1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2014 SGI.
4 * All rights reserved.
5 */
6
7#include "utf8n.h"
8
9int utf8version_is_supported(const struct unicode_map *um, unsigned int version)
10{
11	int i = um->tables->utf8agetab_size - 1;
12
13	while (i >= 0 && um->tables->utf8agetab[i] != 0) {
14		if (version == um->tables->utf8agetab[i])
15			return 1;
16		i--;
17	}
18	return 0;
19}
20
21/*
22 * UTF-8 valid ranges.
23 *
24 * The UTF-8 encoding spreads the bits of a 32bit word over several
25 * bytes. This table gives the ranges that can be held and how they'd
26 * be represented.
27 *
28 * 0x00000000 0x0000007F: 0xxxxxxx
29 * 0x00000000 0x000007FF: 110xxxxx 10xxxxxx
30 * 0x00000000 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
31 * 0x00000000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
32 * 0x00000000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
33 * 0x00000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
34 *
35 * There is an additional requirement on UTF-8, in that only the
36 * shortest representation of a 32bit value is to be used.  A decoder
37 * must not decode sequences that do not satisfy this requirement.
38 * Thus the allowed ranges have a lower bound.
39 *
40 * 0x00000000 0x0000007F: 0xxxxxxx
41 * 0x00000080 0x000007FF: 110xxxxx 10xxxxxx
42 * 0x00000800 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
43 * 0x00010000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
44 * 0x00200000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
45 * 0x04000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
46 *
47 * Actual unicode characters are limited to the range 0x0 - 0x10FFFF,
48 * 17 planes of 65536 values.  This limits the sequences actually seen
49 * even more, to just the following.
50 *
51 *          0 -     0x7F: 0                   - 0x7F
52 *       0x80 -    0x7FF: 0xC2 0x80           - 0xDF 0xBF
53 *      0x800 -   0xFFFF: 0xE0 0xA0 0x80      - 0xEF 0xBF 0xBF
54 *    0x10000 - 0x10FFFF: 0xF0 0x90 0x80 0x80 - 0xF4 0x8F 0xBF 0xBF
55 *
56 * Within those ranges the surrogates 0xD800 - 0xDFFF are not allowed.
57 *
58 * Note that the longest sequence seen with valid usage is 4 bytes,
59 * the same a single UTF-32 character.  This makes the UTF-8
60 * representation of Unicode strictly smaller than UTF-32.
61 *
62 * The shortest sequence requirement was introduced by:
63 *    Corrigendum #1: UTF-8 Shortest Form
64 * It can be found here:
65 *    http://www.unicode.org/versions/corrigendum1.html
66 *
67 */
68
69/*
70 * Return the number of bytes used by the current UTF-8 sequence.
71 * Assumes the input points to the first byte of a valid UTF-8
72 * sequence.
73 */
74static inline int utf8clen(const char *s)
75{
76	unsigned char c = *s;
77
78	return 1 + (c >= 0xC0) + (c >= 0xE0) + (c >= 0xF0);
79}
80
81/*
82 * Decode a 3-byte UTF-8 sequence.
83 */
84static unsigned int
85utf8decode3(const char *str)
86{
87	unsigned int		uc;
88
89	uc = *str++ & 0x0F;
90	uc <<= 6;
91	uc |= *str++ & 0x3F;
92	uc <<= 6;
93	uc |= *str++ & 0x3F;
94
95	return uc;
96}
97
98/*
99 * Encode a 3-byte UTF-8 sequence.
100 */
101static int
102utf8encode3(char *str, unsigned int val)
103{
104	str[2] = (val & 0x3F) | 0x80;
105	val >>= 6;
106	str[1] = (val & 0x3F) | 0x80;
107	val >>= 6;
108	str[0] = val | 0xE0;
109
110	return 3;
111}
112
113/*
114 * utf8trie_t
115 *
116 * A compact binary tree, used to decode UTF-8 characters.
117 *
118 * Internal nodes are one byte for the node itself, and up to three
119 * bytes for an offset into the tree.  The first byte contains the
120 * following information:
121 *  NEXTBYTE  - flag        - advance to next byte if set
122 *  BITNUM    - 3 bit field - the bit number to tested
123 *  OFFLEN    - 2 bit field - number of bytes in the offset
124 * if offlen == 0 (non-branching node)
125 *  RIGHTPATH - 1 bit field - set if the following node is for the
126 *                            right-hand path (tested bit is set)
127 *  TRIENODE  - 1 bit field - set if the following node is an internal
128 *                            node, otherwise it is a leaf node
129 * if offlen != 0 (branching node)
130 *  LEFTNODE  - 1 bit field - set if the left-hand node is internal
131 *  RIGHTNODE - 1 bit field - set if the right-hand node is internal
132 *
133 * Due to the way utf8 works, there cannot be branching nodes with
134 * NEXTBYTE set, and moreover those nodes always have a righthand
135 * descendant.
136 */
137typedef const unsigned char utf8trie_t;
138#define BITNUM		0x07
139#define NEXTBYTE	0x08
140#define OFFLEN		0x30
141#define OFFLEN_SHIFT	4
142#define RIGHTPATH	0x40
143#define TRIENODE	0x80
144#define RIGHTNODE	0x40
145#define LEFTNODE	0x80
146
147/*
148 * utf8leaf_t
149 *
150 * The leaves of the trie are embedded in the trie, and so the same
151 * underlying datatype: unsigned char.
152 *
153 * leaf[0]: The unicode version, stored as a generation number that is
154 *          an index into ->utf8agetab[].  With this we can filter code
155 *          points based on the unicode version in which they were
156 *          defined.  The CCC of a non-defined code point is 0.
157 * leaf[1]: Canonical Combining Class. During normalization, we need
158 *          to do a stable sort into ascending order of all characters
159 *          with a non-zero CCC that occur between two characters with
160 *          a CCC of 0, or at the begin or end of a string.
161 *          The unicode standard guarantees that all CCC values are
162 *          between 0 and 254 inclusive, which leaves 255 available as
163 *          a special value.
164 *          Code points with CCC 0 are known as stoppers.
165 * leaf[2]: Decomposition. If leaf[1] == 255, then leaf[2] is the
166 *          start of a NUL-terminated string that is the decomposition
167 *          of the character.
168 *          The CCC of a decomposable character is the same as the CCC
169 *          of the first character of its decomposition.
170 *          Some characters decompose as the empty string: these are
171 *          characters with the Default_Ignorable_Code_Point property.
172 *          These do affect normalization, as they all have CCC 0.
173 *
174 * The decompositions in the trie have been fully expanded, with the
175 * exception of Hangul syllables, which are decomposed algorithmically.
176 *
177 * Casefolding, if applicable, is also done using decompositions.
178 *
179 * The trie is constructed in such a way that leaves exist for all
180 * UTF-8 sequences that match the criteria from the "UTF-8 valid
181 * ranges" comment above, and only for those sequences.  Therefore a
182 * lookup in the trie can be used to validate the UTF-8 input.
183 */
184typedef const unsigned char utf8leaf_t;
185
186#define LEAF_GEN(LEAF)	((LEAF)[0])
187#define LEAF_CCC(LEAF)	((LEAF)[1])
188#define LEAF_STR(LEAF)	((const char *)((LEAF) + 2))
189
190#define MINCCC		(0)
191#define MAXCCC		(254)
192#define STOPPER		(0)
193#define	DECOMPOSE	(255)
194
195/* Marker for hangul syllable decomposition. */
196#define HANGUL		((char)(255))
197/* Size of the synthesized leaf used for Hangul syllable decomposition. */
198#define UTF8HANGULLEAF	(12)
199
200/*
201 * Hangul decomposition (algorithm from Section 3.12 of Unicode 6.3.0)
202 *
203 * AC00;<Hangul Syllable, First>;Lo;0;L;;;;;N;;;;;
204 * D7A3;<Hangul Syllable, Last>;Lo;0;L;;;;;N;;;;;
205 *
206 * SBase = 0xAC00
207 * LBase = 0x1100
208 * VBase = 0x1161
209 * TBase = 0x11A7
210 * LCount = 19
211 * VCount = 21
212 * TCount = 28
213 * NCount = 588 (VCount * TCount)
214 * SCount = 11172 (LCount * NCount)
215 *
216 * Decomposition:
217 *   SIndex = s - SBase
218 *
219 * LV (Canonical/Full)
220 *   LIndex = SIndex / NCount
221 *   VIndex = (Sindex % NCount) / TCount
222 *   LPart = LBase + LIndex
223 *   VPart = VBase + VIndex
224 *
225 * LVT (Canonical)
226 *   LVIndex = (SIndex / TCount) * TCount
227 *   TIndex = (Sindex % TCount)
228 *   LVPart = SBase + LVIndex
229 *   TPart = TBase + TIndex
230 *
231 * LVT (Full)
232 *   LIndex = SIndex / NCount
233 *   VIndex = (Sindex % NCount) / TCount
234 *   TIndex = (Sindex % TCount)
235 *   LPart = LBase + LIndex
236 *   VPart = VBase + VIndex
237 *   if (TIndex == 0) {
238 *          d = <LPart, VPart>
239 *   } else {
240 *          TPart = TBase + TIndex
241 *          d = <LPart, TPart, VPart>
242 *   }
243 */
244
245/* Constants */
246#define SB	(0xAC00)
247#define LB	(0x1100)
248#define VB	(0x1161)
249#define TB	(0x11A7)
250#define LC	(19)
251#define VC	(21)
252#define TC	(28)
253#define NC	(VC * TC)
254#define SC	(LC * NC)
255
256/* Algorithmic decomposition of hangul syllable. */
257static utf8leaf_t *
258utf8hangul(const char *str, unsigned char *hangul)
259{
260	unsigned int	si;
261	unsigned int	li;
262	unsigned int	vi;
263	unsigned int	ti;
264	unsigned char	*h;
265
266	/* Calculate the SI, LI, VI, and TI values. */
267	si = utf8decode3(str) - SB;
268	li = si / NC;
269	vi = (si % NC) / TC;
270	ti = si % TC;
271
272	/* Fill in base of leaf. */
273	h = hangul;
274	LEAF_GEN(h) = 2;
275	LEAF_CCC(h) = DECOMPOSE;
276	h += 2;
277
278	/* Add LPart, a 3-byte UTF-8 sequence. */
279	h += utf8encode3((char *)h, li + LB);
280
281	/* Add VPart, a 3-byte UTF-8 sequence. */
282	h += utf8encode3((char *)h, vi + VB);
283
284	/* Add TPart if required, also a 3-byte UTF-8 sequence. */
285	if (ti)
286		h += utf8encode3((char *)h, ti + TB);
287
288	/* Terminate string. */
289	h[0] = '\0';
290
291	return hangul;
292}
293
294/*
295 * Use trie to scan s, touching at most len bytes.
296 * Returns the leaf if one exists, NULL otherwise.
297 *
298 * A non-NULL return guarantees that the UTF-8 sequence starting at s
299 * is well-formed and corresponds to a known unicode code point.  The
300 * shorthand for this will be "is valid UTF-8 unicode".
301 */
302static utf8leaf_t *utf8nlookup(const struct unicode_map *um,
303		enum utf8_normalization n, unsigned char *hangul, const char *s,
304		size_t len)
305{
306	utf8trie_t	*trie = um->tables->utf8data + um->ntab[n]->offset;
307	int		offlen;
308	int		offset;
309	int		mask;
310	int		node;
311
312	if (len == 0)
313		return NULL;
314
315	node = 1;
316	while (node) {
317		offlen = (*trie & OFFLEN) >> OFFLEN_SHIFT;
318		if (*trie & NEXTBYTE) {
319			if (--len == 0)
320				return NULL;
321			s++;
322		}
323		mask = 1 << (*trie & BITNUM);
324		if (*s & mask) {
325			/* Right leg */
326			if (offlen) {
327				/* Right node at offset of trie */
328				node = (*trie & RIGHTNODE);
329				offset = trie[offlen];
330				while (--offlen) {
331					offset <<= 8;
332					offset |= trie[offlen];
333				}
334				trie += offset;
335			} else if (*trie & RIGHTPATH) {
336				/* Right node after this node */
337				node = (*trie & TRIENODE);
338				trie++;
339			} else {
340				/* No right node. */
341				return NULL;
342			}
343		} else {
344			/* Left leg */
345			if (offlen) {
346				/* Left node after this node. */
347				node = (*trie & LEFTNODE);
348				trie += offlen + 1;
349			} else if (*trie & RIGHTPATH) {
350				/* No left node. */
351				return NULL;
352			} else {
353				/* Left node after this node */
354				node = (*trie & TRIENODE);
355				trie++;
356			}
357		}
358	}
359	/*
360	 * Hangul decomposition is done algorithmically. These are the
361	 * codepoints >= 0xAC00 and <= 0xD7A3. Their UTF-8 encoding is
362	 * always 3 bytes long, so s has been advanced twice, and the
363	 * start of the sequence is at s-2.
364	 */
365	if (LEAF_CCC(trie) == DECOMPOSE && LEAF_STR(trie)[0] == HANGUL)
366		trie = utf8hangul(s - 2, hangul);
367	return trie;
368}
369
370/*
371 * Use trie to scan s.
372 * Returns the leaf if one exists, NULL otherwise.
373 *
374 * Forwards to utf8nlookup().
375 */
376static utf8leaf_t *utf8lookup(const struct unicode_map *um,
377		enum utf8_normalization n, unsigned char *hangul, const char *s)
378{
379	return utf8nlookup(um, n, hangul, s, (size_t)-1);
380}
381
382/*
383 * Length of the normalization of s, touch at most len bytes.
384 * Return -1 if s is not valid UTF-8 unicode.
385 */
386ssize_t utf8nlen(const struct unicode_map *um, enum utf8_normalization n,
387		const char *s, size_t len)
388{
389	utf8leaf_t	*leaf;
390	size_t		ret = 0;
391	unsigned char	hangul[UTF8HANGULLEAF];
392
393	while (len && *s) {
394		leaf = utf8nlookup(um, n, hangul, s, len);
395		if (!leaf)
396			return -1;
397		if (um->tables->utf8agetab[LEAF_GEN(leaf)] >
398		    um->ntab[n]->maxage)
399			ret += utf8clen(s);
400		else if (LEAF_CCC(leaf) == DECOMPOSE)
401			ret += strlen(LEAF_STR(leaf));
402		else
403			ret += utf8clen(s);
404		len -= utf8clen(s);
405		s += utf8clen(s);
406	}
407	return ret;
408}
409
410/*
411 * Set up an utf8cursor for use by utf8byte().
412 *
413 *   u8c    : pointer to cursor.
414 *   data   : const struct utf8data to use for normalization.
415 *   s      : string.
416 *   len    : length of s.
417 *
418 * Returns -1 on error, 0 on success.
419 */
420int utf8ncursor(struct utf8cursor *u8c, const struct unicode_map *um,
421		enum utf8_normalization n, const char *s, size_t len)
422{
423	if (!s)
424		return -1;
425	u8c->um = um;
426	u8c->n = n;
427	u8c->s = s;
428	u8c->p = NULL;
429	u8c->ss = NULL;
430	u8c->sp = NULL;
431	u8c->len = len;
432	u8c->slen = 0;
433	u8c->ccc = STOPPER;
434	u8c->nccc = STOPPER;
435	/* Check we didn't clobber the maximum length. */
436	if (u8c->len != len)
437		return -1;
438	/* The first byte of s may not be an utf8 continuation. */
439	if (len > 0 && (*s & 0xC0) == 0x80)
440		return -1;
441	return 0;
442}
443
444/*
445 * Get one byte from the normalized form of the string described by u8c.
446 *
447 * Returns the byte cast to an unsigned char on succes, and -1 on failure.
448 *
449 * The cursor keeps track of the location in the string in u8c->s.
450 * When a character is decomposed, the current location is stored in
451 * u8c->p, and u8c->s is set to the start of the decomposition. Note
452 * that bytes from a decomposition do not count against u8c->len.
453 *
454 * Characters are emitted if they match the current CCC in u8c->ccc.
455 * Hitting end-of-string while u8c->ccc == STOPPER means we're done,
456 * and the function returns 0 in that case.
457 *
458 * Sorting by CCC is done by repeatedly scanning the string.  The
459 * values of u8c->s and u8c->p are stored in u8c->ss and u8c->sp at
460 * the start of the scan.  The first pass finds the lowest CCC to be
461 * emitted and stores it in u8c->nccc, the second pass emits the
462 * characters with this CCC and finds the next lowest CCC. This limits
463 * the number of passes to 1 + the number of different CCCs in the
464 * sequence being scanned.
465 *
466 * Therefore:
467 *  u8c->p  != NULL -> a decomposition is being scanned.
468 *  u8c->ss != NULL -> this is a repeating scan.
469 *  u8c->ccc == -1   -> this is the first scan of a repeating scan.
470 */
471int utf8byte(struct utf8cursor *u8c)
472{
473	utf8leaf_t *leaf;
474	int ccc;
475
476	for (;;) {
477		/* Check for the end of a decomposed character. */
478		if (u8c->p && *u8c->s == '\0') {
479			u8c->s = u8c->p;
480			u8c->p = NULL;
481		}
482
483		/* Check for end-of-string. */
484		if (!u8c->p && (u8c->len == 0 || *u8c->s == '\0')) {
485			/* There is no next byte. */
486			if (u8c->ccc == STOPPER)
487				return 0;
488			/* End-of-string during a scan counts as a stopper. */
489			ccc = STOPPER;
490			goto ccc_mismatch;
491		} else if ((*u8c->s & 0xC0) == 0x80) {
492			/* This is a continuation of the current character. */
493			if (!u8c->p)
494				u8c->len--;
495			return (unsigned char)*u8c->s++;
496		}
497
498		/* Look up the data for the current character. */
499		if (u8c->p) {
500			leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s);
501		} else {
502			leaf = utf8nlookup(u8c->um, u8c->n, u8c->hangul,
503					   u8c->s, u8c->len);
504		}
505
506		/* No leaf found implies that the input is a binary blob. */
507		if (!leaf)
508			return -1;
509
510		ccc = LEAF_CCC(leaf);
511		/* Characters that are too new have CCC 0. */
512		if (u8c->um->tables->utf8agetab[LEAF_GEN(leaf)] >
513		    u8c->um->ntab[u8c->n]->maxage) {
514			ccc = STOPPER;
515		} else if (ccc == DECOMPOSE) {
516			u8c->len -= utf8clen(u8c->s);
517			u8c->p = u8c->s + utf8clen(u8c->s);
518			u8c->s = LEAF_STR(leaf);
519			/* Empty decomposition implies CCC 0. */
520			if (*u8c->s == '\0') {
521				if (u8c->ccc == STOPPER)
522					continue;
523				ccc = STOPPER;
524				goto ccc_mismatch;
525			}
526
527			leaf = utf8lookup(u8c->um, u8c->n, u8c->hangul, u8c->s);
528			if (!leaf)
529				return -1;
530			ccc = LEAF_CCC(leaf);
531		}
532
533		/*
534		 * If this is not a stopper, then see if it updates
535		 * the next canonical class to be emitted.
536		 */
537		if (ccc != STOPPER && u8c->ccc < ccc && ccc < u8c->nccc)
538			u8c->nccc = ccc;
539
540		/*
541		 * Return the current byte if this is the current
542		 * combining class.
543		 */
544		if (ccc == u8c->ccc) {
545			if (!u8c->p)
546				u8c->len--;
547			return (unsigned char)*u8c->s++;
548		}
549
550		/* Current combining class mismatch. */
551ccc_mismatch:
552		if (u8c->nccc == STOPPER) {
553			/*
554			 * Scan forward for the first canonical class
555			 * to be emitted.  Save the position from
556			 * which to restart.
557			 */
558			u8c->ccc = MINCCC - 1;
559			u8c->nccc = ccc;
560			u8c->sp = u8c->p;
561			u8c->ss = u8c->s;
562			u8c->slen = u8c->len;
563			if (!u8c->p)
564				u8c->len -= utf8clen(u8c->s);
565			u8c->s += utf8clen(u8c->s);
566		} else if (ccc != STOPPER) {
567			/* Not a stopper, and not the ccc we're emitting. */
568			if (!u8c->p)
569				u8c->len -= utf8clen(u8c->s);
570			u8c->s += utf8clen(u8c->s);
571		} else if (u8c->nccc != MAXCCC + 1) {
572			/* At a stopper, restart for next ccc. */
573			u8c->ccc = u8c->nccc;
574			u8c->nccc = MAXCCC + 1;
575			u8c->s = u8c->ss;
576			u8c->p = u8c->sp;
577			u8c->len = u8c->slen;
578		} else {
579			/* All done, proceed from here. */
580			u8c->ccc = STOPPER;
581			u8c->nccc = STOPPER;
582			u8c->sp = NULL;
583			u8c->ss = NULL;
584			u8c->slen = 0;
585		}
586	}
587}
588
589#ifdef CONFIG_UNICODE_NORMALIZATION_SELFTEST_MODULE
590EXPORT_SYMBOL_GPL(utf8version_is_supported);
591EXPORT_SYMBOL_GPL(utf8nlen);
592EXPORT_SYMBOL_GPL(utf8ncursor);
593EXPORT_SYMBOL_GPL(utf8byte);
594#endif
595