1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * balloc.c
4 *
5 * PURPOSE
6 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 *  (C) 1999-2001 Ben Fennema
10 *  (C) 1999 Stelias Computing Inc
11 *
12 * HISTORY
13 *
14 *  02/24/99 blf  Created.
15 *
16 */
17
18#include "udfdecl.h"
19
20#include <linux/bitops.h>
21
22#include "udf_i.h"
23#include "udf_sb.h"
24
25#define udf_clear_bit	__test_and_clear_bit_le
26#define udf_set_bit	__test_and_set_bit_le
27#define udf_test_bit	test_bit_le
28#define udf_find_next_one_bit	find_next_bit_le
29
30static int read_block_bitmap(struct super_block *sb,
31			     struct udf_bitmap *bitmap, unsigned int block,
32			     unsigned long bitmap_nr)
33{
34	struct buffer_head *bh = NULL;
35	int i;
36	int max_bits, off, count;
37	struct kernel_lb_addr loc;
38
39	loc.logicalBlockNum = bitmap->s_extPosition;
40	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
41
42	bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
43	bitmap->s_block_bitmap[bitmap_nr] = bh;
44	if (!bh)
45		return -EIO;
46
47	/* Check consistency of Space Bitmap buffer. */
48	max_bits = sb->s_blocksize * 8;
49	if (!bitmap_nr) {
50		off = sizeof(struct spaceBitmapDesc) << 3;
51		count = min(max_bits - off, bitmap->s_nr_groups);
52	} else {
53		/*
54		 * Rough check if bitmap number is too big to have any bitmap
55 		 * blocks reserved.
56		 */
57		if (bitmap_nr >
58		    (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
59			return 0;
60		off = 0;
61		count = bitmap->s_nr_groups - bitmap_nr * max_bits +
62				(sizeof(struct spaceBitmapDesc) << 3);
63		count = min(count, max_bits);
64	}
65
66	for (i = 0; i < count; i++)
67		if (udf_test_bit(i + off, bh->b_data))
68			return -EFSCORRUPTED;
69	return 0;
70}
71
72static int __load_block_bitmap(struct super_block *sb,
73			       struct udf_bitmap *bitmap,
74			       unsigned int block_group)
75{
76	int retval = 0;
77	int nr_groups = bitmap->s_nr_groups;
78
79	if (block_group >= nr_groups) {
80		udf_debug("block_group (%u) > nr_groups (%d)\n",
81			  block_group, nr_groups);
82	}
83
84	if (bitmap->s_block_bitmap[block_group])
85		return block_group;
86
87	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
88	if (retval < 0)
89		return retval;
90
91	return block_group;
92}
93
94static inline int load_block_bitmap(struct super_block *sb,
95				    struct udf_bitmap *bitmap,
96				    unsigned int block_group)
97{
98	int slot;
99
100	slot = __load_block_bitmap(sb, bitmap, block_group);
101
102	if (slot < 0)
103		return slot;
104
105	if (!bitmap->s_block_bitmap[slot])
106		return -EIO;
107
108	return slot;
109}
110
111static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
112{
113	struct udf_sb_info *sbi = UDF_SB(sb);
114	struct logicalVolIntegrityDesc *lvid;
115
116	if (!sbi->s_lvid_bh)
117		return;
118
119	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
120	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
121	udf_updated_lvid(sb);
122}
123
124static void udf_bitmap_free_blocks(struct super_block *sb,
125				   struct udf_bitmap *bitmap,
126				   struct kernel_lb_addr *bloc,
127				   uint32_t offset,
128				   uint32_t count)
129{
130	struct udf_sb_info *sbi = UDF_SB(sb);
131	struct buffer_head *bh = NULL;
132	struct udf_part_map *partmap;
133	unsigned long block;
134	unsigned long block_group;
135	unsigned long bit;
136	unsigned long i;
137	int bitmap_nr;
138	unsigned long overflow;
139
140	mutex_lock(&sbi->s_alloc_mutex);
141	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
142	if (bloc->logicalBlockNum + count < count ||
143	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
144		udf_debug("%u < %d || %u + %u > %u\n",
145			  bloc->logicalBlockNum, 0,
146			  bloc->logicalBlockNum, count,
147			  partmap->s_partition_len);
148		goto error_return;
149	}
150
151	block = bloc->logicalBlockNum + offset +
152		(sizeof(struct spaceBitmapDesc) << 3);
153
154	do {
155		overflow = 0;
156		block_group = block >> (sb->s_blocksize_bits + 3);
157		bit = block % (sb->s_blocksize << 3);
158
159		/*
160		* Check to see if we are freeing blocks across a group boundary.
161		*/
162		if (bit + count > (sb->s_blocksize << 3)) {
163			overflow = bit + count - (sb->s_blocksize << 3);
164			count -= overflow;
165		}
166		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
167		if (bitmap_nr < 0)
168			goto error_return;
169
170		bh = bitmap->s_block_bitmap[bitmap_nr];
171		for (i = 0; i < count; i++) {
172			if (udf_set_bit(bit + i, bh->b_data)) {
173				udf_debug("bit %lu already set\n", bit + i);
174				udf_debug("byte=%2x\n",
175					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
176			}
177		}
178		udf_add_free_space(sb, sbi->s_partition, count);
179		mark_buffer_dirty(bh);
180		if (overflow) {
181			block += count;
182			count = overflow;
183		}
184	} while (overflow);
185
186error_return:
187	mutex_unlock(&sbi->s_alloc_mutex);
188}
189
190static int udf_bitmap_prealloc_blocks(struct super_block *sb,
191				      struct udf_bitmap *bitmap,
192				      uint16_t partition, uint32_t first_block,
193				      uint32_t block_count)
194{
195	struct udf_sb_info *sbi = UDF_SB(sb);
196	int alloc_count = 0;
197	int bit, block, block_group;
198	int bitmap_nr;
199	struct buffer_head *bh;
200	__u32 part_len;
201
202	mutex_lock(&sbi->s_alloc_mutex);
203	part_len = sbi->s_partmaps[partition].s_partition_len;
204	if (first_block >= part_len)
205		goto out;
206
207	if (first_block + block_count > part_len)
208		block_count = part_len - first_block;
209
210	do {
211		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
212		block_group = block >> (sb->s_blocksize_bits + 3);
213
214		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
215		if (bitmap_nr < 0)
216			goto out;
217		bh = bitmap->s_block_bitmap[bitmap_nr];
218
219		bit = block % (sb->s_blocksize << 3);
220
221		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
222			if (!udf_clear_bit(bit, bh->b_data))
223				goto out;
224			block_count--;
225			alloc_count++;
226			bit++;
227			block++;
228		}
229		mark_buffer_dirty(bh);
230	} while (block_count > 0);
231
232out:
233	udf_add_free_space(sb, partition, -alloc_count);
234	mutex_unlock(&sbi->s_alloc_mutex);
235	return alloc_count;
236}
237
238static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
239				struct udf_bitmap *bitmap, uint16_t partition,
240				uint32_t goal, int *err)
241{
242	struct udf_sb_info *sbi = UDF_SB(sb);
243	int newbit, bit = 0;
244	udf_pblk_t block;
245	int block_group, group_start;
246	int end_goal, nr_groups, bitmap_nr, i;
247	struct buffer_head *bh = NULL;
248	char *ptr;
249	udf_pblk_t newblock = 0;
250
251	*err = -ENOSPC;
252	mutex_lock(&sbi->s_alloc_mutex);
253
254repeat:
255	if (goal >= sbi->s_partmaps[partition].s_partition_len)
256		goal = 0;
257
258	nr_groups = bitmap->s_nr_groups;
259	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
260	block_group = block >> (sb->s_blocksize_bits + 3);
261	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
262
263	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
264	if (bitmap_nr < 0)
265		goto error_return;
266	bh = bitmap->s_block_bitmap[bitmap_nr];
267	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
268		      sb->s_blocksize - group_start);
269
270	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
271		bit = block % (sb->s_blocksize << 3);
272		if (udf_test_bit(bit, bh->b_data))
273			goto got_block;
274
275		end_goal = (bit + 63) & ~63;
276		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
277		if (bit < end_goal)
278			goto got_block;
279
280		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
281			      sb->s_blocksize - ((bit + 7) >> 3));
282		newbit = (ptr - ((char *)bh->b_data)) << 3;
283		if (newbit < sb->s_blocksize << 3) {
284			bit = newbit;
285			goto search_back;
286		}
287
288		newbit = udf_find_next_one_bit(bh->b_data,
289					       sb->s_blocksize << 3, bit);
290		if (newbit < sb->s_blocksize << 3) {
291			bit = newbit;
292			goto got_block;
293		}
294	}
295
296	for (i = 0; i < (nr_groups * 2); i++) {
297		block_group++;
298		if (block_group >= nr_groups)
299			block_group = 0;
300		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
301
302		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
303		if (bitmap_nr < 0)
304			goto error_return;
305		bh = bitmap->s_block_bitmap[bitmap_nr];
306		if (i < nr_groups) {
307			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
308				      sb->s_blocksize - group_start);
309			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
310				bit = (ptr - ((char *)bh->b_data)) << 3;
311				break;
312			}
313		} else {
314			bit = udf_find_next_one_bit(bh->b_data,
315						    sb->s_blocksize << 3,
316						    group_start << 3);
317			if (bit < sb->s_blocksize << 3)
318				break;
319		}
320	}
321	if (i >= (nr_groups * 2)) {
322		mutex_unlock(&sbi->s_alloc_mutex);
323		return newblock;
324	}
325	if (bit < sb->s_blocksize << 3)
326		goto search_back;
327	else
328		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
329					    group_start << 3);
330	if (bit >= sb->s_blocksize << 3) {
331		mutex_unlock(&sbi->s_alloc_mutex);
332		return 0;
333	}
334
335search_back:
336	i = 0;
337	while (i < 7 && bit > (group_start << 3) &&
338	       udf_test_bit(bit - 1, bh->b_data)) {
339		++i;
340		--bit;
341	}
342
343got_block:
344	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
345		(sizeof(struct spaceBitmapDesc) << 3);
346
347	if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
348		/*
349		 * Ran off the end of the bitmap, and bits following are
350		 * non-compliant (not all zero)
351		 */
352		udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
353			" as free, partition length is %u)\n", partition,
354			newblock, sbi->s_partmaps[partition].s_partition_len);
355		goto error_return;
356	}
357
358	if (!udf_clear_bit(bit, bh->b_data)) {
359		udf_debug("bit already cleared for block %d\n", bit);
360		goto repeat;
361	}
362
363	mark_buffer_dirty(bh);
364
365	udf_add_free_space(sb, partition, -1);
366	mutex_unlock(&sbi->s_alloc_mutex);
367	*err = 0;
368	return newblock;
369
370error_return:
371	*err = -EIO;
372	mutex_unlock(&sbi->s_alloc_mutex);
373	return 0;
374}
375
376static void udf_table_free_blocks(struct super_block *sb,
377				  struct inode *table,
378				  struct kernel_lb_addr *bloc,
379				  uint32_t offset,
380				  uint32_t count)
381{
382	struct udf_sb_info *sbi = UDF_SB(sb);
383	struct udf_part_map *partmap;
384	uint32_t start, end;
385	uint32_t elen;
386	struct kernel_lb_addr eloc;
387	struct extent_position oepos, epos;
388	int8_t etype;
389	struct udf_inode_info *iinfo;
390
391	mutex_lock(&sbi->s_alloc_mutex);
392	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
393	if (bloc->logicalBlockNum + count < count ||
394	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
395		udf_debug("%u < %d || %u + %u > %u\n",
396			  bloc->logicalBlockNum, 0,
397			  bloc->logicalBlockNum, count,
398			  partmap->s_partition_len);
399		goto error_return;
400	}
401
402	iinfo = UDF_I(table);
403	udf_add_free_space(sb, sbi->s_partition, count);
404
405	start = bloc->logicalBlockNum + offset;
406	end = bloc->logicalBlockNum + offset + count - 1;
407
408	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
409	elen = 0;
410	epos.block = oepos.block = iinfo->i_location;
411	epos.bh = oepos.bh = NULL;
412
413	while (count &&
414	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
415		if (((eloc.logicalBlockNum +
416			(elen >> sb->s_blocksize_bits)) == start)) {
417			if ((0x3FFFFFFF - elen) <
418					(count << sb->s_blocksize_bits)) {
419				uint32_t tmp = ((0x3FFFFFFF - elen) >>
420							sb->s_blocksize_bits);
421				count -= tmp;
422				start += tmp;
423				elen = (etype << 30) |
424					(0x40000000 - sb->s_blocksize);
425			} else {
426				elen = (etype << 30) |
427					(elen +
428					(count << sb->s_blocksize_bits));
429				start += count;
430				count = 0;
431			}
432			udf_write_aext(table, &oepos, &eloc, elen, 1);
433		} else if (eloc.logicalBlockNum == (end + 1)) {
434			if ((0x3FFFFFFF - elen) <
435					(count << sb->s_blocksize_bits)) {
436				uint32_t tmp = ((0x3FFFFFFF - elen) >>
437						sb->s_blocksize_bits);
438				count -= tmp;
439				end -= tmp;
440				eloc.logicalBlockNum -= tmp;
441				elen = (etype << 30) |
442					(0x40000000 - sb->s_blocksize);
443			} else {
444				eloc.logicalBlockNum = start;
445				elen = (etype << 30) |
446					(elen +
447					(count << sb->s_blocksize_bits));
448				end -= count;
449				count = 0;
450			}
451			udf_write_aext(table, &oepos, &eloc, elen, 1);
452		}
453
454		if (epos.bh != oepos.bh) {
455			oepos.block = epos.block;
456			brelse(oepos.bh);
457			get_bh(epos.bh);
458			oepos.bh = epos.bh;
459			oepos.offset = 0;
460		} else {
461			oepos.offset = epos.offset;
462		}
463	}
464
465	if (count) {
466		/*
467		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
468		 * allocate a new block, and since we hold the super block
469		 * lock already very bad things would happen :)
470		 *
471		 * We copy the behavior of udf_add_aext, but instead of
472		 * trying to allocate a new block close to the existing one,
473		 * we just steal a block from the extent we are trying to add.
474		 *
475		 * It would be nice if the blocks were close together, but it
476		 * isn't required.
477		 */
478
479		int adsize;
480
481		eloc.logicalBlockNum = start;
482		elen = EXT_RECORDED_ALLOCATED |
483			(count << sb->s_blocksize_bits);
484
485		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
486			adsize = sizeof(struct short_ad);
487		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
488			adsize = sizeof(struct long_ad);
489		else {
490			brelse(oepos.bh);
491			brelse(epos.bh);
492			goto error_return;
493		}
494
495		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
496			/* Steal a block from the extent being free'd */
497			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
498						&epos);
499
500			eloc.logicalBlockNum++;
501			elen -= sb->s_blocksize;
502		}
503
504		/* It's possible that stealing the block emptied the extent */
505		if (elen)
506			__udf_add_aext(table, &epos, &eloc, elen, 1);
507	}
508
509	brelse(epos.bh);
510	brelse(oepos.bh);
511
512error_return:
513	mutex_unlock(&sbi->s_alloc_mutex);
514	return;
515}
516
517static int udf_table_prealloc_blocks(struct super_block *sb,
518				     struct inode *table, uint16_t partition,
519				     uint32_t first_block, uint32_t block_count)
520{
521	struct udf_sb_info *sbi = UDF_SB(sb);
522	int alloc_count = 0;
523	uint32_t elen, adsize;
524	struct kernel_lb_addr eloc;
525	struct extent_position epos;
526	int8_t etype = -1;
527	struct udf_inode_info *iinfo;
528
529	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
530		return 0;
531
532	iinfo = UDF_I(table);
533	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
534		adsize = sizeof(struct short_ad);
535	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
536		adsize = sizeof(struct long_ad);
537	else
538		return 0;
539
540	mutex_lock(&sbi->s_alloc_mutex);
541	epos.offset = sizeof(struct unallocSpaceEntry);
542	epos.block = iinfo->i_location;
543	epos.bh = NULL;
544	eloc.logicalBlockNum = 0xFFFFFFFF;
545
546	while (first_block != eloc.logicalBlockNum &&
547	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
548		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
549			  eloc.logicalBlockNum, elen, first_block);
550		; /* empty loop body */
551	}
552
553	if (first_block == eloc.logicalBlockNum) {
554		epos.offset -= adsize;
555
556		alloc_count = (elen >> sb->s_blocksize_bits);
557		if (alloc_count > block_count) {
558			alloc_count = block_count;
559			eloc.logicalBlockNum += alloc_count;
560			elen -= (alloc_count << sb->s_blocksize_bits);
561			udf_write_aext(table, &epos, &eloc,
562					(etype << 30) | elen, 1);
563		} else
564			udf_delete_aext(table, epos);
565	} else {
566		alloc_count = 0;
567	}
568
569	brelse(epos.bh);
570
571	if (alloc_count)
572		udf_add_free_space(sb, partition, -alloc_count);
573	mutex_unlock(&sbi->s_alloc_mutex);
574	return alloc_count;
575}
576
577static udf_pblk_t udf_table_new_block(struct super_block *sb,
578			       struct inode *table, uint16_t partition,
579			       uint32_t goal, int *err)
580{
581	struct udf_sb_info *sbi = UDF_SB(sb);
582	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
583	udf_pblk_t newblock = 0;
584	uint32_t adsize;
585	uint32_t elen, goal_elen = 0;
586	struct kernel_lb_addr eloc, goal_eloc;
587	struct extent_position epos, goal_epos;
588	int8_t etype;
589	struct udf_inode_info *iinfo = UDF_I(table);
590
591	*err = -ENOSPC;
592
593	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
594		adsize = sizeof(struct short_ad);
595	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
596		adsize = sizeof(struct long_ad);
597	else
598		return newblock;
599
600	mutex_lock(&sbi->s_alloc_mutex);
601	if (goal >= sbi->s_partmaps[partition].s_partition_len)
602		goal = 0;
603
604	/* We search for the closest matching block to goal. If we find
605	   a exact hit, we stop. Otherwise we keep going till we run out
606	   of extents. We store the buffer_head, bloc, and extoffset
607	   of the current closest match and use that when we are done.
608	 */
609	epos.offset = sizeof(struct unallocSpaceEntry);
610	epos.block = iinfo->i_location;
611	epos.bh = goal_epos.bh = NULL;
612
613	while (spread &&
614	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
615		if (goal >= eloc.logicalBlockNum) {
616			if (goal < eloc.logicalBlockNum +
617					(elen >> sb->s_blocksize_bits))
618				nspread = 0;
619			else
620				nspread = goal - eloc.logicalBlockNum -
621					(elen >> sb->s_blocksize_bits);
622		} else {
623			nspread = eloc.logicalBlockNum - goal;
624		}
625
626		if (nspread < spread) {
627			spread = nspread;
628			if (goal_epos.bh != epos.bh) {
629				brelse(goal_epos.bh);
630				goal_epos.bh = epos.bh;
631				get_bh(goal_epos.bh);
632			}
633			goal_epos.block = epos.block;
634			goal_epos.offset = epos.offset - adsize;
635			goal_eloc = eloc;
636			goal_elen = (etype << 30) | elen;
637		}
638	}
639
640	brelse(epos.bh);
641
642	if (spread == 0xFFFFFFFF) {
643		brelse(goal_epos.bh);
644		mutex_unlock(&sbi->s_alloc_mutex);
645		return 0;
646	}
647
648	/* Only allocate blocks from the beginning of the extent.
649	   That way, we only delete (empty) extents, never have to insert an
650	   extent because of splitting */
651	/* This works, but very poorly.... */
652
653	newblock = goal_eloc.logicalBlockNum;
654	goal_eloc.logicalBlockNum++;
655	goal_elen -= sb->s_blocksize;
656
657	if (goal_elen)
658		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
659	else
660		udf_delete_aext(table, goal_epos);
661	brelse(goal_epos.bh);
662
663	udf_add_free_space(sb, partition, -1);
664
665	mutex_unlock(&sbi->s_alloc_mutex);
666	*err = 0;
667	return newblock;
668}
669
670void udf_free_blocks(struct super_block *sb, struct inode *inode,
671		     struct kernel_lb_addr *bloc, uint32_t offset,
672		     uint32_t count)
673{
674	uint16_t partition = bloc->partitionReferenceNum;
675	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
676
677	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
678		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
679				       bloc, offset, count);
680	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
681		udf_table_free_blocks(sb, map->s_uspace.s_table,
682				      bloc, offset, count);
683	}
684
685	if (inode) {
686		inode_sub_bytes(inode,
687				((sector_t)count) << sb->s_blocksize_bits);
688	}
689}
690
691inline int udf_prealloc_blocks(struct super_block *sb,
692			       struct inode *inode,
693			       uint16_t partition, uint32_t first_block,
694			       uint32_t block_count)
695{
696	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
697	int allocated;
698
699	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
700		allocated = udf_bitmap_prealloc_blocks(sb,
701						       map->s_uspace.s_bitmap,
702						       partition, first_block,
703						       block_count);
704	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
705		allocated = udf_table_prealloc_blocks(sb,
706						      map->s_uspace.s_table,
707						      partition, first_block,
708						      block_count);
709	else
710		return 0;
711
712	if (inode && allocated > 0)
713		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
714	return allocated;
715}
716
717inline udf_pblk_t udf_new_block(struct super_block *sb,
718			 struct inode *inode,
719			 uint16_t partition, uint32_t goal, int *err)
720{
721	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
722	udf_pblk_t block;
723
724	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
725		block = udf_bitmap_new_block(sb,
726					     map->s_uspace.s_bitmap,
727					     partition, goal, err);
728	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
729		block = udf_table_new_block(sb,
730					    map->s_uspace.s_table,
731					    partition, goal, err);
732	else {
733		*err = -EIO;
734		return 0;
735	}
736	if (inode && block)
737		inode_add_bytes(inode, sb->s_blocksize);
738	return block;
739}
740