counters are bad, avoid writing the unmount
1019	 * record to force log recovery at next mount, after which the summary
1020	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1021	 * more details.
1022	 */
1023	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1024			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1025		xfs_alert(mp, "%s: will fix summary counters at next mount",
1026				__func__);
1027		return;
1028	}
1029
1030	xfs_log_unmount_verify_iclog(log);
1031	xlog_unmount_write(log);
1032}
1033
1034/*
1035 * Empty the log for unmount/freeze.
1036 *
1037 * To do this, we first need to shut down the background log work so it is not
1038 * trying to cover the log as we clean up. We then need to unpin all objects in
1039 * the log so we can then flush them out. Once they have completed their IO and
1040 * run the callbacks removing themselves from the AIL, we can cover the log.
1041 */
1042int
1043xfs_log_quiesce(
1044	struct xfs_mount	*mp)
1045{
1046	/*
1047	 * Clear log incompat features since we're quiescing the log.  Report
1048	 * failures, though it's not fatal to have a higher log feature
1049	 * protection level than the log contents actually require.
1050	 */
1051	if (xfs_clear_incompat_log_features(mp)) {
1052		int error;
1053
1054		error = xfs_sync_sb(mp, false);
1055		if (error)
1056			xfs_warn(mp,
1057	"Failed to clear log incompat features on quiesce");
1058	}
1059
1060	cancel_delayed_work_sync(&mp->m_log->l_work);
1061	xfs_log_force(mp, XFS_LOG_SYNC);
1062
1063	/*
1064	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1065	 * will push it, xfs_buftarg_wait() will not wait for it. Further,
1066	 * xfs_buf_iowait() cannot be used because it was pushed with the
1067	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1068	 * the IO to complete.
1069	 */
1070	xfs_ail_push_all_sync(mp->m_ail);
1071	xfs_buftarg_wait(mp->m_ddev_targp);
1072	xfs_buf_lock(mp->m_sb_bp);
1073	xfs_buf_unlock(mp->m_sb_bp);
1074
1075	return xfs_log_cover(mp);
1076}
1077
1078void
1079xfs_log_clean(
1080	struct xfs_mount	*mp)
1081{
1082	xfs_log_quiesce(mp);
1083	xfs_log_unmount_write(mp);
1084}
1085
1086/*
1087 * Shut down and release the AIL and Log.
1088 *
1089 * During unmount, we need to ensure we flush all the dirty metadata objects
1090 * from the AIL so that the log is empty before we write the unmount record to
1091 * the log. Once this is done, we can tear down the AIL and the log.
1092 */
1093void
1094xfs_log_unmount(
1095	struct xfs_mount	*mp)
1096{
1097	xfs_log_clean(mp);
1098
1099	/*
1100	 * If shutdown has come from iclog IO context, the log
1101	 * cleaning will have been skipped and so we need to wait
1102	 * for the iclog to complete shutdown processing before we
1103	 * tear anything down.
1104	 */
1105	xlog_wait_iclog_completion(mp->m_log);
1106
1107	xfs_buftarg_drain(mp->m_ddev_targp);
1108
1109	xfs_trans_ail_destroy(mp);
1110
1111	xfs_sysfs_del(&mp->m_log->l_kobj);
1112
1113	xlog_dealloc_log(mp->m_log);
1114}
1115
1116void
1117xfs_log_item_init(
1118	struct xfs_mount	*mp,
1119	struct xfs_log_item	*item,
1120	int			type,
1121	const struct xfs_item_ops *ops)
1122{
1123	item->li_log = mp->m_log;
1124	item->li_ailp = mp->m_ail;
1125	item->li_type = type;
1126	item->li_ops = ops;
1127	item->li_lv = NULL;
1128
1129	INIT_LIST_HEAD(&item->li_ail);
1130	INIT_LIST_HEAD(&item->li_cil);
1131	INIT_LIST_HEAD(&item->li_bio_list);
1132	INIT_LIST_HEAD(&item->li_trans);
1133}
1134
1135/*
1136 * Wake up processes waiting for log space after we have moved the log tail.
1137 */
1138void
1139xfs_log_space_wake(
1140	struct xfs_mount	*mp)
1141{
1142	struct xlog		*log = mp->m_log;
1143	int			free_bytes;
1144
1145	if (xlog_is_shutdown(log))
1146		return;
1147
1148	if (!list_empty_careful(&log->l_write_head.waiters)) {
1149		ASSERT(!xlog_in_recovery(log));
1150
1151		spin_lock(&log->l_write_head.lock);
1152		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1153		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1154		spin_unlock(&log->l_write_head.lock);
1155	}
1156
1157	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1158		ASSERT(!xlog_in_recovery(log));
1159
1160		spin_lock(&log->l_reserve_head.lock);
1161		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1162		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1163		spin_unlock(&log->l_reserve_head.lock);
1164	}
1165}
1166
1167/*
1168 * Determine if we have a transaction that has gone to disk that needs to be
1169 * covered. To begin the transition to the idle state firstly the log needs to
1170 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1171 * we start attempting to cover the log.
1172 *
1173 * Only if we are then in a state where covering is needed, the caller is
1174 * informed that dummy transactions are required to move the log into the idle
1175 * state.
1176 *
1177 * If there are any items in the AIl or CIL, then we do not want to attempt to
1178 * cover the log as we may be in a situation where there isn't log space
1179 * available to run a dummy transaction and this can lead to deadlocks when the
1180 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1181 * there's no point in running a dummy transaction at this point because we
1182 * can't start trying to idle the log until both the CIL and AIL are empty.
1183 */
1184static bool
1185xfs_log_need_covered(
1186	struct xfs_mount	*mp)
1187{
1188	struct xlog		*log = mp->m_log;
1189	bool			needed = false;
1190
1191	if (!xlog_cil_empty(log))
1192		return false;
1193
1194	spin_lock(&log->l_icloglock);
1195	switch (log->l_covered_state) {
1196	case XLOG_STATE_COVER_DONE:
1197	case XLOG_STATE_COVER_DONE2:
1198	case XLOG_STATE_COVER_IDLE:
1199		break;
1200	case XLOG_STATE_COVER_NEED:
1201	case XLOG_STATE_COVER_NEED2:
1202		if (xfs_ail_min_lsn(log->l_ailp))
1203			break;
1204		if (!xlog_iclogs_empty(log))
1205			break;
1206
1207		needed = true;
1208		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1209			log->l_covered_state = XLOG_STATE_COVER_DONE;
1210		else
1211			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1212		break;
1213	default:
1214		needed = true;
1215		break;
1216	}
1217	spin_unlock(&log->l_icloglock);
1218	return needed;
1219}
1220
1221/*
1222 * Explicitly cover the log. This is similar to background log covering but
1223 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1224 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1225 * must all be empty.
1226 */
1227static int
1228xfs_log_cover(
1229	struct xfs_mount	*mp)
1230{
1231	int			error = 0;
1232	bool			need_covered;
1233
1234	ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1235	        !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1236		xlog_is_shutdown(mp->m_log));
1237
1238	if (!xfs_log_writable(mp))
1239		return 0;
1240
1241	/*
1242	 * xfs_log_need_covered() is not idempotent because it progresses the
1243	 * state machine if the log requires covering. Therefore, we must call
1244	 * this function once and use the result until we've issued an sb sync.
1245	 * Do so first to make that abundantly clear.
1246	 *
1247	 * Fall into the covering sequence if the log needs covering or the
1248	 * mount has lazy superblock accounting to sync to disk. The sb sync
1249	 * used for covering accumulates the in-core counters, so covering
1250	 * handles this for us.
1251	 */
1252	need_covered = xfs_log_need_covered(mp);
1253	if (!need_covered && !xfs_has_lazysbcount(mp))
1254		return 0;
1255
1256	/*
1257	 * To cover the log, commit the superblock twice (at most) in
1258	 * independent checkpoints. The first serves as a reference for the
1259	 * tail pointer. The sync transaction and AIL push empties the AIL and
1260	 * updates the in-core tail to the LSN of the first checkpoint. The
1261	 * second commit updates the on-disk tail with the in-core LSN,
1262	 * covering the log. Push the AIL one more time to leave it empty, as
1263	 * we found it.
1264	 */
1265	do {
1266		error = xfs_sync_sb(mp, true);
1267		if (error)
1268			break;
1269		xfs_ail_push_all_sync(mp->m_ail);
1270	} while (xfs_log_need_covered(mp));
1271
1272	return error;
1273}
1274
1275/*
1276 * We may be holding the log iclog lock upon entering this routine.
1277 */
1278xfs_lsn_t
1279xlog_assign_tail_lsn_locked(
1280	struct xfs_mount	*mp)
1281{
1282	struct xlog		*log = mp->m_log;
1283	struct xfs_log_item	*lip;
1284	xfs_lsn_t		tail_lsn;
1285
1286	assert_spin_locked(&mp->m_ail->ail_lock);
1287
1288	/*
1289	 * To make sure we always have a valid LSN for the log tail we keep
1290	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1291	 * and use that when the AIL was empty.
1292	 */
1293	lip = xfs_ail_min(mp->m_ail);
1294	if (lip)
1295		tail_lsn = lip->li_lsn;
1296	else
1297		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1298	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1299	atomic64_set(&log->l_tail_lsn, tail_lsn);
1300	return tail_lsn;
1301}
1302
1303xfs_lsn_t
1304xlog_assign_tail_lsn(
1305	struct xfs_mount	*mp)
1306{
1307	xfs_lsn_t		tail_lsn;
1308
1309	spin_lock(&mp->m_ail->ail_lock);
1310	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1311	spin_unlock(&mp->m_ail->ail_lock);
1312
1313	return tail_lsn;
1314}
1315
1316/*
1317 * Return the space in the log between the tail and the head.  The head
1318 * is passed in the cycle/bytes formal parms.  In the special case where
1319 * the reserve head has wrapped passed the tail, this calculation is no
1320 * longer valid.  In this case, just return 0 which means there is no space
1321 * in the log.  This works for all places where this function is called
1322 * with the reserve head.  Of course, if the write head were to ever
1323 * wrap the tail, we should blow up.  Rather than catch this case here,
1324 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1325 *
1326 * If reservation head is behind the tail, we have a problem. Warn about it,
1327 * but then treat it as if the log is empty.
1328 *
1329 * If the log is shut down, the head and tail may be invalid or out of whack, so
1330 * shortcut invalidity asserts in this case so that we don't trigger them
1331 * falsely.
1332 */
1333STATIC int
1334xlog_space_left(
1335	struct xlog	*log,
1336	atomic64_t	*head)
1337{
1338	int		tail_bytes;
1339	int		tail_cycle;
1340	int		head_cycle;
1341	int		head_bytes;
1342
1343	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1344	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1345	tail_bytes = BBTOB(tail_bytes);
1346	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1347		return log->l_logsize - (head_bytes - tail_bytes);
1348	if (tail_cycle + 1 < head_cycle)
1349		return 0;
1350
1351	/* Ignore potential inconsistency when shutdown. */
1352	if (xlog_is_shutdown(log))
1353		return log->l_logsize;
1354
1355	if (tail_cycle < head_cycle) {
1356		ASSERT(tail_cycle == (head_cycle - 1));
1357		return tail_bytes - head_bytes;
1358	}
1359
1360	/*
1361	 * The reservation head is behind the tail. In this case we just want to
1362	 * return the size of the log as the amount of space left.
1363	 */
1364	xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1365	xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1366		  tail_cycle, tail_bytes);
1367	xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1368		  head_cycle, head_bytes);
1369	ASSERT(0);
1370	return log->l_logsize;
1371}
1372
1373
1374static void
1375xlog_ioend_work(
1376	struct work_struct	*work)
1377{
1378	struct xlog_in_core     *iclog =
1379		container_of(work, struct xlog_in_core, ic_end_io_work);
1380	struct xlog		*log = iclog->ic_log;
1381	int			error;
1382
1383	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1384#ifdef DEBUG
1385	/* treat writes with injected CRC errors as failed */
1386	if (iclog->ic_fail_crc)
1387		error = -EIO;
1388#endif
1389
1390	/*
1391	 * Race to shutdown the filesystem if we see an error.
1392	 */
1393	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1394		xfs_alert(log->l_mp, "log I/O error %d", error);
1395		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1396	}
1397
1398	xlog_state_done_syncing(iclog);
1399	bio_uninit(&iclog->ic_bio);
1400
1401	/*
1402	 * Drop the lock to signal that we are done. Nothing references the
1403	 * iclog after this, so an unmount waiting on this lock can now tear it
1404	 * down safely. As such, it is unsafe to reference the iclog after the
1405	 * unlock as we could race with it being freed.
1406	 */
1407	up(&iclog->ic_sema);
1408}
1409
1410/*
1411 * Return size of each in-core log record buffer.
1412 *
1413 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1414 *
1415 * If the filesystem blocksize is too large, we may need to choose a
1416 * larger size since the directory code currently logs entire blocks.
1417 */
1418STATIC void
1419xlog_get_iclog_buffer_size(
1420	struct xfs_mount	*mp,
1421	struct xlog		*log)
1422{
1423	if (mp->m_logbufs <= 0)
1424		mp->m_logbufs = XLOG_MAX_ICLOGS;
1425	if (mp->m_logbsize <= 0)
1426		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1427
1428	log->l_iclog_bufs = mp->m_logbufs;
1429	log->l_iclog_size = mp->m_logbsize;
1430
1431	/*
1432	 * # headers = size / 32k - one header holds cycles from 32k of data.
1433	 */
1434	log->l_iclog_heads =
1435		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1436	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1437}
1438
1439void
1440xfs_log_work_queue(
1441	struct xfs_mount        *mp)
1442{
1443	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1444				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1445}
1446
1447/*
1448 * Clear the log incompat flags if we have the opportunity.
1449 *
1450 * This only happens if we're about to log the second dummy transaction as part
1451 * of covering the log and we can get the log incompat feature usage lock.
1452 */
1453static inline void
1454xlog_clear_incompat(
1455	struct xlog		*log)
1456{
1457	struct xfs_mount	*mp = log->l_mp;
1458
1459	if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1460				XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1461		return;
1462
1463	if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1464		return;
1465
1466	if (!down_write_trylock(&log->l_incompat_users))
1467		return;
1468
1469	xfs_clear_incompat_log_features(mp);
1470	up_write(&log->l_incompat_users);
1471}
1472
1473/*
1474 * Every sync period we need to unpin all items in the AIL and push them to
1475 * disk. If there is nothing dirty, then we might need to cover the log to
1476 * indicate that the filesystem is idle.
1477 */
1478static void
1479xfs_log_worker(
1480	struct work_struct	*work)
1481{
1482	struct xlog		*log = container_of(to_delayed_work(work),
1483						struct xlog, l_work);
1484	struct xfs_mount	*mp = log->l_mp;
1485
1486	/* dgc: errors ignored - not fatal and nowhere to report them */
1487	if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1488		/*
1489		 * Dump a transaction into the log that contains no real change.
1490		 * This is needed to stamp the current tail LSN into the log
1491		 * during the covering operation.
1492		 *
1493		 * We cannot use an inode here for this - that will push dirty
1494		 * state back up into the VFS and then periodic inode flushing
1495		 * will prevent log covering from making progress. Hence we
1496		 * synchronously log the superblock instead to ensure the
1497		 * superblock is immediately unpinned and can be written back.
1498		 */
1499		xlog_clear_incompat(log);
1500		xfs_sync_sb(mp, true);
1501	} else
1502		xfs_log_force(mp, 0);
1503
1504	/* start pushing all the metadata that is currently dirty */
1505	xfs_ail_push_all(mp->m_ail);
1506
1507	/* queue us up again */
1508	xfs_log_work_queue(mp);
1509}
1510
1511/*
1512 * This routine initializes some of the log structure for a given mount point.
1513 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1514 * some other stuff may be filled in too.
1515 */
1516STATIC struct xlog *
1517xlog_alloc_log(
1518	struct xfs_mount	*mp,
1519	struct xfs_buftarg	*log_target,
1520	xfs_daddr_t		blk_offset,
1521	int			num_bblks)
1522{
1523	struct xlog		*log;
1524	xlog_rec_header_t	*head;
1525	xlog_in_core_t		**iclogp;
1526	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1527	int			i;
1528	int			error = -ENOMEM;
1529	uint			log2_size = 0;
1530
1531	log = kzalloc(sizeof(struct xlog), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1532	if (!log) {
1533		xfs_warn(mp, "Log allocation failed: No memory!");
1534		goto out;
1535	}
1536
1537	log->l_mp	   = mp;
1538	log->l_targ	   = log_target;
1539	log->l_logsize     = BBTOB(num_bblks);
1540	log->l_logBBstart  = blk_offset;
1541	log->l_logBBsize   = num_bblks;
1542	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1543	set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1544	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1545	INIT_LIST_HEAD(&log->r_dfops);
1546
1547	log->l_prev_block  = -1;
1548	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1549	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1550	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1551	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1552
1553	if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1554		log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1555	else
1556		log->l_iclog_roundoff = BBSIZE;
1557
1558	xlog_grant_head_init(&log->l_reserve_head);
1559	xlog_grant_head_init(&log->l_write_head);
1560
1561	error = -EFSCORRUPTED;
1562	if (xfs_has_sector(mp)) {
1563	        log2_size = mp->m_sb.sb_logsectlog;
1564		if (log2_size < BBSHIFT) {
1565			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1566				log2_size, BBSHIFT);
1567			goto out_free_log;
1568		}
1569
1570	        log2_size -= BBSHIFT;
1571		if (log2_size > mp->m_sectbb_log) {
1572			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1573				log2_size, mp->m_sectbb_log);
1574			goto out_free_log;
1575		}
1576
1577		/* for larger sector sizes, must have v2 or external log */
1578		if (log2_size && log->l_logBBstart > 0 &&
1579			    !xfs_has_logv2(mp)) {
1580			xfs_warn(mp,
1581		"log sector size (0x%x) invalid for configuration.",
1582				log2_size);
1583			goto out_free_log;
1584		}
1585	}
1586	log->l_sectBBsize = 1 << log2_size;
1587
1588	init_rwsem(&log->l_incompat_users);
1589
1590	xlog_get_iclog_buffer_size(mp, log);
1591
1592	spin_lock_init(&log->l_icloglock);
1593	init_waitqueue_head(&log->l_flush_wait);
1594
1595	iclogp = &log->l_iclog;
1596	/*
1597	 * The amount of memory to allocate for the iclog structure is
1598	 * rather funky due to the way the structure is defined.  It is
1599	 * done this way so that we can use different sizes for machines
1600	 * with different amounts of memory.  See the definition of
1601	 * xlog_in_core_t in xfs_log_priv.h for details.
1602	 */
1603	ASSERT(log->l_iclog_size >= 4096);
1604	for (i = 0; i < log->l_iclog_bufs; i++) {
1605		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1606				sizeof(struct bio_vec);
1607
1608		iclog = kzalloc(sizeof(*iclog) + bvec_size,
1609				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1610		if (!iclog)
1611			goto out_free_iclog;
1612
1613		*iclogp = iclog;
1614		iclog->ic_prev = prev_iclog;
1615		prev_iclog = iclog;
1616
1617		iclog->ic_data = kvzalloc(log->l_iclog_size,
1618				GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1619		if (!iclog->ic_data)
1620			goto out_free_iclog;
1621		head = &iclog->ic_header;
1622		memset(head, 0, sizeof(xlog_rec_header_t));
1623		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1624		head->h_version = cpu_to_be32(
1625			xfs_has_logv2(log->l_mp) ? 2 : 1);
1626		head->h_size = cpu_to_be32(log->l_iclog_size);
1627		/* new fields */
1628		head->h_fmt = cpu_to_be32(XLOG_FMT);
1629		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1630
1631		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1632		iclog->ic_state = XLOG_STATE_ACTIVE;
1633		iclog->ic_log = log;
1634		atomic_set(&iclog->ic_refcnt, 0);
1635		INIT_LIST_HEAD(&iclog->ic_callbacks);
1636		iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1637
1638		init_waitqueue_head(&iclog->ic_force_wait);
1639		init_waitqueue_head(&iclog->ic_write_wait);
1640		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1641		sema_init(&iclog->ic_sema, 1);
1642
1643		iclogp = &iclog->ic_next;
1644	}
1645	*iclogp = log->l_iclog;			/* complete ring */
1646	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1647
1648	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1649			XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1650				    WQ_HIGHPRI),
1651			0, mp->m_super->s_id);
1652	if (!log->l_ioend_workqueue)
1653		goto out_free_iclog;
1654
1655	error = xlog_cil_init(log);
1656	if (error)
1657		goto out_destroy_workqueue;
1658	return log;
1659
1660out_destroy_workqueue:
1661	destroy_workqueue(log->l_ioend_workqueue);
1662out_free_iclog:
1663	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1664		prev_iclog = iclog->ic_next;
1665		kvfree(iclog->ic_data);
1666		kfree(iclog);
1667		if (prev_iclog == log->l_iclog)
1668			break;
1669	}
1670out_free_log:
1671	kfree(log);
1672out:
1673	return ERR_PTR(error);
1674}	/* xlog_alloc_log */
1675
1676/*
1677 * Compute the LSN that we'd need to push the log tail towards in order to have
1678 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1679 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1680 * log free space already meets all three thresholds, this function returns
1681 * NULLCOMMITLSN.
1682 */
1683xfs_lsn_t
1684xlog_grant_push_threshold(
1685	struct xlog	*log,
1686	int		need_bytes)
1687{
1688	xfs_lsn_t	threshold_lsn = 0;
1689	xfs_lsn_t	last_sync_lsn;
1690	int		free_blocks;
1691	int		free_bytes;
1692	int		threshold_block;
1693	int		threshold_cycle;
1694	int		free_threshold;
1695
1696	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1697
1698	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1699	free_blocks = BTOBBT(free_bytes);
1700
1701	/*
1702	 * Set the threshold for the minimum number of free blocks in the
1703	 * log to the maximum of what the caller needs, one quarter of the
1704	 * log, and 256 blocks.
1705	 */
1706	free_threshold = BTOBB(need_bytes);
1707	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1708	free_threshold = max(free_threshold, 256);
1709	if (free_blocks >= free_threshold)
1710		return NULLCOMMITLSN;
1711
1712	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1713						&threshold_block);
1714	threshold_block += free_threshold;
1715	if (threshold_block >= log->l_logBBsize) {
1716		threshold_block -= log->l_logBBsize;
1717		threshold_cycle += 1;
1718	}
1719	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1720					threshold_block);
1721	/*
1722	 * Don't pass in an lsn greater than the lsn of the last
1723	 * log record known to be on disk. Use a snapshot of the last sync lsn
1724	 * so that it doesn't change between the compare and the set.
1725	 */
1726	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1727	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1728		threshold_lsn = last_sync_lsn;
1729
1730	return threshold_lsn;
1731}
1732
1733/*
1734 * Push the tail of the log if we need to do so to maintain the free log space
1735 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1736 * policy which pushes on an lsn which is further along in the log once we
1737 * reach the high water mark.  In this manner, we would be creating a low water
1738 * mark.
1739 */
1740STATIC void
1741xlog_grant_push_ail(
1742	struct xlog	*log,
1743	int		need_bytes)
1744{
1745	xfs_lsn_t	threshold_lsn;
1746
1747	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1748	if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1749		return;
1750
1751	/*
1752	 * Get the transaction layer to kick the dirty buffers out to
1753	 * disk asynchronously. No point in trying to do this if
1754	 * the filesystem is shutting down.
1755	 */
1756	xfs_ail_push(log->l_ailp, threshold_lsn);
1757}
1758
1759/*
1760 * Stamp cycle number in every block
1761 */
1762STATIC void
1763xlog_pack_data(
1764	struct xlog		*log,
1765	struct xlog_in_core	*iclog,
1766	int			roundoff)
1767{
1768	int			i, j, k;
1769	int			size = iclog->ic_offset + roundoff;
1770	__be32			cycle_lsn;
1771	char			*dp;
1772
1773	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1774
1775	dp = iclog->ic_datap;
1776	for (i = 0; i < BTOBB(size); i++) {
1777		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1778			break;
1779		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1780		*(__be32 *)dp = cycle_lsn;
1781		dp += BBSIZE;
1782	}
1783
1784	if (xfs_has_logv2(log->l_mp)) {
1785		xlog_in_core_2_t *xhdr = iclog->ic_data;
1786
1787		for ( ; i < BTOBB(size); i++) {
1788			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1789			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1790			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1791			*(__be32 *)dp = cycle_lsn;
1792			dp += BBSIZE;
1793		}
1794
1795		for (i = 1; i < log->l_iclog_heads; i++)
1796			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1797	}
1798}
1799
1800/*
1801 * Calculate the checksum for a log buffer.
1802 *
1803 * This is a little more complicated than it should be because the various
1804 * headers and the actual data are non-contiguous.
1805 */
1806__le32
1807xlog_cksum(
1808	struct xlog		*log,
1809	struct xlog_rec_header	*rhead,
1810	char			*dp,
1811	int			size)
1812{
1813	uint32_t		crc;
1814
1815	/* first generate the crc for the record header ... */
1816	crc = xfs_start_cksum_update((char *)rhead,
1817			      sizeof(struct xlog_rec_header),
1818			      offsetof(struct xlog_rec_header, h_crc));
1819
1820	/* ... then for additional cycle data for v2 logs ... */
1821	if (xfs_has_logv2(log->l_mp)) {
1822		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1823		int		i;
1824		int		xheads;
1825
1826		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1827
1828		for (i = 1; i < xheads; i++) {
1829			crc = crc32c(crc, &xhdr[i].hic_xheader,
1830				     sizeof(struct xlog_rec_ext_header));
1831		}
1832	}
1833
1834	/* ... and finally for the payload */
1835	crc = crc32c(crc, dp, size);
1836
1837	return xfs_end_cksum(crc);
1838}
1839
1840static void
1841xlog_bio_end_io(
1842	struct bio		*bio)
1843{
1844	struct xlog_in_core	*iclog = bio->bi_private;
1845
1846	queue_work(iclog->ic_log->l_ioend_workqueue,
1847		   &iclog->ic_end_io_work);
1848}
1849
1850static int
1851xlog_map_iclog_data(
1852	struct bio		*bio,
1853	void			*data,
1854	size_t			count)
1855{
1856	do {
1857		struct page	*page = kmem_to_page(data);
1858		unsigned int	off = offset_in_page(data);
1859		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1860
1861		if (bio_add_page(bio, page, len, off) != len)
1862			return -EIO;
1863
1864		data += len;
1865		count -= len;
1866	} while (count);
1867
1868	return 0;
1869}
1870
1871STATIC void
1872xlog_write_iclog(
1873	struct xlog		*log,
1874	struct xlog_in_core	*iclog,
1875	uint64_t		bno,
1876	unsigned int		count)
1877{
1878	ASSERT(bno < log->l_logBBsize);
1879	trace_xlog_iclog_write(iclog, _RET_IP_);
1880
1881	/*
1882	 * We lock the iclogbufs here so that we can serialise against I/O
1883	 * completion during unmount.  We might be processing a shutdown
1884	 * triggered during unmount, and that can occur asynchronously to the
1885	 * unmount thread, and hence we need to ensure that completes before
1886	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1887	 * across the log IO to archieve that.
1888	 */
1889	down(&iclog->ic_sema);
1890	if (xlog_is_shutdown(log)) {
1891		/*
1892		 * It would seem logical to return EIO here, but we rely on
1893		 * the log state machine to propagate I/O errors instead of
1894		 * doing it here.  We kick of the state machine and unlock
1895		 * the buffer manually, the code needs to be kept in sync
1896		 * with the I/O completion path.
1897		 */
1898		goto sync;
1899	}
1900
1901	/*
1902	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1903	 * IOs coming immediately after this one. This prevents the block layer
1904	 * writeback throttle from throttling log writes behind background
1905	 * metadata writeback and causing priority inversions.
1906	 */
1907	bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1908		 howmany(count, PAGE_SIZE),
1909		 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1910	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1911	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1912	iclog->ic_bio.bi_private = iclog;
1913
1914	if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1915		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1916		/*
1917		 * For external log devices, we also need to flush the data
1918		 * device cache first to ensure all metadata writeback covered
1919		 * by the LSN in this iclog is on stable storage. This is slow,
1920		 * but it *must* complete before we issue the external log IO.
1921		 *
1922		 * If the flush fails, we cannot conclude that past metadata
1923		 * writeback from the log succeeded.  Repeating the flush is
1924		 * not possible, hence we must shut down with log IO error to
1925		 * avoid shutdown re-entering this path and erroring out again.
1926		 */
1927		if (log->l_targ != log->l_mp->m_ddev_targp &&
1928		    blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev))
1929			goto shutdown;
1930	}
1931	if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1932		iclog->ic_bio.bi_opf |= REQ_FUA;
1933
1934	iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1935
1936	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count))
1937		goto shutdown;
1938
1939	if (is_vmalloc_addr(iclog->ic_data))
1940		flush_kernel_vmap_range(iclog->ic_data, count);
1941
1942	/*
1943	 * If this log buffer would straddle the end of the log we will have
1944	 * to split it up into two bios, so that we can continue at the start.
1945	 */
1946	if (bno + BTOBB(count) > log->l_logBBsize) {
1947		struct bio *split;
1948
1949		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1950				  GFP_NOIO, &fs_bio_set);
1951		bio_chain(split, &iclog->ic_bio);
1952		submit_bio(split);
1953
1954		/* restart at logical offset zero for the remainder */
1955		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1956	}
1957
1958	submit_bio(&iclog->ic_bio);
1959	return;
1960shutdown:
1961	xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1962sync:
1963	xlog_state_done_syncing(iclog);
1964	up(&iclog->ic_sema);
1965}
1966
1967/*
1968 * We need to bump cycle number for the part of the iclog that is
1969 * written to the start of the log. Watch out for the header magic
1970 * number case, though.
1971 */
1972static void
1973xlog_split_iclog(
1974	struct xlog		*log,
1975	void			*data,
1976	uint64_t		bno,
1977	unsigned int		count)
1978{
1979	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1980	unsigned int		i;
1981
1982	for (i = split_offset; i < count; i += BBSIZE) {
1983		uint32_t cycle = get_unaligned_be32(data + i);
1984
1985		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1986			cycle++;
1987		put_unaligned_be32(cycle, data + i);
1988	}
1989}
1990
1991static int
1992xlog_calc_iclog_size(
1993	struct xlog		*log,
1994	struct xlog_in_core	*iclog,
1995	uint32_t		*roundoff)
1996{
1997	uint32_t		count_init, count;
1998
1999	/* Add for LR header */
2000	count_init = log->l_iclog_hsize + iclog->ic_offset;
2001	count = roundup(count_init, log->l_iclog_roundoff);
2002
2003	*roundoff = count - count_init;
2004
2005	ASSERT(count >= count_init);
2006	ASSERT(*roundoff < log->l_iclog_roundoff);
2007	return count;
2008}
2009
2010/*
2011 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2012 * fashion.  Previously, we should have moved the current iclog
2013 * ptr in the log to point to the next available iclog.  This allows further
2014 * write to continue while this code syncs out an iclog ready to go.
2015 * Before an in-core log can be written out, the data section must be scanned
2016 * to save away the 1st word of each BBSIZE block into the header.  We replace
2017 * it with the current cycle count.  Each BBSIZE block is tagged with the
2018 * cycle count because there in an implicit assumption that drives will
2019 * guarantee that entire 512 byte blocks get written at once.  In other words,
2020 * we can't have part of a 512 byte block written and part not written.  By
2021 * tagging each block, we will know which blocks are valid when recovering
2022 * after an unclean shutdown.
2023 *
2024 * This routine is single threaded on the iclog.  No other thread can be in
2025 * this routine with the same iclog.  Changing contents of iclog can there-
2026 * fore be done without grabbing the state machine lock.  Updating the global
2027 * log will require grabbing the lock though.
2028 *
2029 * The entire log manager uses a logical block numbering scheme.  Only
2030 * xlog_write_iclog knows about the fact that the log may not start with
2031 * block zero on a given device.
2032 */
2033STATIC void
2034xlog_sync(
2035	struct xlog		*log,
2036	struct xlog_in_core	*iclog,
2037	struct xlog_ticket	*ticket)
2038{
2039	unsigned int		count;		/* byte count of bwrite */
2040	unsigned int		roundoff;       /* roundoff to BB or stripe */
2041	uint64_t		bno;
2042	unsigned int		size;
2043
2044	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2045	trace_xlog_iclog_sync(iclog, _RET_IP_);
2046
2047	count = xlog_calc_iclog_size(log, iclog, &roundoff);
2048
2049	/*
2050	 * If we have a ticket, account for the roundoff via the ticket
2051	 * reservation to avoid touching the hot grant heads needlessly.
2052	 * Otherwise, we have to move grant heads directly.
2053	 */
2054	if (ticket) {
2055		ticket->t_curr_res -= roundoff;
2056	} else {
2057		xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2058		xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2059	}
2060
2061	/* put cycle number in every block */
2062	xlog_pack_data(log, iclog, roundoff);
2063
2064	/* real byte length */
2065	size = iclog->ic_offset;
2066	if (xfs_has_logv2(log->l_mp))
2067		size += roundoff;
2068	iclog->ic_header.h_len = cpu_to_be32(size);
2069
2070	XFS_STATS_INC(log->l_mp, xs_log_writes);
2071	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2072
2073	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2074
2075	/* Do we need to split this write into 2 parts? */
2076	if (bno + BTOBB(count) > log->l_logBBsize)
2077		xlog_split_iclog(log, &iclog->ic_header, bno, count);
2078
2079	/* calculcate the checksum */
2080	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2081					    iclog->ic_datap, size);
2082	/*
2083	 * Intentionally corrupt the log record CRC based on the error injection
2084	 * frequency, if defined. This facilitates testing log recovery in the
2085	 * event of torn writes. Hence, set the IOABORT state to abort the log
2086	 * write on I/O completion and shutdown the fs. The subsequent mount
2087	 * detects the bad CRC and attempts to recover.
2088	 */
2089#ifdef DEBUG
2090	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2091		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2092		iclog->ic_fail_crc = true;
2093		xfs_warn(log->l_mp,
2094	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2095			 be64_to_cpu(iclog->ic_header.h_lsn));
2096	}
2097#endif
2098	xlog_verify_iclog(log, iclog, count);
2099	xlog_write_iclog(log, iclog, bno, count);
2100}
2101
2102/*
2103 * Deallocate a log structure
2104 */
2105STATIC void
2106xlog_dealloc_log(
2107	struct xlog	*log)
2108{
2109	xlog_in_core_t	*iclog, *next_iclog;
2110	int		i;
2111
2112	/*
2113	 * Destroy the CIL after waiting for iclog IO completion because an
2114	 * iclog EIO error will try to shut down the log, which accesses the
2115	 * CIL to wake up the waiters.
2116	 */
2117	xlog_cil_destroy(log);
2118
2119	iclog = log->l_iclog;
2120	for (i = 0; i < log->l_iclog_bufs; i++) {
2121		next_iclog = iclog->ic_next;
2122		kvfree(iclog->ic_data);
2123		kfree(iclog);
2124		iclog = next_iclog;
2125	}
2126
2127	log->l_mp->m_log = NULL;
2128	destroy_workqueue(log->l_ioend_workqueue);
2129	kfree(log);
2130}
2131
2132/*
2133 * Update counters atomically now that memcpy is done.
2134 */
2135static inline void
2136xlog_state_finish_copy(
2137	struct xlog		*log,
2138	struct xlog_in_core	*iclog,
2139	int			record_cnt,
2140	int			copy_bytes)
2141{
2142	lockdep_assert_held(&log->l_icloglock);
2143
2144	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2145	iclog->ic_offset += copy_bytes;
2146}
2147
2148/*
2149 * print out info relating to regions written which consume
2150 * the reservation
2151 */
2152void
2153xlog_print_tic_res(
2154	struct xfs_mount	*mp,
2155	struct xlog_ticket	*ticket)
2156{
2157	xfs_warn(mp, "ticket reservation summary:");
2158	xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2159	xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2160	xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2161	xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
2162}
2163
2164/*
2165 * Print a summary of the transaction.
2166 */
2167void
2168xlog_print_trans(
2169	struct xfs_trans	*tp)
2170{
2171	struct xfs_mount	*mp = tp->t_mountp;
2172	struct xfs_log_item	*lip;
2173
2174	/* dump core transaction and ticket info */
2175	xfs_warn(mp, "transaction summary:");
2176	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2177	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2178	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2179
2180	xlog_print_tic_res(mp, tp->t_ticket);
2181
2182	/* dump each log item */
2183	list_for_each_entry(lip, &tp->t_items, li_trans) {
2184		struct xfs_log_vec	*lv = lip->li_lv;
2185		struct xfs_log_iovec	*vec;
2186		int			i;
2187
2188		xfs_warn(mp, "log item: ");
2189		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2190		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2191		if (!lv)
2192			continue;
2193		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2194		xfs_warn(mp, "  size	= %d", lv->lv_size);
2195		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2196		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2197
2198		/* dump each iovec for the log item */
2199		vec = lv->lv_iovecp;
2200		for (i = 0; i < lv->lv_niovecs; i++) {
2201			int dumplen = min(vec->i_len, 32);
2202
2203			xfs_warn(mp, "  iovec[%d]", i);
2204			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2205			xfs_warn(mp, "    len	= %d", vec->i_len);
2206			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2207			xfs_hex_dump(vec->i_addr, dumplen);
2208
2209			vec++;
2210		}
2211	}
2212}
2213
2214static inline void
2215xlog_write_iovec(
2216	struct xlog_in_core	*iclog,
2217	uint32_t		*log_offset,
2218	void			*data,
2219	uint32_t		write_len,
2220	int			*bytes_left,
2221	uint32_t		*record_cnt,
2222	uint32_t		*data_cnt)
2223{
2224	ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2225	ASSERT(*log_offset % sizeof(int32_t) == 0);
2226	ASSERT(write_len % sizeof(int32_t) == 0);
2227
2228	memcpy(iclog->ic_datap + *log_offset, data, write_len);
2229	*log_offset += write_len;
2230	*bytes_left -= write_len;
2231	(*record_cnt)++;
2232	*data_cnt += write_len;
2233}
2234
2235/*
2236 * Write log vectors into a single iclog which is guaranteed by the caller
2237 * to have enough space to write the entire log vector into.
2238 */
2239static void
2240xlog_write_full(
2241	struct xfs_log_vec	*lv,
2242	struct xlog_ticket	*ticket,
2243	struct xlog_in_core	*iclog,
2244	uint32_t		*log_offset,
2245	uint32_t		*len,
2246	uint32_t		*record_cnt,
2247	uint32_t		*data_cnt)
2248{
2249	int			index;
2250
2251	ASSERT(*log_offset + *len <= iclog->ic_size ||
2252		iclog->ic_state == XLOG_STATE_WANT_SYNC);
2253
2254	/*
2255	 * Ordered log vectors have no regions to write so this
2256	 * loop will naturally skip them.
2257	 */
2258	for (index = 0; index < lv->lv_niovecs; index++) {
2259		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2260		struct xlog_op_header	*ophdr = reg->i_addr;
2261
2262		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2263		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2264				reg->i_len, len, record_cnt, data_cnt);
2265	}
2266}
2267
2268static int
2269xlog_write_get_more_iclog_space(
2270	struct xlog_ticket	*ticket,
2271	struct xlog_in_core	**iclogp,
2272	uint32_t		*log_offset,
2273	uint32_t		len,
2274	uint32_t		*record_cnt,
2275	uint32_t		*data_cnt)
2276{
2277	struct xlog_in_core	*iclog = *iclogp;
2278	struct xlog		*log = iclog->ic_log;
2279	int			error;
2280
2281	spin_lock(&log->l_icloglock);
2282	ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2283	xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2284	error = xlog_state_release_iclog(log, iclog, ticket);
2285	spin_unlock(&log->l_icloglock);
2286	if (error)
2287		return error;
2288
2289	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2290					log_offset);
2291	if (error)
2292		return error;
2293	*record_cnt = 0;
2294	*data_cnt = 0;
2295	*iclogp = iclog;
2296	return 0;
2297}
2298
2299/*
2300 * Write log vectors into a single iclog which is smaller than the current chain
2301 * length. We write until we cannot fit a full record into the remaining space
2302 * and then stop. We return the log vector that is to be written that cannot
2303 * wholly fit in the iclog.
2304 */
2305static int
2306xlog_write_partial(
2307	struct xfs_log_vec	*lv,
2308	struct xlog_ticket	*ticket,
2309	struct xlog_in_core	**iclogp,
2310	uint32_t		*log_offset,
2311	uint32_t		*len,
2312	uint32_t		*record_cnt,
2313	uint32_t		*data_cnt)
2314{
2315	struct xlog_in_core	*iclog = *iclogp;
2316	struct xlog_op_header	*ophdr;
2317	int			index = 0;
2318	uint32_t		rlen;
2319	int			error;
2320
2321	/* walk the logvec, copying until we run out of space in the iclog */
2322	for (index = 0; index < lv->lv_niovecs; index++) {
2323		struct xfs_log_iovec	*reg = &lv->lv_iovecp[index];
2324		uint32_t		reg_offset = 0;
2325
2326		/*
2327		 * The first region of a continuation must have a non-zero
2328		 * length otherwise log recovery will just skip over it and
2329		 * start recovering from the next opheader it finds. Because we
2330		 * mark the next opheader as a continuation, recovery will then
2331		 * incorrectly add the continuation to the previous region and
2332		 * that breaks stuff.
2333		 *
2334		 * Hence if there isn't space for region data after the
2335		 * opheader, then we need to start afresh with a new iclog.
2336		 */
2337		if (iclog->ic_size - *log_offset <=
2338					sizeof(struct xlog_op_header)) {
2339			error = xlog_write_get_more_iclog_space(ticket,
2340					&iclog, log_offset, *len, record_cnt,
2341					data_cnt);
2342			if (error)
2343				return error;
2344		}
2345
2346		ophdr = reg->i_addr;
2347		rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2348
2349		ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2350		ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2351		if (rlen != reg->i_len)
2352			ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2353
2354		xlog_write_iovec(iclog, log_offset, reg->i_addr,
2355				rlen, len, record_cnt, data_cnt);
2356
2357		/* If we wrote the whole region, move to the next. */
2358		if (rlen == reg->i_len)
2359			continue;
2360
2361		/*
2362		 * We now have a partially written iovec, but it can span
2363		 * multiple iclogs so we loop here. First we release the iclog
2364		 * we currently have, then we get a new iclog and add a new
2365		 * opheader. Then we continue copying from where we were until
2366		 * we either complete the iovec or fill the iclog. If we
2367		 * complete the iovec, then we increment the index and go right
2368		 * back to the top of the outer loop. if we fill the iclog, we
2369		 * run the inner loop again.
2370		 *
2371		 * This is complicated by the tail of a region using all the
2372		 * space in an iclog and hence requiring us to release the iclog
2373		 * and get a new one before returning to the outer loop. We must
2374		 * always guarantee that we exit this inner loop with at least
2375		 * space for log transaction opheaders left in the current
2376		 * iclog, hence we cannot just terminate the loop at the end
2377		 * of the of the continuation. So we loop while there is no
2378		 * space left in the current iclog, and check for the end of the
2379		 * continuation after getting a new iclog.
2380		 */
2381		do {
2382			/*
2383			 * Ensure we include the continuation opheader in the
2384			 * space we need in the new iclog by adding that size
2385			 * to the length we require. This continuation opheader
2386			 * needs to be accounted to the ticket as the space it
2387			 * consumes hasn't been accounted to the lv we are
2388			 * writing.
2389			 */
2390			error = xlog_write_get_more_iclog_space(ticket,
2391					&iclog, log_offset,
2392					*len + sizeof(struct xlog_op_header),
2393					record_cnt, data_cnt);
2394			if (error)
2395				return error;
2396
2397			ophdr = iclog->ic_datap + *log_offset;
2398			ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2399			ophdr->oh_clientid = XFS_TRANSACTION;
2400			ophdr->oh_res2 = 0;
2401			ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2402
2403			ticket->t_curr_res -= sizeof(struct xlog_op_header);
2404			*log_offset += sizeof(struct xlog_op_header);
2405			*data_cnt += sizeof(struct xlog_op_header);
2406
2407			/*
2408			 * If rlen fits in the iclog, then end the region
2409			 * continuation. Otherwise we're going around again.
2410			 */
2411			reg_offset += rlen;
2412			rlen = reg->i_len - reg_offset;
2413			if (rlen <= iclog->ic_size - *log_offset)
2414				ophdr->oh_flags |= XLOG_END_TRANS;
2415			else
2416				ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2417
2418			rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2419			ophdr->oh_len = cpu_to_be32(rlen);
2420
2421			xlog_write_iovec(iclog, log_offset,
2422					reg->i_addr + reg_offset,
2423					rlen, len, record_cnt, data_cnt);
2424
2425		} while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2426	}
2427
2428	/*
2429	 * No more iovecs remain in this logvec so return the next log vec to
2430	 * the caller so it can go back to fast path copying.
2431	 */
2432	*iclogp = iclog;
2433	return 0;
2434}
2435
2436/*
2437 * Write some region out to in-core log
2438 *
2439 * This will be called when writing externally provided regions or when
2440 * writing out a commit record for a given transaction.
2441 *
2442 * General algorithm:
2443 *	1. Find total length of this write.  This may include adding to the
2444 *		lengths passed in.
2445 *	2. Check whether we violate the tickets reservation.
2446 *	3. While writing to this iclog
2447 *	    A. Reserve as much space in this iclog as can get
2448 *	    B. If this is first write, save away start lsn
2449 *	    C. While writing this region:
2450 *		1. If first write of transaction, write start record
2451 *		2. Write log operation header (header per region)
2452 *		3. Find out if we can fit entire region into this iclog
2453 *		4. Potentially, verify destination memcpy ptr
2454 *		5. Memcpy (partial) region
2455 *		6. If partial copy, release iclog; otherwise, continue
2456 *			copying more regions into current iclog
2457 *	4. Mark want sync bit (in simulation mode)
2458 *	5. Release iclog for potential flush to on-disk log.
2459 *
2460 * ERRORS:
2461 * 1.	Panic if reservation is overrun.  This should never happen since
2462 *	reservation amounts are generated internal to the filesystem.
2463 * NOTES:
2464 * 1. Tickets are single threaded data structures.
2465 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2466 *	syncing routine.  When a single log_write region needs to span
2467 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2468 *	on all log operation writes which don't contain the end of the
2469 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2470 *	operation which contains the end of the continued log_write region.
2471 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2472 *	we don't really know exactly how much space will be used.  As a result,
2473 *	we don't update ic_offset until the end when we know exactly how many
2474 *	bytes have been written out.
2475 */
2476int
2477xlog_write(
2478	struct xlog		*log,
2479	struct xfs_cil_ctx	*ctx,
2480	struct list_head	*lv_chain,
2481	struct xlog_ticket	*ticket,
2482	uint32_t		len)
2483
2484{
2485	struct xlog_in_core	*iclog = NULL;
2486	struct xfs_log_vec	*lv;
2487	uint32_t		record_cnt = 0;
2488	uint32_t		data_cnt = 0;
2489	int			error = 0;
2490	int			log_offset;
2491
2492	if (ticket->t_curr_res < 0) {
2493		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2494		     "ctx ticket reservation ran out. Need to up reservation");
2495		xlog_print_tic_res(log->l_mp, ticket);
2496		xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2497	}
2498
2499	error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2500					   &log_offset);
2501	if (error)
2502		return error;
2503
2504	ASSERT(log_offset <= iclog->ic_size - 1);
2505
2506	/*
2507	 * If we have a context pointer, pass it the first iclog we are
2508	 * writing to so it can record state needed for iclog write
2509	 * ordering.
2510	 */
2511	if (ctx)
2512		xlog_cil_set_ctx_write_state(ctx, iclog);
2513
2514	list_for_each_entry(lv, lv_chain, lv_list) {
2515		/*
2516		 * If the entire log vec does not fit in the iclog, punt it to
2517		 * the partial copy loop which can handle this case.
2518		 */
2519		if (lv->lv_niovecs &&
2520		    lv->lv_bytes > iclog->ic_size - log_offset) {
2521			error = xlog_write_partial(lv, ticket, &iclog,
2522					&log_offset, &len, &record_cnt,
2523					&data_cnt);
2524			if (error) {
2525				/*
2526				 * We have no iclog to release, so just return
2527				 * the error immediately.
2528				 */
2529				return error;
2530			}
2531		} else {
2532			xlog_write_full(lv, ticket, iclog, &log_offset,
2533					 &len, &record_cnt, &data_cnt);
2534		}
2535	}
2536	ASSERT(len == 0);
2537
2538	/*
2539	 * We've already been guaranteed that the last writes will fit inside
2540	 * the current iclog, and hence it will already have the space used by
2541	 * those writes accounted to it. Hence we do not need to update the
2542	 * iclog with the number of bytes written here.
2543	 */
2544	spin_lock(&log->l_icloglock);
2545	xlog_state_finish_copy(log, iclog, record_cnt, 0);
2546	error = xlog_state_release_iclog(log, iclog, ticket);
2547	spin_unlock(&log->l_icloglock);
2548
2549	return error;
2550}
2551
2552static void
2553xlog_state_activate_iclog(
2554	struct xlog_in_core	*iclog,
2555	int			*iclogs_changed)
2556{
2557	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2558	trace_xlog_iclog_activate(iclog, _RET_IP_);
2559
2560	/*
2561	 * If the number of ops in this iclog indicate it just contains the
2562	 * dummy transaction, we can change state into IDLE (the second time
2563	 * around). Otherwise we should change the state into NEED a dummy.
2564	 * We don't need to cover the dummy.
2565	 */
2566	if (*iclogs_changed == 0 &&
2567	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2568		*iclogs_changed = 1;
2569	} else {
2570		/*
2571		 * We have two dirty iclogs so start over.  This could also be
2572		 * num of ops indicating this is not the dummy going out.
2573		 */
2574		*iclogs_changed = 2;
2575	}
2576
2577	iclog->ic_state	= XLOG_STATE_ACTIVE;
2578	iclog->ic_offset = 0;
2579	iclog->ic_header.h_num_logops = 0;
2580	memset(iclog->ic_header.h_cycle_data, 0,
2581		sizeof(iclog->ic_header.h_cycle_data));
2582	iclog->ic_header.h_lsn = 0;
2583	iclog->ic_header.h_tail_lsn = 0;
2584}
2585
2586/*
2587 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2588 * ACTIVE after iclog I/O has completed.
2589 */
2590static void
2591xlog_state_activate_iclogs(
2592	struct xlog		*log,
2593	int			*iclogs_changed)
2594{
2595	struct xlog_in_core	*iclog = log->l_iclog;
2596
2597	do {
2598		if (iclog->ic_state == XLOG_STATE_DIRTY)
2599			xlog_state_activate_iclog(iclog, iclogs_changed);
2600		/*
2601		 * The ordering of marking iclogs ACTIVE must be maintained, so
2602		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2603		 */
2604		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2605			break;
2606	} while ((iclog = iclog->ic_next) != log->l_iclog);
2607}
2608
2609static int
2610xlog_covered_state(
2611	int			prev_state,
2612	int			iclogs_changed)
2613{
2614	/*
2615	 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2616	 * wrote the first covering record (DONE). We go to IDLE if we just
2617	 * wrote the second covering record (DONE2) and remain in IDLE until a
2618	 * non-covering write occurs.
2619	 */
2620	switch (prev_state) {
2621	case XLOG_STATE_COVER_IDLE:
2622		if (iclogs_changed == 1)
2623			return XLOG_STATE_COVER_IDLE;
2624		fallthrough;
2625	case XLOG_STATE_COVER_NEED:
2626	case XLOG_STATE_COVER_NEED2:
2627		break;
2628	case XLOG_STATE_COVER_DONE:
2629		if (iclogs_changed == 1)
2630			return XLOG_STATE_COVER_NEED2;
2631		break;
2632	case XLOG_STATE_COVER_DONE2:
2633		if (iclogs_changed == 1)
2634			return XLOG_STATE_COVER_IDLE;
2635		break;
2636	default:
2637		ASSERT(0);
2638	}
2639
2640	return XLOG_STATE_COVER_NEED;
2641}
2642
2643STATIC void
2644xlog_state_clean_iclog(
2645	struct xlog		*log,
2646	struct xlog_in_core	*dirty_iclog)
2647{
2648	int			iclogs_changed = 0;
2649
2650	trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2651
2652	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2653
2654	xlog_state_activate_iclogs(log, &iclogs_changed);
2655	wake_up_all(&dirty_iclog->ic_force_wait);
2656
2657	if (iclogs_changed) {
2658		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2659				iclogs_changed);
2660	}
2661}
2662
2663STATIC xfs_lsn_t
2664xlog_get_lowest_lsn(
2665	struct xlog		*log)
2666{
2667	struct xlog_in_core	*iclog = log->l_iclog;
2668	xfs_lsn_t		lowest_lsn = 0, lsn;
2669
2670	do {
2671		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2672		    iclog->ic_state == XLOG_STATE_DIRTY)
2673			continue;
2674
2675		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2676		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2677			lowest_lsn = lsn;
2678	} while ((iclog = iclog->ic_next) != log->l_iclog);
2679
2680	return lowest_lsn;
2681}
2682
2683/*
2684 * Completion of a iclog IO does not imply that a transaction has completed, as
2685 * transactions can be large enough to span many iclogs. We cannot change the
2686 * tail of the log half way through a transaction as this may be the only
2687 * transaction in the log and moving the tail to point to the middle of it
2688 * will prevent recovery from finding the start of the transaction. Hence we
2689 * should only update the last_sync_lsn if this iclog contains transaction
2690 * completion callbacks on it.
2691 *
2692 * We have to do this before we drop the icloglock to ensure we are the only one
2693 * that can update it.
2694 *
2695 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2696 * the reservation grant head pushing. This is due to the fact that the push
2697 * target is bound by the current last_sync_lsn value. Hence if we have a large
2698 * amount of log space bound up in this committing transaction then the
2699 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2700 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2701 * should push the AIL to ensure the push target (and hence the grant head) is
2702 * no longer bound by the old log head location and can move forwards and make
2703 * progress again.
2704 */
2705static void
2706xlog_state_set_callback(
2707	struct xlog		*log,
2708	struct xlog_in_core	*iclog,
2709	xfs_lsn_t		header_lsn)
2710{
2711	trace_xlog_iclog_callback(iclog, _RET_IP_);
2712	iclog->ic_state = XLOG_STATE_CALLBACK;
2713
2714	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2715			   header_lsn) <= 0);
2716
2717	if (list_empty_careful(&iclog->ic_callbacks))
2718		return;
2719
2720	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2721	xlog_grant_push_ail(log, 0);
2722}
2723
2724/*
2725 * Return true if we need to stop processing, false to continue to the next
2726 * iclog. The caller will need to run callbacks if the iclog is returned in the
2727 * XLOG_STATE_CALLBACK state.
2728 */
2729static bool
2730xlog_state_iodone_process_iclog(
2731	struct xlog		*log,
2732	struct xlog_in_core	*iclog)
2733{
2734	xfs_lsn_t		lowest_lsn;
2735	xfs_lsn_t		header_lsn;
2736
2737	switch (iclog->ic_state) {
2738	case XLOG_STATE_ACTIVE:
2739	case XLOG_STATE_DIRTY:
2740		/*
2741		 * Skip all iclogs in the ACTIVE & DIRTY states:
2742		 */
2743		return false;
2744	case XLOG_STATE_DONE_SYNC:
2745		/*
2746		 * Now that we have an iclog that is in the DONE_SYNC state, do
2747		 * one more check here to see if we have chased our tail around.
2748		 * If this is not the lowest lsn iclog, then we will leave it
2749		 * for another completion to process.
2750		 */
2751		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2752		lowest_lsn = xlog_get_lowest_lsn(log);
2753		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2754			return false;
2755		xlog_state_set_callback(log, iclog, header_lsn);
2756		return false;
2757	default:
2758		/*
2759		 * Can only perform callbacks in order.  Since this iclog is not
2760		 * in the DONE_SYNC state, we skip the rest and just try to
2761		 * clean up.
2762		 */
2763		return true;
2764	}
2765}
2766
2767/*
2768 * Loop over all the iclogs, running attached callbacks on them. Return true if
2769 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2770 * to handle transient shutdown state here at all because
2771 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2772 * cleanup of the callbacks.
2773 */
2774static bool
2775xlog_state_do_iclog_callbacks(
2776	struct xlog		*log)
2777		__releases(&log->l_icloglock)
2778		__acquires(&log->l_icloglock)
2779{
2780	struct xlog_in_core	*first_iclog = log->l_iclog;
2781	struct xlog_in_core	*iclog = first_iclog;
2782	bool			ran_callback = false;
2783
2784	do {
2785		LIST_HEAD(cb_list);
2786
2787		if (xlog_state_iodone_process_iclog(log, iclog))
2788			break;
2789		if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2790			iclog = iclog->ic_next;
2791			continue;
2792		}
2793		list_splice_init(&iclog->ic_callbacks, &cb_list);
2794		spin_unlock(&log->l_icloglock);
2795
2796		trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2797		xlog_cil_process_committed(&cb_list);
2798		trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2799		ran_callback = true;
2800
2801		spin_lock(&log->l_icloglock);
2802		xlog_state_clean_iclog(log, iclog);
2803		iclog = iclog->ic_next;
2804	} while (iclog != first_iclog);
2805
2806	return ran_callback;
2807}
2808
2809
2810/*
2811 * Loop running iclog completion callbacks until there are no more iclogs in a
2812 * state that can run callbacks.
2813 */
2814STATIC void
2815xlog_state_do_callback(
2816	struct xlog		*log)
2817{
2818	int			flushcnt = 0;
2819	int			repeats = 0;
2820
2821	spin_lock(&log->l_icloglock);
2822	while (xlog_state_do_iclog_callbacks(log)) {
2823		if (xlog_is_shutdown(log))
2824			break;
2825
2826		if (++repeats > 5000) {
2827			flushcnt += repeats;
2828			repeats = 0;
2829			xfs_warn(log->l_mp,
2830				"%s: possible infinite loop (%d iterations)",
2831				__func__, flushcnt);
2832		}
2833	}
2834
2835	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2836		wake_up_all(&log->l_flush_wait);
2837
2838	spin_unlock(&log->l_icloglock);
2839}
2840
2841
2842/*
2843 * Finish transitioning this iclog to the dirty state.
2844 *
2845 * Callbacks could take time, so they are done outside the scope of the
2846 * global state machine log lock.
2847 */
2848STATIC void
2849xlog_state_done_syncing(
2850	struct xlog_in_core	*iclog)
2851{
2852	struct xlog		*log = iclog->ic_log;
2853
2854	spin_lock(&log->l_icloglock);
2855	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2856	trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2857
2858	/*
2859	 * If we got an error, either on the first buffer, or in the case of
2860	 * split log writes, on the second, we shut down the file system and
2861	 * no iclogs should ever be attempted to be written to disk again.
2862	 */
2863	if (!xlog_is_shutdown(log)) {
2864		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2865		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2866	}
2867
2868	/*
2869	 * Someone could be sleeping prior to writing out the next
2870	 * iclog buffer, we wake them all, one will get to do the
2871	 * I/O, the others get to wait for the result.
2872	 */
2873	wake_up_all(&iclog->ic_write_wait);
2874	spin_unlock(&log->l_icloglock);
2875	xlog_state_do_callback(log);
2876}
2877
2878/*
2879 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2880 * sleep.  We wait on the flush queue on the head iclog as that should be
2881 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2882 * we will wait here and all new writes will sleep until a sync completes.
2883 *
2884 * The in-core logs are used in a circular fashion. They are not used
2885 * out-of-order even when an iclog past the head is free.
2886 *
2887 * return:
2888 *	* log_offset where xlog_write() can start writing into the in-core
2889 *		log's data space.
2890 *	* in-core log pointer to which xlog_write() should write.
2891 *	* boolean indicating this is a continued write to an in-core log.
2892 *		If this is the last write, then the in-core log's offset field
2893 *		needs to be incremented, depending on the amount of data which
2894 *		is copied.
2895 */
2896STATIC int
2897xlog_state_get_iclog_space(
2898	struct xlog		*log,
2899	int			len,
2900	struct xlog_in_core	**iclogp,
2901	struct xlog_ticket	*ticket,
2902	int			*logoffsetp)
2903{
2904	int		  log_offset;
2905	xlog_rec_header_t *head;
2906	xlog_in_core_t	  *iclog;
2907
2908restart:
2909	spin_lock(&log->l_icloglock);
2910	if (xlog_is_shutdown(log)) {
2911		spin_unlock(&log->l_icloglock);
2912		return -EIO;
2913	}
2914
2915	iclog = log->l_iclog;
2916	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2917		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2918
2919		/* Wait for log writes to have flushed */
2920		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2921		goto restart;
2922	}
2923
2924	head = &iclog->ic_header;
2925
2926	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2927	log_offset = iclog->ic_offset;
2928
2929	trace_xlog_iclog_get_space(iclog, _RET_IP_);
2930
2931	/* On the 1st write to an iclog, figure out lsn.  This works
2932	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2933	 * committing to.  If the offset is set, that's how many blocks
2934	 * must be written.
2935	 */
2936	if (log_offset == 0) {
2937		ticket->t_curr_res -= log->l_iclog_hsize;
2938		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2939		head->h_lsn = cpu_to_be64(
2940			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2941		ASSERT(log->l_curr_block >= 0);
2942	}
2943
2944	/* If there is enough room to write everything, then do it.  Otherwise,
2945	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2946	 * bit is on, so this will get flushed out.  Don't update ic_offset
2947	 * until you know exactly how many bytes get copied.  Therefore, wait
2948	 * until later to update ic_offset.
2949	 *
2950	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2951	 * can fit into remaining data section.
2952	 */
2953	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2954		int		error = 0;
2955
2956		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2957
2958		/*
2959		 * If we are the only one writing to this iclog, sync it to
2960		 * disk.  We need to do an atomic compare and decrement here to
2961		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2962		 * xlog_state_release_iclog() when there is more than one
2963		 * reference to the iclog.
2964		 */
2965		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2966			error = xlog_state_release_iclog(log, iclog, ticket);
2967		spin_unlock(&log->l_icloglock);
2968		if (error)
2969			return error;
2970		goto restart;
2971	}
2972
2973	/* Do we have enough room to write the full amount in the remainder
2974	 * of this iclog?  Or must we continue a write on the next iclog and
2975	 * mark this iclog as completely taken?  In the case where we switch
2976	 * iclogs (to mark it taken), this particular iclog will release/sync
2977	 * to disk in xlog_write().
2978	 */
2979	if (len <= iclog->ic_size - iclog->ic_offset)
2980		iclog->ic_offset += len;
2981	else
2982		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2983	*iclogp = iclog;
2984
2985	ASSERT(iclog->ic_offset <= iclog->ic_size);
2986	spin_unlock(&log->l_icloglock);
2987
2988	*logoffsetp = log_offset;
2989	return 0;
2990}
2991
2992/*
2993 * The first cnt-1 times a ticket goes through here we don't need to move the
2994 * grant write head because the permanent reservation has reserved cnt times the
2995 * unit amount.  Release part of current permanent unit reservation and reset
2996 * current reservation to be one units worth.  Also move grant reservation head
2997 * forward.
2998 */
2999void
3000xfs_log_ticket_regrant(
3001	struct xlog		*log,
3002	struct xlog_ticket	*ticket)
3003{
3004	trace_xfs_log_ticket_regrant(log, ticket);
3005
3006	if (ticket->t_cnt > 0)
3007		ticket->t_cnt--;
3008
3009	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3010					ticket->t_curr_res);
3011	xlog_grant_sub_space(log, &log->l_write_head.grant,
3012					ticket->t_curr_res);
3013	ticket->t_curr_res = ticket->t_unit_res;
3014
3015	trace_xfs_log_ticket_regrant_sub(log, ticket);
3016
3017	/* just return if we still have some of the pre-reserved space */
3018	if (!ticket->t_cnt) {
3019		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3020				     ticket->t_unit_res);
3021		trace_xfs_log_ticket_regrant_exit(log, ticket);
3022
3023		ticket->t_curr_res = ticket->t_unit_res;
3024	}
3025
3026	xfs_log_ticket_put(ticket);
3027}
3028
3029/*
3030 * Give back the space left from a reservation.
3031 *
3032 * All the information we need to make a correct determination of space left
3033 * is present.  For non-permanent reservations, things are quite easy.  The
3034 * count should have been decremented to zero.  We only need to deal with the
3035 * space remaining in the current reservation part of the ticket.  If the
3036 * ticket contains a permanent reservation, there may be left over space which
3037 * needs to be released.  A count of N means that N-1 refills of the current
3038 * reservation can be done before we need to ask for more space.  The first
3039 * one goes to fill up the first current reservation.  Once we run out of
3040 * space, the count will stay at zero and the only space remaining will be
3041 * in the current reservation field.
3042 */
3043void
3044xfs_log_ticket_ungrant(
3045	struct xlog		*log,
3046	struct xlog_ticket	*ticket)
3047{
3048	int			bytes;
3049
3050	trace_xfs_log_ticket_ungrant(log, ticket);
3051
3052	if (ticket->t_cnt > 0)
3053		ticket->t_cnt--;
3054
3055	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3056
3057	/*
3058	 * If this is a permanent reservation ticket, we may be able to free
3059	 * up more space based on the remaining count.
3060	 */
3061	bytes = ticket->t_curr_res;
3062	if (ticket->t_cnt > 0) {
3063		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3064		bytes += ticket->t_unit_res*ticket->t_cnt;
3065	}
3066
3067	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3068	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3069
3070	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3071
3072	xfs_log_space_wake(log->l_mp);
3073	xfs_log_ticket_put(ticket);
3074}
3075
3076/*
3077 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3078 * the current iclog pointer to the next iclog in the ring.
3079 */
3080void
3081xlog_state_switch_iclogs(
3082	struct xlog		*log,
3083	struct xlog_in_core	*iclog,
3084	int			eventual_size)
3085{
3086	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3087	assert_spin_locked(&log->l_icloglock);
3088	trace_xlog_iclog_switch(iclog, _RET_IP_);
3089
3090	if (!eventual_size)
3091		eventual_size = iclog->ic_offset;
3092	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3093	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3094	log->l_prev_block = log->l_curr_block;
3095	log->l_prev_cycle = log->l_curr_cycle;
3096
3097	/* roll log?: ic_offset changed later */
3098	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3099
3100	/* Round up to next log-sunit */
3101	if (log->l_iclog_roundoff > BBSIZE) {
3102		uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3103		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3104	}
3105
3106	if (log->l_curr_block >= log->l_logBBsize) {
3107		/*
3108		 * Rewind the current block before the cycle is bumped to make
3109		 * sure that the combined LSN never transiently moves forward
3110		 * when the log wraps to the next cycle. This is to support the
3111		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3112		 * other cases should acquire l_icloglock.
3113		 */
3114		log->l_curr_block -= log->l_logBBsize;
3115		ASSERT(log->l_curr_block >= 0);
3116		smp_wmb();
3117		log->l_curr_cycle++;
3118		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3119			log->l_curr_cycle++;
3120	}
3121	ASSERT(iclog == log->l_iclog);
3122	log->l_iclog = iclog->ic_next;
3123}
3124
3125/*
3126 * Force the iclog to disk and check if the iclog has been completed before
3127 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3128 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3129 * If completion has already occurred, tell the caller so that it can avoid an
3130 * unnecessary wait on the iclog.
3131 */
3132static int
3133xlog_force_and_check_iclog(
3134	struct xlog_in_core	*iclog,
3135	bool			*completed)
3136{
3137	xfs_lsn_t		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3138	int			error;
3139
3140	*completed = false;
3141	error = xlog_force_iclog(iclog);
3142	if (error)
3143		return error;
3144
3145	/*
3146	 * If the iclog has already been completed and reused the header LSN
3147	 * will have been rewritten by completion
3148	 */
3149	if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3150		*completed = true;
3151	return 0;
3152}
3153
3154/*
3155 * Write out all data in the in-core log as of this exact moment in time.
3156 *
3157 * Data may be written to the in-core log during this call.  However,
3158 * we don't guarantee this data will be written out.  A change from past
3159 * implementation means this routine will *not* write out zero length LRs.
3160 *
3161 * Basically, we try and perform an intelligent scan of the in-core logs.
3162 * If we determine there is no flushable data, we just return.  There is no
3163 * flushable data if:
3164 *
3165 *	1. the current iclog is active and has no data; the previous iclog
3166 *		is in the active or dirty state.
3167 *	2. the current iclog is drity, and the previous iclog is in the
3168 *		active or dirty state.
3169 *
3170 * We may sleep if:
3171 *
3172 *	1. the current iclog is not in the active nor dirty state.
3173 *	2. the current iclog dirty, and the previous iclog is not in the
3174 *		active nor dirty state.
3175 *	3. the current iclog is active, and there is another thread writing
3176 *		to this particular iclog.
3177 *	4. a) the current iclog is active and has no other writers
3178 *	   b) when we return from flushing out this iclog, it is still
3179 *		not in the active nor dirty state.
3180 */
3181int
3182xfs_log_force(
3183	struct xfs_mount	*mp,
3184	uint			flags)
3185{
3186	struct xlog		*log = mp->m_log;
3187	struct xlog_in_core	*iclog;
3188
3189	XFS_STATS_INC(mp, xs_log_force);
3190	trace_xfs_log_force(mp, 0, _RET_IP_);
3191
3192	xlog_cil_force(log);
3193
3194	spin_lock(&log->l_icloglock);
3195	if (xlog_is_shutdown(log))
3196		goto out_error;
3197
3198	iclog = log->l_iclog;
3199	trace_xlog_iclog_force(iclog, _RET_IP_);
3200
3201	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3202	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3203	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3204		/*
3205		 * If the head is dirty or (active and empty), then we need to
3206		 * look at the previous iclog.
3207		 *
3208		 * If the previous iclog is active or dirty we are done.  There
3209		 * is nothing to sync out. Otherwise, we attach ourselves to the
3210		 * previous iclog and go to sleep.
3211		 */
3212		iclog = iclog->ic_prev;
3213	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3214		if (atomic_read(&iclog->ic_refcnt) == 0) {
3215			/* We have exclusive access to this iclog. */
3216			bool	completed;
3217
3218			if (xlog_force_and_check_iclog(iclog, &completed))
3219				goto out_error;
3220
3221			if (completed)
3222				goto out_unlock;
3223		} else {
3224			/*
3225			 * Someone else is still writing to this iclog, so we
3226			 * need to ensure that when they release the iclog it
3227			 * gets synced immediately as we may be waiting on it.
3228			 */
3229			xlog_state_switch_iclogs(log, iclog, 0);
3230		}
3231	}
3232
3233	/*
3234	 * The iclog we are about to wait on may contain the checkpoint pushed
3235	 * by the above xlog_cil_force() call, but it may not have been pushed
3236	 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3237	 * are flushed when this iclog is written.
3238	 */
3239	if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3240		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3241
3242	if (flags & XFS_LOG_SYNC)
3243		return xlog_wait_on_iclog(iclog);
3244out_unlock:
3245	spin_unlock(&log->l_icloglock);
3246	return 0;
3247out_error:
3248	spin_unlock(&log->l_icloglock);
3249	return -EIO;
3250}
3251
3252/*
3253 * Force the log to a specific LSN.
3254 *
3255 * If an iclog with that lsn can be found:
3256 *	If it is in the DIRTY state, just return.
3257 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3258 *		state and go to sleep or return.
3259 *	If it is in any other state, go to sleep or return.
3260 *
3261 * Synchronous forces are implemented with a wait queue.  All callers trying
3262 * to force a given lsn to disk must wait on the queue attached to the
3263 * specific in-core log.  When given in-core log finally completes its write
3264 * to disk, that thread will wake up all threads waiting on the queue.
3265 */
3266static int
3267xlog_force_lsn(
3268	struct xlog		*log,
3269	xfs_lsn_t		lsn,
3270	uint			flags,
3271	int			*log_flushed,
3272	bool			already_slept)
3273{
3274	struct xlog_in_core	*iclog;
3275	bool			completed;
3276
3277	spin_lock(&log->l_icloglock);
3278	if (xlog_is_shutdown(log))
3279		goto out_error;
3280
3281	iclog = log->l_iclog;
3282	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3283		trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3284		iclog = iclog->ic_next;
3285		if (iclog == log->l_iclog)
3286			goto out_unlock;
3287	}
3288
3289	switch (iclog->ic_state) {
3290	case XLOG_STATE_ACTIVE:
3291		/*
3292		 * We sleep here if we haven't already slept (e.g. this is the
3293		 * first time we've looked at the correct iclog buf) and the
3294		 * buffer before us is going to be sync'ed.  The reason for this
3295		 * is that if we are doing sync transactions here, by waiting
3296		 * for the previous I/O to complete, we can allow a few more
3297		 * transactions into this iclog before we close it down.
3298		 *
3299		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3300		 * refcnt so we can release the log (which drops the ref count).
3301		 * The state switch keeps new transaction commits from using
3302		 * this buffer.  When the current commits finish writing into
3303		 * the buffer, the refcount will drop to zero and the buffer
3304		 * will go out then.
3305		 */
3306		if (!already_slept &&
3307		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3308		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3309			xlog_wait(&iclog->ic_prev->ic_write_wait,
3310					&log->l_icloglock);
3311			return -EAGAIN;
3312		}
3313		if (xlog_force_and_check_iclog(iclog, &completed))
3314			goto out_error;
3315		if (log_flushed)
3316			*log_flushed = 1;
3317		if (completed)
3318			goto out_unlock;
3319		break;
3320	case XLOG_STATE_WANT_SYNC:
3321		/*
3322		 * This iclog may contain the checkpoint pushed by the
3323		 * xlog_cil_force_seq() call, but there are other writers still
3324		 * accessing it so it hasn't been pushed to disk yet. Like the
3325		 * ACTIVE case above, we need to make sure caches are flushed
3326		 * when this iclog is written.
3327		 */
3328		iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3329		break;
3330	default:
3331		/*
3332		 * The entire checkpoint was written by the CIL force and is on
3333		 * its way to disk already. It will be stable when it
3334		 * completes, so we don't need to manipulate caches here at all.
3335		 * We just need to wait for completion if necessary.
3336		 */
3337		break;
3338	}
3339
3340	if (flags & XFS_LOG_SYNC)
3341		return xlog_wait_on_iclog(iclog);
3342out_unlock:
3343	spin_unlock(&log->l_icloglock);
3344	return 0;
3345out_error:
3346	spin_unlock(&log->l_icloglock);
3347	return -EIO;
3348}
3349
3350/*
3351 * Force the log to a specific checkpoint sequence.
3352 *
3353 * First force the CIL so that all the required changes have been flushed to the
3354 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3355 * the iclog that needs to be flushed to stable storage. If the caller needs
3356 * a synchronous log force, we will wait on the iclog with the LSN returned by
3357 * xlog_cil_force_seq() to be completed.
3358 */
3359int
3360xfs_log_force_seq(
3361	struct xfs_mount	*mp,
3362	xfs_csn_t		seq,
3363	uint			flags,
3364	int			*log_flushed)
3365{
3366	struct xlog		*log = mp->m_log;
3367	xfs_lsn_t		lsn;
3368	int			ret;
3369	ASSERT(seq != 0);
3370
3371	XFS_STATS_INC(mp, xs_log_force);
3372	trace_xfs_log_force(mp, seq, _RET_IP_);
3373
3374	lsn = xlog_cil_force_seq(log, seq);
3375	if (lsn == NULLCOMMITLSN)
3376		return 0;
3377
3378	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3379	if (ret == -EAGAIN) {
3380		XFS_STATS_INC(mp, xs_log_force_sleep);
3381		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3382	}
3383	return ret;
3384}
3385
3386/*
3387 * Free a used ticket when its refcount falls to zero.
3388 */
3389void
3390xfs_log_ticket_put(
3391	xlog_ticket_t	*ticket)
3392{
3393	ASSERT(atomic_read(&ticket->t_ref) > 0);
3394	if (atomic_dec_and_test(&ticket->t_ref))
3395		kmem_cache_free(xfs_log_ticket_cache, ticket);
3396}
3397
3398xlog_ticket_t *
3399xfs_log_ticket_get(
3400	xlog_ticket_t	*ticket)
3401{
3402	ASSERT(atomic_read(&ticket->t_ref) > 0);
3403	atomic_inc(&ticket->t_ref);
3404	return ticket;
3405}
3406
3407/*
3408 * Figure out the total log space unit (in bytes) that would be
3409 * required for a log ticket.
3410 */
3411static int
3412xlog_calc_unit_res(
3413	struct xlog		*log,
3414	int			unit_bytes,
3415	int			*niclogs)
3416{
3417	int			iclog_space;
3418	uint			num_headers;
3419
3420	/*
3421	 * Permanent reservations have up to 'cnt'-1 active log operations
3422	 * in the log.  A unit in this case is the amount of space for one
3423	 * of these log operations.  Normal reservations have a cnt of 1
3424	 * and their unit amount is the total amount of space required.
3425	 *
3426	 * The following lines of code account for non-transaction data
3427	 * which occupy space in the on-disk log.
3428	 *
3429	 * Normal form of a transaction is:
3430	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3431	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3432	 *
3433	 * We need to account for all the leadup data and trailer data
3434	 * around the transaction data.
3435	 * And then we need to account for the worst case in terms of using
3436	 * more space.
3437	 * The worst case will happen if:
3438	 * - the placement of the transaction happens to be such that the
3439	 *   roundoff is at its maximum
3440	 * - the transaction data is synced before the commit record is synced
3441	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3442	 *   Therefore the commit record is in its own Log Record.
3443	 *   This can happen as the commit record is called with its
3444	 *   own region to xlog_write().
3445	 *   This then means that in the worst case, roundoff can happen for
3446	 *   the commit-rec as well.
3447	 *   The commit-rec is smaller than padding in this scenario and so it is
3448	 *   not added separately.
3449	 */
3450
3451	/* for trans header */
3452	unit_bytes += sizeof(xlog_op_header_t);
3453	unit_bytes += sizeof(xfs_trans_header_t);
3454
3455	/* for start-rec */
3456	unit_bytes += sizeof(xlog_op_header_t);
3457
3458	/*
3459	 * for LR headers - the space for data in an iclog is the size minus
3460	 * the space used for the headers. If we use the iclog size, then we
3461	 * undercalculate the number of headers required.
3462	 *
3463	 * Furthermore - the addition of op headers for split-recs might
3464	 * increase the space required enough to require more log and op
3465	 * headers, so take that into account too.
3466	 *
3467	 * IMPORTANT: This reservation makes the assumption that if this
3468	 * transaction is the first in an iclog and hence has the LR headers
3469	 * accounted to it, then the remaining space in the iclog is
3470	 * exclusively for this transaction.  i.e. if the transaction is larger
3471	 * than the iclog, it will be the only thing in that iclog.
3472	 * Fundamentally, this means we must pass the entire log vector to
3473	 * xlog_write to guarantee this.
3474	 */
3475	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3476	num_headers = howmany(unit_bytes, iclog_space);
3477
3478	/* for split-recs - ophdrs added when data split over LRs */
3479	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3480
3481	/* add extra header reservations if we overrun */
3482	while (!num_headers ||
3483	       howmany(unit_bytes, iclog_space) > num_headers) {
3484		unit_bytes += sizeof(xlog_op_header_t);
3485		num_headers++;
3486	}
3487	unit_bytes += log->l_iclog_hsize * num_headers;
3488
3489	/* for commit-rec LR header - note: padding will subsume the ophdr */
3490	unit_bytes += log->l_iclog_hsize;
3491
3492	/* roundoff padding for transaction data and one for commit record */
3493	unit_bytes += 2 * log->l_iclog_roundoff;
3494
3495	if (niclogs)
3496		*niclogs = num_headers;
3497	return unit_bytes;
3498}
3499
3500int
3501xfs_log_calc_unit_res(
3502	struct xfs_mount	*mp,
3503	int			unit_bytes)
3504{
3505	return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3506}
3507
3508/*
3509 * Allocate and initialise a new log ticket.
3510 */
3511struct xlog_ticket *
3512xlog_ticket_alloc(
3513	struct xlog		*log,
3514	int			unit_bytes,
3515	int			cnt,
3516	bool			permanent)
3517{
3518	struct xlog_ticket	*tic;
3519	int			unit_res;
3520
3521	tic = kmem_cache_zalloc(xfs_log_ticket_cache,
3522			GFP_KERNEL | __GFP_NOFAIL);
3523
3524	unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3525
3526	atomic_set(&tic->t_ref, 1);
3527	tic->t_task		= current;
3528	INIT_LIST_HEAD(&tic->t_queue);
3529	tic->t_unit_res		= unit_res;
3530	tic->t_curr_res		= unit_res;
3531	tic->t_cnt		= cnt;
3532	tic->t_ocnt		= cnt;
3533	tic->t_tid		= get_random_u32();
3534	if (permanent)
3535		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3536
3537	return tic;
3538}
3539
3540#if defined(DEBUG)
3541/*
3542 * Check to make sure the grant write head didn't just over lap the tail.  If
3543 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3544 * the cycles differ by exactly one and check the byte count.
3545 *
3546 * This check is run unlocked, so can give false positives. Rather than assert
3547 * on failures, use a warn-once flag and a panic tag to allow the admin to
3548 * determine if they want to panic the machine when such an error occurs. For
3549 * debug kernels this will have the same effect as using an assert but, unlinke
3550 * an assert, it can be turned off at runtime.
3551 */
3552STATIC void
3553xlog_verify_grant_tail(
3554	struct xlog	*log)
3555{
3556	int		tail_cycle, tail_blocks;
3557	int		cycle, space;
3558
3559	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3560	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3561	if (tail_cycle != cycle) {
3562		if (cycle - 1 != tail_cycle &&
3563		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3564			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3565				"%s: cycle - 1 != tail_cycle", __func__);
3566		}
3567
3568		if (space > BBTOB(tail_blocks) &&
3569		    !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3570			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3571				"%s: space > BBTOB(tail_blocks)", __func__);
3572		}
3573	}
3574}
3575
3576/* check if it will fit */
3577STATIC void
3578xlog_verify_tail_lsn(
3579	struct xlog		*log,
3580	struct xlog_in_core	*iclog)
3581{
3582	xfs_lsn_t	tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3583	int		blocks;
3584
3585    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3586	blocks =
3587	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3588	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3589		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3590    } else {
3591	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3592
3593	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3594		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3595
3596	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3597	if (blocks < BTOBB(iclog->ic_offset) + 1)
3598		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3599    }
3600}
3601
3602/*
3603 * Perform a number of checks on the iclog before writing to disk.
3604 *
3605 * 1. Make sure the iclogs are still circular
3606 * 2. Make sure we have a good magic number
3607 * 3. Make sure we don't have magic numbers in the data
3608 * 4. Check fields of each log operation header for:
3609 *	A. Valid client identifier
3610 *	B. tid ptr value falls in valid ptr space (user space code)
3611 *	C. Length in log record header is correct according to the
3612 *		individual operation headers within record.
3613 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3614 *	log, check the preceding blocks of the physical log to make sure all
3615 *	the cycle numbers agree with the current cycle number.
3616 */
3617STATIC void
3618xlog_verify_iclog(
3619	struct xlog		*log,
3620	struct xlog_in_core	*iclog,
3621	int			count)
3622{
3623	xlog_op_header_t	*ophead;
3624	xlog_in_core_t		*icptr;
3625	xlog_in_core_2_t	*xhdr;
3626	void			*base_ptr, *ptr, *p;
3627	ptrdiff_t		field_offset;
3628	uint8_t			clientid;
3629	int			len, i, j, k, op_len;
3630	int			idx;
3631
3632	/* check validity of iclog pointers */
3633	spin_lock(&log->l_icloglock);
3634	icptr = log->l_iclog;
3635	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3636		ASSERT(icptr);
3637
3638	if (icptr != log->l_iclog)
3639		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3640	spin_unlock(&log->l_icloglock);
3641
3642	/* check log magic numbers */
3643	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3644		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3645
3646	base_ptr = ptr = &iclog->ic_header;
3647	p = &iclog->ic_header;
3648	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3649		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3650			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3651				__func__);
3652	}
3653
3654	/* check fields */
3655	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3656	base_ptr = ptr = iclog->ic_datap;
3657	ophead = ptr;
3658	xhdr = iclog->ic_data;
3659	for (i = 0; i < len; i++) {
3660		ophead = ptr;
3661
3662		/* clientid is only 1 byte */
3663		p = &ophead->oh_clientid;
3664		field_offset = p - base_ptr;
3665		if (field_offset & 0x1ff) {
3666			clientid = ophead->oh_clientid;
3667		} else {
3668			idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3669			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3670				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3671				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3672				clientid = xlog_get_client_id(
3673					xhdr[j].hic_xheader.xh_cycle_data[k]);
3674			} else {
3675				clientid = xlog_get_client_id(
3676					iclog->ic_header.h_cycle_data[idx]);
3677			}
3678		}
3679		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3680			xfs_warn(log->l_mp,
3681				"%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3682				__func__, i, clientid, ophead,
3683				(unsigned long)field_offset);
3684		}
3685
3686		/* check length */
3687		p = &ophead->oh_len;
3688		field_offset = p - base_ptr;
3689		if (field_offset & 0x1ff) {
3690			op_len = be32_to_cpu(ophead->oh_len);
3691		} else {
3692			idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3693			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3694				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3695				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3696				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3697			} else {
3698				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3699			}
3700		}
3701		ptr += sizeof(xlog_op_header_t) + op_len;
3702	}
3703}
3704#endif
3705
3706/*
3707 * Perform a forced shutdown on the log.
3708 *
3709 * This can be called from low level log code to trigger a shutdown, or from the
3710 * high level mount shutdown code when the mount shuts down.
3711 *
3712 * Our main objectives here are to make sure that:
3713 *	a. if the shutdown was not due to a log IO error, flush the logs to
3714 *	   disk. Anything modified after this is ignored.
3715 *	b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3716 *	   parties to find out. Nothing new gets queued after this is done.
3717 *	c. Tasks sleeping on log reservations, pinned objects and
3718 *	   other resources get woken up.
3719 *	d. The mount is also marked as shut down so that log triggered shutdowns
3720 *	   still behave the same as if they called xfs_forced_shutdown().
3721 *
3722 * Return true if the shutdown cause was a log IO error and we actually shut the
3723 * log down.
3724 */
3725bool
3726xlog_force_shutdown(
3727	struct xlog	*log,
3728	uint32_t	shutdown_flags)
3729{
3730	bool		log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3731
3732	if (!log)
3733		return false;
3734
3735	/*
3736	 * Flush all the completed transactions to disk before marking the log
3737	 * being shut down. We need to do this first as shutting down the log
3738	 * before the force will prevent the log force from flushing the iclogs
3739	 * to disk.
3740	 *
3741	 * When we are in recovery, there are no transactions to flush, and
3742	 * we don't want to touch the log because we don't want to perturb the
3743	 * current head/tail for future recovery attempts. Hence we need to
3744	 * avoid a log force in this case.
3745	 *
3746	 * If we are shutting down due to a log IO error, then we must avoid
3747	 * trying to write the log as that may just result in more IO errors and
3748	 * an endless shutdown/force loop.
3749	 */
3750	if (!log_error && !xlog_in_recovery(log))
3751		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3752
3753	/*
3754	 * Atomically set the shutdown state. If the shutdown state is already
3755	 * set, there someone else is performing the shutdown and so we are done
3756	 * here. This should never happen because we should only ever get called
3757	 * once by the first shutdown caller.
3758	 *
3759	 * Much of the log state machine transitions assume that shutdown state
3760	 * cannot change once they hold the log->l_icloglock. Hence we need to
3761	 * hold that lock here, even though we use the atomic test_and_set_bit()
3762	 * operation to set the shutdown state.
3763	 */
3764	spin_lock(&log->l_icloglock);
3765	if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3766		spin_unlock(&log->l_icloglock);
3767		return false;
3768	}
3769	spin_unlock(&log->l_icloglock);
3770
3771	/*
3772	 * If this log shutdown also sets the mount shutdown state, issue a
3773	 * shutdown warning message.
3774	 */
3775	if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3776		xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3777"Filesystem has been shut down due to log error (0x%x).",
3778				shutdown_flags);
3779		xfs_alert(log->l_mp,
3780"Please unmount the filesystem and rectify the problem(s).");
3781		if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3782			xfs_stack_trace();
3783	}
3784
3785	/*
3786	 * We don't want anybody waiting for log reservations after this. That
3787	 * means we have to wake up everybody queued up on reserveq as well as
3788	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3789	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3790	 * action is protected by the grant locks.
3791	 */
3792	xlog_grant_head_wake_all(&log->l_reserve_head);
3793	xlog_grant_head_wake_all(&log->l_write_head);
3794
3795	/*
3796	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3797	 * as if the log writes were completed. The abort handling in the log
3798	 * item committed callback functions will do this again under lock to
3799	 * avoid races.
3800	 */
3801	spin_lock(&log->l_cilp->xc_push_lock);
3802	wake_up_all(&log->l_cilp->xc_start_wait);
3803	wake_up_all(&log->l_cilp->xc_commit_wait);
3804	spin_unlock(&log->l_cilp->xc_push_lock);
3805
3806	spin_lock(&log->l_icloglock);
3807	xlog_state_shutdown_callbacks(log);
3808	spin_unlock(&log->l_icloglock);
3809
3810	wake_up_var(&log->l_opstate);
3811	return log_error;
3812}
3813
3814STATIC int
3815xlog_iclogs_empty(
3816	struct xlog	*log)
3817{
3818	xlog_in_core_t	*iclog;
3819
3820	iclog = log->l_iclog;
3821	do {
3822		/* endianness does not matter here, zero is zero in
3823		 * any language.
3824		 */
3825		if (iclog->ic_header.h_num_logops)
3826			return 0;
3827		iclog = iclog->ic_next;
3828	} while (iclog != log->l_iclog);
3829	return 1;
3830}
3831
3832/*
3833 * Verify that an LSN stamped into a piece of metadata is valid. This is
3834 * intended for use in read verifiers on v5 superblocks.
3835 */
3836bool
3837xfs_log_check_lsn(
3838	struct xfs_mount	*mp,
3839	xfs_lsn_t		lsn)
3840{
3841	struct xlog		*log = mp->m_log;
3842	bool			valid;
3843
3844	/*
3845	 * norecovery mode skips mount-time log processing and unconditionally
3846	 * resets the in-core LSN. We can't validate in this mode, but
3847	 * modifications are not allowed anyways so just return true.
3848	 */
3849	if (xfs_has_norecovery(mp))
3850		return true;
3851
3852	/*
3853	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3854	 * handled by recovery and thus safe to ignore here.
3855	 */
3856	if (lsn == NULLCOMMITLSN)
3857		return true;
3858
3859	valid = xlog_valid_lsn(mp->m_log, lsn);
3860
3861	/* warn the user about what's gone wrong before verifier failure */
3862	if (!valid) {
3863		spin_lock(&log->l_icloglock);
3864		xfs_warn(mp,
3865"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3866"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3867			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3868			 log->l_curr_cycle, log->l_curr_block);
3869		spin_unlock(&log->l_icloglock);
3870	}
3871
3872	return valid;
3873}
3874
3875/*
3876 * Notify the log that we're about to start using a feature that is protected
3877 * by a log incompat feature flag.  This will prevent log covering from
3878 * clearing those flags.
3879 */
3880void
3881xlog_use_incompat_feat(
3882	struct xlog		*log)
3883{
3884	down_read(&log->l_incompat_users);
3885}
3886
3887/* Notify the log that we've finished using log incompat features. */
3888void
3889xlog_drop_incompat_feat(
3890	struct xlog		*log)
3891{
3892	up_read(&log->l_incompat_users);
3893}
3894