1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_bit.h"
12#include "xfs_shared.h"
13#include "xfs_mount.h"
14#include "xfs_ag.h"
15#include "xfs_defer.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_extfree_item.h"
19#include "xfs_log.h"
20#include "xfs_btree.h"
21#include "xfs_rmap.h"
22#include "xfs_alloc.h"
23#include "xfs_bmap.h"
24#include "xfs_trace.h"
25#include "xfs_error.h"
26#include "xfs_log_priv.h"
27#include "xfs_log_recover.h"
28
29struct kmem_cache	*xfs_efi_cache;
30struct kmem_cache	*xfs_efd_cache;
31
32static const struct xfs_item_ops xfs_efi_item_ops;
33
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36	return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
38
39STATIC void
40xfs_efi_item_free(
41	struct xfs_efi_log_item	*efip)
42{
43	kvfree(efip->efi_item.li_lv_shadow);
44	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45		kfree(efip);
46	else
47		kmem_cache_free(xfs_efi_cache, efip);
48}
49
50/*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the reference
55 * count to ensure only the last caller frees the EFI.
56 */
57STATIC void
58xfs_efi_release(
59	struct xfs_efi_log_item	*efip)
60{
61	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62	if (!atomic_dec_and_test(&efip->efi_refcount))
63		return;
64
65	xfs_trans_ail_delete(&efip->efi_item, 0);
66	xfs_efi_item_free(efip);
67}
68
69STATIC void
70xfs_efi_item_size(
71	struct xfs_log_item	*lip,
72	int			*nvecs,
73	int			*nbytes)
74{
75	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
76
77	*nvecs += 1;
78	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79}
80
81/*
82 * This is called to fill in the vector of log iovecs for the
83 * given efi log item. We use only 1 iovec, and we point that
84 * at the efi_log_format structure embedded in the efi item.
85 * It is at this point that we assert that all of the extent
86 * slots in the efi item have been filled.
87 */
88STATIC void
89xfs_efi_item_format(
90	struct xfs_log_item	*lip,
91	struct xfs_log_vec	*lv)
92{
93	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
94	struct xfs_log_iovec	*vecp = NULL;
95
96	ASSERT(atomic_read(&efip->efi_next_extent) ==
97				efip->efi_format.efi_nextents);
98
99	efip->efi_format.efi_type = XFS_LI_EFI;
100	efip->efi_format.efi_size = 1;
101
102	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103			&efip->efi_format,
104			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105}
106
107
108/*
109 * The unpin operation is the last place an EFI is manipulated in the log. It is
110 * either inserted in the AIL or aborted in the event of a log I/O error. In
111 * either case, the EFI transaction has been successfully committed to make it
112 * this far. Therefore, we expect whoever committed the EFI to either construct
113 * and commit the EFD or drop the EFD's reference in the event of error. Simply
114 * drop the log's EFI reference now that the log is done with it.
115 */
116STATIC void
117xfs_efi_item_unpin(
118	struct xfs_log_item	*lip,
119	int			remove)
120{
121	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122	xfs_efi_release(efip);
123}
124
125/*
126 * The EFI has been either committed or aborted if the transaction has been
127 * cancelled. If the transaction was cancelled, an EFD isn't going to be
128 * constructed and thus we free the EFI here directly.
129 */
130STATIC void
131xfs_efi_item_release(
132	struct xfs_log_item	*lip)
133{
134	xfs_efi_release(EFI_ITEM(lip));
135}
136
137/*
138 * Allocate and initialize an efi item with the given number of extents.
139 */
140STATIC struct xfs_efi_log_item *
141xfs_efi_init(
142	struct xfs_mount	*mp,
143	uint			nextents)
144
145{
146	struct xfs_efi_log_item	*efip;
147
148	ASSERT(nextents > 0);
149	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151				GFP_KERNEL | __GFP_NOFAIL);
152	} else {
153		efip = kmem_cache_zalloc(xfs_efi_cache,
154					 GFP_KERNEL | __GFP_NOFAIL);
155	}
156
157	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158	efip->efi_format.efi_nextents = nextents;
159	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160	atomic_set(&efip->efi_next_extent, 0);
161	atomic_set(&efip->efi_refcount, 2);
162
163	return efip;
164}
165
166/*
167 * Copy an EFI format buffer from the given buf, and into the destination
168 * EFI format structure.
169 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170 * one of which will be the native format for this kernel.
171 * It will handle the conversion of formats if necessary.
172 */
173STATIC int
174xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175{
176	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177	uint i;
178	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181
182	if (buf->i_len == len) {
183		memcpy(dst_efi_fmt, src_efi_fmt,
184		       offsetof(struct xfs_efi_log_format, efi_extents));
185		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186			memcpy(&dst_efi_fmt->efi_extents[i],
187			       &src_efi_fmt->efi_extents[i],
188			       sizeof(struct xfs_extent));
189		return 0;
190	} else if (buf->i_len == len32) {
191		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192
193		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198			dst_efi_fmt->efi_extents[i].ext_start =
199				src_efi_fmt_32->efi_extents[i].ext_start;
200			dst_efi_fmt->efi_extents[i].ext_len =
201				src_efi_fmt_32->efi_extents[i].ext_len;
202		}
203		return 0;
204	} else if (buf->i_len == len64) {
205		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206
207		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212			dst_efi_fmt->efi_extents[i].ext_start =
213				src_efi_fmt_64->efi_extents[i].ext_start;
214			dst_efi_fmt->efi_extents[i].ext_len =
215				src_efi_fmt_64->efi_extents[i].ext_len;
216		}
217		return 0;
218	}
219	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220			buf->i_len);
221	return -EFSCORRUPTED;
222}
223
224static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225{
226	return container_of(lip, struct xfs_efd_log_item, efd_item);
227}
228
229STATIC void
230xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231{
232	kvfree(efdp->efd_item.li_lv_shadow);
233	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234		kfree(efdp);
235	else
236		kmem_cache_free(xfs_efd_cache, efdp);
237}
238
239STATIC void
240xfs_efd_item_size(
241	struct xfs_log_item	*lip,
242	int			*nvecs,
243	int			*nbytes)
244{
245	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246
247	*nvecs += 1;
248	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249}
250
251/*
252 * This is called to fill in the vector of log iovecs for the
253 * given efd log item. We use only 1 iovec, and we point that
254 * at the efd_log_format structure embedded in the efd item.
255 * It is at this point that we assert that all of the extent
256 * slots in the efd item have been filled.
257 */
258STATIC void
259xfs_efd_item_format(
260	struct xfs_log_item	*lip,
261	struct xfs_log_vec	*lv)
262{
263	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264	struct xfs_log_iovec	*vecp = NULL;
265
266	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267
268	efdp->efd_format.efd_type = XFS_LI_EFD;
269	efdp->efd_format.efd_size = 1;
270
271	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272			&efdp->efd_format,
273			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274}
275
276/*
277 * The EFD is either committed or aborted if the transaction is cancelled. If
278 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279 */
280STATIC void
281xfs_efd_item_release(
282	struct xfs_log_item	*lip)
283{
284	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285
286	xfs_efi_release(efdp->efd_efip);
287	xfs_efd_item_free(efdp);
288}
289
290static struct xfs_log_item *
291xfs_efd_item_intent(
292	struct xfs_log_item	*lip)
293{
294	return &EFD_ITEM(lip)->efd_efip->efi_item;
295}
296
297static const struct xfs_item_ops xfs_efd_item_ops = {
298	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299			  XFS_ITEM_INTENT_DONE,
300	.iop_size	= xfs_efd_item_size,
301	.iop_format	= xfs_efd_item_format,
302	.iop_release	= xfs_efd_item_release,
303	.iop_intent	= xfs_efd_item_intent,
304};
305
306/*
307 * Fill the EFD with all extents from the EFI when we need to roll the
308 * transaction and continue with a new EFI.
309 *
310 * This simply copies all the extents in the EFI to the EFD rather than make
311 * assumptions about which extents in the EFI have already been processed. We
312 * currently keep the xefi list in the same order as the EFI extent list, but
313 * that may not always be the case. Copying everything avoids leaving a landmine
314 * were we fail to cancel all the extents in an EFI if the xefi list is
315 * processed in a different order to the extents in the EFI.
316 */
317static void
318xfs_efd_from_efi(
319	struct xfs_efd_log_item	*efdp)
320{
321	struct xfs_efi_log_item *efip = efdp->efd_efip;
322	uint                    i;
323
324	ASSERT(efip->efi_format.efi_nextents > 0);
325	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
326
327	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
328	       efdp->efd_format.efd_extents[i] =
329		       efip->efi_format.efi_extents[i];
330	}
331	efdp->efd_next_extent = efip->efi_format.efi_nextents;
332}
333
334/* Sort bmap items by AG. */
335static int
336xfs_extent_free_diff_items(
337	void				*priv,
338	const struct list_head		*a,
339	const struct list_head		*b)
340{
341	struct xfs_extent_free_item	*ra;
342	struct xfs_extent_free_item	*rb;
343
344	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
345	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
346
347	return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
348}
349
350/* Log a free extent to the intent item. */
351STATIC void
352xfs_extent_free_log_item(
353	struct xfs_trans		*tp,
354	struct xfs_efi_log_item		*efip,
355	struct xfs_extent_free_item	*xefi)
356{
357	uint				next_extent;
358	struct xfs_extent		*extp;
359
360	/*
361	 * atomic_inc_return gives us the value after the increment;
362	 * we want to use it as an array index so we need to subtract 1 from
363	 * it.
364	 */
365	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
366	ASSERT(next_extent < efip->efi_format.efi_nextents);
367	extp = &efip->efi_format.efi_extents[next_extent];
368	extp->ext_start = xefi->xefi_startblock;
369	extp->ext_len = xefi->xefi_blockcount;
370}
371
372static struct xfs_log_item *
373xfs_extent_free_create_intent(
374	struct xfs_trans		*tp,
375	struct list_head		*items,
376	unsigned int			count,
377	bool				sort)
378{
379	struct xfs_mount		*mp = tp->t_mountp;
380	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
381	struct xfs_extent_free_item	*xefi;
382
383	ASSERT(count > 0);
384
385	if (sort)
386		list_sort(mp, items, xfs_extent_free_diff_items);
387	list_for_each_entry(xefi, items, xefi_list)
388		xfs_extent_free_log_item(tp, efip, xefi);
389	return &efip->efi_item;
390}
391
392/* Get an EFD so we can process all the free extents. */
393static struct xfs_log_item *
394xfs_extent_free_create_done(
395	struct xfs_trans		*tp,
396	struct xfs_log_item		*intent,
397	unsigned int			count)
398{
399	struct xfs_efi_log_item		*efip = EFI_ITEM(intent);
400	struct xfs_efd_log_item		*efdp;
401
402	ASSERT(count > 0);
403
404	if (count > XFS_EFD_MAX_FAST_EXTENTS) {
405		efdp = kzalloc(xfs_efd_log_item_sizeof(count),
406				GFP_KERNEL | __GFP_NOFAIL);
407	} else {
408		efdp = kmem_cache_zalloc(xfs_efd_cache,
409					GFP_KERNEL | __GFP_NOFAIL);
410	}
411
412	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
413			  &xfs_efd_item_ops);
414	efdp->efd_efip = efip;
415	efdp->efd_format.efd_nextents = count;
416	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
417
418	return &efdp->efd_item;
419}
420
421/* Take a passive ref to the AG containing the space we're freeing. */
422void
423xfs_extent_free_get_group(
424	struct xfs_mount		*mp,
425	struct xfs_extent_free_item	*xefi)
426{
427	xfs_agnumber_t			agno;
428
429	agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
430	xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
431}
432
433/* Release a passive AG ref after some freeing work. */
434static inline void
435xfs_extent_free_put_group(
436	struct xfs_extent_free_item	*xefi)
437{
438	xfs_perag_intent_put(xefi->xefi_pag);
439}
440
441/* Process a free extent. */
442STATIC int
443xfs_extent_free_finish_item(
444	struct xfs_trans		*tp,
445	struct xfs_log_item		*done,
446	struct list_head		*item,
447	struct xfs_btree_cur		**state)
448{
449	struct xfs_owner_info		oinfo = { };
450	struct xfs_extent_free_item	*xefi;
451	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
452	struct xfs_mount		*mp = tp->t_mountp;
453	struct xfs_extent		*extp;
454	uint				next_extent;
455	xfs_agblock_t			agbno;
456	int				error = 0;
457
458	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
459	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
460
461	oinfo.oi_owner = xefi->xefi_owner;
462	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
463		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
464	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
465		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
466
467	trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
468			agbno, xefi->xefi_blockcount);
469
470	/*
471	 * If we need a new transaction to make progress, the caller will log a
472	 * new EFI with the current contents. It will also log an EFD to cancel
473	 * the existing EFI, and so we need to copy all the unprocessed extents
474	 * in this EFI to the EFD so this works correctly.
475	 */
476	if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
477		error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
478				xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
479				xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
480	if (error == -EAGAIN) {
481		xfs_efd_from_efi(efdp);
482		return error;
483	}
484
485	/* Add the work we finished to the EFD, even though nobody uses that */
486	next_extent = efdp->efd_next_extent;
487	ASSERT(next_extent < efdp->efd_format.efd_nextents);
488	extp = &(efdp->efd_format.efd_extents[next_extent]);
489	extp->ext_start = xefi->xefi_startblock;
490	extp->ext_len = xefi->xefi_blockcount;
491	efdp->efd_next_extent++;
492
493	xfs_extent_free_put_group(xefi);
494	kmem_cache_free(xfs_extfree_item_cache, xefi);
495	return error;
496}
497
498/* Abort all pending EFIs. */
499STATIC void
500xfs_extent_free_abort_intent(
501	struct xfs_log_item		*intent)
502{
503	xfs_efi_release(EFI_ITEM(intent));
504}
505
506/* Cancel a free extent. */
507STATIC void
508xfs_extent_free_cancel_item(
509	struct list_head		*item)
510{
511	struct xfs_extent_free_item	*xefi;
512
513	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
514
515	xfs_extent_free_put_group(xefi);
516	kmem_cache_free(xfs_extfree_item_cache, xefi);
517}
518
519/*
520 * AGFL blocks are accounted differently in the reserve pools and are not
521 * inserted into the busy extent list.
522 */
523STATIC int
524xfs_agfl_free_finish_item(
525	struct xfs_trans		*tp,
526	struct xfs_log_item		*done,
527	struct list_head		*item,
528	struct xfs_btree_cur		**state)
529{
530	struct xfs_owner_info		oinfo = { };
531	struct xfs_mount		*mp = tp->t_mountp;
532	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
533	struct xfs_extent_free_item	*xefi;
534	struct xfs_extent		*extp;
535	struct xfs_buf			*agbp;
536	int				error;
537	xfs_agblock_t			agbno;
538	uint				next_extent;
539
540	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
541	ASSERT(xefi->xefi_blockcount == 1);
542	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
543	oinfo.oi_owner = xefi->xefi_owner;
544
545	trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
546			xefi->xefi_blockcount);
547
548	error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
549	if (!error)
550		error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
551				agbno, agbp, &oinfo);
552
553	next_extent = efdp->efd_next_extent;
554	ASSERT(next_extent < efdp->efd_format.efd_nextents);
555	extp = &(efdp->efd_format.efd_extents[next_extent]);
556	extp->ext_start = xefi->xefi_startblock;
557	extp->ext_len = xefi->xefi_blockcount;
558	efdp->efd_next_extent++;
559
560	xfs_extent_free_put_group(xefi);
561	kmem_cache_free(xfs_extfree_item_cache, xefi);
562	return error;
563}
564
565/* Is this recovered EFI ok? */
566static inline bool
567xfs_efi_validate_ext(
568	struct xfs_mount		*mp,
569	struct xfs_extent		*extp)
570{
571	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
572}
573
574static inline void
575xfs_efi_recover_work(
576	struct xfs_mount		*mp,
577	struct xfs_defer_pending	*dfp,
578	struct xfs_extent		*extp)
579{
580	struct xfs_extent_free_item	*xefi;
581
582	xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
583			       GFP_KERNEL | __GFP_NOFAIL);
584	xefi->xefi_startblock = extp->ext_start;
585	xefi->xefi_blockcount = extp->ext_len;
586	xefi->xefi_agresv = XFS_AG_RESV_NONE;
587	xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
588	xfs_extent_free_get_group(mp, xefi);
589
590	xfs_defer_add_item(dfp, &xefi->xefi_list);
591}
592
593/*
594 * Process an extent free intent item that was recovered from
595 * the log.  We need to free the extents that it describes.
596 */
597STATIC int
598xfs_extent_free_recover_work(
599	struct xfs_defer_pending	*dfp,
600	struct list_head		*capture_list)
601{
602	struct xfs_trans_res		resv;
603	struct xfs_log_item		*lip = dfp->dfp_intent;
604	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
605	struct xfs_mount		*mp = lip->li_log->l_mp;
606	struct xfs_trans		*tp;
607	int				i;
608	int				error = 0;
609
610	/*
611	 * First check the validity of the extents described by the
612	 * EFI.  If any are bad, then assume that all are bad and
613	 * just toss the EFI.
614	 */
615	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
616		if (!xfs_efi_validate_ext(mp,
617					&efip->efi_format.efi_extents[i])) {
618			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
619					&efip->efi_format,
620					sizeof(efip->efi_format));
621			return -EFSCORRUPTED;
622		}
623
624		xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]);
625	}
626
627	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
628	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
629	if (error)
630		return error;
631
632	error = xlog_recover_finish_intent(tp, dfp);
633	if (error == -EFSCORRUPTED)
634		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
635				&efip->efi_format,
636				sizeof(efip->efi_format));
637	if (error)
638		goto abort_error;
639
640	return xfs_defer_ops_capture_and_commit(tp, capture_list);
641
642abort_error:
643	xfs_trans_cancel(tp);
644	return error;
645}
646
647/* Relog an intent item to push the log tail forward. */
648static struct xfs_log_item *
649xfs_extent_free_relog_intent(
650	struct xfs_trans		*tp,
651	struct xfs_log_item		*intent,
652	struct xfs_log_item		*done_item)
653{
654	struct xfs_efd_log_item		*efdp = EFD_ITEM(done_item);
655	struct xfs_efi_log_item		*efip;
656	struct xfs_extent		*extp;
657	unsigned int			count;
658
659	count = EFI_ITEM(intent)->efi_format.efi_nextents;
660	extp = EFI_ITEM(intent)->efi_format.efi_extents;
661
662	efdp->efd_next_extent = count;
663	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
664
665	efip = xfs_efi_init(tp->t_mountp, count);
666	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
667	atomic_set(&efip->efi_next_extent, count);
668
669	return &efip->efi_item;
670}
671
672const struct xfs_defer_op_type xfs_extent_free_defer_type = {
673	.name		= "extent_free",
674	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
675	.create_intent	= xfs_extent_free_create_intent,
676	.abort_intent	= xfs_extent_free_abort_intent,
677	.create_done	= xfs_extent_free_create_done,
678	.finish_item	= xfs_extent_free_finish_item,
679	.cancel_item	= xfs_extent_free_cancel_item,
680	.recover_work	= xfs_extent_free_recover_work,
681	.relog_intent	= xfs_extent_free_relog_intent,
682};
683
684/* sub-type with special handling for AGFL deferred frees */
685const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
686	.name		= "agfl_free",
687	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
688	.create_intent	= xfs_extent_free_create_intent,
689	.abort_intent	= xfs_extent_free_abort_intent,
690	.create_done	= xfs_extent_free_create_done,
691	.finish_item	= xfs_agfl_free_finish_item,
692	.cancel_item	= xfs_extent_free_cancel_item,
693	.recover_work	= xfs_extent_free_recover_work,
694	.relog_intent	= xfs_extent_free_relog_intent,
695};
696
697STATIC bool
698xfs_efi_item_match(
699	struct xfs_log_item	*lip,
700	uint64_t		intent_id)
701{
702	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
703}
704
705static const struct xfs_item_ops xfs_efi_item_ops = {
706	.flags		= XFS_ITEM_INTENT,
707	.iop_size	= xfs_efi_item_size,
708	.iop_format	= xfs_efi_item_format,
709	.iop_unpin	= xfs_efi_item_unpin,
710	.iop_release	= xfs_efi_item_release,
711	.iop_match	= xfs_efi_item_match,
712};
713
714/*
715 * This routine is called to create an in-core extent free intent
716 * item from the efi format structure which was logged on disk.
717 * It allocates an in-core efi, copies the extents from the format
718 * structure into it, and adds the efi to the AIL with the given
719 * LSN.
720 */
721STATIC int
722xlog_recover_efi_commit_pass2(
723	struct xlog			*log,
724	struct list_head		*buffer_list,
725	struct xlog_recover_item	*item,
726	xfs_lsn_t			lsn)
727{
728	struct xfs_mount		*mp = log->l_mp;
729	struct xfs_efi_log_item		*efip;
730	struct xfs_efi_log_format	*efi_formatp;
731	int				error;
732
733	efi_formatp = item->ri_buf[0].i_addr;
734
735	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
736		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
737				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
738		return -EFSCORRUPTED;
739	}
740
741	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
742	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
743	if (error) {
744		xfs_efi_item_free(efip);
745		return error;
746	}
747	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
748
749	xlog_recover_intent_item(log, &efip->efi_item, lsn,
750			&xfs_extent_free_defer_type);
751	return 0;
752}
753
754const struct xlog_recover_item_ops xlog_efi_item_ops = {
755	.item_type		= XFS_LI_EFI,
756	.commit_pass2		= xlog_recover_efi_commit_pass2,
757};
758
759/*
760 * This routine is called when an EFD format structure is found in a committed
761 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
762 * was still in the log. To do this it searches the AIL for the EFI with an id
763 * equal to that in the EFD format structure. If we find it we drop the EFD
764 * reference, which removes the EFI from the AIL and frees it.
765 */
766STATIC int
767xlog_recover_efd_commit_pass2(
768	struct xlog			*log,
769	struct list_head		*buffer_list,
770	struct xlog_recover_item	*item,
771	xfs_lsn_t			lsn)
772{
773	struct xfs_efd_log_format	*efd_formatp;
774	int				buflen = item->ri_buf[0].i_len;
775
776	efd_formatp = item->ri_buf[0].i_addr;
777
778	if (buflen < sizeof(struct xfs_efd_log_format)) {
779		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
780				efd_formatp, buflen);
781		return -EFSCORRUPTED;
782	}
783
784	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
785						efd_formatp->efd_nextents) &&
786	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
787						efd_formatp->efd_nextents)) {
788		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
789				efd_formatp, buflen);
790		return -EFSCORRUPTED;
791	}
792
793	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
794	return 0;
795}
796
797const struct xlog_recover_item_ops xlog_efd_item_ops = {
798	.item_type		= XFS_LI_EFD,
799	.commit_pass2		= xlog_recover_efd_commit_pass2,
800};
801