1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13 * the UBIFS B-tree.
14 *
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
18 * the mutex locked.
19 */
20
21#include <linux/crc32.h>
22#include <linux/slab.h>
23#include "ubifs.h"
24
25static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26			 struct ubifs_zbranch *zbr);
27static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28			      struct ubifs_zbranch *zbr, void *node);
29
30/*
31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32 * @NAME_LESS: name corresponding to the first argument is less than second
33 * @NAME_MATCHES: names match
34 * @NAME_GREATER: name corresponding to the second argument is greater than
35 *                first
36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
37 *
38 * These constants were introduce to improve readability.
39 */
40enum {
41	NAME_LESS    = 0,
42	NAME_MATCHES = 1,
43	NAME_GREATER = 2,
44	NOT_ON_MEDIA = 3,
45};
46
47static void do_insert_old_idx(struct ubifs_info *c,
48			      struct ubifs_old_idx *old_idx)
49{
50	struct ubifs_old_idx *o;
51	struct rb_node **p, *parent = NULL;
52
53	p = &c->old_idx.rb_node;
54	while (*p) {
55		parent = *p;
56		o = rb_entry(parent, struct ubifs_old_idx, rb);
57		if (old_idx->lnum < o->lnum)
58			p = &(*p)->rb_left;
59		else if (old_idx->lnum > o->lnum)
60			p = &(*p)->rb_right;
61		else if (old_idx->offs < o->offs)
62			p = &(*p)->rb_left;
63		else if (old_idx->offs > o->offs)
64			p = &(*p)->rb_right;
65		else {
66			ubifs_err(c, "old idx added twice!");
67			kfree(old_idx);
68			return;
69		}
70	}
71	rb_link_node(&old_idx->rb, parent, p);
72	rb_insert_color(&old_idx->rb, &c->old_idx);
73}
74
75/**
76 * insert_old_idx - record an index node obsoleted since the last commit start.
77 * @c: UBIFS file-system description object
78 * @lnum: LEB number of obsoleted index node
79 * @offs: offset of obsoleted index node
80 *
81 * Returns %0 on success, and a negative error code on failure.
82 *
83 * For recovery, there must always be a complete intact version of the index on
84 * flash at all times. That is called the "old index". It is the index as at the
85 * time of the last successful commit. Many of the index nodes in the old index
86 * may be dirty, but they must not be erased until the next successful commit
87 * (at which point that index becomes the old index).
88 *
89 * That means that the garbage collection and the in-the-gaps method of
90 * committing must be able to determine if an index node is in the old index.
91 * Most of the old index nodes can be found by looking up the TNC using the
92 * 'lookup_znode()' function. However, some of the old index nodes may have
93 * been deleted from the current index or may have been changed so much that
94 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
95 * That is what this function does. The RB-tree is ordered by LEB number and
96 * offset because they uniquely identify the old index node.
97 */
98static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
99{
100	struct ubifs_old_idx *old_idx;
101
102	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
103	if (unlikely(!old_idx))
104		return -ENOMEM;
105	old_idx->lnum = lnum;
106	old_idx->offs = offs;
107	do_insert_old_idx(c, old_idx);
108
109	return 0;
110}
111
112/**
113 * insert_old_idx_znode - record a znode obsoleted since last commit start.
114 * @c: UBIFS file-system description object
115 * @znode: znode of obsoleted index node
116 *
117 * Returns %0 on success, and a negative error code on failure.
118 */
119int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
120{
121	if (znode->parent) {
122		struct ubifs_zbranch *zbr;
123
124		zbr = &znode->parent->zbranch[znode->iip];
125		if (zbr->len)
126			return insert_old_idx(c, zbr->lnum, zbr->offs);
127	} else
128		if (c->zroot.len)
129			return insert_old_idx(c, c->zroot.lnum,
130					      c->zroot.offs);
131	return 0;
132}
133
134/**
135 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
136 * @c: UBIFS file-system description object
137 * @znode: znode of obsoleted index node
138 *
139 * Returns %0 on success, and a negative error code on failure.
140 */
141static int ins_clr_old_idx_znode(struct ubifs_info *c,
142				 struct ubifs_znode *znode)
143{
144	int err;
145
146	if (znode->parent) {
147		struct ubifs_zbranch *zbr;
148
149		zbr = &znode->parent->zbranch[znode->iip];
150		if (zbr->len) {
151			err = insert_old_idx(c, zbr->lnum, zbr->offs);
152			if (err)
153				return err;
154			zbr->lnum = 0;
155			zbr->offs = 0;
156			zbr->len = 0;
157		}
158	} else
159		if (c->zroot.len) {
160			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
161			if (err)
162				return err;
163			c->zroot.lnum = 0;
164			c->zroot.offs = 0;
165			c->zroot.len = 0;
166		}
167	return 0;
168}
169
170/**
171 * destroy_old_idx - destroy the old_idx RB-tree.
172 * @c: UBIFS file-system description object
173 *
174 * During start commit, the old_idx RB-tree is used to avoid overwriting index
175 * nodes that were in the index last commit but have since been deleted.  This
176 * is necessary for recovery i.e. the old index must be kept intact until the
177 * new index is successfully written.  The old-idx RB-tree is used for the
178 * in-the-gaps method of writing index nodes and is destroyed every commit.
179 */
180void destroy_old_idx(struct ubifs_info *c)
181{
182	struct ubifs_old_idx *old_idx, *n;
183
184	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
185		kfree(old_idx);
186
187	c->old_idx = RB_ROOT;
188}
189
190/**
191 * copy_znode - copy a dirty znode.
192 * @c: UBIFS file-system description object
193 * @znode: znode to copy
194 *
195 * A dirty znode being committed may not be changed, so it is copied.
196 */
197static struct ubifs_znode *copy_znode(struct ubifs_info *c,
198				      struct ubifs_znode *znode)
199{
200	struct ubifs_znode *zn;
201
202	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
203	if (unlikely(!zn))
204		return ERR_PTR(-ENOMEM);
205
206	zn->cnext = NULL;
207	__set_bit(DIRTY_ZNODE, &zn->flags);
208	__clear_bit(COW_ZNODE, &zn->flags);
209
210	return zn;
211}
212
213/**
214 * add_idx_dirt - add dirt due to a dirty znode.
215 * @c: UBIFS file-system description object
216 * @lnum: LEB number of index node
217 * @dirt: size of index node
218 *
219 * This function updates lprops dirty space and the new size of the index.
220 */
221static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
222{
223	c->calc_idx_sz -= ALIGN(dirt, 8);
224	return ubifs_add_dirt(c, lnum, dirt);
225}
226
227/**
228 * replace_znode - replace old znode with new znode.
229 * @c: UBIFS file-system description object
230 * @new_zn: new znode
231 * @old_zn: old znode
232 * @zbr: the branch of parent znode
233 *
234 * Replace old znode with new znode in TNC.
235 */
236static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn,
237			  struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr)
238{
239	ubifs_assert(c, !ubifs_zn_obsolete(old_zn));
240	__set_bit(OBSOLETE_ZNODE, &old_zn->flags);
241
242	if (old_zn->level != 0) {
243		int i;
244		const int n = new_zn->child_cnt;
245
246		/* The children now have new parent */
247		for (i = 0; i < n; i++) {
248			struct ubifs_zbranch *child = &new_zn->zbranch[i];
249
250			if (child->znode)
251				child->znode->parent = new_zn;
252		}
253	}
254
255	zbr->znode = new_zn;
256	zbr->lnum = 0;
257	zbr->offs = 0;
258	zbr->len = 0;
259
260	atomic_long_inc(&c->dirty_zn_cnt);
261}
262
263/**
264 * dirty_cow_znode - ensure a znode is not being committed.
265 * @c: UBIFS file-system description object
266 * @zbr: branch of znode to check
267 *
268 * Returns dirtied znode on success or negative error code on failure.
269 */
270static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
271					   struct ubifs_zbranch *zbr)
272{
273	struct ubifs_znode *znode = zbr->znode;
274	struct ubifs_znode *zn;
275	int err;
276
277	if (!ubifs_zn_cow(znode)) {
278		/* znode is not being committed */
279		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
280			atomic_long_inc(&c->dirty_zn_cnt);
281			atomic_long_dec(&c->clean_zn_cnt);
282			atomic_long_dec(&ubifs_clean_zn_cnt);
283			err = add_idx_dirt(c, zbr->lnum, zbr->len);
284			if (unlikely(err))
285				return ERR_PTR(err);
286		}
287		return znode;
288	}
289
290	zn = copy_znode(c, znode);
291	if (IS_ERR(zn))
292		return zn;
293
294	if (zbr->len) {
295		struct ubifs_old_idx *old_idx;
296
297		old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
298		if (unlikely(!old_idx)) {
299			err = -ENOMEM;
300			goto out;
301		}
302		old_idx->lnum = zbr->lnum;
303		old_idx->offs = zbr->offs;
304
305		err = add_idx_dirt(c, zbr->lnum, zbr->len);
306		if (err) {
307			kfree(old_idx);
308			goto out;
309		}
310
311		do_insert_old_idx(c, old_idx);
312	}
313
314	replace_znode(c, zn, znode, zbr);
315
316	return zn;
317
318out:
319	kfree(zn);
320	return ERR_PTR(err);
321}
322
323/**
324 * lnc_add - add a leaf node to the leaf node cache.
325 * @c: UBIFS file-system description object
326 * @zbr: zbranch of leaf node
327 * @node: leaf node
328 *
329 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
330 * purpose of the leaf node cache is to save re-reading the same leaf node over
331 * and over again. Most things are cached by VFS, however the file system must
332 * cache directory entries for readdir and for resolving hash collisions. The
333 * present implementation of the leaf node cache is extremely simple, and
334 * allows for error returns that are not used but that may be needed if a more
335 * complex implementation is created.
336 *
337 * Note, this function does not add the @node object to LNC directly, but
338 * allocates a copy of the object and adds the copy to LNC. The reason for this
339 * is that @node has been allocated outside of the TNC subsystem and will be
340 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
341 * may be changed at any time, e.g. freed by the shrinker.
342 */
343static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
344		   const void *node)
345{
346	int err;
347	void *lnc_node;
348	const struct ubifs_dent_node *dent = node;
349
350	ubifs_assert(c, !zbr->leaf);
351	ubifs_assert(c, zbr->len != 0);
352	ubifs_assert(c, is_hash_key(c, &zbr->key));
353
354	err = ubifs_validate_entry(c, dent);
355	if (err) {
356		dump_stack();
357		ubifs_dump_node(c, dent, zbr->len);
358		return err;
359	}
360
361	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
362	if (!lnc_node)
363		/* We don't have to have the cache, so no error */
364		return 0;
365
366	zbr->leaf = lnc_node;
367	return 0;
368}
369
370 /**
371 * lnc_add_directly - add a leaf node to the leaf-node-cache.
372 * @c: UBIFS file-system description object
373 * @zbr: zbranch of leaf node
374 * @node: leaf node
375 *
376 * This function is similar to 'lnc_add()', but it does not create a copy of
377 * @node but inserts @node to TNC directly.
378 */
379static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
380			    void *node)
381{
382	int err;
383
384	ubifs_assert(c, !zbr->leaf);
385	ubifs_assert(c, zbr->len != 0);
386
387	err = ubifs_validate_entry(c, node);
388	if (err) {
389		dump_stack();
390		ubifs_dump_node(c, node, zbr->len);
391		return err;
392	}
393
394	zbr->leaf = node;
395	return 0;
396}
397
398/**
399 * lnc_free - remove a leaf node from the leaf node cache.
400 * @zbr: zbranch of leaf node
401 */
402static void lnc_free(struct ubifs_zbranch *zbr)
403{
404	if (!zbr->leaf)
405		return;
406	kfree(zbr->leaf);
407	zbr->leaf = NULL;
408}
409
410/**
411 * tnc_read_hashed_node - read a "hashed" leaf node.
412 * @c: UBIFS file-system description object
413 * @zbr: key and position of the node
414 * @node: node is returned here
415 *
416 * This function reads a "hashed" node defined by @zbr from the leaf node cache
417 * (in it is there) or from the hash media, in which case the node is also
418 * added to LNC. Returns zero in case of success or a negative error
419 * code in case of failure.
420 */
421static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
422				void *node)
423{
424	int err;
425
426	ubifs_assert(c, is_hash_key(c, &zbr->key));
427
428	if (zbr->leaf) {
429		/* Read from the leaf node cache */
430		ubifs_assert(c, zbr->len != 0);
431		memcpy(node, zbr->leaf, zbr->len);
432		return 0;
433	}
434
435	if (c->replaying) {
436		err = fallible_read_node(c, &zbr->key, zbr, node);
437		/*
438		 * When the node was not found, return -ENOENT, 0 otherwise.
439		 * Negative return codes stay as-is.
440		 */
441		if (err == 0)
442			err = -ENOENT;
443		else if (err == 1)
444			err = 0;
445	} else {
446		err = ubifs_tnc_read_node(c, zbr, node);
447	}
448	if (err)
449		return err;
450
451	/* Add the node to the leaf node cache */
452	err = lnc_add(c, zbr, node);
453	return err;
454}
455
456/**
457 * try_read_node - read a node if it is a node.
458 * @c: UBIFS file-system description object
459 * @buf: buffer to read to
460 * @type: node type
461 * @zbr: the zbranch describing the node to read
462 *
463 * This function tries to read a node of known type and length, checks it and
464 * stores it in @buf. This function returns %1 if a node is present and %0 if
465 * a node is not present. A negative error code is returned for I/O errors.
466 * This function performs that same function as ubifs_read_node except that
467 * it does not require that there is actually a node present and instead
468 * the return code indicates if a node was read.
469 *
470 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
471 * is true (it is controlled by corresponding mount option). However, if
472 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
473 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
474 * because during mounting or re-mounting from R/O mode to R/W mode we may read
475 * journal nodes (when replying the journal or doing the recovery) and the
476 * journal nodes may potentially be corrupted, so checking is required.
477 */
478static int try_read_node(const struct ubifs_info *c, void *buf, int type,
479			 struct ubifs_zbranch *zbr)
480{
481	int len = zbr->len;
482	int lnum = zbr->lnum;
483	int offs = zbr->offs;
484	int err, node_len;
485	struct ubifs_ch *ch = buf;
486	uint32_t crc, node_crc;
487
488	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
489
490	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
491	if (err) {
492		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
493			  type, lnum, offs, err);
494		return err;
495	}
496
497	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
498		return 0;
499
500	if (ch->node_type != type)
501		return 0;
502
503	node_len = le32_to_cpu(ch->len);
504	if (node_len != len)
505		return 0;
506
507	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
508	    c->remounting_rw) {
509		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
510		node_crc = le32_to_cpu(ch->crc);
511		if (crc != node_crc)
512			return 0;
513	}
514
515	err = ubifs_node_check_hash(c, buf, zbr->hash);
516	if (err) {
517		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
518		return 0;
519	}
520
521	return 1;
522}
523
524/**
525 * fallible_read_node - try to read a leaf node.
526 * @c: UBIFS file-system description object
527 * @key:  key of node to read
528 * @zbr:  position of node
529 * @node: node returned
530 *
531 * This function tries to read a node and returns %1 if the node is read, %0
532 * if the node is not present, and a negative error code in the case of error.
533 */
534static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
535			      struct ubifs_zbranch *zbr, void *node)
536{
537	int ret;
538
539	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
540
541	ret = try_read_node(c, node, key_type(c, key), zbr);
542	if (ret == 1) {
543		union ubifs_key node_key;
544		struct ubifs_dent_node *dent = node;
545
546		/* All nodes have key in the same place */
547		key_read(c, &dent->key, &node_key);
548		if (keys_cmp(c, key, &node_key) != 0)
549			ret = 0;
550	}
551	if (ret == 0 && c->replaying)
552		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
553			zbr->lnum, zbr->offs, zbr->len);
554	return ret;
555}
556
557/**
558 * matches_name - determine if a direntry or xattr entry matches a given name.
559 * @c: UBIFS file-system description object
560 * @zbr: zbranch of dent
561 * @nm: name to match
562 *
563 * This function checks if xentry/direntry referred by zbranch @zbr matches name
564 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
565 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
566 * of failure, a negative error code is returned.
567 */
568static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
569			const struct fscrypt_name *nm)
570{
571	struct ubifs_dent_node *dent;
572	int nlen, err;
573
574	/* If possible, match against the dent in the leaf node cache */
575	if (!zbr->leaf) {
576		dent = kmalloc(zbr->len, GFP_NOFS);
577		if (!dent)
578			return -ENOMEM;
579
580		err = ubifs_tnc_read_node(c, zbr, dent);
581		if (err)
582			goto out_free;
583
584		/* Add the node to the leaf node cache */
585		err = lnc_add_directly(c, zbr, dent);
586		if (err)
587			goto out_free;
588	} else
589		dent = zbr->leaf;
590
591	nlen = le16_to_cpu(dent->nlen);
592	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
593	if (err == 0) {
594		if (nlen == fname_len(nm))
595			return NAME_MATCHES;
596		else if (nlen < fname_len(nm))
597			return NAME_LESS;
598		else
599			return NAME_GREATER;
600	} else if (err < 0)
601		return NAME_LESS;
602	else
603		return NAME_GREATER;
604
605out_free:
606	kfree(dent);
607	return err;
608}
609
610/**
611 * get_znode - get a TNC znode that may not be loaded yet.
612 * @c: UBIFS file-system description object
613 * @znode: parent znode
614 * @n: znode branch slot number
615 *
616 * This function returns the znode or a negative error code.
617 */
618static struct ubifs_znode *get_znode(struct ubifs_info *c,
619				     struct ubifs_znode *znode, int n)
620{
621	struct ubifs_zbranch *zbr;
622
623	zbr = &znode->zbranch[n];
624	if (zbr->znode)
625		znode = zbr->znode;
626	else
627		znode = ubifs_load_znode(c, zbr, znode, n);
628	return znode;
629}
630
631/**
632 * tnc_next - find next TNC entry.
633 * @c: UBIFS file-system description object
634 * @zn: znode is passed and returned here
635 * @n: znode branch slot number is passed and returned here
636 *
637 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
638 * no next entry, or a negative error code otherwise.
639 */
640static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
641{
642	struct ubifs_znode *znode = *zn;
643	int nn = *n;
644
645	nn += 1;
646	if (nn < znode->child_cnt) {
647		*n = nn;
648		return 0;
649	}
650	while (1) {
651		struct ubifs_znode *zp;
652
653		zp = znode->parent;
654		if (!zp)
655			return -ENOENT;
656		nn = znode->iip + 1;
657		znode = zp;
658		if (nn < znode->child_cnt) {
659			znode = get_znode(c, znode, nn);
660			if (IS_ERR(znode))
661				return PTR_ERR(znode);
662			while (znode->level != 0) {
663				znode = get_znode(c, znode, 0);
664				if (IS_ERR(znode))
665					return PTR_ERR(znode);
666			}
667			nn = 0;
668			break;
669		}
670	}
671	*zn = znode;
672	*n = nn;
673	return 0;
674}
675
676/**
677 * tnc_prev - find previous TNC entry.
678 * @c: UBIFS file-system description object
679 * @zn: znode is returned here
680 * @n: znode branch slot number is passed and returned here
681 *
682 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
683 * there is no next entry, or a negative error code otherwise.
684 */
685static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
686{
687	struct ubifs_znode *znode = *zn;
688	int nn = *n;
689
690	if (nn > 0) {
691		*n = nn - 1;
692		return 0;
693	}
694	while (1) {
695		struct ubifs_znode *zp;
696
697		zp = znode->parent;
698		if (!zp)
699			return -ENOENT;
700		nn = znode->iip - 1;
701		znode = zp;
702		if (nn >= 0) {
703			znode = get_znode(c, znode, nn);
704			if (IS_ERR(znode))
705				return PTR_ERR(znode);
706			while (znode->level != 0) {
707				nn = znode->child_cnt - 1;
708				znode = get_znode(c, znode, nn);
709				if (IS_ERR(znode))
710					return PTR_ERR(znode);
711			}
712			nn = znode->child_cnt - 1;
713			break;
714		}
715	}
716	*zn = znode;
717	*n = nn;
718	return 0;
719}
720
721/**
722 * resolve_collision - resolve a collision.
723 * @c: UBIFS file-system description object
724 * @key: key of a directory or extended attribute entry
725 * @zn: znode is returned here
726 * @n: zbranch number is passed and returned here
727 * @nm: name of the entry
728 *
729 * This function is called for "hashed" keys to make sure that the found key
730 * really corresponds to the looked up node (directory or extended attribute
731 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
732 * %0 is returned if @nm is not found and @zn and @n are set to the previous
733 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
734 * This means that @n may be set to %-1 if the leftmost key in @zn is the
735 * previous one. A negative error code is returned on failures.
736 */
737static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
738			     struct ubifs_znode **zn, int *n,
739			     const struct fscrypt_name *nm)
740{
741	int err;
742
743	err = matches_name(c, &(*zn)->zbranch[*n], nm);
744	if (unlikely(err < 0))
745		return err;
746	if (err == NAME_MATCHES)
747		return 1;
748
749	if (err == NAME_GREATER) {
750		/* Look left */
751		while (1) {
752			err = tnc_prev(c, zn, n);
753			if (err == -ENOENT) {
754				ubifs_assert(c, *n == 0);
755				*n = -1;
756				return 0;
757			}
758			if (err < 0)
759				return err;
760			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
761				/*
762				 * We have found the branch after which we would
763				 * like to insert, but inserting in this znode
764				 * may still be wrong. Consider the following 3
765				 * znodes, in the case where we are resolving a
766				 * collision with Key2.
767				 *
768				 *                  znode zp
769				 *            ----------------------
770				 * level 1     |  Key0  |  Key1  |
771				 *            -----------------------
772				 *                 |            |
773				 *       znode za  |            |  znode zb
774				 *          ------------      ------------
775				 * level 0  |  Key0  |        |  Key2  |
776				 *          ------------      ------------
777				 *
778				 * The lookup finds Key2 in znode zb. Lets say
779				 * there is no match and the name is greater so
780				 * we look left. When we find Key0, we end up
781				 * here. If we return now, we will insert into
782				 * znode za at slot n = 1.  But that is invalid
783				 * according to the parent's keys.  Key2 must
784				 * be inserted into znode zb.
785				 *
786				 * Note, this problem is not relevant for the
787				 * case when we go right, because
788				 * 'tnc_insert()' would correct the parent key.
789				 */
790				if (*n == (*zn)->child_cnt - 1) {
791					err = tnc_next(c, zn, n);
792					if (err) {
793						/* Should be impossible */
794						ubifs_assert(c, 0);
795						if (err == -ENOENT)
796							err = -EINVAL;
797						return err;
798					}
799					ubifs_assert(c, *n == 0);
800					*n = -1;
801				}
802				return 0;
803			}
804			err = matches_name(c, &(*zn)->zbranch[*n], nm);
805			if (err < 0)
806				return err;
807			if (err == NAME_LESS)
808				return 0;
809			if (err == NAME_MATCHES)
810				return 1;
811			ubifs_assert(c, err == NAME_GREATER);
812		}
813	} else {
814		int nn = *n;
815		struct ubifs_znode *znode = *zn;
816
817		/* Look right */
818		while (1) {
819			err = tnc_next(c, &znode, &nn);
820			if (err == -ENOENT)
821				return 0;
822			if (err < 0)
823				return err;
824			if (keys_cmp(c, &znode->zbranch[nn].key, key))
825				return 0;
826			err = matches_name(c, &znode->zbranch[nn], nm);
827			if (err < 0)
828				return err;
829			if (err == NAME_GREATER)
830				return 0;
831			*zn = znode;
832			*n = nn;
833			if (err == NAME_MATCHES)
834				return 1;
835			ubifs_assert(c, err == NAME_LESS);
836		}
837	}
838}
839
840/**
841 * fallible_matches_name - determine if a dent matches a given name.
842 * @c: UBIFS file-system description object
843 * @zbr: zbranch of dent
844 * @nm: name to match
845 *
846 * This is a "fallible" version of 'matches_name()' function which does not
847 * panic if the direntry/xentry referred by @zbr does not exist on the media.
848 *
849 * This function checks if xentry/direntry referred by zbranch @zbr matches name
850 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
851 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
852 * if xentry/direntry referred by @zbr does not exist on the media. A negative
853 * error code is returned in case of failure.
854 */
855static int fallible_matches_name(struct ubifs_info *c,
856				 struct ubifs_zbranch *zbr,
857				 const struct fscrypt_name *nm)
858{
859	struct ubifs_dent_node *dent;
860	int nlen, err;
861
862	/* If possible, match against the dent in the leaf node cache */
863	if (!zbr->leaf) {
864		dent = kmalloc(zbr->len, GFP_NOFS);
865		if (!dent)
866			return -ENOMEM;
867
868		err = fallible_read_node(c, &zbr->key, zbr, dent);
869		if (err < 0)
870			goto out_free;
871		if (err == 0) {
872			/* The node was not present */
873			err = NOT_ON_MEDIA;
874			goto out_free;
875		}
876		ubifs_assert(c, err == 1);
877
878		err = lnc_add_directly(c, zbr, dent);
879		if (err)
880			goto out_free;
881	} else
882		dent = zbr->leaf;
883
884	nlen = le16_to_cpu(dent->nlen);
885	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
886	if (err == 0) {
887		if (nlen == fname_len(nm))
888			return NAME_MATCHES;
889		else if (nlen < fname_len(nm))
890			return NAME_LESS;
891		else
892			return NAME_GREATER;
893	} else if (err < 0)
894		return NAME_LESS;
895	else
896		return NAME_GREATER;
897
898out_free:
899	kfree(dent);
900	return err;
901}
902
903/**
904 * fallible_resolve_collision - resolve a collision even if nodes are missing.
905 * @c: UBIFS file-system description object
906 * @key: key
907 * @zn: znode is returned here
908 * @n: branch number is passed and returned here
909 * @nm: name of directory entry
910 * @adding: indicates caller is adding a key to the TNC
911 *
912 * This is a "fallible" version of the 'resolve_collision()' function which
913 * does not panic if one of the nodes referred to by TNC does not exist on the
914 * media. This may happen when replaying the journal if a deleted node was
915 * Garbage-collected and the commit was not done. A branch that refers to a node
916 * that is not present is called a dangling branch. The following are the return
917 * codes for this function:
918 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
919 *    branch;
920 *  o if we are @adding and @nm was not found, %0 is returned;
921 *  o if we are not @adding and @nm was not found, but a dangling branch was
922 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
923 *  o a negative error code is returned in case of failure.
924 */
925static int fallible_resolve_collision(struct ubifs_info *c,
926				      const union ubifs_key *key,
927				      struct ubifs_znode **zn, int *n,
928				      const struct fscrypt_name *nm,
929				      int adding)
930{
931	struct ubifs_znode *o_znode = NULL, *znode = *zn;
932	int o_n, err, cmp, unsure = 0, nn = *n;
933
934	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
935	if (unlikely(cmp < 0))
936		return cmp;
937	if (cmp == NAME_MATCHES)
938		return 1;
939	if (cmp == NOT_ON_MEDIA) {
940		o_znode = znode;
941		o_n = nn;
942		/*
943		 * We are unlucky and hit a dangling branch straight away.
944		 * Now we do not really know where to go to find the needed
945		 * branch - to the left or to the right. Well, let's try left.
946		 */
947		unsure = 1;
948	} else if (!adding)
949		unsure = 1; /* Remove a dangling branch wherever it is */
950
951	if (cmp == NAME_GREATER || unsure) {
952		/* Look left */
953		while (1) {
954			err = tnc_prev(c, zn, n);
955			if (err == -ENOENT) {
956				ubifs_assert(c, *n == 0);
957				*n = -1;
958				break;
959			}
960			if (err < 0)
961				return err;
962			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
963				/* See comments in 'resolve_collision()' */
964				if (*n == (*zn)->child_cnt - 1) {
965					err = tnc_next(c, zn, n);
966					if (err) {
967						/* Should be impossible */
968						ubifs_assert(c, 0);
969						if (err == -ENOENT)
970							err = -EINVAL;
971						return err;
972					}
973					ubifs_assert(c, *n == 0);
974					*n = -1;
975				}
976				break;
977			}
978			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
979			if (err < 0)
980				return err;
981			if (err == NAME_MATCHES)
982				return 1;
983			if (err == NOT_ON_MEDIA) {
984				o_znode = *zn;
985				o_n = *n;
986				continue;
987			}
988			if (!adding)
989				continue;
990			if (err == NAME_LESS)
991				break;
992			else
993				unsure = 0;
994		}
995	}
996
997	if (cmp == NAME_LESS || unsure) {
998		/* Look right */
999		*zn = znode;
1000		*n = nn;
1001		while (1) {
1002			err = tnc_next(c, &znode, &nn);
1003			if (err == -ENOENT)
1004				break;
1005			if (err < 0)
1006				return err;
1007			if (keys_cmp(c, &znode->zbranch[nn].key, key))
1008				break;
1009			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
1010			if (err < 0)
1011				return err;
1012			if (err == NAME_GREATER)
1013				break;
1014			*zn = znode;
1015			*n = nn;
1016			if (err == NAME_MATCHES)
1017				return 1;
1018			if (err == NOT_ON_MEDIA) {
1019				o_znode = znode;
1020				o_n = nn;
1021			}
1022		}
1023	}
1024
1025	/* Never match a dangling branch when adding */
1026	if (adding || !o_znode)
1027		return 0;
1028
1029	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1030		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1031		o_znode->zbranch[o_n].len);
1032	*zn = o_znode;
1033	*n = o_n;
1034	return 1;
1035}
1036
1037/**
1038 * matches_position - determine if a zbranch matches a given position.
1039 * @zbr: zbranch of dent
1040 * @lnum: LEB number of dent to match
1041 * @offs: offset of dent to match
1042 *
1043 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1044 */
1045static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1046{
1047	if (zbr->lnum == lnum && zbr->offs == offs)
1048		return 1;
1049	else
1050		return 0;
1051}
1052
1053/**
1054 * resolve_collision_directly - resolve a collision directly.
1055 * @c: UBIFS file-system description object
1056 * @key: key of directory entry
1057 * @zn: znode is passed and returned here
1058 * @n: zbranch number is passed and returned here
1059 * @lnum: LEB number of dent node to match
1060 * @offs: offset of dent node to match
1061 *
1062 * This function is used for "hashed" keys to make sure the found directory or
1063 * extended attribute entry node is what was looked for. It is used when the
1064 * flash address of the right node is known (@lnum:@offs) which makes it much
1065 * easier to resolve collisions (no need to read entries and match full
1066 * names). This function returns %1 and sets @zn and @n if the collision is
1067 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1068 * previous directory entry. Otherwise a negative error code is returned.
1069 */
1070static int resolve_collision_directly(struct ubifs_info *c,
1071				      const union ubifs_key *key,
1072				      struct ubifs_znode **zn, int *n,
1073				      int lnum, int offs)
1074{
1075	struct ubifs_znode *znode;
1076	int nn, err;
1077
1078	znode = *zn;
1079	nn = *n;
1080	if (matches_position(&znode->zbranch[nn], lnum, offs))
1081		return 1;
1082
1083	/* Look left */
1084	while (1) {
1085		err = tnc_prev(c, &znode, &nn);
1086		if (err == -ENOENT)
1087			break;
1088		if (err < 0)
1089			return err;
1090		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1091			break;
1092		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1093			*zn = znode;
1094			*n = nn;
1095			return 1;
1096		}
1097	}
1098
1099	/* Look right */
1100	znode = *zn;
1101	nn = *n;
1102	while (1) {
1103		err = tnc_next(c, &znode, &nn);
1104		if (err == -ENOENT)
1105			return 0;
1106		if (err < 0)
1107			return err;
1108		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1109			return 0;
1110		*zn = znode;
1111		*n = nn;
1112		if (matches_position(&znode->zbranch[nn], lnum, offs))
1113			return 1;
1114	}
1115}
1116
1117/**
1118 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1119 * @c: UBIFS file-system description object
1120 * @znode: znode to dirty
1121 *
1122 * If we do not have a unique key that resides in a znode, then we cannot
1123 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1124 * This function records the path back to the last dirty ancestor, and then
1125 * dirties the znodes on that path.
1126 */
1127static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1128					       struct ubifs_znode *znode)
1129{
1130	struct ubifs_znode *zp;
1131	int *path = c->bottom_up_buf, p = 0;
1132
1133	ubifs_assert(c, c->zroot.znode);
1134	ubifs_assert(c, znode);
1135	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1136		kfree(c->bottom_up_buf);
1137		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1138						 sizeof(int),
1139						 GFP_NOFS);
1140		if (!c->bottom_up_buf)
1141			return ERR_PTR(-ENOMEM);
1142		path = c->bottom_up_buf;
1143	}
1144	if (c->zroot.znode->level) {
1145		/* Go up until parent is dirty */
1146		while (1) {
1147			int n;
1148
1149			zp = znode->parent;
1150			if (!zp)
1151				break;
1152			n = znode->iip;
1153			ubifs_assert(c, p < c->zroot.znode->level);
1154			path[p++] = n;
1155			if (!zp->cnext && ubifs_zn_dirty(znode))
1156				break;
1157			znode = zp;
1158		}
1159	}
1160
1161	/* Come back down, dirtying as we go */
1162	while (1) {
1163		struct ubifs_zbranch *zbr;
1164
1165		zp = znode->parent;
1166		if (zp) {
1167			ubifs_assert(c, path[p - 1] >= 0);
1168			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1169			zbr = &zp->zbranch[path[--p]];
1170			znode = dirty_cow_znode(c, zbr);
1171		} else {
1172			ubifs_assert(c, znode == c->zroot.znode);
1173			znode = dirty_cow_znode(c, &c->zroot);
1174		}
1175		if (IS_ERR(znode) || !p)
1176			break;
1177		ubifs_assert(c, path[p - 1] >= 0);
1178		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1179		znode = znode->zbranch[path[p - 1]].znode;
1180	}
1181
1182	return znode;
1183}
1184
1185/**
1186 * ubifs_lookup_level0 - search for zero-level znode.
1187 * @c: UBIFS file-system description object
1188 * @key:  key to lookup
1189 * @zn: znode is returned here
1190 * @n: znode branch slot number is returned here
1191 *
1192 * This function looks up the TNC tree and search for zero-level znode which
1193 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1194 * cases:
1195 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1196 *     is returned and slot number of the matched branch is stored in @n;
1197 *   o not exact match, which means that zero-level znode does not contain
1198 *     @key, then %0 is returned and slot number of the closest branch or %-1
1199 *     is stored in @n; In this case calling tnc_next() is mandatory.
1200 *   o @key is so small that it is even less than the lowest key of the
1201 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1202 *
1203 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1204 * function reads corresponding indexing nodes and inserts them to TNC. In
1205 * case of failure, a negative error code is returned.
1206 */
1207int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1208			struct ubifs_znode **zn, int *n)
1209{
1210	int err, exact;
1211	struct ubifs_znode *znode;
1212	time64_t time = ktime_get_seconds();
1213
1214	dbg_tnck(key, "search key ");
1215	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1216
1217	znode = c->zroot.znode;
1218	if (unlikely(!znode)) {
1219		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1220		if (IS_ERR(znode))
1221			return PTR_ERR(znode);
1222	}
1223
1224	znode->time = time;
1225
1226	while (1) {
1227		struct ubifs_zbranch *zbr;
1228
1229		exact = ubifs_search_zbranch(c, znode, key, n);
1230
1231		if (znode->level == 0)
1232			break;
1233
1234		if (*n < 0)
1235			*n = 0;
1236		zbr = &znode->zbranch[*n];
1237
1238		if (zbr->znode) {
1239			znode->time = time;
1240			znode = zbr->znode;
1241			continue;
1242		}
1243
1244		/* znode is not in TNC cache, load it from the media */
1245		znode = ubifs_load_znode(c, zbr, znode, *n);
1246		if (IS_ERR(znode))
1247			return PTR_ERR(znode);
1248	}
1249
1250	*zn = znode;
1251	if (exact || !is_hash_key(c, key) || *n != -1) {
1252		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1253		return exact;
1254	}
1255
1256	/*
1257	 * Here is a tricky place. We have not found the key and this is a
1258	 * "hashed" key, which may collide. The rest of the code deals with
1259	 * situations like this:
1260	 *
1261	 *                  | 3 | 5 |
1262	 *                  /       \
1263	 *          | 3 | 5 |      | 6 | 7 | (x)
1264	 *
1265	 * Or more a complex example:
1266	 *
1267	 *                | 1 | 5 |
1268	 *                /       \
1269	 *       | 1 | 3 |         | 5 | 8 |
1270	 *              \           /
1271	 *          | 5 | 5 |   | 6 | 7 | (x)
1272	 *
1273	 * In the examples, if we are looking for key "5", we may reach nodes
1274	 * marked with "(x)". In this case what we have do is to look at the
1275	 * left and see if there is "5" key there. If there is, we have to
1276	 * return it.
1277	 *
1278	 * Note, this whole situation is possible because we allow to have
1279	 * elements which are equivalent to the next key in the parent in the
1280	 * children of current znode. For example, this happens if we split a
1281	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1282	 * like this:
1283	 *                      | 3 | 5 |
1284	 *                       /     \
1285	 *                | 3 | 5 |   | 5 | 6 | 7 |
1286	 *                              ^
1287	 * And this becomes what is at the first "picture" after key "5" marked
1288	 * with "^" is removed. What could be done is we could prohibit
1289	 * splitting in the middle of the colliding sequence. Also, when
1290	 * removing the leftmost key, we would have to correct the key of the
1291	 * parent node, which would introduce additional complications. Namely,
1292	 * if we changed the leftmost key of the parent znode, the garbage
1293	 * collector would be unable to find it (GC is doing this when GC'ing
1294	 * indexing LEBs). Although we already have an additional RB-tree where
1295	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1296	 * after the commit. But anyway, this does not look easy to implement
1297	 * so we did not try this.
1298	 */
1299	err = tnc_prev(c, &znode, n);
1300	if (err == -ENOENT) {
1301		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1302		*n = -1;
1303		return 0;
1304	}
1305	if (unlikely(err < 0))
1306		return err;
1307	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1308		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1309		*n = -1;
1310		return 0;
1311	}
1312
1313	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1314	*zn = znode;
1315	return 1;
1316}
1317
1318/**
1319 * lookup_level0_dirty - search for zero-level znode dirtying.
1320 * @c: UBIFS file-system description object
1321 * @key:  key to lookup
1322 * @zn: znode is returned here
1323 * @n: znode branch slot number is returned here
1324 *
1325 * This function looks up the TNC tree and search for zero-level znode which
1326 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1327 * cases:
1328 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1329 *     is returned and slot number of the matched branch is stored in @n;
1330 *   o not exact match, which means that zero-level znode does not contain @key
1331 *     then %0 is returned and slot number of the closed branch is stored in
1332 *     @n;
1333 *   o @key is so small that it is even less than the lowest key of the
1334 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1335 *
1336 * Additionally all znodes in the path from the root to the located zero-level
1337 * znode are marked as dirty.
1338 *
1339 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1340 * function reads corresponding indexing nodes and inserts them to TNC. In
1341 * case of failure, a negative error code is returned.
1342 */
1343static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1344			       struct ubifs_znode **zn, int *n)
1345{
1346	int err, exact;
1347	struct ubifs_znode *znode;
1348	time64_t time = ktime_get_seconds();
1349
1350	dbg_tnck(key, "search and dirty key ");
1351
1352	znode = c->zroot.znode;
1353	if (unlikely(!znode)) {
1354		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1355		if (IS_ERR(znode))
1356			return PTR_ERR(znode);
1357	}
1358
1359	znode = dirty_cow_znode(c, &c->zroot);
1360	if (IS_ERR(znode))
1361		return PTR_ERR(znode);
1362
1363	znode->time = time;
1364
1365	while (1) {
1366		struct ubifs_zbranch *zbr;
1367
1368		exact = ubifs_search_zbranch(c, znode, key, n);
1369
1370		if (znode->level == 0)
1371			break;
1372
1373		if (*n < 0)
1374			*n = 0;
1375		zbr = &znode->zbranch[*n];
1376
1377		if (zbr->znode) {
1378			znode->time = time;
1379			znode = dirty_cow_znode(c, zbr);
1380			if (IS_ERR(znode))
1381				return PTR_ERR(znode);
1382			continue;
1383		}
1384
1385		/* znode is not in TNC cache, load it from the media */
1386		znode = ubifs_load_znode(c, zbr, znode, *n);
1387		if (IS_ERR(znode))
1388			return PTR_ERR(znode);
1389		znode = dirty_cow_znode(c, zbr);
1390		if (IS_ERR(znode))
1391			return PTR_ERR(znode);
1392	}
1393
1394	*zn = znode;
1395	if (exact || !is_hash_key(c, key) || *n != -1) {
1396		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1397		return exact;
1398	}
1399
1400	/*
1401	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1402	 * code.
1403	 */
1404	err = tnc_prev(c, &znode, n);
1405	if (err == -ENOENT) {
1406		*n = -1;
1407		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1408		return 0;
1409	}
1410	if (unlikely(err < 0))
1411		return err;
1412	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1413		*n = -1;
1414		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1415		return 0;
1416	}
1417
1418	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1419		znode = dirty_cow_bottom_up(c, znode);
1420		if (IS_ERR(znode))
1421			return PTR_ERR(znode);
1422	}
1423
1424	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1425	*zn = znode;
1426	return 1;
1427}
1428
1429/**
1430 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1431 * @c: UBIFS file-system description object
1432 * @lnum: LEB number
1433 * @gc_seq1: garbage collection sequence number
1434 *
1435 * This function determines if @lnum may have been garbage collected since
1436 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1437 * %0 is returned.
1438 */
1439static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1440{
1441	int gc_seq2, gced_lnum;
1442
1443	gced_lnum = c->gced_lnum;
1444	smp_rmb();
1445	gc_seq2 = c->gc_seq;
1446	/* Same seq means no GC */
1447	if (gc_seq1 == gc_seq2)
1448		return 0;
1449	/* Different by more than 1 means we don't know */
1450	if (gc_seq1 + 1 != gc_seq2)
1451		return 1;
1452	/*
1453	 * We have seen the sequence number has increased by 1. Now we need to
1454	 * be sure we read the right LEB number, so read it again.
1455	 */
1456	smp_rmb();
1457	if (gced_lnum != c->gced_lnum)
1458		return 1;
1459	/* Finally we can check lnum */
1460	if (gced_lnum == lnum)
1461		return 1;
1462	return 0;
1463}
1464
1465/**
1466 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1467 * @c: UBIFS file-system description object
1468 * @key: node key to lookup
1469 * @node: the node is returned here
1470 * @lnum: LEB number is returned here
1471 * @offs: offset is returned here
1472 *
1473 * This function looks up and reads node with key @key. The caller has to make
1474 * sure the @node buffer is large enough to fit the node. Returns zero in case
1475 * of success, %-ENOENT if the node was not found, and a negative error code in
1476 * case of failure. The node location can be returned in @lnum and @offs.
1477 */
1478int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1479		     void *node, int *lnum, int *offs)
1480{
1481	int found, n, err, safely = 0, gc_seq1;
1482	struct ubifs_znode *znode;
1483	struct ubifs_zbranch zbr, *zt;
1484
1485again:
1486	mutex_lock(&c->tnc_mutex);
1487	found = ubifs_lookup_level0(c, key, &znode, &n);
1488	if (!found) {
1489		err = -ENOENT;
1490		goto out;
1491	} else if (found < 0) {
1492		err = found;
1493		goto out;
1494	}
1495	zt = &znode->zbranch[n];
1496	if (lnum) {
1497		*lnum = zt->lnum;
1498		*offs = zt->offs;
1499	}
1500	if (is_hash_key(c, key)) {
1501		/*
1502		 * In this case the leaf node cache gets used, so we pass the
1503		 * address of the zbranch and keep the mutex locked
1504		 */
1505		err = tnc_read_hashed_node(c, zt, node);
1506		goto out;
1507	}
1508	if (safely) {
1509		err = ubifs_tnc_read_node(c, zt, node);
1510		goto out;
1511	}
1512	/* Drop the TNC mutex prematurely and race with garbage collection */
1513	zbr = znode->zbranch[n];
1514	gc_seq1 = c->gc_seq;
1515	mutex_unlock(&c->tnc_mutex);
1516
1517	if (ubifs_get_wbuf(c, zbr.lnum)) {
1518		/* We do not GC journal heads */
1519		err = ubifs_tnc_read_node(c, &zbr, node);
1520		return err;
1521	}
1522
1523	err = fallible_read_node(c, key, &zbr, node);
1524	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1525		/*
1526		 * The node may have been GC'ed out from under us so try again
1527		 * while keeping the TNC mutex locked.
1528		 */
1529		safely = 1;
1530		goto again;
1531	}
1532	return 0;
1533
1534out:
1535	mutex_unlock(&c->tnc_mutex);
1536	return err;
1537}
1538
1539/**
1540 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1541 * @c: UBIFS file-system description object
1542 * @bu: bulk-read parameters and results
1543 *
1544 * Lookup consecutive data node keys for the same inode that reside
1545 * consecutively in the same LEB. This function returns zero in case of success
1546 * and a negative error code in case of failure.
1547 *
1548 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1549 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1550 * maximum possible amount of nodes for bulk-read.
1551 */
1552int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1553{
1554	int n, err = 0, lnum = -1, offs;
1555	int len;
1556	unsigned int block = key_block(c, &bu->key);
1557	struct ubifs_znode *znode;
1558
1559	bu->cnt = 0;
1560	bu->blk_cnt = 0;
1561	bu->eof = 0;
1562
1563	mutex_lock(&c->tnc_mutex);
1564	/* Find first key */
1565	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1566	if (err < 0)
1567		goto out;
1568	if (err) {
1569		/* Key found */
1570		len = znode->zbranch[n].len;
1571		/* The buffer must be big enough for at least 1 node */
1572		if (len > bu->buf_len) {
1573			err = -EINVAL;
1574			goto out;
1575		}
1576		/* Add this key */
1577		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1578		bu->blk_cnt += 1;
1579		lnum = znode->zbranch[n].lnum;
1580		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1581	}
1582	while (1) {
1583		struct ubifs_zbranch *zbr;
1584		union ubifs_key *key;
1585		unsigned int next_block;
1586
1587		/* Find next key */
1588		err = tnc_next(c, &znode, &n);
1589		if (err)
1590			goto out;
1591		zbr = &znode->zbranch[n];
1592		key = &zbr->key;
1593		/* See if there is another data key for this file */
1594		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1595		    key_type(c, key) != UBIFS_DATA_KEY) {
1596			err = -ENOENT;
1597			goto out;
1598		}
1599		if (lnum < 0) {
1600			/* First key found */
1601			lnum = zbr->lnum;
1602			offs = ALIGN(zbr->offs + zbr->len, 8);
1603			len = zbr->len;
1604			if (len > bu->buf_len) {
1605				err = -EINVAL;
1606				goto out;
1607			}
1608		} else {
1609			/*
1610			 * The data nodes must be in consecutive positions in
1611			 * the same LEB.
1612			 */
1613			if (zbr->lnum != lnum || zbr->offs != offs)
1614				goto out;
1615			offs += ALIGN(zbr->len, 8);
1616			len = ALIGN(len, 8) + zbr->len;
1617			/* Must not exceed buffer length */
1618			if (len > bu->buf_len)
1619				goto out;
1620		}
1621		/* Allow for holes */
1622		next_block = key_block(c, key);
1623		bu->blk_cnt += (next_block - block - 1);
1624		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1625			goto out;
1626		block = next_block;
1627		/* Add this key */
1628		bu->zbranch[bu->cnt++] = *zbr;
1629		bu->blk_cnt += 1;
1630		/* See if we have room for more */
1631		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1632			goto out;
1633		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1634			goto out;
1635	}
1636out:
1637	if (err == -ENOENT) {
1638		bu->eof = 1;
1639		err = 0;
1640	}
1641	bu->gc_seq = c->gc_seq;
1642	mutex_unlock(&c->tnc_mutex);
1643	if (err)
1644		return err;
1645	/*
1646	 * An enormous hole could cause bulk-read to encompass too many
1647	 * page cache pages, so limit the number here.
1648	 */
1649	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1650		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1651	/*
1652	 * Ensure that bulk-read covers a whole number of page cache
1653	 * pages.
1654	 */
1655	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1656	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1657		return 0;
1658	if (bu->eof) {
1659		/* At the end of file we can round up */
1660		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1661		return 0;
1662	}
1663	/* Exclude data nodes that do not make up a whole page cache page */
1664	block = key_block(c, &bu->key) + bu->blk_cnt;
1665	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1666	while (bu->cnt) {
1667		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1668			break;
1669		bu->cnt -= 1;
1670	}
1671	return 0;
1672}
1673
1674/**
1675 * read_wbuf - bulk-read from a LEB with a wbuf.
1676 * @wbuf: wbuf that may overlap the read
1677 * @buf: buffer into which to read
1678 * @len: read length
1679 * @lnum: LEB number from which to read
1680 * @offs: offset from which to read
1681 *
1682 * This functions returns %0 on success or a negative error code on failure.
1683 */
1684static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1685		     int offs)
1686{
1687	const struct ubifs_info *c = wbuf->c;
1688	int rlen, overlap;
1689
1690	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1691	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1692	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1693	ubifs_assert(c, offs + len <= c->leb_size);
1694
1695	spin_lock(&wbuf->lock);
1696	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1697	if (!overlap) {
1698		/* We may safely unlock the write-buffer and read the data */
1699		spin_unlock(&wbuf->lock);
1700		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1701	}
1702
1703	/* Don't read under wbuf */
1704	rlen = wbuf->offs - offs;
1705	if (rlen < 0)
1706		rlen = 0;
1707
1708	/* Copy the rest from the write-buffer */
1709	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1710	spin_unlock(&wbuf->lock);
1711
1712	if (rlen > 0)
1713		/* Read everything that goes before write-buffer */
1714		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1715
1716	return 0;
1717}
1718
1719/**
1720 * validate_data_node - validate data nodes for bulk-read.
1721 * @c: UBIFS file-system description object
1722 * @buf: buffer containing data node to validate
1723 * @zbr: zbranch of data node to validate
1724 *
1725 * This functions returns %0 on success or a negative error code on failure.
1726 */
1727static int validate_data_node(struct ubifs_info *c, void *buf,
1728			      struct ubifs_zbranch *zbr)
1729{
1730	union ubifs_key key1;
1731	struct ubifs_ch *ch = buf;
1732	int err, len;
1733
1734	if (ch->node_type != UBIFS_DATA_NODE) {
1735		ubifs_err(c, "bad node type (%d but expected %d)",
1736			  ch->node_type, UBIFS_DATA_NODE);
1737		goto out_err;
1738	}
1739
1740	err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1741	if (err) {
1742		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1743		goto out;
1744	}
1745
1746	err = ubifs_node_check_hash(c, buf, zbr->hash);
1747	if (err) {
1748		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1749		return err;
1750	}
1751
1752	len = le32_to_cpu(ch->len);
1753	if (len != zbr->len) {
1754		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1755		goto out_err;
1756	}
1757
1758	/* Make sure the key of the read node is correct */
1759	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1760	if (!keys_eq(c, &zbr->key, &key1)) {
1761		ubifs_err(c, "bad key in node at LEB %d:%d",
1762			  zbr->lnum, zbr->offs);
1763		dbg_tnck(&zbr->key, "looked for key ");
1764		dbg_tnck(&key1, "found node's key ");
1765		goto out_err;
1766	}
1767
1768	return 0;
1769
1770out_err:
1771	err = -EINVAL;
1772out:
1773	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1774	ubifs_dump_node(c, buf, zbr->len);
1775	dump_stack();
1776	return err;
1777}
1778
1779/**
1780 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1781 * @c: UBIFS file-system description object
1782 * @bu: bulk-read parameters and results
1783 *
1784 * This functions reads and validates the data nodes that were identified by the
1785 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1786 * -EAGAIN to indicate a race with GC, or another negative error code on
1787 * failure.
1788 */
1789int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1790{
1791	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1792	struct ubifs_wbuf *wbuf;
1793	void *buf;
1794
1795	len = bu->zbranch[bu->cnt - 1].offs;
1796	len += bu->zbranch[bu->cnt - 1].len - offs;
1797	if (len > bu->buf_len) {
1798		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1799		return -EINVAL;
1800	}
1801
1802	/* Do the read */
1803	wbuf = ubifs_get_wbuf(c, lnum);
1804	if (wbuf)
1805		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1806	else
1807		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1808
1809	/* Check for a race with GC */
1810	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1811		return -EAGAIN;
1812
1813	if (err && err != -EBADMSG) {
1814		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1815			  lnum, offs, err);
1816		dump_stack();
1817		dbg_tnck(&bu->key, "key ");
1818		return err;
1819	}
1820
1821	/* Validate the nodes read */
1822	buf = bu->buf;
1823	for (i = 0; i < bu->cnt; i++) {
1824		err = validate_data_node(c, buf, &bu->zbranch[i]);
1825		if (err)
1826			return err;
1827		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1828	}
1829
1830	return 0;
1831}
1832
1833/**
1834 * do_lookup_nm- look up a "hashed" node.
1835 * @c: UBIFS file-system description object
1836 * @key: node key to lookup
1837 * @node: the node is returned here
1838 * @nm: node name
1839 *
1840 * This function looks up and reads a node which contains name hash in the key.
1841 * Since the hash may have collisions, there may be many nodes with the same
1842 * key, so we have to sequentially look to all of them until the needed one is
1843 * found. This function returns zero in case of success, %-ENOENT if the node
1844 * was not found, and a negative error code in case of failure.
1845 */
1846static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1847			void *node, const struct fscrypt_name *nm)
1848{
1849	int found, n, err;
1850	struct ubifs_znode *znode;
1851
1852	dbg_tnck(key, "key ");
1853	mutex_lock(&c->tnc_mutex);
1854	found = ubifs_lookup_level0(c, key, &znode, &n);
1855	if (!found) {
1856		err = -ENOENT;
1857		goto out_unlock;
1858	} else if (found < 0) {
1859		err = found;
1860		goto out_unlock;
1861	}
1862
1863	ubifs_assert(c, n >= 0);
1864
1865	err = resolve_collision(c, key, &znode, &n, nm);
1866	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1867	if (unlikely(err < 0))
1868		goto out_unlock;
1869	if (err == 0) {
1870		err = -ENOENT;
1871		goto out_unlock;
1872	}
1873
1874	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1875
1876out_unlock:
1877	mutex_unlock(&c->tnc_mutex);
1878	return err;
1879}
1880
1881/**
1882 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1883 * @c: UBIFS file-system description object
1884 * @key: node key to lookup
1885 * @node: the node is returned here
1886 * @nm: node name
1887 *
1888 * This function looks up and reads a node which contains name hash in the key.
1889 * Since the hash may have collisions, there may be many nodes with the same
1890 * key, so we have to sequentially look to all of them until the needed one is
1891 * found. This function returns zero in case of success, %-ENOENT if the node
1892 * was not found, and a negative error code in case of failure.
1893 */
1894int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1895			void *node, const struct fscrypt_name *nm)
1896{
1897	int err, len;
1898	const struct ubifs_dent_node *dent = node;
1899
1900	/*
1901	 * We assume that in most of the cases there are no name collisions and
1902	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1903	 */
1904	err = ubifs_tnc_lookup(c, key, node);
1905	if (err)
1906		return err;
1907
1908	len = le16_to_cpu(dent->nlen);
1909	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1910		return 0;
1911
1912	/*
1913	 * Unluckily, there are hash collisions and we have to iterate over
1914	 * them look at each direntry with colliding name hash sequentially.
1915	 */
1916
1917	return do_lookup_nm(c, key, node, nm);
1918}
1919
1920static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1921			    struct ubifs_dent_node *dent, uint32_t cookie,
1922			    struct ubifs_znode **zn, int *n, int exact)
1923{
1924	int err;
1925	struct ubifs_znode *znode = *zn;
1926	struct ubifs_zbranch *zbr;
1927	union ubifs_key *dkey;
1928
1929	if (!exact) {
1930		err = tnc_next(c, &znode, n);
1931		if (err)
1932			return err;
1933	}
1934
1935	for (;;) {
1936		zbr = &znode->zbranch[*n];
1937		dkey = &zbr->key;
1938
1939		if (key_inum(c, dkey) != key_inum(c, key) ||
1940		    key_type(c, dkey) != key_type(c, key)) {
1941			return -ENOENT;
1942		}
1943
1944		err = tnc_read_hashed_node(c, zbr, dent);
1945		if (err)
1946			return err;
1947
1948		if (key_hash(c, key) == key_hash(c, dkey) &&
1949		    le32_to_cpu(dent->cookie) == cookie) {
1950			*zn = znode;
1951			return 0;
1952		}
1953
1954		err = tnc_next(c, &znode, n);
1955		if (err)
1956			return err;
1957	}
1958}
1959
1960static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1961			struct ubifs_dent_node *dent, uint32_t cookie)
1962{
1963	int n, err;
1964	struct ubifs_znode *znode;
1965	union ubifs_key start_key;
1966
1967	ubifs_assert(c, is_hash_key(c, key));
1968
1969	lowest_dent_key(c, &start_key, key_inum(c, key));
1970
1971	mutex_lock(&c->tnc_mutex);
1972	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1973	if (unlikely(err < 0))
1974		goto out_unlock;
1975
1976	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1977
1978out_unlock:
1979	mutex_unlock(&c->tnc_mutex);
1980	return err;
1981}
1982
1983/**
1984 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1985 * @c: UBIFS file-system description object
1986 * @key: node key to lookup
1987 * @node: the node is returned here
1988 * @cookie: node cookie for collision resolution
1989 *
1990 * This function looks up and reads a node which contains name hash in the key.
1991 * Since the hash may have collisions, there may be many nodes with the same
1992 * key, so we have to sequentially look to all of them until the needed one
1993 * with the same cookie value is found.
1994 * This function returns zero in case of success, %-ENOENT if the node
1995 * was not found, and a negative error code in case of failure.
1996 */
1997int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1998			void *node, uint32_t cookie)
1999{
2000	int err;
2001	const struct ubifs_dent_node *dent = node;
2002
2003	if (!c->double_hash)
2004		return -EOPNOTSUPP;
2005
2006	/*
2007	 * We assume that in most of the cases there are no name collisions and
2008	 * 'ubifs_tnc_lookup()' returns us the right direntry.
2009	 */
2010	err = ubifs_tnc_lookup(c, key, node);
2011	if (err)
2012		return err;
2013
2014	if (le32_to_cpu(dent->cookie) == cookie)
2015		return 0;
2016
2017	/*
2018	 * Unluckily, there are hash collisions and we have to iterate over
2019	 * them look at each direntry with colliding name hash sequentially.
2020	 */
2021	return do_lookup_dh(c, key, node, cookie);
2022}
2023
2024/**
2025 * correct_parent_keys - correct parent znodes' keys.
2026 * @c: UBIFS file-system description object
2027 * @znode: znode to correct parent znodes for
2028 *
2029 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2030 * zbranch changes, keys of parent znodes have to be corrected. This helper
2031 * function is called in such situations and corrects the keys if needed.
2032 */
2033static void correct_parent_keys(const struct ubifs_info *c,
2034				struct ubifs_znode *znode)
2035{
2036	union ubifs_key *key, *key1;
2037
2038	ubifs_assert(c, znode->parent);
2039	ubifs_assert(c, znode->iip == 0);
2040
2041	key = &znode->zbranch[0].key;
2042	key1 = &znode->parent->zbranch[0].key;
2043
2044	while (keys_cmp(c, key, key1) < 0) {
2045		key_copy(c, key, key1);
2046		znode = znode->parent;
2047		znode->alt = 1;
2048		if (!znode->parent || znode->iip)
2049			break;
2050		key1 = &znode->parent->zbranch[0].key;
2051	}
2052}
2053
2054/**
2055 * insert_zbranch - insert a zbranch into a znode.
2056 * @c: UBIFS file-system description object
2057 * @znode: znode into which to insert
2058 * @zbr: zbranch to insert
2059 * @n: slot number to insert to
2060 *
2061 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2062 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2063 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2064 * slot, zbranches starting from @n have to be moved right.
2065 */
2066static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2067			   const struct ubifs_zbranch *zbr, int n)
2068{
2069	int i;
2070
2071	ubifs_assert(c, ubifs_zn_dirty(znode));
2072
2073	if (znode->level) {
2074		for (i = znode->child_cnt; i > n; i--) {
2075			znode->zbranch[i] = znode->zbranch[i - 1];
2076			if (znode->zbranch[i].znode)
2077				znode->zbranch[i].znode->iip = i;
2078		}
2079		if (zbr->znode)
2080			zbr->znode->iip = n;
2081	} else
2082		for (i = znode->child_cnt; i > n; i--)
2083			znode->zbranch[i] = znode->zbranch[i - 1];
2084
2085	znode->zbranch[n] = *zbr;
2086	znode->child_cnt += 1;
2087
2088	/*
2089	 * After inserting at slot zero, the lower bound of the key range of
2090	 * this znode may have changed. If this znode is subsequently split
2091	 * then the upper bound of the key range may change, and furthermore
2092	 * it could change to be lower than the original lower bound. If that
2093	 * happens, then it will no longer be possible to find this znode in the
2094	 * TNC using the key from the index node on flash. That is bad because
2095	 * if it is not found, we will assume it is obsolete and may overwrite
2096	 * it. Then if there is an unclean unmount, we will start using the
2097	 * old index which will be broken.
2098	 *
2099	 * So we first mark znodes that have insertions at slot zero, and then
2100	 * if they are split we add their lnum/offs to the old_idx tree.
2101	 */
2102	if (n == 0)
2103		znode->alt = 1;
2104}
2105
2106/**
2107 * tnc_insert - insert a node into TNC.
2108 * @c: UBIFS file-system description object
2109 * @znode: znode to insert into
2110 * @zbr: branch to insert
2111 * @n: slot number to insert new zbranch to
2112 *
2113 * This function inserts a new node described by @zbr into znode @znode. If
2114 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2115 * are splat as well if needed. Returns zero in case of success or a negative
2116 * error code in case of failure.
2117 */
2118static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2119		      struct ubifs_zbranch *zbr, int n)
2120{
2121	struct ubifs_znode *zn, *zi, *zp;
2122	int i, keep, move, appending = 0;
2123	union ubifs_key *key = &zbr->key, *key1;
2124
2125	ubifs_assert(c, n >= 0 && n <= c->fanout);
2126
2127	/* Implement naive insert for now */
2128again:
2129	zp = znode->parent;
2130	if (znode->child_cnt < c->fanout) {
2131		ubifs_assert(c, n != c->fanout);
2132		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2133
2134		insert_zbranch(c, znode, zbr, n);
2135
2136		/* Ensure parent's key is correct */
2137		if (n == 0 && zp && znode->iip == 0)
2138			correct_parent_keys(c, znode);
2139
2140		return 0;
2141	}
2142
2143	/*
2144	 * Unfortunately, @znode does not have more empty slots and we have to
2145	 * split it.
2146	 */
2147	dbg_tnck(key, "splitting level %d, key ", znode->level);
2148
2149	if (znode->alt)
2150		/*
2151		 * We can no longer be sure of finding this znode by key, so we
2152		 * record it in the old_idx tree.
2153		 */
2154		ins_clr_old_idx_znode(c, znode);
2155
2156	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2157	if (!zn)
2158		return -ENOMEM;
2159	zn->parent = zp;
2160	zn->level = znode->level;
2161
2162	/* Decide where to split */
2163	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2164		/* Try not to split consecutive data keys */
2165		if (n == c->fanout) {
2166			key1 = &znode->zbranch[n - 1].key;
2167			if (key_inum(c, key1) == key_inum(c, key) &&
2168			    key_type(c, key1) == UBIFS_DATA_KEY)
2169				appending = 1;
2170		} else
2171			goto check_split;
2172	} else if (appending && n != c->fanout) {
2173		/* Try not to split consecutive data keys */
2174		appending = 0;
2175check_split:
2176		if (n >= (c->fanout + 1) / 2) {
2177			key1 = &znode->zbranch[0].key;
2178			if (key_inum(c, key1) == key_inum(c, key) &&
2179			    key_type(c, key1) == UBIFS_DATA_KEY) {
2180				key1 = &znode->zbranch[n].key;
2181				if (key_inum(c, key1) != key_inum(c, key) ||
2182				    key_type(c, key1) != UBIFS_DATA_KEY) {
2183					keep = n;
2184					move = c->fanout - keep;
2185					zi = znode;
2186					goto do_split;
2187				}
2188			}
2189		}
2190	}
2191
2192	if (appending) {
2193		keep = c->fanout;
2194		move = 0;
2195	} else {
2196		keep = (c->fanout + 1) / 2;
2197		move = c->fanout - keep;
2198	}
2199
2200	/*
2201	 * Although we don't at present, we could look at the neighbors and see
2202	 * if we can move some zbranches there.
2203	 */
2204
2205	if (n < keep) {
2206		/* Insert into existing znode */
2207		zi = znode;
2208		move += 1;
2209		keep -= 1;
2210	} else {
2211		/* Insert into new znode */
2212		zi = zn;
2213		n -= keep;
2214		/* Re-parent */
2215		if (zn->level != 0)
2216			zbr->znode->parent = zn;
2217	}
2218
2219do_split:
2220
2221	__set_bit(DIRTY_ZNODE, &zn->flags);
2222	atomic_long_inc(&c->dirty_zn_cnt);
2223
2224	zn->child_cnt = move;
2225	znode->child_cnt = keep;
2226
2227	dbg_tnc("moving %d, keeping %d", move, keep);
2228
2229	/* Move zbranch */
2230	for (i = 0; i < move; i++) {
2231		zn->zbranch[i] = znode->zbranch[keep + i];
2232		/* Re-parent */
2233		if (zn->level != 0)
2234			if (zn->zbranch[i].znode) {
2235				zn->zbranch[i].znode->parent = zn;
2236				zn->zbranch[i].znode->iip = i;
2237			}
2238	}
2239
2240	/* Insert new key and branch */
2241	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2242
2243	insert_zbranch(c, zi, zbr, n);
2244
2245	/* Insert new znode (produced by spitting) into the parent */
2246	if (zp) {
2247		if (n == 0 && zi == znode && znode->iip == 0)
2248			correct_parent_keys(c, znode);
2249
2250		/* Locate insertion point */
2251		n = znode->iip + 1;
2252
2253		/* Tail recursion */
2254		zbr->key = zn->zbranch[0].key;
2255		zbr->znode = zn;
2256		zbr->lnum = 0;
2257		zbr->offs = 0;
2258		zbr->len = 0;
2259		znode = zp;
2260
2261		goto again;
2262	}
2263
2264	/* We have to split root znode */
2265	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2266
2267	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2268	if (!zi)
2269		return -ENOMEM;
2270
2271	zi->child_cnt = 2;
2272	zi->level = znode->level + 1;
2273
2274	__set_bit(DIRTY_ZNODE, &zi->flags);
2275	atomic_long_inc(&c->dirty_zn_cnt);
2276
2277	zi->zbranch[0].key = znode->zbranch[0].key;
2278	zi->zbranch[0].znode = znode;
2279	zi->zbranch[0].lnum = c->zroot.lnum;
2280	zi->zbranch[0].offs = c->zroot.offs;
2281	zi->zbranch[0].len = c->zroot.len;
2282	zi->zbranch[1].key = zn->zbranch[0].key;
2283	zi->zbranch[1].znode = zn;
2284
2285	c->zroot.lnum = 0;
2286	c->zroot.offs = 0;
2287	c->zroot.len = 0;
2288	c->zroot.znode = zi;
2289
2290	zn->parent = zi;
2291	zn->iip = 1;
2292	znode->parent = zi;
2293	znode->iip = 0;
2294
2295	return 0;
2296}
2297
2298/**
2299 * ubifs_tnc_add - add a node to TNC.
2300 * @c: UBIFS file-system description object
2301 * @key: key to add
2302 * @lnum: LEB number of node
2303 * @offs: node offset
2304 * @len: node length
2305 * @hash: The hash over the node
2306 *
2307 * This function adds a node with key @key to TNC. The node may be new or it may
2308 * obsolete some existing one. Returns %0 on success or negative error code on
2309 * failure.
2310 */
2311int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2312		  int offs, int len, const u8 *hash)
2313{
2314	int found, n, err = 0;
2315	struct ubifs_znode *znode;
2316
2317	mutex_lock(&c->tnc_mutex);
2318	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2319	found = lookup_level0_dirty(c, key, &znode, &n);
2320	if (!found) {
2321		struct ubifs_zbranch zbr;
2322
2323		zbr.znode = NULL;
2324		zbr.lnum = lnum;
2325		zbr.offs = offs;
2326		zbr.len = len;
2327		ubifs_copy_hash(c, hash, zbr.hash);
2328		key_copy(c, key, &zbr.key);
2329		err = tnc_insert(c, znode, &zbr, n + 1);
2330	} else if (found == 1) {
2331		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2332
2333		lnc_free(zbr);
2334		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2335		zbr->lnum = lnum;
2336		zbr->offs = offs;
2337		zbr->len = len;
2338		ubifs_copy_hash(c, hash, zbr->hash);
2339	} else
2340		err = found;
2341	if (!err)
2342		err = dbg_check_tnc(c, 0);
2343	mutex_unlock(&c->tnc_mutex);
2344
2345	return err;
2346}
2347
2348/**
2349 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2350 * @c: UBIFS file-system description object
2351 * @key: key to add
2352 * @old_lnum: LEB number of old node
2353 * @old_offs: old node offset
2354 * @lnum: LEB number of node
2355 * @offs: node offset
2356 * @len: node length
2357 *
2358 * This function replaces a node with key @key in the TNC only if the old node
2359 * is found.  This function is called by garbage collection when node are moved.
2360 * Returns %0 on success or negative error code on failure.
2361 */
2362int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2363		      int old_lnum, int old_offs, int lnum, int offs, int len)
2364{
2365	int found, n, err = 0;
2366	struct ubifs_znode *znode;
2367
2368	mutex_lock(&c->tnc_mutex);
2369	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2370		 old_offs, lnum, offs, len);
2371	found = lookup_level0_dirty(c, key, &znode, &n);
2372	if (found < 0) {
2373		err = found;
2374		goto out_unlock;
2375	}
2376
2377	if (found == 1) {
2378		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2379
2380		found = 0;
2381		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2382			lnc_free(zbr);
2383			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2384			if (err)
2385				goto out_unlock;
2386			zbr->lnum = lnum;
2387			zbr->offs = offs;
2388			zbr->len = len;
2389			found = 1;
2390		} else if (is_hash_key(c, key)) {
2391			found = resolve_collision_directly(c, key, &znode, &n,
2392							   old_lnum, old_offs);
2393			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2394				found, znode, n, old_lnum, old_offs);
2395			if (found < 0) {
2396				err = found;
2397				goto out_unlock;
2398			}
2399
2400			if (found) {
2401				/* Ensure the znode is dirtied */
2402				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2403					znode = dirty_cow_bottom_up(c, znode);
2404					if (IS_ERR(znode)) {
2405						err = PTR_ERR(znode);
2406						goto out_unlock;
2407					}
2408				}
2409				zbr = &znode->zbranch[n];
2410				lnc_free(zbr);
2411				err = ubifs_add_dirt(c, zbr->lnum,
2412						     zbr->len);
2413				if (err)
2414					goto out_unlock;
2415				zbr->lnum = lnum;
2416				zbr->offs = offs;
2417				zbr->len = len;
2418			}
2419		}
2420	}
2421
2422	if (!found)
2423		err = ubifs_add_dirt(c, lnum, len);
2424
2425	if (!err)
2426		err = dbg_check_tnc(c, 0);
2427
2428out_unlock:
2429	mutex_unlock(&c->tnc_mutex);
2430	return err;
2431}
2432
2433/**
2434 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2435 * @c: UBIFS file-system description object
2436 * @key: key to add
2437 * @lnum: LEB number of node
2438 * @offs: node offset
2439 * @len: node length
2440 * @hash: The hash over the node
2441 * @nm: node name
2442 *
2443 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2444 * may have collisions, like directory entry keys.
2445 */
2446int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2447		     int lnum, int offs, int len, const u8 *hash,
2448		     const struct fscrypt_name *nm)
2449{
2450	int found, n, err = 0;
2451	struct ubifs_znode *znode;
2452
2453	mutex_lock(&c->tnc_mutex);
2454	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2455	found = lookup_level0_dirty(c, key, &znode, &n);
2456	if (found < 0) {
2457		err = found;
2458		goto out_unlock;
2459	}
2460
2461	if (found == 1) {
2462		if (c->replaying)
2463			found = fallible_resolve_collision(c, key, &znode, &n,
2464							   nm, 1);
2465		else
2466			found = resolve_collision(c, key, &znode, &n, nm);
2467		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2468		if (found < 0) {
2469			err = found;
2470			goto out_unlock;
2471		}
2472
2473		/* Ensure the znode is dirtied */
2474		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2475			znode = dirty_cow_bottom_up(c, znode);
2476			if (IS_ERR(znode)) {
2477				err = PTR_ERR(znode);
2478				goto out_unlock;
2479			}
2480		}
2481
2482		if (found == 1) {
2483			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2484
2485			lnc_free(zbr);
2486			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2487			zbr->lnum = lnum;
2488			zbr->offs = offs;
2489			zbr->len = len;
2490			ubifs_copy_hash(c, hash, zbr->hash);
2491			goto out_unlock;
2492		}
2493	}
2494
2495	if (!found) {
2496		struct ubifs_zbranch zbr;
2497
2498		zbr.znode = NULL;
2499		zbr.lnum = lnum;
2500		zbr.offs = offs;
2501		zbr.len = len;
2502		ubifs_copy_hash(c, hash, zbr.hash);
2503		key_copy(c, key, &zbr.key);
2504		err = tnc_insert(c, znode, &zbr, n + 1);
2505		if (err)
2506			goto out_unlock;
2507		if (c->replaying) {
2508			/*
2509			 * We did not find it in the index so there may be a
2510			 * dangling branch still in the index. So we remove it
2511			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2512			 * an unmatchable name.
2513			 */
2514			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2515
2516			err = dbg_check_tnc(c, 0);
2517			mutex_unlock(&c->tnc_mutex);
2518			if (err)
2519				return err;
2520			return ubifs_tnc_remove_nm(c, key, &noname);
2521		}
2522	}
2523
2524out_unlock:
2525	if (!err)
2526		err = dbg_check_tnc(c, 0);
2527	mutex_unlock(&c->tnc_mutex);
2528	return err;
2529}
2530
2531/**
2532 * tnc_delete - delete a znode form TNC.
2533 * @c: UBIFS file-system description object
2534 * @znode: znode to delete from
2535 * @n: zbranch slot number to delete
2536 *
2537 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2538 * case of success and a negative error code in case of failure.
2539 */
2540static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2541{
2542	struct ubifs_zbranch *zbr;
2543	struct ubifs_znode *zp;
2544	int i, err;
2545
2546	/* Delete without merge for now */
2547	ubifs_assert(c, znode->level == 0);
2548	ubifs_assert(c, n >= 0 && n < c->fanout);
2549	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2550
2551	zbr = &znode->zbranch[n];
2552	lnc_free(zbr);
2553
2554	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2555	if (err) {
2556		ubifs_dump_znode(c, znode);
2557		return err;
2558	}
2559
2560	/* We do not "gap" zbranch slots */
2561	for (i = n; i < znode->child_cnt - 1; i++)
2562		znode->zbranch[i] = znode->zbranch[i + 1];
2563	znode->child_cnt -= 1;
2564
2565	if (znode->child_cnt > 0)
2566		return 0;
2567
2568	/*
2569	 * This was the last zbranch, we have to delete this znode from the
2570	 * parent.
2571	 */
2572
2573	do {
2574		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2575		ubifs_assert(c, ubifs_zn_dirty(znode));
2576
2577		zp = znode->parent;
2578		n = znode->iip;
2579
2580		atomic_long_dec(&c->dirty_zn_cnt);
2581
2582		err = insert_old_idx_znode(c, znode);
2583		if (err)
2584			return err;
2585
2586		if (znode->cnext) {
2587			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2588			atomic_long_inc(&c->clean_zn_cnt);
2589			atomic_long_inc(&ubifs_clean_zn_cnt);
2590		} else
2591			kfree(znode);
2592		znode = zp;
2593	} while (znode->child_cnt == 1); /* while removing last child */
2594
2595	/* Remove from znode, entry n - 1 */
2596	znode->child_cnt -= 1;
2597	ubifs_assert(c, znode->level != 0);
2598	for (i = n; i < znode->child_cnt; i++) {
2599		znode->zbranch[i] = znode->zbranch[i + 1];
2600		if (znode->zbranch[i].znode)
2601			znode->zbranch[i].znode->iip = i;
2602	}
2603
2604	/*
2605	 * If this is the root and it has only 1 child then
2606	 * collapse the tree.
2607	 */
2608	if (!znode->parent) {
2609		while (znode->child_cnt == 1 && znode->level != 0) {
2610			zp = znode;
2611			zbr = &znode->zbranch[0];
2612			znode = get_znode(c, znode, 0);
2613			if (IS_ERR(znode))
2614				return PTR_ERR(znode);
2615			znode = dirty_cow_znode(c, zbr);
2616			if (IS_ERR(znode))
2617				return PTR_ERR(znode);
2618			znode->parent = NULL;
2619			znode->iip = 0;
2620			if (c->zroot.len) {
2621				err = insert_old_idx(c, c->zroot.lnum,
2622						     c->zroot.offs);
2623				if (err)
2624					return err;
2625			}
2626			c->zroot.lnum = zbr->lnum;
2627			c->zroot.offs = zbr->offs;
2628			c->zroot.len = zbr->len;
2629			c->zroot.znode = znode;
2630			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2631			ubifs_assert(c, ubifs_zn_dirty(zp));
2632			atomic_long_dec(&c->dirty_zn_cnt);
2633
2634			if (zp->cnext) {
2635				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2636				atomic_long_inc(&c->clean_zn_cnt);
2637				atomic_long_inc(&ubifs_clean_zn_cnt);
2638			} else
2639				kfree(zp);
2640		}
2641	}
2642
2643	return 0;
2644}
2645
2646/**
2647 * ubifs_tnc_remove - remove an index entry of a node.
2648 * @c: UBIFS file-system description object
2649 * @key: key of node
2650 *
2651 * Returns %0 on success or negative error code on failure.
2652 */
2653int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2654{
2655	int found, n, err = 0;
2656	struct ubifs_znode *znode;
2657
2658	mutex_lock(&c->tnc_mutex);
2659	dbg_tnck(key, "key ");
2660	found = lookup_level0_dirty(c, key, &znode, &n);
2661	if (found < 0) {
2662		err = found;
2663		goto out_unlock;
2664	}
2665	if (found == 1)
2666		err = tnc_delete(c, znode, n);
2667	if (!err)
2668		err = dbg_check_tnc(c, 0);
2669
2670out_unlock:
2671	mutex_unlock(&c->tnc_mutex);
2672	return err;
2673}
2674
2675/**
2676 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2677 * @c: UBIFS file-system description object
2678 * @key: key of node
2679 * @nm: directory entry name
2680 *
2681 * Returns %0 on success or negative error code on failure.
2682 */
2683int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2684			const struct fscrypt_name *nm)
2685{
2686	int n, err;
2687	struct ubifs_znode *znode;
2688
2689	mutex_lock(&c->tnc_mutex);
2690	dbg_tnck(key, "key ");
2691	err = lookup_level0_dirty(c, key, &znode, &n);
2692	if (err < 0)
2693		goto out_unlock;
2694
2695	if (err) {
2696		if (c->replaying)
2697			err = fallible_resolve_collision(c, key, &znode, &n,
2698							 nm, 0);
2699		else
2700			err = resolve_collision(c, key, &znode, &n, nm);
2701		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2702		if (err < 0)
2703			goto out_unlock;
2704		if (err) {
2705			/* Ensure the znode is dirtied */
2706			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2707				znode = dirty_cow_bottom_up(c, znode);
2708				if (IS_ERR(znode)) {
2709					err = PTR_ERR(znode);
2710					goto out_unlock;
2711				}
2712			}
2713			err = tnc_delete(c, znode, n);
2714		}
2715	}
2716
2717out_unlock:
2718	if (!err)
2719		err = dbg_check_tnc(c, 0);
2720	mutex_unlock(&c->tnc_mutex);
2721	return err;
2722}
2723
2724/**
2725 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2726 * @c: UBIFS file-system description object
2727 * @key: key of node
2728 * @cookie: node cookie for collision resolution
2729 *
2730 * Returns %0 on success or negative error code on failure.
2731 */
2732int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2733			uint32_t cookie)
2734{
2735	int n, err;
2736	struct ubifs_znode *znode;
2737	struct ubifs_dent_node *dent;
2738	struct ubifs_zbranch *zbr;
2739
2740	if (!c->double_hash)
2741		return -EOPNOTSUPP;
2742
2743	mutex_lock(&c->tnc_mutex);
2744	err = lookup_level0_dirty(c, key, &znode, &n);
2745	if (err <= 0)
2746		goto out_unlock;
2747
2748	zbr = &znode->zbranch[n];
2749	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2750	if (!dent) {
2751		err = -ENOMEM;
2752		goto out_unlock;
2753	}
2754
2755	err = tnc_read_hashed_node(c, zbr, dent);
2756	if (err)
2757		goto out_free;
2758
2759	/* If the cookie does not match, we're facing a hash collision. */
2760	if (le32_to_cpu(dent->cookie) != cookie) {
2761		union ubifs_key start_key;
2762
2763		lowest_dent_key(c, &start_key, key_inum(c, key));
2764
2765		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2766		if (unlikely(err < 0))
2767			goto out_free;
2768
2769		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2770		if (err)
2771			goto out_free;
2772	}
2773
2774	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2775		znode = dirty_cow_bottom_up(c, znode);
2776		if (IS_ERR(znode)) {
2777			err = PTR_ERR(znode);
2778			goto out_free;
2779		}
2780	}
2781	err = tnc_delete(c, znode, n);
2782
2783out_free:
2784	kfree(dent);
2785out_unlock:
2786	if (!err)
2787		err = dbg_check_tnc(c, 0);
2788	mutex_unlock(&c->tnc_mutex);
2789	return err;
2790}
2791
2792/**
2793 * key_in_range - determine if a key falls within a range of keys.
2794 * @c: UBIFS file-system description object
2795 * @key: key to check
2796 * @from_key: lowest key in range
2797 * @to_key: highest key in range
2798 *
2799 * This function returns %1 if the key is in range and %0 otherwise.
2800 */
2801static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2802			union ubifs_key *from_key, union ubifs_key *to_key)
2803{
2804	if (keys_cmp(c, key, from_key) < 0)
2805		return 0;
2806	if (keys_cmp(c, key, to_key) > 0)
2807		return 0;
2808	return 1;
2809}
2810
2811/**
2812 * ubifs_tnc_remove_range - remove index entries in range.
2813 * @c: UBIFS file-system description object
2814 * @from_key: lowest key to remove
2815 * @to_key: highest key to remove
2816 *
2817 * This function removes index entries starting at @from_key and ending at
2818 * @to_key.  This function returns zero in case of success and a negative error
2819 * code in case of failure.
2820 */
2821int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2822			   union ubifs_key *to_key)
2823{
2824	int i, n, k, err = 0;
2825	struct ubifs_znode *znode;
2826	union ubifs_key *key;
2827
2828	mutex_lock(&c->tnc_mutex);
2829	while (1) {
2830		/* Find first level 0 znode that contains keys to remove */
2831		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2832		if (err < 0)
2833			goto out_unlock;
2834
2835		if (err)
2836			key = from_key;
2837		else {
2838			err = tnc_next(c, &znode, &n);
2839			if (err == -ENOENT) {
2840				err = 0;
2841				goto out_unlock;
2842			}
2843			if (err < 0)
2844				goto out_unlock;
2845			key = &znode->zbranch[n].key;
2846			if (!key_in_range(c, key, from_key, to_key)) {
2847				err = 0;
2848				goto out_unlock;
2849			}
2850		}
2851
2852		/* Ensure the znode is dirtied */
2853		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2854			znode = dirty_cow_bottom_up(c, znode);
2855			if (IS_ERR(znode)) {
2856				err = PTR_ERR(znode);
2857				goto out_unlock;
2858			}
2859		}
2860
2861		/* Remove all keys in range except the first */
2862		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2863			key = &znode->zbranch[i].key;
2864			if (!key_in_range(c, key, from_key, to_key))
2865				break;
2866			lnc_free(&znode->zbranch[i]);
2867			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2868					     znode->zbranch[i].len);
2869			if (err) {
2870				ubifs_dump_znode(c, znode);
2871				goto out_unlock;
2872			}
2873			dbg_tnck(key, "removing key ");
2874		}
2875		if (k) {
2876			for (i = n + 1 + k; i < znode->child_cnt; i++)
2877				znode->zbranch[i - k] = znode->zbranch[i];
2878			znode->child_cnt -= k;
2879		}
2880
2881		/* Now delete the first */
2882		err = tnc_delete(c, znode, n);
2883		if (err)
2884			goto out_unlock;
2885	}
2886
2887out_unlock:
2888	if (!err)
2889		err = dbg_check_tnc(c, 0);
2890	mutex_unlock(&c->tnc_mutex);
2891	return err;
2892}
2893
2894/**
2895 * ubifs_tnc_remove_ino - remove an inode from TNC.
2896 * @c: UBIFS file-system description object
2897 * @inum: inode number to remove
2898 *
2899 * This function remove inode @inum and all the extended attributes associated
2900 * with the anode from TNC and returns zero in case of success or a negative
2901 * error code in case of failure.
2902 */
2903int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2904{
2905	union ubifs_key key1, key2;
2906	struct ubifs_dent_node *xent, *pxent = NULL;
2907	struct fscrypt_name nm = {0};
2908
2909	dbg_tnc("ino %lu", (unsigned long)inum);
2910
2911	/*
2912	 * Walk all extended attribute entries and remove them together with
2913	 * corresponding extended attribute inodes.
2914	 */
2915	lowest_xent_key(c, &key1, inum);
2916	while (1) {
2917		ino_t xattr_inum;
2918		int err;
2919
2920		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2921		if (IS_ERR(xent)) {
2922			err = PTR_ERR(xent);
2923			if (err == -ENOENT)
2924				break;
2925			kfree(pxent);
2926			return err;
2927		}
2928
2929		xattr_inum = le64_to_cpu(xent->inum);
2930		dbg_tnc("xent '%s', ino %lu", xent->name,
2931			(unsigned long)xattr_inum);
2932
2933		ubifs_evict_xattr_inode(c, xattr_inum);
2934
2935		fname_name(&nm) = xent->name;
2936		fname_len(&nm) = le16_to_cpu(xent->nlen);
2937		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2938		if (err) {
2939			kfree(pxent);
2940			kfree(xent);
2941			return err;
2942		}
2943
2944		lowest_ino_key(c, &key1, xattr_inum);
2945		highest_ino_key(c, &key2, xattr_inum);
2946		err = ubifs_tnc_remove_range(c, &key1, &key2);
2947		if (err) {
2948			kfree(pxent);
2949			kfree(xent);
2950			return err;
2951		}
2952
2953		kfree(pxent);
2954		pxent = xent;
2955		key_read(c, &xent->key, &key1);
2956	}
2957
2958	kfree(pxent);
2959	lowest_ino_key(c, &key1, inum);
2960	highest_ino_key(c, &key2, inum);
2961
2962	return ubifs_tnc_remove_range(c, &key1, &key2);
2963}
2964
2965/**
2966 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2967 * @c: UBIFS file-system description object
2968 * @key: key of last entry
2969 * @nm: name of last entry found or %NULL
2970 *
2971 * This function finds and reads the next directory or extended attribute entry
2972 * after the given key (@key) if there is one. @nm is used to resolve
2973 * collisions.
2974 *
2975 * If the name of the current entry is not known and only the key is known,
2976 * @nm->name has to be %NULL. In this case the semantics of this function is a
2977 * little bit different and it returns the entry corresponding to this key, not
2978 * the next one. If the key was not found, the closest "right" entry is
2979 * returned.
2980 *
2981 * If the fist entry has to be found, @key has to contain the lowest possible
2982 * key value for this inode and @name has to be %NULL.
2983 *
2984 * This function returns the found directory or extended attribute entry node
2985 * in case of success, %-ENOENT is returned if no entry was found, and a
2986 * negative error code is returned in case of failure.
2987 */
2988struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2989					   union ubifs_key *key,
2990					   const struct fscrypt_name *nm)
2991{
2992	int n, err, type = key_type(c, key);
2993	struct ubifs_znode *znode;
2994	struct ubifs_dent_node *dent;
2995	struct ubifs_zbranch *zbr;
2996	union ubifs_key *dkey;
2997
2998	dbg_tnck(key, "key ");
2999	ubifs_assert(c, is_hash_key(c, key));
3000
3001	mutex_lock(&c->tnc_mutex);
3002	err = ubifs_lookup_level0(c, key, &znode, &n);
3003	if (unlikely(err < 0))
3004		goto out_unlock;
3005
3006	if (fname_len(nm) > 0) {
3007		if (err) {
3008			/* Handle collisions */
3009			if (c->replaying)
3010				err = fallible_resolve_collision(c, key, &znode, &n,
3011							 nm, 0);
3012			else
3013				err = resolve_collision(c, key, &znode, &n, nm);
3014			dbg_tnc("rc returned %d, znode %p, n %d",
3015				err, znode, n);
3016			if (unlikely(err < 0))
3017				goto out_unlock;
3018		}
3019
3020		/* Now find next entry */
3021		err = tnc_next(c, &znode, &n);
3022		if (unlikely(err))
3023			goto out_unlock;
3024	} else {
3025		/*
3026		 * The full name of the entry was not given, in which case the
3027		 * behavior of this function is a little different and it
3028		 * returns current entry, not the next one.
3029		 */
3030		if (!err) {
3031			/*
3032			 * However, the given key does not exist in the TNC
3033			 * tree and @znode/@n variables contain the closest
3034			 * "preceding" element. Switch to the next one.
3035			 */
3036			err = tnc_next(c, &znode, &n);
3037			if (err)
3038				goto out_unlock;
3039		}
3040	}
3041
3042	zbr = &znode->zbranch[n];
3043	dent = kmalloc(zbr->len, GFP_NOFS);
3044	if (unlikely(!dent)) {
3045		err = -ENOMEM;
3046		goto out_unlock;
3047	}
3048
3049	/*
3050	 * The above 'tnc_next()' call could lead us to the next inode, check
3051	 * this.
3052	 */
3053	dkey = &zbr->key;
3054	if (key_inum(c, dkey) != key_inum(c, key) ||
3055	    key_type(c, dkey) != type) {
3056		err = -ENOENT;
3057		goto out_free;
3058	}
3059
3060	err = tnc_read_hashed_node(c, zbr, dent);
3061	if (unlikely(err))
3062		goto out_free;
3063
3064	mutex_unlock(&c->tnc_mutex);
3065	return dent;
3066
3067out_free:
3068	kfree(dent);
3069out_unlock:
3070	mutex_unlock(&c->tnc_mutex);
3071	return ERR_PTR(err);
3072}
3073
3074/**
3075 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3076 * @c: UBIFS file-system description object
3077 *
3078 * Destroy left-over obsolete znodes from a failed commit.
3079 */
3080static void tnc_destroy_cnext(struct ubifs_info *c)
3081{
3082	struct ubifs_znode *cnext;
3083
3084	if (!c->cnext)
3085		return;
3086	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3087	cnext = c->cnext;
3088	do {
3089		struct ubifs_znode *znode = cnext;
3090
3091		cnext = cnext->cnext;
3092		if (ubifs_zn_obsolete(znode))
3093			kfree(znode);
3094		else if (!ubifs_zn_cow(znode)) {
3095			/*
3096			 * Don't forget to update clean znode count after
3097			 * committing failed, because ubifs will check this
3098			 * count while closing tnc. Non-obsolete znode could
3099			 * be re-dirtied during committing process, so dirty
3100			 * flag is untrustable. The flag 'COW_ZNODE' is set
3101			 * for each dirty znode before committing, and it is
3102			 * cleared as long as the znode become clean, so we
3103			 * can statistic clean znode count according to this
3104			 * flag.
3105			 */
3106			atomic_long_inc(&c->clean_zn_cnt);
3107			atomic_long_inc(&ubifs_clean_zn_cnt);
3108		}
3109	} while (cnext && cnext != c->cnext);
3110}
3111
3112/**
3113 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3114 * @c: UBIFS file-system description object
3115 */
3116void ubifs_tnc_close(struct ubifs_info *c)
3117{
3118	tnc_destroy_cnext(c);
3119	ubifs_destroy_tnc_tree(c);
3120	kfree(c->gap_lebs);
3121	kfree(c->ilebs);
3122	destroy_old_idx(c);
3123}
3124
3125/**
3126 * left_znode - get the znode to the left.
3127 * @c: UBIFS file-system description object
3128 * @znode: znode
3129 *
3130 * This function returns a pointer to the znode to the left of @znode or NULL if
3131 * there is not one. A negative error code is returned on failure.
3132 */
3133static struct ubifs_znode *left_znode(struct ubifs_info *c,
3134				      struct ubifs_znode *znode)
3135{
3136	int level = znode->level;
3137
3138	while (1) {
3139		int n = znode->iip - 1;
3140
3141		/* Go up until we can go left */
3142		znode = znode->parent;
3143		if (!znode)
3144			return NULL;
3145		if (n >= 0) {
3146			/* Now go down the rightmost branch to 'level' */
3147			znode = get_znode(c, znode, n);
3148			if (IS_ERR(znode))
3149				return znode;
3150			while (znode->level != level) {
3151				n = znode->child_cnt - 1;
3152				znode = get_znode(c, znode, n);
3153				if (IS_ERR(znode))
3154					return znode;
3155			}
3156			break;
3157		}
3158	}
3159	return znode;
3160}
3161
3162/**
3163 * right_znode - get the znode to the right.
3164 * @c: UBIFS file-system description object
3165 * @znode: znode
3166 *
3167 * This function returns a pointer to the znode to the right of @znode or NULL
3168 * if there is not one. A negative error code is returned on failure.
3169 */
3170static struct ubifs_znode *right_znode(struct ubifs_info *c,
3171				       struct ubifs_znode *znode)
3172{
3173	int level = znode->level;
3174
3175	while (1) {
3176		int n = znode->iip + 1;
3177
3178		/* Go up until we can go right */
3179		znode = znode->parent;
3180		if (!znode)
3181			return NULL;
3182		if (n < znode->child_cnt) {
3183			/* Now go down the leftmost branch to 'level' */
3184			znode = get_znode(c, znode, n);
3185			if (IS_ERR(znode))
3186				return znode;
3187			while (znode->level != level) {
3188				znode = get_znode(c, znode, 0);
3189				if (IS_ERR(znode))
3190					return znode;
3191			}
3192			break;
3193		}
3194	}
3195	return znode;
3196}
3197
3198/**
3199 * lookup_znode - find a particular indexing node from TNC.
3200 * @c: UBIFS file-system description object
3201 * @key: index node key to lookup
3202 * @level: index node level
3203 * @lnum: index node LEB number
3204 * @offs: index node offset
3205 *
3206 * This function searches an indexing node by its first key @key and its
3207 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3208 * nodes it traverses to TNC. This function is called for indexing nodes which
3209 * were found on the media by scanning, for example when garbage-collecting or
3210 * when doing in-the-gaps commit. This means that the indexing node which is
3211 * looked for does not have to have exactly the same leftmost key @key, because
3212 * the leftmost key may have been changed, in which case TNC will contain a
3213 * dirty znode which still refers the same @lnum:@offs. This function is clever
3214 * enough to recognize such indexing nodes.
3215 *
3216 * Note, if a znode was deleted or changed too much, then this function will
3217 * not find it. For situations like this UBIFS has the old index RB-tree
3218 * (indexed by @lnum:@offs).
3219 *
3220 * This function returns a pointer to the znode found or %NULL if it is not
3221 * found. A negative error code is returned on failure.
3222 */
3223static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3224					union ubifs_key *key, int level,
3225					int lnum, int offs)
3226{
3227	struct ubifs_znode *znode, *zn;
3228	int n, nn;
3229
3230	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3231
3232	/*
3233	 * The arguments have probably been read off flash, so don't assume
3234	 * they are valid.
3235	 */
3236	if (level < 0)
3237		return ERR_PTR(-EINVAL);
3238
3239	/* Get the root znode */
3240	znode = c->zroot.znode;
3241	if (!znode) {
3242		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3243		if (IS_ERR(znode))
3244			return znode;
3245	}
3246	/* Check if it is the one we are looking for */
3247	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3248		return znode;
3249	/* Descend to the parent level i.e. (level + 1) */
3250	if (level >= znode->level)
3251		return NULL;
3252	while (1) {
3253		ubifs_search_zbranch(c, znode, key, &n);
3254		if (n < 0) {
3255			/*
3256			 * We reached a znode where the leftmost key is greater
3257			 * than the key we are searching for. This is the same
3258			 * situation as the one described in a huge comment at
3259			 * the end of the 'ubifs_lookup_level0()' function. And
3260			 * for exactly the same reasons we have to try to look
3261			 * left before giving up.
3262			 */
3263			znode = left_znode(c, znode);
3264			if (!znode)
3265				return NULL;
3266			if (IS_ERR(znode))
3267				return znode;
3268			ubifs_search_zbranch(c, znode, key, &n);
3269			ubifs_assert(c, n >= 0);
3270		}
3271		if (znode->level == level + 1)
3272			break;
3273		znode = get_znode(c, znode, n);
3274		if (IS_ERR(znode))
3275			return znode;
3276	}
3277	/* Check if the child is the one we are looking for */
3278	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3279		return get_znode(c, znode, n);
3280	/* If the key is unique, there is nowhere else to look */
3281	if (!is_hash_key(c, key))
3282		return NULL;
3283	/*
3284	 * The key is not unique and so may be also in the znodes to either
3285	 * side.
3286	 */
3287	zn = znode;
3288	nn = n;
3289	/* Look left */
3290	while (1) {
3291		/* Move one branch to the left */
3292		if (n)
3293			n -= 1;
3294		else {
3295			znode = left_znode(c, znode);
3296			if (!znode)
3297				break;
3298			if (IS_ERR(znode))
3299				return znode;
3300			n = znode->child_cnt - 1;
3301		}
3302		/* Check it */
3303		if (znode->zbranch[n].lnum == lnum &&
3304		    znode->zbranch[n].offs == offs)
3305			return get_znode(c, znode, n);
3306		/* Stop if the key is less than the one we are looking for */
3307		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3308			break;
3309	}
3310	/* Back to the middle */
3311	znode = zn;
3312	n = nn;
3313	/* Look right */
3314	while (1) {
3315		/* Move one branch to the right */
3316		if (++n >= znode->child_cnt) {
3317			znode = right_znode(c, znode);
3318			if (!znode)
3319				break;
3320			if (IS_ERR(znode))
3321				return znode;
3322			n = 0;
3323		}
3324		/* Check it */
3325		if (znode->zbranch[n].lnum == lnum &&
3326		    znode->zbranch[n].offs == offs)
3327			return get_znode(c, znode, n);
3328		/* Stop if the key is greater than the one we are looking for */
3329		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3330			break;
3331	}
3332	return NULL;
3333}
3334
3335/**
3336 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3337 * @c: UBIFS file-system description object
3338 * @key: key of index node
3339 * @level: index node level
3340 * @lnum: LEB number of index node
3341 * @offs: offset of index node
3342 *
3343 * This function returns %0 if the index node is not referred to in the TNC, %1
3344 * if the index node is referred to in the TNC and the corresponding znode is
3345 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3346 * znode is clean, and a negative error code in case of failure.
3347 *
3348 * Note, the @key argument has to be the key of the first child. Also note,
3349 * this function relies on the fact that 0:0 is never a valid LEB number and
3350 * offset for a main-area node.
3351 */
3352int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3353		       int lnum, int offs)
3354{
3355	struct ubifs_znode *znode;
3356
3357	znode = lookup_znode(c, key, level, lnum, offs);
3358	if (!znode)
3359		return 0;
3360	if (IS_ERR(znode))
3361		return PTR_ERR(znode);
3362
3363	return ubifs_zn_dirty(znode) ? 1 : 2;
3364}
3365
3366/**
3367 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3368 * @c: UBIFS file-system description object
3369 * @key: node key
3370 * @lnum: node LEB number
3371 * @offs: node offset
3372 *
3373 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3374 * not, and a negative error code in case of failure.
3375 *
3376 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3377 * and offset for a main-area node.
3378 */
3379static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3380			       int lnum, int offs)
3381{
3382	struct ubifs_zbranch *zbr;
3383	struct ubifs_znode *znode, *zn;
3384	int n, found, err, nn;
3385	const int unique = !is_hash_key(c, key);
3386
3387	found = ubifs_lookup_level0(c, key, &znode, &n);
3388	if (found < 0)
3389		return found; /* Error code */
3390	if (!found)
3391		return 0;
3392	zbr = &znode->zbranch[n];
3393	if (lnum == zbr->lnum && offs == zbr->offs)
3394		return 1; /* Found it */
3395	if (unique)
3396		return 0;
3397	/*
3398	 * Because the key is not unique, we have to look left
3399	 * and right as well
3400	 */
3401	zn = znode;
3402	nn = n;
3403	/* Look left */
3404	while (1) {
3405		err = tnc_prev(c, &znode, &n);
3406		if (err == -ENOENT)
3407			break;
3408		if (err)
3409			return err;
3410		if (keys_cmp(c, key, &znode->zbranch[n].key))
3411			break;
3412		zbr = &znode->zbranch[n];
3413		if (lnum == zbr->lnum && offs == zbr->offs)
3414			return 1; /* Found it */
3415	}
3416	/* Look right */
3417	znode = zn;
3418	n = nn;
3419	while (1) {
3420		err = tnc_next(c, &znode, &n);
3421		if (err) {
3422			if (err == -ENOENT)
3423				return 0;
3424			return err;
3425		}
3426		if (keys_cmp(c, key, &znode->zbranch[n].key))
3427			break;
3428		zbr = &znode->zbranch[n];
3429		if (lnum == zbr->lnum && offs == zbr->offs)
3430			return 1; /* Found it */
3431	}
3432	return 0;
3433}
3434
3435/**
3436 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3437 * @c: UBIFS file-system description object
3438 * @key: node key
3439 * @level: index node level (if it is an index node)
3440 * @lnum: node LEB number
3441 * @offs: node offset
3442 * @is_idx: non-zero if the node is an index node
3443 *
3444 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3445 * negative error code in case of failure. For index nodes, @key has to be the
3446 * key of the first child. An index node is considered to be in the TNC only if
3447 * the corresponding znode is clean or has not been loaded.
3448 */
3449int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3450		       int lnum, int offs, int is_idx)
3451{
3452	int err;
3453
3454	mutex_lock(&c->tnc_mutex);
3455	if (is_idx) {
3456		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3457		if (err < 0)
3458			goto out_unlock;
3459		if (err == 1)
3460			/* The index node was found but it was dirty */
3461			err = 0;
3462		else if (err == 2)
3463			/* The index node was found and it was clean */
3464			err = 1;
3465		else
3466			BUG_ON(err != 0);
3467	} else
3468		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3469
3470out_unlock:
3471	mutex_unlock(&c->tnc_mutex);
3472	return err;
3473}
3474
3475/**
3476 * ubifs_dirty_idx_node - dirty an index node.
3477 * @c: UBIFS file-system description object
3478 * @key: index node key
3479 * @level: index node level
3480 * @lnum: index node LEB number
3481 * @offs: index node offset
3482 *
3483 * This function loads and dirties an index node so that it can be garbage
3484 * collected. The @key argument has to be the key of the first child. This
3485 * function relies on the fact that 0:0 is never a valid LEB number and offset
3486 * for a main-area node. Returns %0 on success and a negative error code on
3487 * failure.
3488 */
3489int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3490			 int lnum, int offs)
3491{
3492	struct ubifs_znode *znode;
3493	int err = 0;
3494
3495	mutex_lock(&c->tnc_mutex);
3496	znode = lookup_znode(c, key, level, lnum, offs);
3497	if (!znode)
3498		goto out_unlock;
3499	if (IS_ERR(znode)) {
3500		err = PTR_ERR(znode);
3501		goto out_unlock;
3502	}
3503	znode = dirty_cow_bottom_up(c, znode);
3504	if (IS_ERR(znode)) {
3505		err = PTR_ERR(znode);
3506		goto out_unlock;
3507	}
3508
3509out_unlock:
3510	mutex_unlock(&c->tnc_mutex);
3511	return err;
3512}
3513
3514/**
3515 * dbg_check_inode_size - check if inode size is correct.
3516 * @c: UBIFS file-system description object
3517 * @inode: inode to check
3518 * @size: inode size
3519 *
3520 * This function makes sure that the inode size (@size) is correct and it does
3521 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3522 * if it has a data page beyond @size, and other negative error code in case of
3523 * other errors.
3524 */
3525int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3526			 loff_t size)
3527{
3528	int err, n;
3529	union ubifs_key from_key, to_key, *key;
3530	struct ubifs_znode *znode;
3531	unsigned int block;
3532
3533	if (!S_ISREG(inode->i_mode))
3534		return 0;
3535	if (!dbg_is_chk_gen(c))
3536		return 0;
3537
3538	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3539	data_key_init(c, &from_key, inode->i_ino, block);
3540	highest_data_key(c, &to_key, inode->i_ino);
3541
3542	mutex_lock(&c->tnc_mutex);
3543	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3544	if (err < 0)
3545		goto out_unlock;
3546
3547	if (err) {
3548		key = &from_key;
3549		goto out_dump;
3550	}
3551
3552	err = tnc_next(c, &znode, &n);
3553	if (err == -ENOENT) {
3554		err = 0;
3555		goto out_unlock;
3556	}
3557	if (err < 0)
3558		goto out_unlock;
3559
3560	ubifs_assert(c, err == 0);
3561	key = &znode->zbranch[n].key;
3562	if (!key_in_range(c, key, &from_key, &to_key))
3563		goto out_unlock;
3564
3565out_dump:
3566	block = key_block(c, key);
3567	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3568		  (unsigned long)inode->i_ino, size,
3569		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3570	mutex_unlock(&c->tnc_mutex);
3571	ubifs_dump_inode(c, inode);
3572	dump_stack();
3573	return -EINVAL;
3574
3575out_unlock:
3576	mutex_unlock(&c->tnc_mutex);
3577	return err;
3578}
3579