1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_btree_staging.h"
16#include "xfs_ialloc.h"
17#include "xfs_ialloc_btree.h"
18#include "xfs_alloc.h"
19#include "xfs_error.h"
20#include "xfs_health.h"
21#include "xfs_trace.h"
22#include "xfs_trans.h"
23#include "xfs_rmap.h"
24#include "xfs_ag.h"
25
26static struct kmem_cache	*xfs_inobt_cur_cache;
27
28STATIC int
29xfs_inobt_get_minrecs(
30	struct xfs_btree_cur	*cur,
31	int			level)
32{
33	return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
34}
35
36STATIC struct xfs_btree_cur *
37xfs_inobt_dup_cursor(
38	struct xfs_btree_cur	*cur)
39{
40	return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
41			cur->bc_ag.agbp);
42}
43
44STATIC struct xfs_btree_cur *
45xfs_finobt_dup_cursor(
46	struct xfs_btree_cur	*cur)
47{
48	return xfs_finobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
49			cur->bc_ag.agbp);
50}
51
52STATIC void
53xfs_inobt_set_root(
54	struct xfs_btree_cur		*cur,
55	const union xfs_btree_ptr	*nptr,
56	int				inc)	/* level change */
57{
58	struct xfs_buf		*agbp = cur->bc_ag.agbp;
59	struct xfs_agi		*agi = agbp->b_addr;
60
61	agi->agi_root = nptr->s;
62	be32_add_cpu(&agi->agi_level, inc);
63	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
64}
65
66STATIC void
67xfs_finobt_set_root(
68	struct xfs_btree_cur		*cur,
69	const union xfs_btree_ptr	*nptr,
70	int				inc)	/* level change */
71{
72	struct xfs_buf		*agbp = cur->bc_ag.agbp;
73	struct xfs_agi		*agi = agbp->b_addr;
74
75	agi->agi_free_root = nptr->s;
76	be32_add_cpu(&agi->agi_free_level, inc);
77	xfs_ialloc_log_agi(cur->bc_tp, agbp,
78			   XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
79}
80
81/* Update the inode btree block counter for this btree. */
82static inline void
83xfs_inobt_mod_blockcount(
84	struct xfs_btree_cur	*cur,
85	int			howmuch)
86{
87	struct xfs_buf		*agbp = cur->bc_ag.agbp;
88	struct xfs_agi		*agi = agbp->b_addr;
89
90	if (!xfs_has_inobtcounts(cur->bc_mp))
91		return;
92
93	if (xfs_btree_is_fino(cur->bc_ops))
94		be32_add_cpu(&agi->agi_fblocks, howmuch);
95	else
96		be32_add_cpu(&agi->agi_iblocks, howmuch);
97	xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
98}
99
100STATIC int
101__xfs_inobt_alloc_block(
102	struct xfs_btree_cur		*cur,
103	const union xfs_btree_ptr	*start,
104	union xfs_btree_ptr		*new,
105	int				*stat,
106	enum xfs_ag_resv_type		resv)
107{
108	xfs_alloc_arg_t		args;		/* block allocation args */
109	int			error;		/* error return value */
110	xfs_agblock_t		sbno = be32_to_cpu(start->s);
111
112	memset(&args, 0, sizeof(args));
113	args.tp = cur->bc_tp;
114	args.mp = cur->bc_mp;
115	args.pag = cur->bc_ag.pag;
116	args.oinfo = XFS_RMAP_OINFO_INOBT;
117	args.minlen = 1;
118	args.maxlen = 1;
119	args.prod = 1;
120	args.resv = resv;
121
122	error = xfs_alloc_vextent_near_bno(&args,
123			XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
124	if (error)
125		return error;
126
127	if (args.fsbno == NULLFSBLOCK) {
128		*stat = 0;
129		return 0;
130	}
131	ASSERT(args.len == 1);
132
133	new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134	*stat = 1;
135	xfs_inobt_mod_blockcount(cur, 1);
136	return 0;
137}
138
139STATIC int
140xfs_inobt_alloc_block(
141	struct xfs_btree_cur		*cur,
142	const union xfs_btree_ptr	*start,
143	union xfs_btree_ptr		*new,
144	int				*stat)
145{
146	return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
147}
148
149STATIC int
150xfs_finobt_alloc_block(
151	struct xfs_btree_cur		*cur,
152	const union xfs_btree_ptr	*start,
153	union xfs_btree_ptr		*new,
154	int				*stat)
155{
156	if (cur->bc_mp->m_finobt_nores)
157		return xfs_inobt_alloc_block(cur, start, new, stat);
158	return __xfs_inobt_alloc_block(cur, start, new, stat,
159			XFS_AG_RESV_METADATA);
160}
161
162STATIC int
163__xfs_inobt_free_block(
164	struct xfs_btree_cur	*cur,
165	struct xfs_buf		*bp,
166	enum xfs_ag_resv_type	resv)
167{
168	xfs_fsblock_t		fsbno;
169
170	xfs_inobt_mod_blockcount(cur, -1);
171	fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172	return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173			&XFS_RMAP_OINFO_INOBT, resv, false);
174}
175
176STATIC int
177xfs_inobt_free_block(
178	struct xfs_btree_cur	*cur,
179	struct xfs_buf		*bp)
180{
181	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
182}
183
184STATIC int
185xfs_finobt_free_block(
186	struct xfs_btree_cur	*cur,
187	struct xfs_buf		*bp)
188{
189	if (cur->bc_mp->m_finobt_nores)
190		return xfs_inobt_free_block(cur, bp);
191	return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
192}
193
194STATIC int
195xfs_inobt_get_maxrecs(
196	struct xfs_btree_cur	*cur,
197	int			level)
198{
199	return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
200}
201
202STATIC void
203xfs_inobt_init_key_from_rec(
204	union xfs_btree_key		*key,
205	const union xfs_btree_rec	*rec)
206{
207	key->inobt.ir_startino = rec->inobt.ir_startino;
208}
209
210STATIC void
211xfs_inobt_init_high_key_from_rec(
212	union xfs_btree_key		*key,
213	const union xfs_btree_rec	*rec)
214{
215	__u32				x;
216
217	x = be32_to_cpu(rec->inobt.ir_startino);
218	x += XFS_INODES_PER_CHUNK - 1;
219	key->inobt.ir_startino = cpu_to_be32(x);
220}
221
222STATIC void
223xfs_inobt_init_rec_from_cur(
224	struct xfs_btree_cur	*cur,
225	union xfs_btree_rec	*rec)
226{
227	rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228	if (xfs_has_sparseinodes(cur->bc_mp)) {
229		rec->inobt.ir_u.sp.ir_holemask =
230					cpu_to_be16(cur->bc_rec.i.ir_holemask);
231		rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232		rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233	} else {
234		/* ir_holemask/ir_count not supported on-disk */
235		rec->inobt.ir_u.f.ir_freecount =
236					cpu_to_be32(cur->bc_rec.i.ir_freecount);
237	}
238	rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
239}
240
241/*
242 * initial value of ptr for lookup
243 */
244STATIC void
245xfs_inobt_init_ptr_from_cur(
246	struct xfs_btree_cur	*cur,
247	union xfs_btree_ptr	*ptr)
248{
249	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
250
251	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
252
253	ptr->s = agi->agi_root;
254}
255
256STATIC void
257xfs_finobt_init_ptr_from_cur(
258	struct xfs_btree_cur	*cur,
259	union xfs_btree_ptr	*ptr)
260{
261	struct xfs_agi		*agi = cur->bc_ag.agbp->b_addr;
262
263	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
264	ptr->s = agi->agi_free_root;
265}
266
267STATIC int64_t
268xfs_inobt_key_diff(
269	struct xfs_btree_cur		*cur,
270	const union xfs_btree_key	*key)
271{
272	return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
273			  cur->bc_rec.i.ir_startino;
274}
275
276STATIC int64_t
277xfs_inobt_diff_two_keys(
278	struct xfs_btree_cur		*cur,
279	const union xfs_btree_key	*k1,
280	const union xfs_btree_key	*k2,
281	const union xfs_btree_key	*mask)
282{
283	ASSERT(!mask || mask->inobt.ir_startino);
284
285	return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
286			be32_to_cpu(k2->inobt.ir_startino);
287}
288
289static xfs_failaddr_t
290xfs_inobt_verify(
291	struct xfs_buf		*bp)
292{
293	struct xfs_mount	*mp = bp->b_mount;
294	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
295	xfs_failaddr_t		fa;
296	unsigned int		level;
297
298	if (!xfs_verify_magic(bp, block->bb_magic))
299		return __this_address;
300
301	/*
302	 * During growfs operations, we can't verify the exact owner as the
303	 * perag is not fully initialised and hence not attached to the buffer.
304	 *
305	 * Similarly, during log recovery we will have a perag structure
306	 * attached, but the agi information will not yet have been initialised
307	 * from the on disk AGI. We don't currently use any of this information,
308	 * but beware of the landmine (i.e. need to check
309	 * xfs_perag_initialised_agi(pag)) if we ever do.
310	 */
311	if (xfs_has_crc(mp)) {
312		fa = xfs_btree_agblock_v5hdr_verify(bp);
313		if (fa)
314			return fa;
315	}
316
317	/* level verification */
318	level = be16_to_cpu(block->bb_level);
319	if (level >= M_IGEO(mp)->inobt_maxlevels)
320		return __this_address;
321
322	return xfs_btree_agblock_verify(bp,
323			M_IGEO(mp)->inobt_mxr[level != 0]);
324}
325
326static void
327xfs_inobt_read_verify(
328	struct xfs_buf	*bp)
329{
330	xfs_failaddr_t	fa;
331
332	if (!xfs_btree_agblock_verify_crc(bp))
333		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
334	else {
335		fa = xfs_inobt_verify(bp);
336		if (fa)
337			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338	}
339
340	if (bp->b_error)
341		trace_xfs_btree_corrupt(bp, _RET_IP_);
342}
343
344static void
345xfs_inobt_write_verify(
346	struct xfs_buf	*bp)
347{
348	xfs_failaddr_t	fa;
349
350	fa = xfs_inobt_verify(bp);
351	if (fa) {
352		trace_xfs_btree_corrupt(bp, _RET_IP_);
353		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
354		return;
355	}
356	xfs_btree_agblock_calc_crc(bp);
357
358}
359
360const struct xfs_buf_ops xfs_inobt_buf_ops = {
361	.name = "xfs_inobt",
362	.magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
363	.verify_read = xfs_inobt_read_verify,
364	.verify_write = xfs_inobt_write_verify,
365	.verify_struct = xfs_inobt_verify,
366};
367
368const struct xfs_buf_ops xfs_finobt_buf_ops = {
369	.name = "xfs_finobt",
370	.magic = { cpu_to_be32(XFS_FIBT_MAGIC),
371		   cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
372	.verify_read = xfs_inobt_read_verify,
373	.verify_write = xfs_inobt_write_verify,
374	.verify_struct = xfs_inobt_verify,
375};
376
377STATIC int
378xfs_inobt_keys_inorder(
379	struct xfs_btree_cur		*cur,
380	const union xfs_btree_key	*k1,
381	const union xfs_btree_key	*k2)
382{
383	return be32_to_cpu(k1->inobt.ir_startino) <
384		be32_to_cpu(k2->inobt.ir_startino);
385}
386
387STATIC int
388xfs_inobt_recs_inorder(
389	struct xfs_btree_cur		*cur,
390	const union xfs_btree_rec	*r1,
391	const union xfs_btree_rec	*r2)
392{
393	return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
394		be32_to_cpu(r2->inobt.ir_startino);
395}
396
397STATIC enum xbtree_key_contig
398xfs_inobt_keys_contiguous(
399	struct xfs_btree_cur		*cur,
400	const union xfs_btree_key	*key1,
401	const union xfs_btree_key	*key2,
402	const union xfs_btree_key	*mask)
403{
404	ASSERT(!mask || mask->inobt.ir_startino);
405
406	return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
407				 be32_to_cpu(key2->inobt.ir_startino));
408}
409
410const struct xfs_btree_ops xfs_inobt_ops = {
411	.name			= "ino",
412	.type			= XFS_BTREE_TYPE_AG,
413
414	.rec_len		= sizeof(xfs_inobt_rec_t),
415	.key_len		= sizeof(xfs_inobt_key_t),
416	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
417
418	.lru_refs		= XFS_INO_BTREE_REF,
419	.statoff		= XFS_STATS_CALC_INDEX(xs_ibt_2),
420	.sick_mask		= XFS_SICK_AG_INOBT,
421
422	.dup_cursor		= xfs_inobt_dup_cursor,
423	.set_root		= xfs_inobt_set_root,
424	.alloc_block		= xfs_inobt_alloc_block,
425	.free_block		= xfs_inobt_free_block,
426	.get_minrecs		= xfs_inobt_get_minrecs,
427	.get_maxrecs		= xfs_inobt_get_maxrecs,
428	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
429	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
430	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
431	.init_ptr_from_cur	= xfs_inobt_init_ptr_from_cur,
432	.key_diff		= xfs_inobt_key_diff,
433	.buf_ops		= &xfs_inobt_buf_ops,
434	.diff_two_keys		= xfs_inobt_diff_two_keys,
435	.keys_inorder		= xfs_inobt_keys_inorder,
436	.recs_inorder		= xfs_inobt_recs_inorder,
437	.keys_contiguous	= xfs_inobt_keys_contiguous,
438};
439
440const struct xfs_btree_ops xfs_finobt_ops = {
441	.name			= "fino",
442	.type			= XFS_BTREE_TYPE_AG,
443
444	.rec_len		= sizeof(xfs_inobt_rec_t),
445	.key_len		= sizeof(xfs_inobt_key_t),
446	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
447
448	.lru_refs		= XFS_INO_BTREE_REF,
449	.statoff		= XFS_STATS_CALC_INDEX(xs_fibt_2),
450	.sick_mask		= XFS_SICK_AG_FINOBT,
451
452	.dup_cursor		= xfs_finobt_dup_cursor,
453	.set_root		= xfs_finobt_set_root,
454	.alloc_block		= xfs_finobt_alloc_block,
455	.free_block		= xfs_finobt_free_block,
456	.get_minrecs		= xfs_inobt_get_minrecs,
457	.get_maxrecs		= xfs_inobt_get_maxrecs,
458	.init_key_from_rec	= xfs_inobt_init_key_from_rec,
459	.init_high_key_from_rec	= xfs_inobt_init_high_key_from_rec,
460	.init_rec_from_cur	= xfs_inobt_init_rec_from_cur,
461	.init_ptr_from_cur	= xfs_finobt_init_ptr_from_cur,
462	.key_diff		= xfs_inobt_key_diff,
463	.buf_ops		= &xfs_finobt_buf_ops,
464	.diff_two_keys		= xfs_inobt_diff_two_keys,
465	.keys_inorder		= xfs_inobt_keys_inorder,
466	.recs_inorder		= xfs_inobt_recs_inorder,
467	.keys_contiguous	= xfs_inobt_keys_contiguous,
468};
469
470/*
471 * Create an inode btree cursor.
472 *
473 * For staging cursors tp and agbp are NULL.
474 */
475struct xfs_btree_cur *
476xfs_inobt_init_cursor(
477	struct xfs_perag	*pag,
478	struct xfs_trans	*tp,
479	struct xfs_buf		*agbp)
480{
481	struct xfs_mount	*mp = pag->pag_mount;
482	struct xfs_btree_cur	*cur;
483
484	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
485			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
486	cur->bc_ag.pag = xfs_perag_hold(pag);
487	cur->bc_ag.agbp = agbp;
488	if (agbp) {
489		struct xfs_agi		*agi = agbp->b_addr;
490
491		cur->bc_nlevels = be32_to_cpu(agi->agi_level);
492	}
493	return cur;
494}
495
496/*
497 * Create a free inode btree cursor.
498 *
499 * For staging cursors tp and agbp are NULL.
500 */
501struct xfs_btree_cur *
502xfs_finobt_init_cursor(
503	struct xfs_perag	*pag,
504	struct xfs_trans	*tp,
505	struct xfs_buf		*agbp)
506{
507	struct xfs_mount	*mp = pag->pag_mount;
508	struct xfs_btree_cur	*cur;
509
510	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
511			M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
512	cur->bc_ag.pag = xfs_perag_hold(pag);
513	cur->bc_ag.agbp = agbp;
514	if (agbp) {
515		struct xfs_agi		*agi = agbp->b_addr;
516
517		cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
518	}
519	return cur;
520}
521
522/*
523 * Install a new inobt btree root.  Caller is responsible for invalidating
524 * and freeing the old btree blocks.
525 */
526void
527xfs_inobt_commit_staged_btree(
528	struct xfs_btree_cur	*cur,
529	struct xfs_trans	*tp,
530	struct xfs_buf		*agbp)
531{
532	struct xfs_agi		*agi = agbp->b_addr;
533	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
534	int			fields;
535
536	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
537
538	if (xfs_btree_is_ino(cur->bc_ops)) {
539		fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
540		agi->agi_root = cpu_to_be32(afake->af_root);
541		agi->agi_level = cpu_to_be32(afake->af_levels);
542		if (xfs_has_inobtcounts(cur->bc_mp)) {
543			agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
544			fields |= XFS_AGI_IBLOCKS;
545		}
546		xfs_ialloc_log_agi(tp, agbp, fields);
547		xfs_btree_commit_afakeroot(cur, tp, agbp);
548	} else {
549		fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
550		agi->agi_free_root = cpu_to_be32(afake->af_root);
551		agi->agi_free_level = cpu_to_be32(afake->af_levels);
552		if (xfs_has_inobtcounts(cur->bc_mp)) {
553			agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
554			fields |= XFS_AGI_IBLOCKS;
555		}
556		xfs_ialloc_log_agi(tp, agbp, fields);
557		xfs_btree_commit_afakeroot(cur, tp, agbp);
558	}
559}
560
561/* Calculate number of records in an inode btree block. */
562static inline unsigned int
563xfs_inobt_block_maxrecs(
564	unsigned int		blocklen,
565	bool			leaf)
566{
567	if (leaf)
568		return blocklen / sizeof(xfs_inobt_rec_t);
569	return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
570}
571
572/*
573 * Calculate number of records in an inobt btree block.
574 */
575int
576xfs_inobt_maxrecs(
577	struct xfs_mount	*mp,
578	int			blocklen,
579	int			leaf)
580{
581	blocklen -= XFS_INOBT_BLOCK_LEN(mp);
582	return xfs_inobt_block_maxrecs(blocklen, leaf);
583}
584
585/*
586 * Maximum number of inode btree records per AG.  Pretend that we can fill an
587 * entire AG completely full of inodes except for the AG headers.
588 */
589#define XFS_MAX_INODE_RECORDS \
590	((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
591			XFS_INODES_PER_CHUNK
592
593/* Compute the max possible height for the inode btree. */
594static inline unsigned int
595xfs_inobt_maxlevels_ondisk(void)
596{
597	unsigned int		minrecs[2];
598	unsigned int		blocklen;
599
600	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
601		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
602
603	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
604	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
605
606	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
607}
608
609/* Compute the max possible height for the free inode btree. */
610static inline unsigned int
611xfs_finobt_maxlevels_ondisk(void)
612{
613	unsigned int		minrecs[2];
614	unsigned int		blocklen;
615
616	blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
617
618	minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
619	minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
620
621	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
622}
623
624/* Compute the max possible height for either inode btree. */
625unsigned int
626xfs_iallocbt_maxlevels_ondisk(void)
627{
628	return max(xfs_inobt_maxlevels_ondisk(),
629		   xfs_finobt_maxlevels_ondisk());
630}
631
632/*
633 * Convert the inode record holemask to an inode allocation bitmap. The inode
634 * allocation bitmap is inode granularity and specifies whether an inode is
635 * physically allocated on disk (not whether the inode is considered allocated
636 * or free by the fs).
637 *
638 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
639 */
640uint64_t
641xfs_inobt_irec_to_allocmask(
642	const struct xfs_inobt_rec_incore	*rec)
643{
644	uint64_t			bitmap = 0;
645	uint64_t			inodespbit;
646	int				nextbit;
647	uint				allocbitmap;
648
649	/*
650	 * The holemask has 16-bits for a 64 inode record. Therefore each
651	 * holemask bit represents multiple inodes. Create a mask of bits to set
652	 * in the allocmask for each holemask bit.
653	 */
654	inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
655
656	/*
657	 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
658	 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
659	 * anything beyond the 16 holemask bits since this casts to a larger
660	 * type.
661	 */
662	allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
663
664	/*
665	 * allocbitmap is the inverted holemask so every set bit represents
666	 * allocated inodes. To expand from 16-bit holemask granularity to
667	 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
668	 * bitmap for every holemask bit.
669	 */
670	nextbit = xfs_next_bit(&allocbitmap, 1, 0);
671	while (nextbit != -1) {
672		ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
673
674		bitmap |= (inodespbit <<
675			   (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
676
677		nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
678	}
679
680	return bitmap;
681}
682
683#if defined(DEBUG) || defined(XFS_WARN)
684/*
685 * Verify that an in-core inode record has a valid inode count.
686 */
687int
688xfs_inobt_rec_check_count(
689	struct xfs_mount		*mp,
690	struct xfs_inobt_rec_incore	*rec)
691{
692	int				inocount = 0;
693	int				nextbit = 0;
694	uint64_t			allocbmap;
695	int				wordsz;
696
697	wordsz = sizeof(allocbmap) / sizeof(unsigned int);
698	allocbmap = xfs_inobt_irec_to_allocmask(rec);
699
700	nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
701	while (nextbit != -1) {
702		inocount++;
703		nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
704				       nextbit + 1);
705	}
706
707	if (inocount != rec->ir_count)
708		return -EFSCORRUPTED;
709
710	return 0;
711}
712#endif	/* DEBUG */
713
714static xfs_extlen_t
715xfs_inobt_max_size(
716	struct xfs_perag	*pag)
717{
718	struct xfs_mount	*mp = pag->pag_mount;
719	xfs_agblock_t		agblocks = pag->block_count;
720
721	/* Bail out if we're uninitialized, which can happen in mkfs. */
722	if (M_IGEO(mp)->inobt_mxr[0] == 0)
723		return 0;
724
725	/*
726	 * The log is permanently allocated, so the space it occupies will
727	 * never be available for the kinds of things that would require btree
728	 * expansion.  We therefore can pretend the space isn't there.
729	 */
730	if (xfs_ag_contains_log(mp, pag->pag_agno))
731		agblocks -= mp->m_sb.sb_logblocks;
732
733	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
734				(uint64_t)agblocks * mp->m_sb.sb_inopblock /
735					XFS_INODES_PER_CHUNK);
736}
737
738static int
739xfs_finobt_count_blocks(
740	struct xfs_perag	*pag,
741	struct xfs_trans	*tp,
742	xfs_extlen_t		*tree_blocks)
743{
744	struct xfs_buf		*agbp = NULL;
745	struct xfs_btree_cur	*cur;
746	int			error;
747
748	error = xfs_ialloc_read_agi(pag, tp, &agbp);
749	if (error)
750		return error;
751
752	cur = xfs_inobt_init_cursor(pag, tp, agbp);
753	error = xfs_btree_count_blocks(cur, tree_blocks);
754	xfs_btree_del_cursor(cur, error);
755	xfs_trans_brelse(tp, agbp);
756
757	return error;
758}
759
760/* Read finobt block count from AGI header. */
761static int
762xfs_finobt_read_blocks(
763	struct xfs_perag	*pag,
764	struct xfs_trans	*tp,
765	xfs_extlen_t		*tree_blocks)
766{
767	struct xfs_buf		*agbp;
768	struct xfs_agi		*agi;
769	int			error;
770
771	error = xfs_ialloc_read_agi(pag, tp, &agbp);
772	if (error)
773		return error;
774
775	agi = agbp->b_addr;
776	*tree_blocks = be32_to_cpu(agi->agi_fblocks);
777	xfs_trans_brelse(tp, agbp);
778	return 0;
779}
780
781/*
782 * Figure out how many blocks to reserve and how many are used by this btree.
783 */
784int
785xfs_finobt_calc_reserves(
786	struct xfs_perag	*pag,
787	struct xfs_trans	*tp,
788	xfs_extlen_t		*ask,
789	xfs_extlen_t		*used)
790{
791	xfs_extlen_t		tree_len = 0;
792	int			error;
793
794	if (!xfs_has_finobt(pag->pag_mount))
795		return 0;
796
797	if (xfs_has_inobtcounts(pag->pag_mount))
798		error = xfs_finobt_read_blocks(pag, tp, &tree_len);
799	else
800		error = xfs_finobt_count_blocks(pag, tp, &tree_len);
801	if (error)
802		return error;
803
804	*ask += xfs_inobt_max_size(pag);
805	*used += tree_len;
806	return 0;
807}
808
809/* Calculate the inobt btree size for some records. */
810xfs_extlen_t
811xfs_iallocbt_calc_size(
812	struct xfs_mount	*mp,
813	unsigned long long	len)
814{
815	return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
816}
817
818int __init
819xfs_inobt_init_cur_cache(void)
820{
821	xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
822			xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
823			0, 0, NULL);
824
825	if (!xfs_inobt_cur_cache)
826		return -ENOMEM;
827	return 0;
828}
829
830void
831xfs_inobt_destroy_cur_cache(void)
832{
833	kmem_cache_destroy(xfs_inobt_cur_cache);
834	xfs_inobt_cur_cache = NULL;
835}
836