1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file contains miscelanious TNC-related functions shared betweend
13 * different files. This file does not form any logically separate TNC
14 * sub-system. The file was created because there is a lot of TNC code and
15 * putting it all in one file would make that file too big and unreadable.
16 */
17
18#include "ubifs.h"
19
20/**
21 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
22 * @c: UBIFS file-system description object
23 * @zr: root of the subtree to traverse
24 * @znode: previous znode
25 *
26 * This function implements levelorder TNC traversal. The LNC is ignored.
27 * Returns the next element or %NULL if @znode is already the last one.
28 */
29struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
30					      struct ubifs_znode *zr,
31					      struct ubifs_znode *znode)
32{
33	int level, iip, level_search = 0;
34	struct ubifs_znode *zn;
35
36	ubifs_assert(c, zr);
37
38	if (unlikely(!znode))
39		return zr;
40
41	if (unlikely(znode == zr)) {
42		if (znode->level == 0)
43			return NULL;
44		return ubifs_tnc_find_child(zr, 0);
45	}
46
47	level = znode->level;
48
49	iip = znode->iip;
50	while (1) {
51		ubifs_assert(c, znode->level <= zr->level);
52
53		/*
54		 * First walk up until there is a znode with next branch to
55		 * look at.
56		 */
57		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
58			znode = znode->parent;
59			iip = znode->iip;
60		}
61
62		if (unlikely(znode->parent == zr &&
63			     iip >= znode->parent->child_cnt)) {
64			/* This level is done, switch to the lower one */
65			level -= 1;
66			if (level_search || level < 0)
67				/*
68				 * We were already looking for znode at lower
69				 * level ('level_search'). As we are here
70				 * again, it just does not exist. Or all levels
71				 * were finished ('level < 0').
72				 */
73				return NULL;
74
75			level_search = 1;
76			iip = -1;
77			znode = ubifs_tnc_find_child(zr, 0);
78			ubifs_assert(c, znode);
79		}
80
81		/* Switch to the next index */
82		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
83		if (!zn) {
84			/* No more children to look at, we have walk up */
85			iip = znode->parent->child_cnt;
86			continue;
87		}
88
89		/* Walk back down to the level we came from ('level') */
90		while (zn->level != level) {
91			znode = zn;
92			zn = ubifs_tnc_find_child(zn, 0);
93			if (!zn) {
94				/*
95				 * This path is not too deep so it does not
96				 * reach 'level'. Try next path.
97				 */
98				iip = znode->iip;
99				break;
100			}
101		}
102
103		if (zn) {
104			ubifs_assert(c, zn->level >= 0);
105			return zn;
106		}
107	}
108}
109
110/**
111 * ubifs_search_zbranch - search znode branch.
112 * @c: UBIFS file-system description object
113 * @znode: znode to search in
114 * @key: key to search for
115 * @n: znode branch slot number is returned here
116 *
117 * This is a helper function which search branch with key @key in @znode using
118 * binary search. The result of the search may be:
119 *   o exact match, then %1 is returned, and the slot number of the branch is
120 *     stored in @n;
121 *   o no exact match, then %0 is returned and the slot number of the left
122 *     closest branch is returned in @n; the slot if all keys in this znode are
123 *     greater than @key, then %-1 is returned in @n.
124 */
125int ubifs_search_zbranch(const struct ubifs_info *c,
126			 const struct ubifs_znode *znode,
127			 const union ubifs_key *key, int *n)
128{
129	int beg = 0, end = znode->child_cnt, mid;
130	int cmp;
131	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
132
133	ubifs_assert(c, end > beg);
134
135	while (end > beg) {
136		mid = (beg + end) >> 1;
137		cmp = keys_cmp(c, key, &zbr[mid].key);
138		if (cmp > 0)
139			beg = mid + 1;
140		else if (cmp < 0)
141			end = mid;
142		else {
143			*n = mid;
144			return 1;
145		}
146	}
147
148	*n = end - 1;
149
150	/* The insert point is after *n */
151	ubifs_assert(c, *n >= -1 && *n < znode->child_cnt);
152	if (*n == -1)
153		ubifs_assert(c, keys_cmp(c, key, &zbr[0].key) < 0);
154	else
155		ubifs_assert(c, keys_cmp(c, key, &zbr[*n].key) > 0);
156	if (*n + 1 < znode->child_cnt)
157		ubifs_assert(c, keys_cmp(c, key, &zbr[*n + 1].key) < 0);
158
159	return 0;
160}
161
162/**
163 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
164 * @znode: znode to start at (root of the sub-tree to traverse)
165 *
166 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
167 * ignored.
168 */
169struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
170{
171	if (unlikely(!znode))
172		return NULL;
173
174	while (znode->level > 0) {
175		struct ubifs_znode *child;
176
177		child = ubifs_tnc_find_child(znode, 0);
178		if (!child)
179			return znode;
180		znode = child;
181	}
182
183	return znode;
184}
185
186/**
187 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
188 * @c: UBIFS file-system description object
189 * @znode: previous znode
190 *
191 * This function implements postorder TNC traversal. The LNC is ignored.
192 * Returns the next element or %NULL if @znode is already the last one.
193 */
194struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
195					     struct ubifs_znode *znode)
196{
197	struct ubifs_znode *zn;
198
199	ubifs_assert(c, znode);
200	if (unlikely(!znode->parent))
201		return NULL;
202
203	/* Switch to the next index in the parent */
204	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
205	if (!zn)
206		/* This is in fact the last child, return parent */
207		return znode->parent;
208
209	/* Go to the first znode in this new subtree */
210	return ubifs_tnc_postorder_first(zn);
211}
212
213/**
214 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
215 * @c: UBIFS file-system description object
216 * @znode: znode defining subtree to destroy
217 *
218 * This function destroys subtree of the TNC tree. Returns number of clean
219 * znodes in the subtree.
220 */
221long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
222			       struct ubifs_znode *znode)
223{
224	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
225	long clean_freed = 0;
226	int n;
227
228	ubifs_assert(c, zn);
229	while (1) {
230		for (n = 0; n < zn->child_cnt; n++) {
231			if (!zn->zbranch[n].znode)
232				continue;
233
234			if (zn->level > 0 &&
235			    !ubifs_zn_dirty(zn->zbranch[n].znode))
236				clean_freed += 1;
237
238			cond_resched();
239			kfree(zn->zbranch[n].znode);
240		}
241
242		if (zn == znode) {
243			if (!ubifs_zn_dirty(zn))
244				clean_freed += 1;
245			kfree(zn);
246			return clean_freed;
247		}
248
249		zn = ubifs_tnc_postorder_next(c, zn);
250	}
251}
252
253/**
254 * ubifs_destroy_tnc_tree - destroy all znodes connected to the TNC tree.
255 * @c: UBIFS file-system description object
256 *
257 * This function destroys the whole TNC tree and updates clean global znode
258 * count.
259 */
260void ubifs_destroy_tnc_tree(struct ubifs_info *c)
261{
262	long n, freed;
263
264	if (!c->zroot.znode)
265		return;
266
267	n = atomic_long_read(&c->clean_zn_cnt);
268	freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
269	ubifs_assert(c, freed == n);
270	atomic_long_sub(n, &ubifs_clean_zn_cnt);
271
272	c->zroot.znode = NULL;
273}
274
275/**
276 * read_znode - read an indexing node from flash and fill znode.
277 * @c: UBIFS file-system description object
278 * @zzbr: the zbranch describing the node to read
279 * @znode: znode to read to
280 *
281 * This function reads an indexing node from the flash media and fills znode
282 * with the read data. Returns zero in case of success and a negative error
283 * code in case of failure. The read indexing node is validated and if anything
284 * is wrong with it, this function prints complaint messages and returns
285 * %-EINVAL.
286 */
287static int read_znode(struct ubifs_info *c, struct ubifs_zbranch *zzbr,
288		      struct ubifs_znode *znode)
289{
290	int lnum = zzbr->lnum;
291	int offs = zzbr->offs;
292	int len = zzbr->len;
293	int i, err, type, cmp;
294	struct ubifs_idx_node *idx;
295
296	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
297	if (!idx)
298		return -ENOMEM;
299
300	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
301	if (err < 0) {
302		kfree(idx);
303		return err;
304	}
305
306	err = ubifs_node_check_hash(c, idx, zzbr->hash);
307	if (err) {
308		ubifs_bad_hash(c, idx, zzbr->hash, lnum, offs);
309		kfree(idx);
310		return err;
311	}
312
313	znode->child_cnt = le16_to_cpu(idx->child_cnt);
314	znode->level = le16_to_cpu(idx->level);
315
316	dbg_tnc("LEB %d:%d, level %d, %d branch",
317		lnum, offs, znode->level, znode->child_cnt);
318
319	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
320		ubifs_err(c, "current fanout %d, branch count %d",
321			  c->fanout, znode->child_cnt);
322		ubifs_err(c, "max levels %d, znode level %d",
323			  UBIFS_MAX_LEVELS, znode->level);
324		err = 1;
325		goto out_dump;
326	}
327
328	for (i = 0; i < znode->child_cnt; i++) {
329		struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
330		struct ubifs_zbranch *zbr = &znode->zbranch[i];
331
332		key_read(c, &br->key, &zbr->key);
333		zbr->lnum = le32_to_cpu(br->lnum);
334		zbr->offs = le32_to_cpu(br->offs);
335		zbr->len  = le32_to_cpu(br->len);
336		ubifs_copy_hash(c, ubifs_branch_hash(c, br), zbr->hash);
337		zbr->znode = NULL;
338
339		/* Validate branch */
340
341		if (zbr->lnum < c->main_first ||
342		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
343		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
344			ubifs_err(c, "bad branch %d", i);
345			err = 2;
346			goto out_dump;
347		}
348
349		switch (key_type(c, &zbr->key)) {
350		case UBIFS_INO_KEY:
351		case UBIFS_DATA_KEY:
352		case UBIFS_DENT_KEY:
353		case UBIFS_XENT_KEY:
354			break;
355		default:
356			ubifs_err(c, "bad key type at slot %d: %d",
357				  i, key_type(c, &zbr->key));
358			err = 3;
359			goto out_dump;
360		}
361
362		if (znode->level)
363			continue;
364
365		type = key_type(c, &zbr->key);
366		if (c->ranges[type].max_len == 0) {
367			if (zbr->len != c->ranges[type].len) {
368				ubifs_err(c, "bad target node (type %d) length (%d)",
369					  type, zbr->len);
370				ubifs_err(c, "have to be %d", c->ranges[type].len);
371				err = 4;
372				goto out_dump;
373			}
374		} else if (zbr->len < c->ranges[type].min_len ||
375			   zbr->len > c->ranges[type].max_len) {
376			ubifs_err(c, "bad target node (type %d) length (%d)",
377				  type, zbr->len);
378			ubifs_err(c, "have to be in range of %d-%d",
379				  c->ranges[type].min_len,
380				  c->ranges[type].max_len);
381			err = 5;
382			goto out_dump;
383		}
384	}
385
386	/*
387	 * Ensure that the next key is greater or equivalent to the
388	 * previous one.
389	 */
390	for (i = 0; i < znode->child_cnt - 1; i++) {
391		const union ubifs_key *key1, *key2;
392
393		key1 = &znode->zbranch[i].key;
394		key2 = &znode->zbranch[i + 1].key;
395
396		cmp = keys_cmp(c, key1, key2);
397		if (cmp > 0) {
398			ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
399			err = 6;
400			goto out_dump;
401		} else if (cmp == 0 && !is_hash_key(c, key1)) {
402			/* These can only be keys with colliding hash */
403			ubifs_err(c, "keys %d and %d are not hashed but equivalent",
404				  i, i + 1);
405			err = 7;
406			goto out_dump;
407		}
408	}
409
410	kfree(idx);
411	return 0;
412
413out_dump:
414	ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
415	ubifs_dump_node(c, idx, c->max_idx_node_sz);
416	kfree(idx);
417	return -EINVAL;
418}
419
420/**
421 * ubifs_load_znode - load znode to TNC cache.
422 * @c: UBIFS file-system description object
423 * @zbr: znode branch
424 * @parent: znode's parent
425 * @iip: index in parent
426 *
427 * This function loads znode pointed to by @zbr into the TNC cache and
428 * returns pointer to it in case of success and a negative error code in case
429 * of failure.
430 */
431struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
432				     struct ubifs_zbranch *zbr,
433				     struct ubifs_znode *parent, int iip)
434{
435	int err;
436	struct ubifs_znode *znode;
437
438	ubifs_assert(c, !zbr->znode);
439	/*
440	 * A slab cache is not presently used for znodes because the znode size
441	 * depends on the fanout which is stored in the superblock.
442	 */
443	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
444	if (!znode)
445		return ERR_PTR(-ENOMEM);
446
447	err = read_znode(c, zbr, znode);
448	if (err)
449		goto out;
450
451	atomic_long_inc(&c->clean_zn_cnt);
452
453	/*
454	 * Increment the global clean znode counter as well. It is OK that
455	 * global and per-FS clean znode counters may be inconsistent for some
456	 * short time (because we might be preempted at this point), the global
457	 * one is only used in shrinker.
458	 */
459	atomic_long_inc(&ubifs_clean_zn_cnt);
460
461	zbr->znode = znode;
462	znode->parent = parent;
463	znode->time = ktime_get_seconds();
464	znode->iip = iip;
465
466	return znode;
467
468out:
469	kfree(znode);
470	return ERR_PTR(err);
471}
472
473/**
474 * ubifs_tnc_read_node - read a leaf node from the flash media.
475 * @c: UBIFS file-system description object
476 * @zbr: key and position of the node
477 * @node: node is returned here
478 *
479 * This function reads a node defined by @zbr from the flash media. Returns
480 * zero in case of success or a negative error code in case of failure.
481 */
482int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
483			void *node)
484{
485	union ubifs_key key1, *key = &zbr->key;
486	int err, type = key_type(c, key);
487	struct ubifs_wbuf *wbuf;
488
489	/*
490	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
491	 * may even be in a write buffer, so we have to take care about this.
492	 */
493	wbuf = ubifs_get_wbuf(c, zbr->lnum);
494	if (wbuf)
495		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
496					   zbr->lnum, zbr->offs);
497	else
498		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
499				      zbr->offs);
500
501	if (err) {
502		dbg_tnck(key, "key ");
503		return err;
504	}
505
506	/* Make sure the key of the read node is correct */
507	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
508	if (!keys_eq(c, key, &key1)) {
509		ubifs_err(c, "bad key in node at LEB %d:%d",
510			  zbr->lnum, zbr->offs);
511		dbg_tnck(key, "looked for key ");
512		dbg_tnck(&key1, "but found node's key ");
513		ubifs_dump_node(c, node, zbr->len);
514		return -EINVAL;
515	}
516
517	err = ubifs_node_check_hash(c, node, zbr->hash);
518	if (err) {
519		ubifs_bad_hash(c, node, zbr->hash, zbr->lnum, zbr->offs);
520		return err;
521	}
522
523	return 0;
524}
525