1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
4 * Author: Darrick J. Wong <djwong@kernel.org>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
12#include "xfs_btree.h"
13#include "xfs_log_format.h"
14#include "xfs_trans.h"
15#include "xfs_sb.h"
16#include "xfs_inode.h"
17#include "xfs_alloc.h"
18#include "xfs_alloc_btree.h"
19#include "xfs_ialloc.h"
20#include "xfs_ialloc_btree.h"
21#include "xfs_rmap.h"
22#include "xfs_rmap_btree.h"
23#include "xfs_refcount_btree.h"
24#include "xfs_extent_busy.h"
25#include "xfs_ag.h"
26#include "xfs_ag_resv.h"
27#include "xfs_quota.h"
28#include "xfs_qm.h"
29#include "xfs_defer.h"
30#include "xfs_errortag.h"
31#include "xfs_error.h"
32#include "xfs_reflink.h"
33#include "xfs_health.h"
34#include "xfs_buf_mem.h"
35#include "scrub/scrub.h"
36#include "scrub/common.h"
37#include "scrub/trace.h"
38#include "scrub/repair.h"
39#include "scrub/bitmap.h"
40#include "scrub/stats.h"
41#include "scrub/xfile.h"
42
43/*
44 * Attempt to repair some metadata, if the metadata is corrupt and userspace
45 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
46 * and will set *fixed to true if it thinks it repaired anything.
47 */
48int
49xrep_attempt(
50	struct xfs_scrub	*sc,
51	struct xchk_stats_run	*run)
52{
53	u64			repair_start;
54	int			error = 0;
55
56	trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error);
57
58	xchk_ag_btcur_free(&sc->sa);
59
60	/* Repair whatever's broken. */
61	ASSERT(sc->ops->repair);
62	run->repair_attempted = true;
63	repair_start = xchk_stats_now();
64	error = sc->ops->repair(sc);
65	trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error);
66	run->repair_ns += xchk_stats_elapsed_ns(repair_start);
67	switch (error) {
68	case 0:
69		/*
70		 * Repair succeeded.  Commit the fixes and perform a second
71		 * scrub so that we can tell userspace if we fixed the problem.
72		 */
73		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
74		sc->flags |= XREP_ALREADY_FIXED;
75		run->repair_succeeded = true;
76		return -EAGAIN;
77	case -ECHRNG:
78		sc->flags |= XCHK_NEED_DRAIN;
79		run->retries++;
80		return -EAGAIN;
81	case -EDEADLOCK:
82		/* Tell the caller to try again having grabbed all the locks. */
83		if (!(sc->flags & XCHK_TRY_HARDER)) {
84			sc->flags |= XCHK_TRY_HARDER;
85			run->retries++;
86			return -EAGAIN;
87		}
88		/*
89		 * We tried harder but still couldn't grab all the resources
90		 * we needed to fix it.  The corruption has not been fixed,
91		 * so exit to userspace with the scan's output flags unchanged.
92		 */
93		return 0;
94	default:
95		/*
96		 * EAGAIN tells the caller to re-scrub, so we cannot return
97		 * that here.
98		 */
99		ASSERT(error != -EAGAIN);
100		return error;
101	}
102}
103
104/*
105 * Complain about unfixable problems in the filesystem.  We don't log
106 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
107 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
108 * administrator isn't running xfs_scrub in no-repairs mode.
109 *
110 * Use this helper function because _ratelimited silently declares a static
111 * structure to track rate limiting information.
112 */
113void
114xrep_failure(
115	struct xfs_mount	*mp)
116{
117	xfs_alert_ratelimited(mp,
118"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
119}
120
121/*
122 * Repair probe -- userspace uses this to probe if we're willing to repair a
123 * given mountpoint.
124 */
125int
126xrep_probe(
127	struct xfs_scrub	*sc)
128{
129	int			error = 0;
130
131	if (xchk_should_terminate(sc, &error))
132		return error;
133
134	return 0;
135}
136
137/*
138 * Roll a transaction, keeping the AG headers locked and reinitializing
139 * the btree cursors.
140 */
141int
142xrep_roll_ag_trans(
143	struct xfs_scrub	*sc)
144{
145	int			error;
146
147	/*
148	 * Keep the AG header buffers locked while we roll the transaction.
149	 * Ensure that both AG buffers are dirty and held when we roll the
150	 * transaction so that they move forward in the log without losing the
151	 * bli (and hence the bli type) when the transaction commits.
152	 *
153	 * Normal code would never hold clean buffers across a roll, but repair
154	 * needs both buffers to maintain a total lock on the AG.
155	 */
156	if (sc->sa.agi_bp) {
157		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
158		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
159	}
160
161	if (sc->sa.agf_bp) {
162		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
163		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
164	}
165
166	/*
167	 * Roll the transaction.  We still hold the AG header buffers locked
168	 * regardless of whether or not that succeeds.  On failure, the buffers
169	 * will be released during teardown on our way out of the kernel.  If
170	 * successful, join the buffers to the new transaction and move on.
171	 */
172	error = xfs_trans_roll(&sc->tp);
173	if (error)
174		return error;
175
176	/* Join the AG headers to the new transaction. */
177	if (sc->sa.agi_bp)
178		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
179	if (sc->sa.agf_bp)
180		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
181
182	return 0;
183}
184
185/* Roll the scrub transaction, holding the primary metadata locked. */
186int
187xrep_roll_trans(
188	struct xfs_scrub	*sc)
189{
190	if (!sc->ip)
191		return xrep_roll_ag_trans(sc);
192	return xfs_trans_roll_inode(&sc->tp, sc->ip);
193}
194
195/* Finish all deferred work attached to the repair transaction. */
196int
197xrep_defer_finish(
198	struct xfs_scrub	*sc)
199{
200	int			error;
201
202	/*
203	 * Keep the AG header buffers locked while we complete deferred work
204	 * items.  Ensure that both AG buffers are dirty and held when we roll
205	 * the transaction so that they move forward in the log without losing
206	 * the bli (and hence the bli type) when the transaction commits.
207	 *
208	 * Normal code would never hold clean buffers across a roll, but repair
209	 * needs both buffers to maintain a total lock on the AG.
210	 */
211	if (sc->sa.agi_bp) {
212		xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM);
213		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
214	}
215
216	if (sc->sa.agf_bp) {
217		xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM);
218		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
219	}
220
221	/*
222	 * Finish all deferred work items.  We still hold the AG header buffers
223	 * locked regardless of whether or not that succeeds.  On failure, the
224	 * buffers will be released during teardown on our way out of the
225	 * kernel.  If successful, join the buffers to the new transaction
226	 * and move on.
227	 */
228	error = xfs_defer_finish(&sc->tp);
229	if (error)
230		return error;
231
232	/*
233	 * Release the hold that we set above because defer_finish won't do
234	 * that for us.  The defer roll code redirties held buffers after each
235	 * roll, so the AG header buffers should be ready for logging.
236	 */
237	if (sc->sa.agi_bp)
238		xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp);
239	if (sc->sa.agf_bp)
240		xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp);
241
242	return 0;
243}
244
245/*
246 * Does the given AG have enough space to rebuild a btree?  Neither AG
247 * reservation can be critical, and we must have enough space (factoring
248 * in AG reservations) to construct a whole btree.
249 */
250bool
251xrep_ag_has_space(
252	struct xfs_perag	*pag,
253	xfs_extlen_t		nr_blocks,
254	enum xfs_ag_resv_type	type)
255{
256	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
257		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
258		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
259}
260
261/*
262 * Figure out how many blocks to reserve for an AG repair.  We calculate the
263 * worst case estimate for the number of blocks we'd need to rebuild one of
264 * any type of per-AG btree.
265 */
266xfs_extlen_t
267xrep_calc_ag_resblks(
268	struct xfs_scrub		*sc)
269{
270	struct xfs_mount		*mp = sc->mp;
271	struct xfs_scrub_metadata	*sm = sc->sm;
272	struct xfs_perag		*pag;
273	struct xfs_buf			*bp;
274	xfs_agino_t			icount = NULLAGINO;
275	xfs_extlen_t			aglen = NULLAGBLOCK;
276	xfs_extlen_t			usedlen;
277	xfs_extlen_t			freelen;
278	xfs_extlen_t			bnobt_sz;
279	xfs_extlen_t			inobt_sz;
280	xfs_extlen_t			rmapbt_sz;
281	xfs_extlen_t			refcbt_sz;
282	int				error;
283
284	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
285		return 0;
286
287	pag = xfs_perag_get(mp, sm->sm_agno);
288	if (xfs_perag_initialised_agi(pag)) {
289		/* Use in-core icount if possible. */
290		icount = pag->pagi_count;
291	} else {
292		/* Try to get the actual counters from disk. */
293		error = xfs_ialloc_read_agi(pag, NULL, &bp);
294		if (!error) {
295			icount = pag->pagi_count;
296			xfs_buf_relse(bp);
297		}
298	}
299
300	/* Now grab the block counters from the AGF. */
301	error = xfs_alloc_read_agf(pag, NULL, 0, &bp);
302	if (error) {
303		aglen = pag->block_count;
304		freelen = aglen;
305		usedlen = aglen;
306	} else {
307		struct xfs_agf	*agf = bp->b_addr;
308
309		aglen = be32_to_cpu(agf->agf_length);
310		freelen = be32_to_cpu(agf->agf_freeblks);
311		usedlen = aglen - freelen;
312		xfs_buf_relse(bp);
313	}
314
315	/* If the icount is impossible, make some worst-case assumptions. */
316	if (icount == NULLAGINO ||
317	    !xfs_verify_agino(pag, icount)) {
318		icount = pag->agino_max - pag->agino_min + 1;
319	}
320
321	/* If the block counts are impossible, make worst-case assumptions. */
322	if (aglen == NULLAGBLOCK ||
323	    aglen != pag->block_count ||
324	    freelen >= aglen) {
325		aglen = pag->block_count;
326		freelen = aglen;
327		usedlen = aglen;
328	}
329	xfs_perag_put(pag);
330
331	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
332			freelen, usedlen);
333
334	/*
335	 * Figure out how many blocks we'd need worst case to rebuild
336	 * each type of btree.  Note that we can only rebuild the
337	 * bnobt/cntbt or inobt/finobt as pairs.
338	 */
339	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
340	if (xfs_has_sparseinodes(mp))
341		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
342				XFS_INODES_PER_HOLEMASK_BIT);
343	else
344		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
345				XFS_INODES_PER_CHUNK);
346	if (xfs_has_finobt(mp))
347		inobt_sz *= 2;
348	if (xfs_has_reflink(mp))
349		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
350	else
351		refcbt_sz = 0;
352	if (xfs_has_rmapbt(mp)) {
353		/*
354		 * Guess how many blocks we need to rebuild the rmapbt.
355		 * For non-reflink filesystems we can't have more records than
356		 * used blocks.  However, with reflink it's possible to have
357		 * more than one rmap record per AG block.  We don't know how
358		 * many rmaps there could be in the AG, so we start off with
359		 * what we hope is an generous over-estimation.
360		 */
361		if (xfs_has_reflink(mp))
362			rmapbt_sz = xfs_rmapbt_calc_size(mp,
363					(unsigned long long)aglen * 2);
364		else
365			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
366	} else {
367		rmapbt_sz = 0;
368	}
369
370	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
371			inobt_sz, rmapbt_sz, refcbt_sz);
372
373	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
374}
375
376/*
377 * Reconstructing per-AG Btrees
378 *
379 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
380 * we scan secondary space metadata to derive the records that should be in
381 * the damaged btree, initialize a fresh btree root, and insert the records.
382 * Note that for rebuilding the rmapbt we scan all the primary data to
383 * generate the new records.
384 *
385 * However, that leaves the matter of removing all the metadata describing the
386 * old broken structure.  For primary metadata we use the rmap data to collect
387 * every extent with a matching rmap owner (bitmap); we then iterate all other
388 * metadata structures with the same rmap owner to collect the extents that
389 * cannot be removed (sublist).  We then subtract sublist from bitmap to
390 * derive the blocks that were used by the old btree.  These blocks can be
391 * reaped.
392 *
393 * For rmapbt reconstructions we must use different tactics for extent
394 * collection.  First we iterate all primary metadata (this excludes the old
395 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
396 * records are collected as bitmap.  The bnobt records are collected as
397 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
398 * result (since the rmapbt lives in the free space) are the blocks from the
399 * old rmapbt.
400 */
401
402/* Ensure the freelist is the correct size. */
403int
404xrep_fix_freelist(
405	struct xfs_scrub	*sc,
406	int			alloc_flags)
407{
408	struct xfs_alloc_arg	args = {0};
409
410	args.mp = sc->mp;
411	args.tp = sc->tp;
412	args.agno = sc->sa.pag->pag_agno;
413	args.alignment = 1;
414	args.pag = sc->sa.pag;
415
416	return xfs_alloc_fix_freelist(&args, alloc_flags);
417}
418
419/*
420 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
421 *
422 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
423 * the AG headers by using the rmap data to rummage through the AG looking for
424 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
425 * or the rmap data are corrupt.
426 *
427 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
428 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
429 * AGI is being rebuilt.  It must maintain these locks until it's safe for
430 * other threads to change the btrees' shapes.  The caller provides
431 * information about the btrees to look for by passing in an array of
432 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
433 * The (root, height) fields will be set on return if anything is found.  The
434 * last element of the array should have a NULL buf_ops to mark the end of the
435 * array.
436 *
437 * For every rmapbt record matching any of the rmap owners in btree_info,
438 * read each block referenced by the rmap record.  If the block is a btree
439 * block from this filesystem matching any of the magic numbers and has a
440 * level higher than what we've already seen, remember the block and the
441 * height of the tree required to have such a block.  When the call completes,
442 * we return the highest block we've found for each btree description; those
443 * should be the roots.
444 */
445
446struct xrep_findroot {
447	struct xfs_scrub		*sc;
448	struct xfs_buf			*agfl_bp;
449	struct xfs_agf			*agf;
450	struct xrep_find_ag_btree	*btree_info;
451};
452
453/* See if our block is in the AGFL. */
454STATIC int
455xrep_findroot_agfl_walk(
456	struct xfs_mount	*mp,
457	xfs_agblock_t		bno,
458	void			*priv)
459{
460	xfs_agblock_t		*agbno = priv;
461
462	return (*agbno == bno) ? -ECANCELED : 0;
463}
464
465/* Does this block match the btree information passed in? */
466STATIC int
467xrep_findroot_block(
468	struct xrep_findroot		*ri,
469	struct xrep_find_ag_btree	*fab,
470	uint64_t			owner,
471	xfs_agblock_t			agbno,
472	bool				*done_with_block)
473{
474	struct xfs_mount		*mp = ri->sc->mp;
475	struct xfs_buf			*bp;
476	struct xfs_btree_block		*btblock;
477	xfs_daddr_t			daddr;
478	int				block_level;
479	int				error = 0;
480
481	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno);
482
483	/*
484	 * Blocks in the AGFL have stale contents that might just happen to
485	 * have a matching magic and uuid.  We don't want to pull these blocks
486	 * in as part of a tree root, so we have to filter out the AGFL stuff
487	 * here.  If the AGFL looks insane we'll just refuse to repair.
488	 */
489	if (owner == XFS_RMAP_OWN_AG) {
490		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
491				xrep_findroot_agfl_walk, &agbno);
492		if (error == -ECANCELED)
493			return 0;
494		if (error)
495			return error;
496	}
497
498	/*
499	 * Read the buffer into memory so that we can see if it's a match for
500	 * our btree type.  We have no clue if it is beforehand, and we want to
501	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
502	 * will cause needless disk reads in subsequent calls to this function)
503	 * and logging metadata verifier failures.
504	 *
505	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
506	 * memory from some other caller it will already have b_ops assigned.
507	 * If it was in memory from a previous unsuccessful findroot_block
508	 * call, the buffer won't have b_ops but it should be clean and ready
509	 * for us to try to verify if the read call succeeds.  The same applies
510	 * if the buffer wasn't in memory at all.
511	 *
512	 * Note: If we never match a btree type with this buffer, it will be
513	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
514	 * the buffer gets written.
515	 */
516	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
517			mp->m_bsize, 0, &bp, NULL);
518	if (error)
519		return error;
520
521	/* Ensure the block magic matches the btree type we're looking for. */
522	btblock = XFS_BUF_TO_BLOCK(bp);
523	ASSERT(fab->buf_ops->magic[1] != 0);
524	if (btblock->bb_magic != fab->buf_ops->magic[1])
525		goto out;
526
527	/*
528	 * If the buffer already has ops applied and they're not the ones for
529	 * this btree type, we know this block doesn't match the btree and we
530	 * can bail out.
531	 *
532	 * If the buffer ops match ours, someone else has already validated
533	 * the block for us, so we can move on to checking if this is a root
534	 * block candidate.
535	 *
536	 * If the buffer does not have ops, nobody has successfully validated
537	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
538	 * and structure match this btree type then we'll move on to checking
539	 * if it's a root block candidate.  If there is no match, bail out.
540	 */
541	if (bp->b_ops) {
542		if (bp->b_ops != fab->buf_ops)
543			goto out;
544	} else {
545		ASSERT(!xfs_trans_buf_is_dirty(bp));
546		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
547				&mp->m_sb.sb_meta_uuid))
548			goto out;
549		/*
550		 * Read verifiers can reference b_ops, so we set the pointer
551		 * here.  If the verifier fails we'll reset the buffer state
552		 * to what it was before we touched the buffer.
553		 */
554		bp->b_ops = fab->buf_ops;
555		fab->buf_ops->verify_read(bp);
556		if (bp->b_error) {
557			bp->b_ops = NULL;
558			bp->b_error = 0;
559			goto out;
560		}
561
562		/*
563		 * Some read verifiers will (re)set b_ops, so we must be
564		 * careful not to change b_ops after running the verifier.
565		 */
566	}
567
568	/*
569	 * This block passes the magic/uuid and verifier tests for this btree
570	 * type.  We don't need the caller to try the other tree types.
571	 */
572	*done_with_block = true;
573
574	/*
575	 * Compare this btree block's level to the height of the current
576	 * candidate root block.
577	 *
578	 * If the level matches the root we found previously, throw away both
579	 * blocks because there can't be two candidate roots.
580	 *
581	 * If level is lower in the tree than the root we found previously,
582	 * ignore this block.
583	 */
584	block_level = xfs_btree_get_level(btblock);
585	if (block_level + 1 == fab->height) {
586		fab->root = NULLAGBLOCK;
587		goto out;
588	} else if (block_level < fab->height) {
589		goto out;
590	}
591
592	/*
593	 * This is the highest block in the tree that we've found so far.
594	 * Update the btree height to reflect what we've learned from this
595	 * block.
596	 */
597	fab->height = block_level + 1;
598
599	/*
600	 * If this block doesn't have sibling pointers, then it's the new root
601	 * block candidate.  Otherwise, the root will be found farther up the
602	 * tree.
603	 */
604	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
605	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
606		fab->root = agbno;
607	else
608		fab->root = NULLAGBLOCK;
609
610	trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno,
611			be32_to_cpu(btblock->bb_magic), fab->height - 1);
612out:
613	xfs_trans_brelse(ri->sc->tp, bp);
614	return error;
615}
616
617/*
618 * Do any of the blocks in this rmap record match one of the btrees we're
619 * looking for?
620 */
621STATIC int
622xrep_findroot_rmap(
623	struct xfs_btree_cur		*cur,
624	const struct xfs_rmap_irec	*rec,
625	void				*priv)
626{
627	struct xrep_findroot		*ri = priv;
628	struct xrep_find_ag_btree	*fab;
629	xfs_agblock_t			b;
630	bool				done;
631	int				error = 0;
632
633	/* Ignore anything that isn't AG metadata. */
634	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
635		return 0;
636
637	/* Otherwise scan each block + btree type. */
638	for (b = 0; b < rec->rm_blockcount; b++) {
639		done = false;
640		for (fab = ri->btree_info; fab->buf_ops; fab++) {
641			if (rec->rm_owner != fab->rmap_owner)
642				continue;
643			error = xrep_findroot_block(ri, fab,
644					rec->rm_owner, rec->rm_startblock + b,
645					&done);
646			if (error)
647				return error;
648			if (done)
649				break;
650		}
651	}
652
653	return 0;
654}
655
656/* Find the roots of the per-AG btrees described in btree_info. */
657int
658xrep_find_ag_btree_roots(
659	struct xfs_scrub		*sc,
660	struct xfs_buf			*agf_bp,
661	struct xrep_find_ag_btree	*btree_info,
662	struct xfs_buf			*agfl_bp)
663{
664	struct xfs_mount		*mp = sc->mp;
665	struct xrep_findroot		ri;
666	struct xrep_find_ag_btree	*fab;
667	struct xfs_btree_cur		*cur;
668	int				error;
669
670	ASSERT(xfs_buf_islocked(agf_bp));
671	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
672
673	ri.sc = sc;
674	ri.btree_info = btree_info;
675	ri.agf = agf_bp->b_addr;
676	ri.agfl_bp = agfl_bp;
677	for (fab = btree_info; fab->buf_ops; fab++) {
678		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
679		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
680		fab->root = NULLAGBLOCK;
681		fab->height = 0;
682	}
683
684	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
685	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
686	xfs_btree_del_cursor(cur, error);
687
688	return error;
689}
690
691#ifdef CONFIG_XFS_QUOTA
692/* Update some quota flags in the superblock. */
693void
694xrep_update_qflags(
695	struct xfs_scrub	*sc,
696	unsigned int		clear_flags,
697	unsigned int		set_flags)
698{
699	struct xfs_mount	*mp = sc->mp;
700	struct xfs_buf		*bp;
701
702	mutex_lock(&mp->m_quotainfo->qi_quotaofflock);
703	if ((mp->m_qflags & clear_flags) == 0 &&
704	    (mp->m_qflags & set_flags) == set_flags)
705		goto no_update;
706
707	mp->m_qflags &= ~clear_flags;
708	mp->m_qflags |= set_flags;
709
710	spin_lock(&mp->m_sb_lock);
711	mp->m_sb.sb_qflags &= ~clear_flags;
712	mp->m_sb.sb_qflags |= set_flags;
713	spin_unlock(&mp->m_sb_lock);
714
715	/*
716	 * Update the quota flags in the ondisk superblock without touching
717	 * the summary counters.  We have not quiesced inode chunk allocation,
718	 * so we cannot coordinate with updates to the icount and ifree percpu
719	 * counters.
720	 */
721	bp = xfs_trans_getsb(sc->tp);
722	xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
723	xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
724	xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1);
725
726no_update:
727	mutex_unlock(&sc->mp->m_quotainfo->qi_quotaofflock);
728}
729
730/* Force a quotacheck the next time we mount. */
731void
732xrep_force_quotacheck(
733	struct xfs_scrub	*sc,
734	xfs_dqtype_t		type)
735{
736	uint			flag;
737
738	flag = xfs_quota_chkd_flag(type);
739	if (!(flag & sc->mp->m_qflags))
740		return;
741
742	xrep_update_qflags(sc, flag, 0);
743}
744
745/*
746 * Attach dquots to this inode, or schedule quotacheck to fix them.
747 *
748 * This function ensures that the appropriate dquots are attached to an inode.
749 * We cannot allow the dquot code to allocate an on-disk dquot block here
750 * because we're already in transaction context.  The on-disk dquot should
751 * already exist anyway.  If the quota code signals corruption or missing quota
752 * information, schedule quotacheck, which will repair corruptions in the quota
753 * metadata.
754 */
755int
756xrep_ino_dqattach(
757	struct xfs_scrub	*sc)
758{
759	int			error;
760
761	ASSERT(sc->tp != NULL);
762	ASSERT(sc->ip != NULL);
763
764	error = xfs_qm_dqattach(sc->ip);
765	switch (error) {
766	case -EFSBADCRC:
767	case -EFSCORRUPTED:
768	case -ENOENT:
769		xfs_err_ratelimited(sc->mp,
770"inode %llu repair encountered quota error %d, quotacheck forced.",
771				(unsigned long long)sc->ip->i_ino, error);
772		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
773			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
774		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
775			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
776		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
777			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
778		fallthrough;
779	case -ESRCH:
780		error = 0;
781		break;
782	default:
783		break;
784	}
785
786	return error;
787}
788#endif /* CONFIG_XFS_QUOTA */
789
790/*
791 * Ensure that the inode being repaired is ready to handle a certain number of
792 * extents, or return EFSCORRUPTED.  Caller must hold the ILOCK of the inode
793 * being repaired and have joined it to the scrub transaction.
794 */
795int
796xrep_ino_ensure_extent_count(
797	struct xfs_scrub	*sc,
798	int			whichfork,
799	xfs_extnum_t		nextents)
800{
801	xfs_extnum_t		max_extents;
802	bool			inode_has_nrext64;
803
804	inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip);
805	max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork);
806	if (nextents <= max_extents)
807		return 0;
808	if (inode_has_nrext64)
809		return -EFSCORRUPTED;
810	if (!xfs_has_large_extent_counts(sc->mp))
811		return -EFSCORRUPTED;
812
813	max_extents = xfs_iext_max_nextents(true, whichfork);
814	if (nextents > max_extents)
815		return -EFSCORRUPTED;
816
817	sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
818	xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE);
819	return 0;
820}
821
822/*
823 * Initialize all the btree cursors for an AG repair except for the btree that
824 * we're rebuilding.
825 */
826void
827xrep_ag_btcur_init(
828	struct xfs_scrub	*sc,
829	struct xchk_ag		*sa)
830{
831	struct xfs_mount	*mp = sc->mp;
832
833	/* Set up a bnobt cursor for cross-referencing. */
834	if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT &&
835	    sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) {
836		sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp,
837				sc->sa.pag);
838		sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp,
839				sc->sa.pag);
840	}
841
842	/* Set up a inobt cursor for cross-referencing. */
843	if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT &&
844	    sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) {
845		sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp,
846				sa->agi_bp);
847		if (xfs_has_finobt(mp))
848			sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag,
849					sc->tp, sa->agi_bp);
850	}
851
852	/* Set up a rmapbt cursor for cross-referencing. */
853	if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT &&
854	    xfs_has_rmapbt(mp))
855		sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp,
856				sc->sa.pag);
857
858	/* Set up a refcountbt cursor for cross-referencing. */
859	if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT &&
860	    xfs_has_reflink(mp))
861		sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp,
862				sa->agf_bp, sc->sa.pag);
863}
864
865/*
866 * Reinitialize the in-core AG state after a repair by rereading the AGF
867 * buffer.  We had better get the same AGF buffer as the one that's attached
868 * to the scrub context.
869 */
870int
871xrep_reinit_pagf(
872	struct xfs_scrub	*sc)
873{
874	struct xfs_perag	*pag = sc->sa.pag;
875	struct xfs_buf		*bp;
876	int			error;
877
878	ASSERT(pag);
879	ASSERT(xfs_perag_initialised_agf(pag));
880
881	clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
882	error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp);
883	if (error)
884		return error;
885
886	if (bp != sc->sa.agf_bp) {
887		ASSERT(bp == sc->sa.agf_bp);
888		return -EFSCORRUPTED;
889	}
890
891	return 0;
892}
893
894/*
895 * Reinitialize the in-core AG state after a repair by rereading the AGI
896 * buffer.  We had better get the same AGI buffer as the one that's attached
897 * to the scrub context.
898 */
899int
900xrep_reinit_pagi(
901	struct xfs_scrub	*sc)
902{
903	struct xfs_perag	*pag = sc->sa.pag;
904	struct xfs_buf		*bp;
905	int			error;
906
907	ASSERT(pag);
908	ASSERT(xfs_perag_initialised_agi(pag));
909
910	clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
911	error = xfs_ialloc_read_agi(pag, sc->tp, &bp);
912	if (error)
913		return error;
914
915	if (bp != sc->sa.agi_bp) {
916		ASSERT(bp == sc->sa.agi_bp);
917		return -EFSCORRUPTED;
918	}
919
920	return 0;
921}
922
923/*
924 * Given an active reference to a perag structure, load AG headers and cursors.
925 * This should only be called to scan an AG while repairing file-based metadata.
926 */
927int
928xrep_ag_init(
929	struct xfs_scrub	*sc,
930	struct xfs_perag	*pag,
931	struct xchk_ag		*sa)
932{
933	int			error;
934
935	ASSERT(!sa->pag);
936
937	error = xfs_ialloc_read_agi(pag, sc->tp, &sa->agi_bp);
938	if (error)
939		return error;
940
941	error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp);
942	if (error)
943		return error;
944
945	/* Grab our own passive reference from the caller's ref. */
946	sa->pag = xfs_perag_hold(pag);
947	xrep_ag_btcur_init(sc, sa);
948	return 0;
949}
950
951/* Reinitialize the per-AG block reservation for the AG we just fixed. */
952int
953xrep_reset_perag_resv(
954	struct xfs_scrub	*sc)
955{
956	int			error;
957
958	if (!(sc->flags & XREP_RESET_PERAG_RESV))
959		return 0;
960
961	ASSERT(sc->sa.pag != NULL);
962	ASSERT(sc->ops->type == ST_PERAG);
963	ASSERT(sc->tp);
964
965	sc->flags &= ~XREP_RESET_PERAG_RESV;
966	error = xfs_ag_resv_free(sc->sa.pag);
967	if (error)
968		goto out;
969	error = xfs_ag_resv_init(sc->sa.pag, sc->tp);
970	if (error == -ENOSPC) {
971		xfs_err(sc->mp,
972"Insufficient free space to reset per-AG reservation for AG %u after repair.",
973				sc->sa.pag->pag_agno);
974		error = 0;
975	}
976
977out:
978	return error;
979}
980
981/* Decide if we are going to call the repair function for a scrub type. */
982bool
983xrep_will_attempt(
984	struct xfs_scrub	*sc)
985{
986	/* Userspace asked us to rebuild the structure regardless. */
987	if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD)
988		return true;
989
990	/* Let debug users force us into the repair routines. */
991	if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR))
992		return true;
993
994	/* Metadata is corrupt or failed cross-referencing. */
995	if (xchk_needs_repair(sc->sm))
996		return true;
997
998	return false;
999}
1000
1001/* Try to fix some part of a metadata inode by calling another scrubber. */
1002STATIC int
1003xrep_metadata_inode_subtype(
1004	struct xfs_scrub	*sc,
1005	unsigned int		scrub_type)
1006{
1007	__u32			smtype = sc->sm->sm_type;
1008	__u32			smflags = sc->sm->sm_flags;
1009	unsigned int		sick_mask = sc->sick_mask;
1010	int			error;
1011
1012	/*
1013	 * Let's see if the inode needs repair.  We're going to open-code calls
1014	 * to the scrub and repair functions so that we can hang on to the
1015	 * resources that we already acquired instead of using the standard
1016	 * setup/teardown routines.
1017	 */
1018	sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1019	sc->sm->sm_type = scrub_type;
1020
1021	switch (scrub_type) {
1022	case XFS_SCRUB_TYPE_INODE:
1023		error = xchk_inode(sc);
1024		break;
1025	case XFS_SCRUB_TYPE_BMBTD:
1026		error = xchk_bmap_data(sc);
1027		break;
1028	case XFS_SCRUB_TYPE_BMBTA:
1029		error = xchk_bmap_attr(sc);
1030		break;
1031	default:
1032		ASSERT(0);
1033		error = -EFSCORRUPTED;
1034	}
1035	if (error)
1036		goto out;
1037
1038	if (!xrep_will_attempt(sc))
1039		goto out;
1040
1041	/*
1042	 * Repair some part of the inode.  This will potentially join the inode
1043	 * to the transaction.
1044	 */
1045	switch (scrub_type) {
1046	case XFS_SCRUB_TYPE_INODE:
1047		error = xrep_inode(sc);
1048		break;
1049	case XFS_SCRUB_TYPE_BMBTD:
1050		error = xrep_bmap(sc, XFS_DATA_FORK, false);
1051		break;
1052	case XFS_SCRUB_TYPE_BMBTA:
1053		error = xrep_bmap(sc, XFS_ATTR_FORK, false);
1054		break;
1055	}
1056	if (error)
1057		goto out;
1058
1059	/*
1060	 * Finish all deferred intent items and then roll the transaction so
1061	 * that the inode will not be joined to the transaction when we exit
1062	 * the function.
1063	 */
1064	error = xfs_defer_finish(&sc->tp);
1065	if (error)
1066		goto out;
1067	error = xfs_trans_roll(&sc->tp);
1068	if (error)
1069		goto out;
1070
1071	/*
1072	 * Clear the corruption flags and re-check the metadata that we just
1073	 * repaired.
1074	 */
1075	sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
1076
1077	switch (scrub_type) {
1078	case XFS_SCRUB_TYPE_INODE:
1079		error = xchk_inode(sc);
1080		break;
1081	case XFS_SCRUB_TYPE_BMBTD:
1082		error = xchk_bmap_data(sc);
1083		break;
1084	case XFS_SCRUB_TYPE_BMBTA:
1085		error = xchk_bmap_attr(sc);
1086		break;
1087	}
1088	if (error)
1089		goto out;
1090
1091	/* If corruption persists, the repair has failed. */
1092	if (xchk_needs_repair(sc->sm)) {
1093		error = -EFSCORRUPTED;
1094		goto out;
1095	}
1096out:
1097	sc->sick_mask = sick_mask;
1098	sc->sm->sm_type = smtype;
1099	sc->sm->sm_flags = smflags;
1100	return error;
1101}
1102
1103/*
1104 * Repair the ondisk forks of a metadata inode.  The caller must ensure that
1105 * sc->ip points to the metadata inode and the ILOCK is held on that inode.
1106 * The inode must not be joined to the transaction before the call, and will
1107 * not be afterwards.
1108 */
1109int
1110xrep_metadata_inode_forks(
1111	struct xfs_scrub	*sc)
1112{
1113	bool			dirty = false;
1114	int			error;
1115
1116	/* Repair the inode record and the data fork. */
1117	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE);
1118	if (error)
1119		return error;
1120
1121	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD);
1122	if (error)
1123		return error;
1124
1125	/* Make sure the attr fork looks ok before we delete it. */
1126	error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA);
1127	if (error)
1128		return error;
1129
1130	/* Clear the reflink flag since metadata never shares. */
1131	if (xfs_is_reflink_inode(sc->ip)) {
1132		dirty = true;
1133		xfs_trans_ijoin(sc->tp, sc->ip, 0);
1134		error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp);
1135		if (error)
1136			return error;
1137	}
1138
1139	/*
1140	 * If we modified the inode, roll the transaction but don't rejoin the
1141	 * inode to the new transaction because xrep_bmap_data can do that.
1142	 */
1143	if (dirty) {
1144		error = xfs_trans_roll(&sc->tp);
1145		if (error)
1146			return error;
1147		dirty = false;
1148	}
1149
1150	return 0;
1151}
1152
1153/*
1154 * Set up an in-memory buffer cache so that we can use the xfbtree.  Allocating
1155 * a shmem file might take loks, so we cannot be in transaction context.  Park
1156 * our resources in the scrub context and let the teardown function take care
1157 * of them at the right time.
1158 */
1159int
1160xrep_setup_xfbtree(
1161	struct xfs_scrub	*sc,
1162	const char		*descr)
1163{
1164	ASSERT(sc->tp == NULL);
1165
1166	return xmbuf_alloc(sc->mp, descr, &sc->xmbtp);
1167}
1168
1169/*
1170 * Create a dummy transaction for use in a live update hook function.  This
1171 * function MUST NOT be called from regular repair code because the current
1172 * process' transaction is saved via the cookie.
1173 */
1174int
1175xrep_trans_alloc_hook_dummy(
1176	struct xfs_mount	*mp,
1177	void			**cookiep,
1178	struct xfs_trans	**tpp)
1179{
1180	int			error;
1181
1182	*cookiep = current->journal_info;
1183	current->journal_info = NULL;
1184
1185	error = xfs_trans_alloc_empty(mp, tpp);
1186	if (!error)
1187		return 0;
1188
1189	current->journal_info = *cookiep;
1190	*cookiep = NULL;
1191	return error;
1192}
1193
1194/* Cancel a dummy transaction used by a live update hook function. */
1195void
1196xrep_trans_cancel_hook_dummy(
1197	void			**cookiep,
1198	struct xfs_trans	*tp)
1199{
1200	xfs_trans_cancel(tp);
1201	current->journal_info = *cookiep;
1202	*cookiep = NULL;
1203}
1204