1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_trace.h"
17#include "xfs_trans_priv.h"
18#include "xfs_buf_item.h"
19#include "xfs_log.h"
20#include "xfs_log_priv.h"
21#include "xfs_error.h"
22#include "xfs_rtbitmap.h"
23
24#include <linux/iversion.h>
25
26struct kmem_cache	*xfs_ili_cache;		/* inode log item */
27
28static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
29{
30	return container_of(lip, struct xfs_inode_log_item, ili_item);
31}
32
33static uint64_t
34xfs_inode_item_sort(
35	struct xfs_log_item	*lip)
36{
37	return INODE_ITEM(lip)->ili_inode->i_ino;
38}
39
40/*
41 * Prior to finally logging the inode, we have to ensure that all the
42 * per-modification inode state changes are applied. This includes VFS inode
43 * state updates, format conversions, verifier state synchronisation and
44 * ensuring the inode buffer remains in memory whilst the inode is dirty.
45 *
46 * We have to be careful when we grab the inode cluster buffer due to lock
47 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
48 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
49 * not locked until ->precommit, so it happens after everything else has been
50 * modified.
51 *
52 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
53 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
54 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
55 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
56 * AGF lock modifying directory blocks.
57 *
58 * Rather than force a complete rework of all the transactions to call
59 * xfs_trans_log_inode() once and once only at the end of every transaction, we
60 * move the pinning of the inode cluster buffer to a ->precommit operation. This
61 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
62 * ensures that the inode cluster buffer locking is always done last in a
63 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
64 * cluster buffer.
65 *
66 * If we return the inode number as the precommit sort key then we'll also
67 * guarantee that the order all inode cluster buffer locking is the same all the
68 * inodes and unlink items in the transaction.
69 */
70static int
71xfs_inode_item_precommit(
72	struct xfs_trans	*tp,
73	struct xfs_log_item	*lip)
74{
75	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
76	struct xfs_inode	*ip = iip->ili_inode;
77	struct inode		*inode = VFS_I(ip);
78	unsigned int		flags = iip->ili_dirty_flags;
79
80	/*
81	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
82	 * don't matter - we either will need an extra transaction in 24 hours
83	 * to log the timestamps, or will clear already cleared fields in the
84	 * worst case.
85	 */
86	if (inode->i_state & I_DIRTY_TIME) {
87		spin_lock(&inode->i_lock);
88		inode->i_state &= ~I_DIRTY_TIME;
89		spin_unlock(&inode->i_lock);
90	}
91
92	/*
93	 * If we're updating the inode core or the timestamps and it's possible
94	 * to upgrade this inode to bigtime format, do so now.
95	 */
96	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
97	    xfs_has_bigtime(ip->i_mount) &&
98	    !xfs_inode_has_bigtime(ip)) {
99		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
100		flags |= XFS_ILOG_CORE;
101	}
102
103	/*
104	 * Inode verifiers do not check that the extent size hint is an integer
105	 * multiple of the rt extent size on a directory with both rtinherit
106	 * and extszinherit flags set.  If we're logging a directory that is
107	 * misconfigured in this way, clear the hint.
108	 */
109	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
110	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
111	    xfs_extlen_to_rtxmod(ip->i_mount, ip->i_extsize) > 0) {
112		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
113				   XFS_DIFLAG_EXTSZINHERIT);
114		ip->i_extsize = 0;
115		flags |= XFS_ILOG_CORE;
116	}
117
118	/*
119	 * Record the specific change for fdatasync optimisation. This allows
120	 * fdatasync to skip log forces for inodes that are only timestamp
121	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
122	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
123	 * (ili_fields) correctly tracks that the version has changed.
124	 */
125	spin_lock(&iip->ili_lock);
126	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
127	if (flags & XFS_ILOG_IVERSION)
128		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
129
130	if (!iip->ili_item.li_buf) {
131		struct xfs_buf	*bp;
132		int		error;
133
134		/*
135		 * We hold the ILOCK here, so this inode is not going to be
136		 * flushed while we are here. Further, because there is no
137		 * buffer attached to the item, we know that there is no IO in
138		 * progress, so nothing will clear the ili_fields while we read
139		 * in the buffer. Hence we can safely drop the spin lock and
140		 * read the buffer knowing that the state will not change from
141		 * here.
142		 */
143		spin_unlock(&iip->ili_lock);
144		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
145		if (error)
146			return error;
147
148		/*
149		 * We need an explicit buffer reference for the log item but
150		 * don't want the buffer to remain attached to the transaction.
151		 * Hold the buffer but release the transaction reference once
152		 * we've attached the inode log item to the buffer log item
153		 * list.
154		 */
155		xfs_buf_hold(bp);
156		spin_lock(&iip->ili_lock);
157		iip->ili_item.li_buf = bp;
158		bp->b_flags |= _XBF_INODES;
159		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
160		xfs_trans_brelse(tp, bp);
161	}
162
163	/*
164	 * Always OR in the bits from the ili_last_fields field.  This is to
165	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
166	 * in the eventual clearing of the ili_fields bits.  See the big comment
167	 * in xfs_iflush() for an explanation of this coordination mechanism.
168	 */
169	iip->ili_fields |= (flags | iip->ili_last_fields);
170	spin_unlock(&iip->ili_lock);
171
172	/*
173	 * We are done with the log item transaction dirty state, so clear it so
174	 * that it doesn't pollute future transactions.
175	 */
176	iip->ili_dirty_flags = 0;
177	return 0;
178}
179
180/*
181 * The logged size of an inode fork is always the current size of the inode
182 * fork. This means that when an inode fork is relogged, the size of the logged
183 * region is determined by the current state, not the combination of the
184 * previously logged state + the current state. This is different relogging
185 * behaviour to most other log items which will retain the size of the
186 * previously logged changes when smaller regions are relogged.
187 *
188 * Hence operations that remove data from the inode fork (e.g. shortform
189 * dir/attr remove, extent form extent removal, etc), the size of the relogged
190 * inode gets -smaller- rather than stays the same size as the previously logged
191 * size and this can result in the committing transaction reducing the amount of
192 * space being consumed by the CIL.
193 */
194STATIC void
195xfs_inode_item_data_fork_size(
196	struct xfs_inode_log_item *iip,
197	int			*nvecs,
198	int			*nbytes)
199{
200	struct xfs_inode	*ip = iip->ili_inode;
201
202	switch (ip->i_df.if_format) {
203	case XFS_DINODE_FMT_EXTENTS:
204		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
205		    ip->i_df.if_nextents > 0 &&
206		    ip->i_df.if_bytes > 0) {
207			/* worst case, doesn't subtract delalloc extents */
208			*nbytes += xfs_inode_data_fork_size(ip);
209			*nvecs += 1;
210		}
211		break;
212	case XFS_DINODE_FMT_BTREE:
213		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
214		    ip->i_df.if_broot_bytes > 0) {
215			*nbytes += ip->i_df.if_broot_bytes;
216			*nvecs += 1;
217		}
218		break;
219	case XFS_DINODE_FMT_LOCAL:
220		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
221		    ip->i_df.if_bytes > 0) {
222			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
223			*nvecs += 1;
224		}
225		break;
226
227	case XFS_DINODE_FMT_DEV:
228		break;
229	default:
230		ASSERT(0);
231		break;
232	}
233}
234
235STATIC void
236xfs_inode_item_attr_fork_size(
237	struct xfs_inode_log_item *iip,
238	int			*nvecs,
239	int			*nbytes)
240{
241	struct xfs_inode	*ip = iip->ili_inode;
242
243	switch (ip->i_af.if_format) {
244	case XFS_DINODE_FMT_EXTENTS:
245		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
246		    ip->i_af.if_nextents > 0 &&
247		    ip->i_af.if_bytes > 0) {
248			/* worst case, doesn't subtract unused space */
249			*nbytes += xfs_inode_attr_fork_size(ip);
250			*nvecs += 1;
251		}
252		break;
253	case XFS_DINODE_FMT_BTREE:
254		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
255		    ip->i_af.if_broot_bytes > 0) {
256			*nbytes += ip->i_af.if_broot_bytes;
257			*nvecs += 1;
258		}
259		break;
260	case XFS_DINODE_FMT_LOCAL:
261		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
262		    ip->i_af.if_bytes > 0) {
263			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
264			*nvecs += 1;
265		}
266		break;
267	default:
268		ASSERT(0);
269		break;
270	}
271}
272
273/*
274 * This returns the number of iovecs needed to log the given inode item.
275 *
276 * We need one iovec for the inode log format structure, one for the
277 * inode core, and possibly one for the inode data/extents/b-tree root
278 * and one for the inode attribute data/extents/b-tree root.
279 */
280STATIC void
281xfs_inode_item_size(
282	struct xfs_log_item	*lip,
283	int			*nvecs,
284	int			*nbytes)
285{
286	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
287	struct xfs_inode	*ip = iip->ili_inode;
288
289	*nvecs += 2;
290	*nbytes += sizeof(struct xfs_inode_log_format) +
291		   xfs_log_dinode_size(ip->i_mount);
292
293	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
294	if (xfs_inode_has_attr_fork(ip))
295		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
296}
297
298STATIC void
299xfs_inode_item_format_data_fork(
300	struct xfs_inode_log_item *iip,
301	struct xfs_inode_log_format *ilf,
302	struct xfs_log_vec	*lv,
303	struct xfs_log_iovec	**vecp)
304{
305	struct xfs_inode	*ip = iip->ili_inode;
306	size_t			data_bytes;
307
308	switch (ip->i_df.if_format) {
309	case XFS_DINODE_FMT_EXTENTS:
310		iip->ili_fields &=
311			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
312
313		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
314		    ip->i_df.if_nextents > 0 &&
315		    ip->i_df.if_bytes > 0) {
316			struct xfs_bmbt_rec *p;
317
318			ASSERT(xfs_iext_count(&ip->i_df) > 0);
319
320			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
321			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
322			xlog_finish_iovec(lv, *vecp, data_bytes);
323
324			ASSERT(data_bytes <= ip->i_df.if_bytes);
325
326			ilf->ilf_dsize = data_bytes;
327			ilf->ilf_size++;
328		} else {
329			iip->ili_fields &= ~XFS_ILOG_DEXT;
330		}
331		break;
332	case XFS_DINODE_FMT_BTREE:
333		iip->ili_fields &=
334			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
335
336		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
337		    ip->i_df.if_broot_bytes > 0) {
338			ASSERT(ip->i_df.if_broot != NULL);
339			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
340					ip->i_df.if_broot,
341					ip->i_df.if_broot_bytes);
342			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
343			ilf->ilf_size++;
344		} else {
345			ASSERT(!(iip->ili_fields &
346				 XFS_ILOG_DBROOT));
347			iip->ili_fields &= ~XFS_ILOG_DBROOT;
348		}
349		break;
350	case XFS_DINODE_FMT_LOCAL:
351		iip->ili_fields &=
352			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
353		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
354		    ip->i_df.if_bytes > 0) {
355			ASSERT(ip->i_df.if_data != NULL);
356			ASSERT(ip->i_disk_size > 0);
357			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
358					ip->i_df.if_data, ip->i_df.if_bytes);
359			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
360			ilf->ilf_size++;
361		} else {
362			iip->ili_fields &= ~XFS_ILOG_DDATA;
363		}
364		break;
365	case XFS_DINODE_FMT_DEV:
366		iip->ili_fields &=
367			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
368		if (iip->ili_fields & XFS_ILOG_DEV)
369			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
370		break;
371	default:
372		ASSERT(0);
373		break;
374	}
375}
376
377STATIC void
378xfs_inode_item_format_attr_fork(
379	struct xfs_inode_log_item *iip,
380	struct xfs_inode_log_format *ilf,
381	struct xfs_log_vec	*lv,
382	struct xfs_log_iovec	**vecp)
383{
384	struct xfs_inode	*ip = iip->ili_inode;
385	size_t			data_bytes;
386
387	switch (ip->i_af.if_format) {
388	case XFS_DINODE_FMT_EXTENTS:
389		iip->ili_fields &=
390			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
391
392		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
393		    ip->i_af.if_nextents > 0 &&
394		    ip->i_af.if_bytes > 0) {
395			struct xfs_bmbt_rec *p;
396
397			ASSERT(xfs_iext_count(&ip->i_af) ==
398				ip->i_af.if_nextents);
399
400			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
401			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
402			xlog_finish_iovec(lv, *vecp, data_bytes);
403
404			ilf->ilf_asize = data_bytes;
405			ilf->ilf_size++;
406		} else {
407			iip->ili_fields &= ~XFS_ILOG_AEXT;
408		}
409		break;
410	case XFS_DINODE_FMT_BTREE:
411		iip->ili_fields &=
412			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
413
414		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
415		    ip->i_af.if_broot_bytes > 0) {
416			ASSERT(ip->i_af.if_broot != NULL);
417
418			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
419					ip->i_af.if_broot,
420					ip->i_af.if_broot_bytes);
421			ilf->ilf_asize = ip->i_af.if_broot_bytes;
422			ilf->ilf_size++;
423		} else {
424			iip->ili_fields &= ~XFS_ILOG_ABROOT;
425		}
426		break;
427	case XFS_DINODE_FMT_LOCAL:
428		iip->ili_fields &=
429			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
430
431		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
432		    ip->i_af.if_bytes > 0) {
433			ASSERT(ip->i_af.if_data != NULL);
434			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
435					ip->i_af.if_data, ip->i_af.if_bytes);
436			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
437			ilf->ilf_size++;
438		} else {
439			iip->ili_fields &= ~XFS_ILOG_ADATA;
440		}
441		break;
442	default:
443		ASSERT(0);
444		break;
445	}
446}
447
448/*
449 * Convert an incore timestamp to a log timestamp.  Note that the log format
450 * specifies host endian format!
451 */
452static inline xfs_log_timestamp_t
453xfs_inode_to_log_dinode_ts(
454	struct xfs_inode		*ip,
455	const struct timespec64		tv)
456{
457	struct xfs_log_legacy_timestamp	*lits;
458	xfs_log_timestamp_t		its;
459
460	if (xfs_inode_has_bigtime(ip))
461		return xfs_inode_encode_bigtime(tv);
462
463	lits = (struct xfs_log_legacy_timestamp *)&its;
464	lits->t_sec = tv.tv_sec;
465	lits->t_nsec = tv.tv_nsec;
466
467	return its;
468}
469
470/*
471 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
472 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
473 * in memory when logging an inode, so we can just copy it from the on-disk
474 * inode to the in-log inode here so that recovery of file system with these
475 * fields set to non-zero values doesn't lose them.  For all other cases we zero
476 * the fields.
477 */
478static void
479xfs_copy_dm_fields_to_log_dinode(
480	struct xfs_inode	*ip,
481	struct xfs_log_dinode	*to)
482{
483	struct xfs_dinode	*dip;
484
485	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
486			     ip->i_imap.im_boffset);
487
488	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
489		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
490		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
491	} else {
492		to->di_dmevmask = 0;
493		to->di_dmstate = 0;
494	}
495}
496
497static inline void
498xfs_inode_to_log_dinode_iext_counters(
499	struct xfs_inode	*ip,
500	struct xfs_log_dinode	*to)
501{
502	if (xfs_inode_has_large_extent_counts(ip)) {
503		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
504		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
505		to->di_nrext64_pad = 0;
506	} else {
507		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
508		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
509	}
510}
511
512static void
513xfs_inode_to_log_dinode(
514	struct xfs_inode	*ip,
515	struct xfs_log_dinode	*to,
516	xfs_lsn_t		lsn)
517{
518	struct inode		*inode = VFS_I(ip);
519
520	to->di_magic = XFS_DINODE_MAGIC;
521	to->di_format = xfs_ifork_format(&ip->i_df);
522	to->di_uid = i_uid_read(inode);
523	to->di_gid = i_gid_read(inode);
524	to->di_projid_lo = ip->i_projid & 0xffff;
525	to->di_projid_hi = ip->i_projid >> 16;
526
527	memset(to->di_pad3, 0, sizeof(to->di_pad3));
528	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode_get_atime(inode));
529	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode_get_mtime(inode));
530	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
531	to->di_nlink = inode->i_nlink;
532	to->di_gen = inode->i_generation;
533	to->di_mode = inode->i_mode;
534
535	to->di_size = ip->i_disk_size;
536	to->di_nblocks = ip->i_nblocks;
537	to->di_extsize = ip->i_extsize;
538	to->di_forkoff = ip->i_forkoff;
539	to->di_aformat = xfs_ifork_format(&ip->i_af);
540	to->di_flags = ip->i_diflags;
541
542	xfs_copy_dm_fields_to_log_dinode(ip, to);
543
544	/* log a dummy value to ensure log structure is fully initialised */
545	to->di_next_unlinked = NULLAGINO;
546
547	if (xfs_has_v3inodes(ip->i_mount)) {
548		to->di_version = 3;
549		to->di_changecount = inode_peek_iversion(inode);
550		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
551		to->di_flags2 = ip->i_diflags2;
552		to->di_cowextsize = ip->i_cowextsize;
553		to->di_ino = ip->i_ino;
554		to->di_lsn = lsn;
555		memset(to->di_pad2, 0, sizeof(to->di_pad2));
556		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
557		to->di_v3_pad = 0;
558
559		/* dummy value for initialisation */
560		to->di_crc = 0;
561	} else {
562		to->di_version = 2;
563		to->di_flushiter = ip->i_flushiter;
564		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
565	}
566
567	xfs_inode_to_log_dinode_iext_counters(ip, to);
568}
569
570/*
571 * Format the inode core. Current timestamp data is only in the VFS inode
572 * fields, so we need to grab them from there. Hence rather than just copying
573 * the XFS inode core structure, format the fields directly into the iovec.
574 */
575static void
576xfs_inode_item_format_core(
577	struct xfs_inode	*ip,
578	struct xfs_log_vec	*lv,
579	struct xfs_log_iovec	**vecp)
580{
581	struct xfs_log_dinode	*dic;
582
583	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
584	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
585	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
586}
587
588/*
589 * This is called to fill in the vector of log iovecs for the given inode
590 * log item.  It fills the first item with an inode log format structure,
591 * the second with the on-disk inode structure, and a possible third and/or
592 * fourth with the inode data/extents/b-tree root and inode attributes
593 * data/extents/b-tree root.
594 *
595 * Note: Always use the 64 bit inode log format structure so we don't
596 * leave an uninitialised hole in the format item on 64 bit systems. Log
597 * recovery on 32 bit systems handles this just fine, so there's no reason
598 * for not using an initialising the properly padded structure all the time.
599 */
600STATIC void
601xfs_inode_item_format(
602	struct xfs_log_item	*lip,
603	struct xfs_log_vec	*lv)
604{
605	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
606	struct xfs_inode	*ip = iip->ili_inode;
607	struct xfs_log_iovec	*vecp = NULL;
608	struct xfs_inode_log_format *ilf;
609
610	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
611	ilf->ilf_type = XFS_LI_INODE;
612	ilf->ilf_ino = ip->i_ino;
613	ilf->ilf_blkno = ip->i_imap.im_blkno;
614	ilf->ilf_len = ip->i_imap.im_len;
615	ilf->ilf_boffset = ip->i_imap.im_boffset;
616	ilf->ilf_fields = XFS_ILOG_CORE;
617	ilf->ilf_size = 2; /* format + core */
618
619	/*
620	 * make sure we don't leak uninitialised data into the log in the case
621	 * when we don't log every field in the inode.
622	 */
623	ilf->ilf_dsize = 0;
624	ilf->ilf_asize = 0;
625	ilf->ilf_pad = 0;
626	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
627
628	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
629
630	xfs_inode_item_format_core(ip, lv, &vecp);
631	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
632	if (xfs_inode_has_attr_fork(ip)) {
633		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
634	} else {
635		iip->ili_fields &=
636			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
637	}
638
639	/* update the format with the exact fields we actually logged */
640	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
641}
642
643/*
644 * This is called to pin the inode associated with the inode log
645 * item in memory so it cannot be written out.
646 */
647STATIC void
648xfs_inode_item_pin(
649	struct xfs_log_item	*lip)
650{
651	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
652
653	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
654	ASSERT(lip->li_buf);
655
656	trace_xfs_inode_pin(ip, _RET_IP_);
657	atomic_inc(&ip->i_pincount);
658}
659
660
661/*
662 * This is called to unpin the inode associated with the inode log
663 * item which was previously pinned with a call to xfs_inode_item_pin().
664 *
665 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
666 *
667 * Note that unpin can race with inode cluster buffer freeing marking the buffer
668 * stale. In that case, flush completions are run from the buffer unpin call,
669 * which may happen before the inode is unpinned. If we lose the race, there
670 * will be no buffer attached to the log item, but the inode will be marked
671 * XFS_ISTALE.
672 */
673STATIC void
674xfs_inode_item_unpin(
675	struct xfs_log_item	*lip,
676	int			remove)
677{
678	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
679
680	trace_xfs_inode_unpin(ip, _RET_IP_);
681	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
682	ASSERT(atomic_read(&ip->i_pincount) > 0);
683	if (atomic_dec_and_test(&ip->i_pincount))
684		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
685}
686
687STATIC uint
688xfs_inode_item_push(
689	struct xfs_log_item	*lip,
690	struct list_head	*buffer_list)
691		__releases(&lip->li_ailp->ail_lock)
692		__acquires(&lip->li_ailp->ail_lock)
693{
694	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
695	struct xfs_inode	*ip = iip->ili_inode;
696	struct xfs_buf		*bp = lip->li_buf;
697	uint			rval = XFS_ITEM_SUCCESS;
698	int			error;
699
700	if (!bp || (ip->i_flags & XFS_ISTALE)) {
701		/*
702		 * Inode item/buffer is being aborted due to cluster
703		 * buffer deletion. Trigger a log force to have that operation
704		 * completed and items removed from the AIL before the next push
705		 * attempt.
706		 */
707		return XFS_ITEM_PINNED;
708	}
709
710	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
711		return XFS_ITEM_PINNED;
712
713	if (xfs_iflags_test(ip, XFS_IFLUSHING))
714		return XFS_ITEM_FLUSHING;
715
716	if (!xfs_buf_trylock(bp))
717		return XFS_ITEM_LOCKED;
718
719	spin_unlock(&lip->li_ailp->ail_lock);
720
721	/*
722	 * We need to hold a reference for flushing the cluster buffer as it may
723	 * fail the buffer without IO submission. In which case, we better get a
724	 * reference for that completion because otherwise we don't get a
725	 * reference for IO until we queue the buffer for delwri submission.
726	 */
727	xfs_buf_hold(bp);
728	error = xfs_iflush_cluster(bp);
729	if (!error) {
730		if (!xfs_buf_delwri_queue(bp, buffer_list))
731			rval = XFS_ITEM_FLUSHING;
732		xfs_buf_relse(bp);
733	} else {
734		/*
735		 * Release the buffer if we were unable to flush anything. On
736		 * any other error, the buffer has already been released.
737		 */
738		if (error == -EAGAIN)
739			xfs_buf_relse(bp);
740		rval = XFS_ITEM_LOCKED;
741	}
742
743	spin_lock(&lip->li_ailp->ail_lock);
744	return rval;
745}
746
747/*
748 * Unlock the inode associated with the inode log item.
749 */
750STATIC void
751xfs_inode_item_release(
752	struct xfs_log_item	*lip)
753{
754	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
755	struct xfs_inode	*ip = iip->ili_inode;
756	unsigned short		lock_flags;
757
758	ASSERT(ip->i_itemp != NULL);
759	xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
760
761	lock_flags = iip->ili_lock_flags;
762	iip->ili_lock_flags = 0;
763	if (lock_flags)
764		xfs_iunlock(ip, lock_flags);
765}
766
767/*
768 * This is called to find out where the oldest active copy of the inode log
769 * item in the on disk log resides now that the last log write of it completed
770 * at the given lsn.  Since we always re-log all dirty data in an inode, the
771 * latest copy in the on disk log is the only one that matters.  Therefore,
772 * simply return the given lsn.
773 *
774 * If the inode has been marked stale because the cluster is being freed, we
775 * don't want to (re-)insert this inode into the AIL. There is a race condition
776 * where the cluster buffer may be unpinned before the inode is inserted into
777 * the AIL during transaction committed processing. If the buffer is unpinned
778 * before the inode item has been committed and inserted, then it is possible
779 * for the buffer to be written and IO completes before the inode is inserted
780 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
781 * AIL which will never get removed. It will, however, get reclaimed which
782 * triggers an assert in xfs_inode_free() complaining about freein an inode
783 * still in the AIL.
784 *
785 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
786 * transaction committed code knows that it does not need to do any further
787 * processing on the item.
788 */
789STATIC xfs_lsn_t
790xfs_inode_item_committed(
791	struct xfs_log_item	*lip,
792	xfs_lsn_t		lsn)
793{
794	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
795	struct xfs_inode	*ip = iip->ili_inode;
796
797	if (xfs_iflags_test(ip, XFS_ISTALE)) {
798		xfs_inode_item_unpin(lip, 0);
799		return -1;
800	}
801	return lsn;
802}
803
804STATIC void
805xfs_inode_item_committing(
806	struct xfs_log_item	*lip,
807	xfs_csn_t		seq)
808{
809	INODE_ITEM(lip)->ili_commit_seq = seq;
810	return xfs_inode_item_release(lip);
811}
812
813static const struct xfs_item_ops xfs_inode_item_ops = {
814	.iop_sort	= xfs_inode_item_sort,
815	.iop_precommit	= xfs_inode_item_precommit,
816	.iop_size	= xfs_inode_item_size,
817	.iop_format	= xfs_inode_item_format,
818	.iop_pin	= xfs_inode_item_pin,
819	.iop_unpin	= xfs_inode_item_unpin,
820	.iop_release	= xfs_inode_item_release,
821	.iop_committed	= xfs_inode_item_committed,
822	.iop_push	= xfs_inode_item_push,
823	.iop_committing	= xfs_inode_item_committing,
824};
825
826
827/*
828 * Initialize the inode log item for a newly allocated (in-core) inode.
829 */
830void
831xfs_inode_item_init(
832	struct xfs_inode	*ip,
833	struct xfs_mount	*mp)
834{
835	struct xfs_inode_log_item *iip;
836
837	ASSERT(ip->i_itemp == NULL);
838	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
839					      GFP_KERNEL | __GFP_NOFAIL);
840
841	iip->ili_inode = ip;
842	spin_lock_init(&iip->ili_lock);
843	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
844						&xfs_inode_item_ops);
845}
846
847/*
848 * Free the inode log item and any memory hanging off of it.
849 */
850void
851xfs_inode_item_destroy(
852	struct xfs_inode	*ip)
853{
854	struct xfs_inode_log_item *iip = ip->i_itemp;
855
856	ASSERT(iip->ili_item.li_buf == NULL);
857
858	ip->i_itemp = NULL;
859	kvfree(iip->ili_item.li_lv_shadow);
860	kmem_cache_free(xfs_ili_cache, iip);
861}
862
863
864/*
865 * We only want to pull the item from the AIL if it is actually there
866 * and its location in the log has not changed since we started the
867 * flush.  Thus, we only bother if the inode's lsn has not changed.
868 */
869static void
870xfs_iflush_ail_updates(
871	struct xfs_ail		*ailp,
872	struct list_head	*list)
873{
874	struct xfs_log_item	*lip;
875	xfs_lsn_t		tail_lsn = 0;
876
877	/* this is an opencoded batch version of xfs_trans_ail_delete */
878	spin_lock(&ailp->ail_lock);
879	list_for_each_entry(lip, list, li_bio_list) {
880		xfs_lsn_t	lsn;
881
882		clear_bit(XFS_LI_FAILED, &lip->li_flags);
883		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
884			continue;
885
886		/*
887		 * dgc: Not sure how this happens, but it happens very
888		 * occassionaly via generic/388.  xfs_iflush_abort() also
889		 * silently handles this same "under writeback but not in AIL at
890		 * shutdown" condition via xfs_trans_ail_delete().
891		 */
892		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
893			ASSERT(xlog_is_shutdown(lip->li_log));
894			continue;
895		}
896
897		lsn = xfs_ail_delete_one(ailp, lip);
898		if (!tail_lsn && lsn)
899			tail_lsn = lsn;
900	}
901	xfs_ail_update_finish(ailp, tail_lsn);
902}
903
904/*
905 * Walk the list of inodes that have completed their IOs. If they are clean
906 * remove them from the list and dissociate them from the buffer. Buffers that
907 * are still dirty remain linked to the buffer and on the list. Caller must
908 * handle them appropriately.
909 */
910static void
911xfs_iflush_finish(
912	struct xfs_buf		*bp,
913	struct list_head	*list)
914{
915	struct xfs_log_item	*lip, *n;
916
917	list_for_each_entry_safe(lip, n, list, li_bio_list) {
918		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
919		bool	drop_buffer = false;
920
921		spin_lock(&iip->ili_lock);
922
923		/*
924		 * Remove the reference to the cluster buffer if the inode is
925		 * clean in memory and drop the buffer reference once we've
926		 * dropped the locks we hold.
927		 */
928		ASSERT(iip->ili_item.li_buf == bp);
929		if (!iip->ili_fields) {
930			iip->ili_item.li_buf = NULL;
931			list_del_init(&lip->li_bio_list);
932			drop_buffer = true;
933		}
934		iip->ili_last_fields = 0;
935		iip->ili_flush_lsn = 0;
936		spin_unlock(&iip->ili_lock);
937		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
938		if (drop_buffer)
939			xfs_buf_rele(bp);
940	}
941}
942
943/*
944 * Inode buffer IO completion routine.  It is responsible for removing inodes
945 * attached to the buffer from the AIL if they have not been re-logged and
946 * completing the inode flush.
947 */
948void
949xfs_buf_inode_iodone(
950	struct xfs_buf		*bp)
951{
952	struct xfs_log_item	*lip, *n;
953	LIST_HEAD(flushed_inodes);
954	LIST_HEAD(ail_updates);
955
956	/*
957	 * Pull the attached inodes from the buffer one at a time and take the
958	 * appropriate action on them.
959	 */
960	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
961		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
962
963		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
964			xfs_iflush_abort(iip->ili_inode);
965			continue;
966		}
967		if (!iip->ili_last_fields)
968			continue;
969
970		/* Do an unlocked check for needing the AIL lock. */
971		if (iip->ili_flush_lsn == lip->li_lsn ||
972		    test_bit(XFS_LI_FAILED, &lip->li_flags))
973			list_move_tail(&lip->li_bio_list, &ail_updates);
974		else
975			list_move_tail(&lip->li_bio_list, &flushed_inodes);
976	}
977
978	if (!list_empty(&ail_updates)) {
979		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
980		list_splice_tail(&ail_updates, &flushed_inodes);
981	}
982
983	xfs_iflush_finish(bp, &flushed_inodes);
984	if (!list_empty(&flushed_inodes))
985		list_splice_tail(&flushed_inodes, &bp->b_li_list);
986}
987
988void
989xfs_buf_inode_io_fail(
990	struct xfs_buf		*bp)
991{
992	struct xfs_log_item	*lip;
993
994	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
995		set_bit(XFS_LI_FAILED, &lip->li_flags);
996}
997
998/*
999 * Clear the inode logging fields so no more flushes are attempted.  If we are
1000 * on a buffer list, it is now safe to remove it because the buffer is
1001 * guaranteed to be locked. The caller will drop the reference to the buffer
1002 * the log item held.
1003 */
1004static void
1005xfs_iflush_abort_clean(
1006	struct xfs_inode_log_item *iip)
1007{
1008	iip->ili_last_fields = 0;
1009	iip->ili_fields = 0;
1010	iip->ili_fsync_fields = 0;
1011	iip->ili_flush_lsn = 0;
1012	iip->ili_item.li_buf = NULL;
1013	list_del_init(&iip->ili_item.li_bio_list);
1014}
1015
1016/*
1017 * Abort flushing the inode from a context holding the cluster buffer locked.
1018 *
1019 * This is the normal runtime method of aborting writeback of an inode that is
1020 * attached to a cluster buffer. It occurs when the inode and the backing
1021 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1022 * flushing or buffer IO completion encounters a log shutdown situation.
1023 *
1024 * If we need to abort inode writeback and we don't already hold the buffer
1025 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1026 * necessary in a shutdown situation.
1027 */
1028void
1029xfs_iflush_abort(
1030	struct xfs_inode	*ip)
1031{
1032	struct xfs_inode_log_item *iip = ip->i_itemp;
1033	struct xfs_buf		*bp;
1034
1035	if (!iip) {
1036		/* clean inode, nothing to do */
1037		xfs_iflags_clear(ip, XFS_IFLUSHING);
1038		return;
1039	}
1040
1041	/*
1042	 * Remove the inode item from the AIL before we clear its internal
1043	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1044	 * pointer for push operations to access - it is only safe to remove the
1045	 * inode from the buffer once it has been removed from the AIL.
1046	 *
1047	 * We also clear the failed bit before removing the item from the AIL
1048	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1049	 * references the inode item owns and needs to hold until we've fully
1050	 * aborted the inode log item and detached it from the buffer.
1051	 */
1052	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1053	xfs_trans_ail_delete(&iip->ili_item, 0);
1054
1055	/*
1056	 * Grab the inode buffer so can we release the reference the inode log
1057	 * item holds on it.
1058	 */
1059	spin_lock(&iip->ili_lock);
1060	bp = iip->ili_item.li_buf;
1061	xfs_iflush_abort_clean(iip);
1062	spin_unlock(&iip->ili_lock);
1063
1064	xfs_iflags_clear(ip, XFS_IFLUSHING);
1065	if (bp)
1066		xfs_buf_rele(bp);
1067}
1068
1069/*
1070 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1071 * from anywhere with just an inode reference and does not require holding the
1072 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1073 * it will grab and lock it safely, then abort the inode flush.
1074 */
1075void
1076xfs_iflush_shutdown_abort(
1077	struct xfs_inode	*ip)
1078{
1079	struct xfs_inode_log_item *iip = ip->i_itemp;
1080	struct xfs_buf		*bp;
1081
1082	if (!iip) {
1083		/* clean inode, nothing to do */
1084		xfs_iflags_clear(ip, XFS_IFLUSHING);
1085		return;
1086	}
1087
1088	spin_lock(&iip->ili_lock);
1089	bp = iip->ili_item.li_buf;
1090	if (!bp) {
1091		spin_unlock(&iip->ili_lock);
1092		xfs_iflush_abort(ip);
1093		return;
1094	}
1095
1096	/*
1097	 * We have to take a reference to the buffer so that it doesn't get
1098	 * freed when we drop the ili_lock and then wait to lock the buffer.
1099	 * We'll clean up the extra reference after we pick up the ili_lock
1100	 * again.
1101	 */
1102	xfs_buf_hold(bp);
1103	spin_unlock(&iip->ili_lock);
1104	xfs_buf_lock(bp);
1105
1106	spin_lock(&iip->ili_lock);
1107	if (!iip->ili_item.li_buf) {
1108		/*
1109		 * Raced with another removal, hold the only reference
1110		 * to bp now. Inode should not be in the AIL now, so just clean
1111		 * up and return;
1112		 */
1113		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1114		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1115		xfs_iflush_abort_clean(iip);
1116		spin_unlock(&iip->ili_lock);
1117		xfs_iflags_clear(ip, XFS_IFLUSHING);
1118		xfs_buf_relse(bp);
1119		return;
1120	}
1121
1122	/*
1123	 * Got two references to bp. The first will get dropped by
1124	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1125	 * we can't drop our reference until _abort() returns because we have to
1126	 * unlock the buffer as well. Hence we abort and then unlock and release
1127	 * our reference to the buffer.
1128	 */
1129	ASSERT(iip->ili_item.li_buf == bp);
1130	spin_unlock(&iip->ili_lock);
1131	xfs_iflush_abort(ip);
1132	xfs_buf_relse(bp);
1133}
1134
1135
1136/*
1137 * convert an xfs_inode_log_format struct from the old 32 bit version
1138 * (which can have different field alignments) to the native 64 bit version
1139 */
1140int
1141xfs_inode_item_format_convert(
1142	struct xfs_log_iovec		*buf,
1143	struct xfs_inode_log_format	*in_f)
1144{
1145	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
1146
1147	if (buf->i_len != sizeof(*in_f32)) {
1148		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1149		return -EFSCORRUPTED;
1150	}
1151
1152	in_f->ilf_type = in_f32->ilf_type;
1153	in_f->ilf_size = in_f32->ilf_size;
1154	in_f->ilf_fields = in_f32->ilf_fields;
1155	in_f->ilf_asize = in_f32->ilf_asize;
1156	in_f->ilf_dsize = in_f32->ilf_dsize;
1157	in_f->ilf_ino = in_f32->ilf_ino;
1158	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1159	in_f->ilf_blkno = in_f32->ilf_blkno;
1160	in_f->ilf_len = in_f32->ilf_len;
1161	in_f->ilf_boffset = in_f32->ilf_boffset;
1162	return 0;
1163}
1164