1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2017 Oracle.  All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_btree.h"
16#include "xfs_rmap_btree.h"
17#include "xfs_trace.h"
18#include "xfs_rmap.h"
19#include "xfs_alloc.h"
20#include "xfs_bit.h"
21#include <linux/fsmap.h>
22#include "xfs_fsmap.h"
23#include "xfs_refcount.h"
24#include "xfs_refcount_btree.h"
25#include "xfs_alloc_btree.h"
26#include "xfs_rtbitmap.h"
27#include "xfs_ag.h"
28
29/* Convert an xfs_fsmap to an fsmap. */
30static void
31xfs_fsmap_from_internal(
32	struct fsmap		*dest,
33	struct xfs_fsmap	*src)
34{
35	dest->fmr_device = src->fmr_device;
36	dest->fmr_flags = src->fmr_flags;
37	dest->fmr_physical = BBTOB(src->fmr_physical);
38	dest->fmr_owner = src->fmr_owner;
39	dest->fmr_offset = BBTOB(src->fmr_offset);
40	dest->fmr_length = BBTOB(src->fmr_length);
41	dest->fmr_reserved[0] = 0;
42	dest->fmr_reserved[1] = 0;
43	dest->fmr_reserved[2] = 0;
44}
45
46/* Convert an fsmap to an xfs_fsmap. */
47void
48xfs_fsmap_to_internal(
49	struct xfs_fsmap	*dest,
50	struct fsmap		*src)
51{
52	dest->fmr_device = src->fmr_device;
53	dest->fmr_flags = src->fmr_flags;
54	dest->fmr_physical = BTOBBT(src->fmr_physical);
55	dest->fmr_owner = src->fmr_owner;
56	dest->fmr_offset = BTOBBT(src->fmr_offset);
57	dest->fmr_length = BTOBBT(src->fmr_length);
58}
59
60/* Convert an fsmap owner into an rmapbt owner. */
61static int
62xfs_fsmap_owner_to_rmap(
63	struct xfs_rmap_irec	*dest,
64	const struct xfs_fsmap	*src)
65{
66	if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
67		dest->rm_owner = src->fmr_owner;
68		return 0;
69	}
70
71	switch (src->fmr_owner) {
72	case 0:			/* "lowest owner id possible" */
73	case -1ULL:		/* "highest owner id possible" */
74		dest->rm_owner = 0;
75		break;
76	case XFS_FMR_OWN_FREE:
77		dest->rm_owner = XFS_RMAP_OWN_NULL;
78		break;
79	case XFS_FMR_OWN_UNKNOWN:
80		dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
81		break;
82	case XFS_FMR_OWN_FS:
83		dest->rm_owner = XFS_RMAP_OWN_FS;
84		break;
85	case XFS_FMR_OWN_LOG:
86		dest->rm_owner = XFS_RMAP_OWN_LOG;
87		break;
88	case XFS_FMR_OWN_AG:
89		dest->rm_owner = XFS_RMAP_OWN_AG;
90		break;
91	case XFS_FMR_OWN_INOBT:
92		dest->rm_owner = XFS_RMAP_OWN_INOBT;
93		break;
94	case XFS_FMR_OWN_INODES:
95		dest->rm_owner = XFS_RMAP_OWN_INODES;
96		break;
97	case XFS_FMR_OWN_REFC:
98		dest->rm_owner = XFS_RMAP_OWN_REFC;
99		break;
100	case XFS_FMR_OWN_COW:
101		dest->rm_owner = XFS_RMAP_OWN_COW;
102		break;
103	case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */
104		/* fall through */
105	default:
106		return -EINVAL;
107	}
108	return 0;
109}
110
111/* Convert an rmapbt owner into an fsmap owner. */
112static int
113xfs_fsmap_owner_from_rmap(
114	struct xfs_fsmap		*dest,
115	const struct xfs_rmap_irec	*src)
116{
117	dest->fmr_flags = 0;
118	if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
119		dest->fmr_owner = src->rm_owner;
120		return 0;
121	}
122	dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
123
124	switch (src->rm_owner) {
125	case XFS_RMAP_OWN_FS:
126		dest->fmr_owner = XFS_FMR_OWN_FS;
127		break;
128	case XFS_RMAP_OWN_LOG:
129		dest->fmr_owner = XFS_FMR_OWN_LOG;
130		break;
131	case XFS_RMAP_OWN_AG:
132		dest->fmr_owner = XFS_FMR_OWN_AG;
133		break;
134	case XFS_RMAP_OWN_INOBT:
135		dest->fmr_owner = XFS_FMR_OWN_INOBT;
136		break;
137	case XFS_RMAP_OWN_INODES:
138		dest->fmr_owner = XFS_FMR_OWN_INODES;
139		break;
140	case XFS_RMAP_OWN_REFC:
141		dest->fmr_owner = XFS_FMR_OWN_REFC;
142		break;
143	case XFS_RMAP_OWN_COW:
144		dest->fmr_owner = XFS_FMR_OWN_COW;
145		break;
146	case XFS_RMAP_OWN_NULL:	/* "free" */
147		dest->fmr_owner = XFS_FMR_OWN_FREE;
148		break;
149	default:
150		ASSERT(0);
151		return -EFSCORRUPTED;
152	}
153	return 0;
154}
155
156/* getfsmap query state */
157struct xfs_getfsmap_info {
158	struct xfs_fsmap_head	*head;
159	struct fsmap		*fsmap_recs;	/* mapping records */
160	struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */
161	struct xfs_perag	*pag;		/* AG info, if applicable */
162	xfs_daddr_t		next_daddr;	/* next daddr we expect */
163	/* daddr of low fsmap key when we're using the rtbitmap */
164	xfs_daddr_t		low_daddr;
165	u64			missing_owner;	/* owner of holes */
166	u32			dev;		/* device id */
167	/*
168	 * Low rmap key for the query.  If low.rm_blockcount is nonzero, this
169	 * is the second (or later) call to retrieve the recordset in pieces.
170	 * xfs_getfsmap_rec_before_start will compare all records retrieved
171	 * by the rmapbt query to filter out any records that start before
172	 * the last record.
173	 */
174	struct xfs_rmap_irec	low;
175	struct xfs_rmap_irec	high;		/* high rmap key */
176	bool			last;		/* last extent? */
177};
178
179/* Associate a device with a getfsmap handler. */
180struct xfs_getfsmap_dev {
181	u32			dev;
182	int			(*fn)(struct xfs_trans *tp,
183				      const struct xfs_fsmap *keys,
184				      struct xfs_getfsmap_info *info);
185};
186
187/* Compare two getfsmap device handlers. */
188static int
189xfs_getfsmap_dev_compare(
190	const void			*p1,
191	const void			*p2)
192{
193	const struct xfs_getfsmap_dev	*d1 = p1;
194	const struct xfs_getfsmap_dev	*d2 = p2;
195
196	return d1->dev - d2->dev;
197}
198
199/* Decide if this mapping is shared. */
200STATIC int
201xfs_getfsmap_is_shared(
202	struct xfs_trans		*tp,
203	struct xfs_getfsmap_info	*info,
204	const struct xfs_rmap_irec	*rec,
205	bool				*stat)
206{
207	struct xfs_mount		*mp = tp->t_mountp;
208	struct xfs_btree_cur		*cur;
209	xfs_agblock_t			fbno;
210	xfs_extlen_t			flen;
211	int				error;
212
213	*stat = false;
214	if (!xfs_has_reflink(mp))
215		return 0;
216	/* rt files will have no perag structure */
217	if (!info->pag)
218		return 0;
219
220	/* Are there any shared blocks here? */
221	flen = 0;
222	cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
223
224	error = xfs_refcount_find_shared(cur, rec->rm_startblock,
225			rec->rm_blockcount, &fbno, &flen, false);
226
227	xfs_btree_del_cursor(cur, error);
228	if (error)
229		return error;
230
231	*stat = flen > 0;
232	return 0;
233}
234
235static inline void
236xfs_getfsmap_format(
237	struct xfs_mount		*mp,
238	struct xfs_fsmap		*xfm,
239	struct xfs_getfsmap_info	*info)
240{
241	struct fsmap			*rec;
242
243	trace_xfs_getfsmap_mapping(mp, xfm);
244
245	rec = &info->fsmap_recs[info->head->fmh_entries++];
246	xfs_fsmap_from_internal(rec, xfm);
247}
248
249static inline bool
250xfs_getfsmap_rec_before_start(
251	struct xfs_getfsmap_info	*info,
252	const struct xfs_rmap_irec	*rec,
253	xfs_daddr_t			rec_daddr)
254{
255	if (info->low_daddr != -1ULL)
256		return rec_daddr < info->low_daddr;
257	if (info->low.rm_blockcount)
258		return xfs_rmap_compare(rec, &info->low) < 0;
259	return false;
260}
261
262/*
263 * Format a reverse mapping for getfsmap, having translated rm_startblock
264 * into the appropriate daddr units.  Pass in a nonzero @len_daddr if the
265 * length could be larger than rm_blockcount in struct xfs_rmap_irec.
266 */
267STATIC int
268xfs_getfsmap_helper(
269	struct xfs_trans		*tp,
270	struct xfs_getfsmap_info	*info,
271	const struct xfs_rmap_irec	*rec,
272	xfs_daddr_t			rec_daddr,
273	xfs_daddr_t			len_daddr)
274{
275	struct xfs_fsmap		fmr;
276	struct xfs_mount		*mp = tp->t_mountp;
277	bool				shared;
278	int				error;
279
280	if (fatal_signal_pending(current))
281		return -EINTR;
282
283	if (len_daddr == 0)
284		len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
285
286	/*
287	 * Filter out records that start before our startpoint, if the
288	 * caller requested that.
289	 */
290	if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) {
291		rec_daddr += len_daddr;
292		if (info->next_daddr < rec_daddr)
293			info->next_daddr = rec_daddr;
294		return 0;
295	}
296
297	/* Are we just counting mappings? */
298	if (info->head->fmh_count == 0) {
299		if (info->head->fmh_entries == UINT_MAX)
300			return -ECANCELED;
301
302		if (rec_daddr > info->next_daddr)
303			info->head->fmh_entries++;
304
305		if (info->last)
306			return 0;
307
308		info->head->fmh_entries++;
309
310		rec_daddr += len_daddr;
311		if (info->next_daddr < rec_daddr)
312			info->next_daddr = rec_daddr;
313		return 0;
314	}
315
316	/*
317	 * If the record starts past the last physical block we saw,
318	 * then we've found a gap.  Report the gap as being owned by
319	 * whatever the caller specified is the missing owner.
320	 */
321	if (rec_daddr > info->next_daddr) {
322		if (info->head->fmh_entries >= info->head->fmh_count)
323			return -ECANCELED;
324
325		fmr.fmr_device = info->dev;
326		fmr.fmr_physical = info->next_daddr;
327		fmr.fmr_owner = info->missing_owner;
328		fmr.fmr_offset = 0;
329		fmr.fmr_length = rec_daddr - info->next_daddr;
330		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
331		xfs_getfsmap_format(mp, &fmr, info);
332	}
333
334	if (info->last)
335		goto out;
336
337	/* Fill out the extent we found */
338	if (info->head->fmh_entries >= info->head->fmh_count)
339		return -ECANCELED;
340
341	trace_xfs_fsmap_mapping(mp, info->dev,
342			info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
343
344	fmr.fmr_device = info->dev;
345	fmr.fmr_physical = rec_daddr;
346	error = xfs_fsmap_owner_from_rmap(&fmr, rec);
347	if (error)
348		return error;
349	fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
350	fmr.fmr_length = len_daddr;
351	if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
352		fmr.fmr_flags |= FMR_OF_PREALLOC;
353	if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
354		fmr.fmr_flags |= FMR_OF_ATTR_FORK;
355	if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
356		fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
357	if (fmr.fmr_flags == 0) {
358		error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
359		if (error)
360			return error;
361		if (shared)
362			fmr.fmr_flags |= FMR_OF_SHARED;
363	}
364
365	xfs_getfsmap_format(mp, &fmr, info);
366out:
367	rec_daddr += len_daddr;
368	if (info->next_daddr < rec_daddr)
369		info->next_daddr = rec_daddr;
370	return 0;
371}
372
373/* Transform a rmapbt irec into a fsmap */
374STATIC int
375xfs_getfsmap_datadev_helper(
376	struct xfs_btree_cur		*cur,
377	const struct xfs_rmap_irec	*rec,
378	void				*priv)
379{
380	struct xfs_mount		*mp = cur->bc_mp;
381	struct xfs_getfsmap_info	*info = priv;
382	xfs_fsblock_t			fsb;
383	xfs_daddr_t			rec_daddr;
384
385	fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
386	rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
387
388	return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0);
389}
390
391/* Transform a bnobt irec into a fsmap */
392STATIC int
393xfs_getfsmap_datadev_bnobt_helper(
394	struct xfs_btree_cur		*cur,
395	const struct xfs_alloc_rec_incore *rec,
396	void				*priv)
397{
398	struct xfs_mount		*mp = cur->bc_mp;
399	struct xfs_getfsmap_info	*info = priv;
400	struct xfs_rmap_irec		irec;
401	xfs_daddr_t			rec_daddr;
402
403	rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
404			rec->ar_startblock);
405
406	irec.rm_startblock = rec->ar_startblock;
407	irec.rm_blockcount = rec->ar_blockcount;
408	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
409	irec.rm_offset = 0;
410	irec.rm_flags = 0;
411
412	return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0);
413}
414
415/* Set rmap flags based on the getfsmap flags */
416static void
417xfs_getfsmap_set_irec_flags(
418	struct xfs_rmap_irec	*irec,
419	const struct xfs_fsmap	*fmr)
420{
421	irec->rm_flags = 0;
422	if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
423		irec->rm_flags |= XFS_RMAP_ATTR_FORK;
424	if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
425		irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
426	if (fmr->fmr_flags & FMR_OF_PREALLOC)
427		irec->rm_flags |= XFS_RMAP_UNWRITTEN;
428}
429
430/* Execute a getfsmap query against the log device. */
431STATIC int
432xfs_getfsmap_logdev(
433	struct xfs_trans		*tp,
434	const struct xfs_fsmap		*keys,
435	struct xfs_getfsmap_info	*info)
436{
437	struct xfs_mount		*mp = tp->t_mountp;
438	struct xfs_rmap_irec		rmap;
439	xfs_daddr_t			rec_daddr, len_daddr;
440	xfs_fsblock_t			start_fsb, end_fsb;
441	uint64_t			eofs;
442
443	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
444	if (keys[0].fmr_physical >= eofs)
445		return 0;
446	start_fsb = XFS_BB_TO_FSBT(mp,
447				keys[0].fmr_physical + keys[0].fmr_length);
448	end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
449
450	/* Adjust the low key if we are continuing from where we left off. */
451	if (keys[0].fmr_length > 0)
452		info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
453
454	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb);
455	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb);
456
457	if (start_fsb > 0)
458		return 0;
459
460	/* Fabricate an rmap entry for the external log device. */
461	rmap.rm_startblock = 0;
462	rmap.rm_blockcount = mp->m_sb.sb_logblocks;
463	rmap.rm_owner = XFS_RMAP_OWN_LOG;
464	rmap.rm_offset = 0;
465	rmap.rm_flags = 0;
466
467	rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock);
468	len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount);
469	return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr);
470}
471
472#ifdef CONFIG_XFS_RT
473/* Transform a rtbitmap "record" into a fsmap */
474STATIC int
475xfs_getfsmap_rtdev_rtbitmap_helper(
476	struct xfs_mount		*mp,
477	struct xfs_trans		*tp,
478	const struct xfs_rtalloc_rec	*rec,
479	void				*priv)
480{
481	struct xfs_getfsmap_info	*info = priv;
482	struct xfs_rmap_irec		irec;
483	xfs_rtblock_t			rtbno;
484	xfs_daddr_t			rec_daddr, len_daddr;
485
486	rtbno = xfs_rtx_to_rtb(mp, rec->ar_startext);
487	rec_daddr = XFS_FSB_TO_BB(mp, rtbno);
488	irec.rm_startblock = rtbno;
489
490	rtbno = xfs_rtx_to_rtb(mp, rec->ar_extcount);
491	len_daddr = XFS_FSB_TO_BB(mp, rtbno);
492	irec.rm_blockcount = rtbno;
493
494	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
495	irec.rm_offset = 0;
496	irec.rm_flags = 0;
497
498	return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr);
499}
500
501/* Execute a getfsmap query against the realtime device rtbitmap. */
502STATIC int
503xfs_getfsmap_rtdev_rtbitmap(
504	struct xfs_trans		*tp,
505	const struct xfs_fsmap		*keys,
506	struct xfs_getfsmap_info	*info)
507{
508
509	struct xfs_rtalloc_rec		alow = { 0 };
510	struct xfs_rtalloc_rec		ahigh = { 0 };
511	struct xfs_mount		*mp = tp->t_mountp;
512	xfs_rtblock_t			start_rtb;
513	xfs_rtblock_t			end_rtb;
514	uint64_t			eofs;
515	int				error;
516
517	eofs = XFS_FSB_TO_BB(mp, xfs_rtx_to_rtb(mp, mp->m_sb.sb_rextents));
518	if (keys[0].fmr_physical >= eofs)
519		return 0;
520	start_rtb = XFS_BB_TO_FSBT(mp,
521				keys[0].fmr_physical + keys[0].fmr_length);
522	end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
523
524	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
525
526	/* Adjust the low key if we are continuing from where we left off. */
527	if (keys[0].fmr_length > 0) {
528		info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb);
529		if (info->low_daddr >= eofs)
530			return 0;
531	}
532
533	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb);
534	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb);
535
536	xfs_ilock(mp->m_rbmip, XFS_ILOCK_SHARED | XFS_ILOCK_RTBITMAP);
537
538	/*
539	 * Set up query parameters to return free rtextents covering the range
540	 * we want.
541	 */
542	alow.ar_startext = xfs_rtb_to_rtx(mp, start_rtb);
543	ahigh.ar_startext = xfs_rtb_to_rtxup(mp, end_rtb);
544	error = xfs_rtalloc_query_range(mp, tp, &alow, &ahigh,
545			xfs_getfsmap_rtdev_rtbitmap_helper, info);
546	if (error)
547		goto err;
548
549	/*
550	 * Report any gaps at the end of the rtbitmap by simulating a null
551	 * rmap starting at the block after the end of the query range.
552	 */
553	info->last = true;
554	ahigh.ar_startext = min(mp->m_sb.sb_rextents, ahigh.ar_startext);
555
556	error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
557	if (error)
558		goto err;
559err:
560	xfs_iunlock(mp->m_rbmip, XFS_ILOCK_SHARED | XFS_ILOCK_RTBITMAP);
561	return error;
562}
563#endif /* CONFIG_XFS_RT */
564
565static inline bool
566rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
567{
568	if (!xfs_has_reflink(mp))
569		return true;
570	if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
571		return true;
572	if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
573			   XFS_RMAP_UNWRITTEN))
574		return true;
575	return false;
576}
577
578/* Execute a getfsmap query against the regular data device. */
579STATIC int
580__xfs_getfsmap_datadev(
581	struct xfs_trans		*tp,
582	const struct xfs_fsmap		*keys,
583	struct xfs_getfsmap_info	*info,
584	int				(*query_fn)(struct xfs_trans *,
585						    struct xfs_getfsmap_info *,
586						    struct xfs_btree_cur **,
587						    void *),
588	void				*priv)
589{
590	struct xfs_mount		*mp = tp->t_mountp;
591	struct xfs_perag		*pag;
592	struct xfs_btree_cur		*bt_cur = NULL;
593	xfs_fsblock_t			start_fsb;
594	xfs_fsblock_t			end_fsb;
595	xfs_agnumber_t			start_ag;
596	xfs_agnumber_t			end_ag;
597	uint64_t			eofs;
598	int				error = 0;
599
600	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
601	if (keys[0].fmr_physical >= eofs)
602		return 0;
603	start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
604	end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
605
606	/*
607	 * Convert the fsmap low/high keys to AG based keys.  Initialize
608	 * low to the fsmap low key and max out the high key to the end
609	 * of the AG.
610	 */
611	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
612	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
613	if (error)
614		return error;
615	info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
616	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
617
618	/* Adjust the low key if we are continuing from where we left off. */
619	if (info->low.rm_blockcount == 0) {
620		/* No previous record from which to continue */
621	} else if (rmap_not_shareable(mp, &info->low)) {
622		/* Last record seen was an unshareable extent */
623		info->low.rm_owner = 0;
624		info->low.rm_offset = 0;
625
626		start_fsb += info->low.rm_blockcount;
627		if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
628			return 0;
629	} else {
630		/* Last record seen was a shareable file data extent */
631		info->low.rm_offset += info->low.rm_blockcount;
632	}
633	info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
634
635	info->high.rm_startblock = -1U;
636	info->high.rm_owner = ULLONG_MAX;
637	info->high.rm_offset = ULLONG_MAX;
638	info->high.rm_blockcount = 0;
639	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
640
641	start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
642	end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
643
644	for_each_perag_range(mp, start_ag, end_ag, pag) {
645		/*
646		 * Set the AG high key from the fsmap high key if this
647		 * is the last AG that we're querying.
648		 */
649		info->pag = pag;
650		if (pag->pag_agno == end_ag) {
651			info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
652					end_fsb);
653			info->high.rm_offset = XFS_BB_TO_FSBT(mp,
654					keys[1].fmr_offset);
655			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
656			if (error)
657				break;
658			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
659		}
660
661		if (bt_cur) {
662			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
663			bt_cur = NULL;
664			xfs_trans_brelse(tp, info->agf_bp);
665			info->agf_bp = NULL;
666		}
667
668		error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
669		if (error)
670			break;
671
672		trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
673				&info->low);
674		trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
675				&info->high);
676
677		error = query_fn(tp, info, &bt_cur, priv);
678		if (error)
679			break;
680
681		/*
682		 * Set the AG low key to the start of the AG prior to
683		 * moving on to the next AG.
684		 */
685		if (pag->pag_agno == start_ag)
686			memset(&info->low, 0, sizeof(info->low));
687
688		/*
689		 * If this is the last AG, report any gap at the end of it
690		 * before we drop the reference to the perag when the loop
691		 * terminates.
692		 */
693		if (pag->pag_agno == end_ag) {
694			info->last = true;
695			error = query_fn(tp, info, &bt_cur, priv);
696			if (error)
697				break;
698		}
699		info->pag = NULL;
700	}
701
702	if (bt_cur)
703		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
704							 XFS_BTREE_NOERROR);
705	if (info->agf_bp) {
706		xfs_trans_brelse(tp, info->agf_bp);
707		info->agf_bp = NULL;
708	}
709	if (info->pag) {
710		xfs_perag_rele(info->pag);
711		info->pag = NULL;
712	} else if (pag) {
713		/* loop termination case */
714		xfs_perag_rele(pag);
715	}
716
717	return error;
718}
719
720/* Actually query the rmap btree. */
721STATIC int
722xfs_getfsmap_datadev_rmapbt_query(
723	struct xfs_trans		*tp,
724	struct xfs_getfsmap_info	*info,
725	struct xfs_btree_cur		**curpp,
726	void				*priv)
727{
728	/* Report any gap at the end of the last AG. */
729	if (info->last)
730		return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
731
732	/* Allocate cursor for this AG and query_range it. */
733	*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
734			info->pag);
735	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
736			xfs_getfsmap_datadev_helper, info);
737}
738
739/* Execute a getfsmap query against the regular data device rmapbt. */
740STATIC int
741xfs_getfsmap_datadev_rmapbt(
742	struct xfs_trans		*tp,
743	const struct xfs_fsmap		*keys,
744	struct xfs_getfsmap_info	*info)
745{
746	info->missing_owner = XFS_FMR_OWN_FREE;
747	return __xfs_getfsmap_datadev(tp, keys, info,
748			xfs_getfsmap_datadev_rmapbt_query, NULL);
749}
750
751/* Actually query the bno btree. */
752STATIC int
753xfs_getfsmap_datadev_bnobt_query(
754	struct xfs_trans		*tp,
755	struct xfs_getfsmap_info	*info,
756	struct xfs_btree_cur		**curpp,
757	void				*priv)
758{
759	struct xfs_alloc_rec_incore	*key = priv;
760
761	/* Report any gap at the end of the last AG. */
762	if (info->last)
763		return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
764
765	/* Allocate cursor for this AG and query_range it. */
766	*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
767			info->pag);
768	key->ar_startblock = info->low.rm_startblock;
769	key[1].ar_startblock = info->high.rm_startblock;
770	return xfs_alloc_query_range(*curpp, key, &key[1],
771			xfs_getfsmap_datadev_bnobt_helper, info);
772}
773
774/* Execute a getfsmap query against the regular data device's bnobt. */
775STATIC int
776xfs_getfsmap_datadev_bnobt(
777	struct xfs_trans		*tp,
778	const struct xfs_fsmap		*keys,
779	struct xfs_getfsmap_info	*info)
780{
781	struct xfs_alloc_rec_incore	akeys[2];
782
783	memset(akeys, 0, sizeof(akeys));
784	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
785	return __xfs_getfsmap_datadev(tp, keys, info,
786			xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
787}
788
789/* Do we recognize the device? */
790STATIC bool
791xfs_getfsmap_is_valid_device(
792	struct xfs_mount	*mp,
793	struct xfs_fsmap	*fm)
794{
795	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
796	    fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
797		return true;
798	if (mp->m_logdev_targp &&
799	    fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
800		return true;
801	if (mp->m_rtdev_targp &&
802	    fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
803		return true;
804	return false;
805}
806
807/* Ensure that the low key is less than the high key. */
808STATIC bool
809xfs_getfsmap_check_keys(
810	struct xfs_fsmap		*low_key,
811	struct xfs_fsmap		*high_key)
812{
813	if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
814		if (low_key->fmr_offset)
815			return false;
816	}
817	if (high_key->fmr_flags != -1U &&
818	    (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
819				    FMR_OF_EXTENT_MAP))) {
820		if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
821			return false;
822	}
823	if (high_key->fmr_length && high_key->fmr_length != -1ULL)
824		return false;
825
826	if (low_key->fmr_device > high_key->fmr_device)
827		return false;
828	if (low_key->fmr_device < high_key->fmr_device)
829		return true;
830
831	if (low_key->fmr_physical > high_key->fmr_physical)
832		return false;
833	if (low_key->fmr_physical < high_key->fmr_physical)
834		return true;
835
836	if (low_key->fmr_owner > high_key->fmr_owner)
837		return false;
838	if (low_key->fmr_owner < high_key->fmr_owner)
839		return true;
840
841	if (low_key->fmr_offset > high_key->fmr_offset)
842		return false;
843	if (low_key->fmr_offset < high_key->fmr_offset)
844		return true;
845
846	return false;
847}
848
849/*
850 * There are only two devices if we didn't configure RT devices at build time.
851 */
852#ifdef CONFIG_XFS_RT
853#define XFS_GETFSMAP_DEVS	3
854#else
855#define XFS_GETFSMAP_DEVS	2
856#endif /* CONFIG_XFS_RT */
857
858/*
859 * Get filesystem's extents as described in head, and format for output. Fills
860 * in the supplied records array until there are no more reverse mappings to
861 * return or head.fmh_entries == head.fmh_count.  In the second case, this
862 * function returns -ECANCELED to indicate that more records would have been
863 * returned.
864 *
865 * Key to Confusion
866 * ----------------
867 * There are multiple levels of keys and counters at work here:
868 * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in;
869 *				   these reflect fs-wide sector addrs.
870 * dkeys			-- fmh_keys used to query each device;
871 *				   these are fmh_keys but w/ the low key
872 *				   bumped up by fmr_length.
873 * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this
874 *				   is how we detect gaps in the fsmap
875				   records and report them.
876 * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from
877 *				   dkeys; used to query the metadata.
878 */
879int
880xfs_getfsmap(
881	struct xfs_mount		*mp,
882	struct xfs_fsmap_head		*head,
883	struct fsmap			*fsmap_recs)
884{
885	struct xfs_trans		*tp = NULL;
886	struct xfs_fsmap		dkeys[2];	/* per-dev keys */
887	struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS];
888	struct xfs_getfsmap_info	info = { NULL };
889	bool				use_rmap;
890	int				i;
891	int				error = 0;
892
893	if (head->fmh_iflags & ~FMH_IF_VALID)
894		return -EINVAL;
895	if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
896	    !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
897		return -EINVAL;
898	if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
899		return -EINVAL;
900
901	use_rmap = xfs_has_rmapbt(mp) &&
902		   has_capability_noaudit(current, CAP_SYS_ADMIN);
903	head->fmh_entries = 0;
904
905	/* Set up our device handlers. */
906	memset(handlers, 0, sizeof(handlers));
907	handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
908	if (use_rmap)
909		handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
910	else
911		handlers[0].fn = xfs_getfsmap_datadev_bnobt;
912	if (mp->m_logdev_targp != mp->m_ddev_targp) {
913		handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
914		handlers[1].fn = xfs_getfsmap_logdev;
915	}
916#ifdef CONFIG_XFS_RT
917	if (mp->m_rtdev_targp) {
918		handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
919		handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
920	}
921#endif /* CONFIG_XFS_RT */
922
923	xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
924			xfs_getfsmap_dev_compare);
925
926	/*
927	 * To continue where we left off, we allow userspace to use the
928	 * last mapping from a previous call as the low key of the next.
929	 * This is identified by a non-zero length in the low key. We
930	 * have to increment the low key in this scenario to ensure we
931	 * don't return the same mapping again, and instead return the
932	 * very next mapping.
933	 *
934	 * If the low key mapping refers to file data, the same physical
935	 * blocks could be mapped to several other files/offsets.
936	 * According to rmapbt record ordering, the minimal next
937	 * possible record for the block range is the next starting
938	 * offset in the same inode. Therefore, each fsmap backend bumps
939	 * the file offset to continue the search appropriately.  For
940	 * all other low key mapping types (attr blocks, metadata), each
941	 * fsmap backend bumps the physical offset as there can be no
942	 * other mapping for the same physical block range.
943	 */
944	dkeys[0] = head->fmh_keys[0];
945	memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
946
947	info.next_daddr = head->fmh_keys[0].fmr_physical +
948			  head->fmh_keys[0].fmr_length;
949	info.fsmap_recs = fsmap_recs;
950	info.head = head;
951
952	/* For each device we support... */
953	for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
954		/* Is this device within the range the user asked for? */
955		if (!handlers[i].fn)
956			continue;
957		if (head->fmh_keys[0].fmr_device > handlers[i].dev)
958			continue;
959		if (head->fmh_keys[1].fmr_device < handlers[i].dev)
960			break;
961
962		/*
963		 * If this device number matches the high key, we have
964		 * to pass the high key to the handler to limit the
965		 * query results.  If the device number exceeds the
966		 * low key, zero out the low key so that we get
967		 * everything from the beginning.
968		 */
969		if (handlers[i].dev == head->fmh_keys[1].fmr_device)
970			dkeys[1] = head->fmh_keys[1];
971		if (handlers[i].dev > head->fmh_keys[0].fmr_device)
972			memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
973
974		/*
975		 * Grab an empty transaction so that we can use its recursive
976		 * buffer locking abilities to detect cycles in the rmapbt
977		 * without deadlocking.
978		 */
979		error = xfs_trans_alloc_empty(mp, &tp);
980		if (error)
981			break;
982
983		info.dev = handlers[i].dev;
984		info.last = false;
985		info.pag = NULL;
986		info.low_daddr = -1ULL;
987		info.low.rm_blockcount = 0;
988		error = handlers[i].fn(tp, dkeys, &info);
989		if (error)
990			break;
991		xfs_trans_cancel(tp);
992		tp = NULL;
993		info.next_daddr = 0;
994	}
995
996	if (tp)
997		xfs_trans_cancel(tp);
998	head->fmh_oflags = FMH_OF_DEV_T;
999	return error;
1000}
1001