1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file contains journal replay code. It runs when the file-system is being
13 * mounted and requires no locking.
14 *
15 * The larger is the journal, the longer it takes to scan it, so the longer it
16 * takes to mount UBIFS. This is why the journal has limited size which may be
17 * changed depending on the system requirements. But a larger journal gives
18 * faster I/O speed because it writes the index less frequently. So this is a
19 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
20 * larger is the journal, the more memory its index may consume.
21 */
22
23#include "ubifs.h"
24#include <linux/list_sort.h>
25#include <crypto/hash.h>
26
27/**
28 * struct replay_entry - replay list entry.
29 * @lnum: logical eraseblock number of the node
30 * @offs: node offset
31 * @len: node length
32 * @deletion: non-zero if this entry corresponds to a node deletion
33 * @sqnum: node sequence number
34 * @list: links the replay list
35 * @key: node key
36 * @nm: directory entry name
37 * @old_size: truncation old size
38 * @new_size: truncation new size
39 *
40 * The replay process first scans all buds and builds the replay list, then
41 * sorts the replay list in nodes sequence number order, and then inserts all
42 * the replay entries to the TNC.
43 */
44struct replay_entry {
45	int lnum;
46	int offs;
47	int len;
48	u8 hash[UBIFS_HASH_ARR_SZ];
49	unsigned int deletion:1;
50	unsigned long long sqnum;
51	struct list_head list;
52	union ubifs_key key;
53	union {
54		struct fscrypt_name nm;
55		struct {
56			loff_t old_size;
57			loff_t new_size;
58		};
59	};
60};
61
62/**
63 * struct bud_entry - entry in the list of buds to replay.
64 * @list: next bud in the list
65 * @bud: bud description object
66 * @sqnum: reference node sequence number
67 * @free: free bytes in the bud
68 * @dirty: dirty bytes in the bud
69 */
70struct bud_entry {
71	struct list_head list;
72	struct ubifs_bud *bud;
73	unsigned long long sqnum;
74	int free;
75	int dirty;
76};
77
78/**
79 * set_bud_lprops - set free and dirty space used by a bud.
80 * @c: UBIFS file-system description object
81 * @b: bud entry which describes the bud
82 *
83 * This function makes sure the LEB properties of bud @b are set correctly
84 * after the replay. Returns zero in case of success and a negative error code
85 * in case of failure.
86 */
87static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
88{
89	const struct ubifs_lprops *lp;
90	int err = 0, dirty;
91
92	ubifs_get_lprops(c);
93
94	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
95	if (IS_ERR(lp)) {
96		err = PTR_ERR(lp);
97		goto out;
98	}
99
100	dirty = lp->dirty;
101	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
102		/*
103		 * The LEB was added to the journal with a starting offset of
104		 * zero which means the LEB must have been empty. The LEB
105		 * property values should be @lp->free == @c->leb_size and
106		 * @lp->dirty == 0, but that is not the case. The reason is that
107		 * the LEB had been garbage collected before it became the bud,
108		 * and there was no commit in between. The garbage collector
109		 * resets the free and dirty space without recording it
110		 * anywhere except lprops, so if there was no commit then
111		 * lprops does not have that information.
112		 *
113		 * We do not need to adjust free space because the scan has told
114		 * us the exact value which is recorded in the replay entry as
115		 * @b->free.
116		 *
117		 * However we do need to subtract from the dirty space the
118		 * amount of space that the garbage collector reclaimed, which
119		 * is the whole LEB minus the amount of space that was free.
120		 */
121		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
122			lp->free, lp->dirty);
123		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
124			lp->free, lp->dirty);
125		dirty -= c->leb_size - lp->free;
126		/*
127		 * If the replay order was perfect the dirty space would now be
128		 * zero. The order is not perfect because the journal heads
129		 * race with each other. This is not a problem but is does mean
130		 * that the dirty space may temporarily exceed c->leb_size
131		 * during the replay.
132		 */
133		if (dirty != 0)
134			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
135				b->bud->lnum, lp->free, lp->dirty, b->free,
136				b->dirty);
137	}
138	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
139			     lp->flags | LPROPS_TAKEN, 0);
140	if (IS_ERR(lp)) {
141		err = PTR_ERR(lp);
142		goto out;
143	}
144
145	/* Make sure the journal head points to the latest bud */
146	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
147				     b->bud->lnum, c->leb_size - b->free);
148
149out:
150	ubifs_release_lprops(c);
151	return err;
152}
153
154/**
155 * set_buds_lprops - set free and dirty space for all replayed buds.
156 * @c: UBIFS file-system description object
157 *
158 * This function sets LEB properties for all replayed buds. Returns zero in
159 * case of success and a negative error code in case of failure.
160 */
161static int set_buds_lprops(struct ubifs_info *c)
162{
163	struct bud_entry *b;
164	int err;
165
166	list_for_each_entry(b, &c->replay_buds, list) {
167		err = set_bud_lprops(c, b);
168		if (err)
169			return err;
170	}
171
172	return 0;
173}
174
175/**
176 * trun_remove_range - apply a replay entry for a truncation to the TNC.
177 * @c: UBIFS file-system description object
178 * @r: replay entry of truncation
179 */
180static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
181{
182	unsigned min_blk, max_blk;
183	union ubifs_key min_key, max_key;
184	ino_t ino;
185
186	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
187	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
188		min_blk += 1;
189
190	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
191	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
192		max_blk -= 1;
193
194	ino = key_inum(c, &r->key);
195
196	data_key_init(c, &min_key, ino, min_blk);
197	data_key_init(c, &max_key, ino, max_blk);
198
199	return ubifs_tnc_remove_range(c, &min_key, &max_key);
200}
201
202/**
203 * inode_still_linked - check whether inode in question will be re-linked.
204 * @c: UBIFS file-system description object
205 * @rino: replay entry to test
206 *
207 * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
208 * This case needs special care, otherwise all references to the inode will
209 * be removed upon the first replay entry of an inode with link count 0
210 * is found.
211 */
212static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
213{
214	struct replay_entry *r;
215
216	ubifs_assert(c, rino->deletion);
217	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
218
219	/*
220	 * Find the most recent entry for the inode behind @rino and check
221	 * whether it is a deletion.
222	 */
223	list_for_each_entry_reverse(r, &c->replay_list, list) {
224		ubifs_assert(c, r->sqnum >= rino->sqnum);
225		if (key_inum(c, &r->key) == key_inum(c, &rino->key) &&
226		    key_type(c, &r->key) == UBIFS_INO_KEY)
227			return r->deletion == 0;
228
229	}
230
231	ubifs_assert(c, 0);
232	return false;
233}
234
235/**
236 * apply_replay_entry - apply a replay entry to the TNC.
237 * @c: UBIFS file-system description object
238 * @r: replay entry to apply
239 *
240 * Apply a replay entry to the TNC.
241 */
242static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
243{
244	int err;
245
246	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
247		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
248
249	if (is_hash_key(c, &r->key)) {
250		if (r->deletion)
251			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
252		else
253			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
254					       r->len, r->hash, &r->nm);
255	} else {
256		if (r->deletion)
257			switch (key_type(c, &r->key)) {
258			case UBIFS_INO_KEY:
259			{
260				ino_t inum = key_inum(c, &r->key);
261
262				if (inode_still_linked(c, r)) {
263					err = 0;
264					break;
265				}
266
267				err = ubifs_tnc_remove_ino(c, inum);
268				break;
269			}
270			case UBIFS_TRUN_KEY:
271				err = trun_remove_range(c, r);
272				break;
273			default:
274				err = ubifs_tnc_remove(c, &r->key);
275				break;
276			}
277		else
278			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
279					    r->len, r->hash);
280		if (err)
281			return err;
282
283		if (c->need_recovery)
284			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
285						       r->new_size);
286	}
287
288	return err;
289}
290
291/**
292 * replay_entries_cmp - compare 2 replay entries.
293 * @priv: UBIFS file-system description object
294 * @a: first replay entry
295 * @b: second replay entry
296 *
297 * This is a comparios function for 'list_sort()' which compares 2 replay
298 * entries @a and @b by comparing their sequence number.  Returns %1 if @a has
299 * greater sequence number and %-1 otherwise.
300 */
301static int replay_entries_cmp(void *priv, const struct list_head *a,
302			      const struct list_head *b)
303{
304	struct ubifs_info *c = priv;
305	struct replay_entry *ra, *rb;
306
307	cond_resched();
308	if (a == b)
309		return 0;
310
311	ra = list_entry(a, struct replay_entry, list);
312	rb = list_entry(b, struct replay_entry, list);
313	ubifs_assert(c, ra->sqnum != rb->sqnum);
314	if (ra->sqnum > rb->sqnum)
315		return 1;
316	return -1;
317}
318
319/**
320 * apply_replay_list - apply the replay list to the TNC.
321 * @c: UBIFS file-system description object
322 *
323 * Apply all entries in the replay list to the TNC. Returns zero in case of
324 * success and a negative error code in case of failure.
325 */
326static int apply_replay_list(struct ubifs_info *c)
327{
328	struct replay_entry *r;
329	int err;
330
331	list_sort(c, &c->replay_list, &replay_entries_cmp);
332
333	list_for_each_entry(r, &c->replay_list, list) {
334		cond_resched();
335
336		err = apply_replay_entry(c, r);
337		if (err)
338			return err;
339	}
340
341	return 0;
342}
343
344/**
345 * destroy_replay_list - destroy the replay.
346 * @c: UBIFS file-system description object
347 *
348 * Destroy the replay list.
349 */
350static void destroy_replay_list(struct ubifs_info *c)
351{
352	struct replay_entry *r, *tmp;
353
354	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
355		if (is_hash_key(c, &r->key))
356			kfree(fname_name(&r->nm));
357		list_del(&r->list);
358		kfree(r);
359	}
360}
361
362/**
363 * insert_node - insert a node to the replay list
364 * @c: UBIFS file-system description object
365 * @lnum: node logical eraseblock number
366 * @offs: node offset
367 * @len: node length
368 * @hash: node hash
369 * @key: node key
370 * @sqnum: sequence number
371 * @deletion: non-zero if this is a deletion
372 * @used: number of bytes in use in a LEB
373 * @old_size: truncation old size
374 * @new_size: truncation new size
375 *
376 * This function inserts a scanned non-direntry node to the replay list. The
377 * replay list contains @struct replay_entry elements, and we sort this list in
378 * sequence number order before applying it. The replay list is applied at the
379 * very end of the replay process. Since the list is sorted in sequence number
380 * order, the older modifications are applied first. This function returns zero
381 * in case of success and a negative error code in case of failure.
382 */
383static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
384		       const u8 *hash, union ubifs_key *key,
385		       unsigned long long sqnum, int deletion, int *used,
386		       loff_t old_size, loff_t new_size)
387{
388	struct replay_entry *r;
389
390	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
391
392	if (key_inum(c, key) >= c->highest_inum)
393		c->highest_inum = key_inum(c, key);
394
395	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
396	if (!r)
397		return -ENOMEM;
398
399	if (!deletion)
400		*used += ALIGN(len, 8);
401	r->lnum = lnum;
402	r->offs = offs;
403	r->len = len;
404	ubifs_copy_hash(c, hash, r->hash);
405	r->deletion = !!deletion;
406	r->sqnum = sqnum;
407	key_copy(c, key, &r->key);
408	r->old_size = old_size;
409	r->new_size = new_size;
410
411	list_add_tail(&r->list, &c->replay_list);
412	return 0;
413}
414
415/**
416 * insert_dent - insert a directory entry node into the replay list.
417 * @c: UBIFS file-system description object
418 * @lnum: node logical eraseblock number
419 * @offs: node offset
420 * @len: node length
421 * @hash: node hash
422 * @key: node key
423 * @name: directory entry name
424 * @nlen: directory entry name length
425 * @sqnum: sequence number
426 * @deletion: non-zero if this is a deletion
427 * @used: number of bytes in use in a LEB
428 *
429 * This function inserts a scanned directory entry node or an extended
430 * attribute entry to the replay list. Returns zero in case of success and a
431 * negative error code in case of failure.
432 */
433static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
434		       const u8 *hash, union ubifs_key *key,
435		       const char *name, int nlen, unsigned long long sqnum,
436		       int deletion, int *used)
437{
438	struct replay_entry *r;
439	char *nbuf;
440
441	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
442	if (key_inum(c, key) >= c->highest_inum)
443		c->highest_inum = key_inum(c, key);
444
445	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
446	if (!r)
447		return -ENOMEM;
448
449	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
450	if (!nbuf) {
451		kfree(r);
452		return -ENOMEM;
453	}
454
455	if (!deletion)
456		*used += ALIGN(len, 8);
457	r->lnum = lnum;
458	r->offs = offs;
459	r->len = len;
460	ubifs_copy_hash(c, hash, r->hash);
461	r->deletion = !!deletion;
462	r->sqnum = sqnum;
463	key_copy(c, key, &r->key);
464	fname_len(&r->nm) = nlen;
465	memcpy(nbuf, name, nlen);
466	nbuf[nlen] = '\0';
467	fname_name(&r->nm) = nbuf;
468
469	list_add_tail(&r->list, &c->replay_list);
470	return 0;
471}
472
473/**
474 * ubifs_validate_entry - validate directory or extended attribute entry node.
475 * @c: UBIFS file-system description object
476 * @dent: the node to validate
477 *
478 * This function validates directory or extended attribute entry node @dent.
479 * Returns zero if the node is all right and a %-EINVAL if not.
480 */
481int ubifs_validate_entry(struct ubifs_info *c,
482			 const struct ubifs_dent_node *dent)
483{
484	int key_type = key_type_flash(c, dent->key);
485	int nlen = le16_to_cpu(dent->nlen);
486
487	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
488	    dent->type >= UBIFS_ITYPES_CNT ||
489	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
490	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
491	    le64_to_cpu(dent->inum) > MAX_INUM) {
492		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
493			  "directory entry" : "extended attribute entry");
494		return -EINVAL;
495	}
496
497	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
498		ubifs_err(c, "bad key type %d", key_type);
499		return -EINVAL;
500	}
501
502	return 0;
503}
504
505/**
506 * is_last_bud - check if the bud is the last in the journal head.
507 * @c: UBIFS file-system description object
508 * @bud: bud description object
509 *
510 * This function checks if bud @bud is the last bud in its journal head. This
511 * information is then used by 'replay_bud()' to decide whether the bud can
512 * have corruptions or not. Indeed, only last buds can be corrupted by power
513 * cuts. Returns %1 if this is the last bud, and %0 if not.
514 */
515static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
516{
517	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
518	struct ubifs_bud *next;
519	uint32_t data;
520	int err;
521
522	if (list_is_last(&bud->list, &jh->buds_list))
523		return 1;
524
525	/*
526	 * The following is a quirk to make sure we work correctly with UBIFS
527	 * images used with older UBIFS.
528	 *
529	 * Normally, the last bud will be the last in the journal head's list
530	 * of bud. However, there is one exception if the UBIFS image belongs
531	 * to older UBIFS. This is fairly unlikely: one would need to use old
532	 * UBIFS, then have a power cut exactly at the right point, and then
533	 * try to mount this image with new UBIFS.
534	 *
535	 * The exception is: it is possible to have 2 buds A and B, A goes
536	 * before B, and B is the last, bud B is contains no data, and bud A is
537	 * corrupted at the end. The reason is that in older versions when the
538	 * journal code switched the next bud (from A to B), it first added a
539	 * log reference node for the new bud (B), and only after this it
540	 * synchronized the write-buffer of current bud (A). But later this was
541	 * changed and UBIFS started to always synchronize the write-buffer of
542	 * the bud (A) before writing the log reference for the new bud (B).
543	 *
544	 * But because older UBIFS always synchronized A's write-buffer before
545	 * writing to B, we can recognize this exceptional situation but
546	 * checking the contents of bud B - if it is empty, then A can be
547	 * treated as the last and we can recover it.
548	 *
549	 * TODO: remove this piece of code in a couple of years (today it is
550	 * 16.05.2011).
551	 */
552	next = list_entry(bud->list.next, struct ubifs_bud, list);
553	if (!list_is_last(&next->list, &jh->buds_list))
554		return 0;
555
556	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
557	if (err)
558		return 0;
559
560	return data == 0xFFFFFFFF;
561}
562
563/* authenticate_sleb_hash is split out for stack usage */
564static int noinline_for_stack
565authenticate_sleb_hash(struct ubifs_info *c,
566		       struct shash_desc *log_hash, u8 *hash)
567{
568	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
569
570	hash_desc->tfm = c->hash_tfm;
571
572	ubifs_shash_copy_state(c, log_hash, hash_desc);
573	return crypto_shash_final(hash_desc, hash);
574}
575
576/**
577 * authenticate_sleb - authenticate one scan LEB
578 * @c: UBIFS file-system description object
579 * @sleb: the scan LEB to authenticate
580 * @log_hash:
581 * @is_last: if true, this is the last LEB
582 *
583 * This function iterates over the buds of a single LEB authenticating all buds
584 * with the authentication nodes on this LEB. Authentication nodes are written
585 * after some buds and contain a HMAC covering the authentication node itself
586 * and the buds between the last authentication node and the current
587 * authentication node. It can happen that the last buds cannot be authenticated
588 * because a powercut happened when some nodes were written but not the
589 * corresponding authentication node. This function returns the number of nodes
590 * that could be authenticated or a negative error code.
591 */
592static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
593			     struct shash_desc *log_hash, int is_last)
594{
595	int n_not_auth = 0;
596	struct ubifs_scan_node *snod;
597	int n_nodes = 0;
598	int err;
599	u8 hash[UBIFS_HASH_ARR_SZ];
600	u8 hmac[UBIFS_HMAC_ARR_SZ];
601
602	if (!ubifs_authenticated(c))
603		return sleb->nodes_cnt;
604
605	list_for_each_entry(snod, &sleb->nodes, list) {
606
607		n_nodes++;
608
609		if (snod->type == UBIFS_AUTH_NODE) {
610			struct ubifs_auth_node *auth = snod->node;
611
612			err = authenticate_sleb_hash(c, log_hash, hash);
613			if (err)
614				goto out;
615
616			err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
617						      c->hash_len, hmac);
618			if (err)
619				goto out;
620
621			err = ubifs_check_hmac(c, auth->hmac, hmac);
622			if (err) {
623				err = -EPERM;
624				goto out;
625			}
626			n_not_auth = 0;
627		} else {
628			err = crypto_shash_update(log_hash, snod->node,
629						  snod->len);
630			if (err)
631				goto out;
632			n_not_auth++;
633		}
634	}
635
636	/*
637	 * A powercut can happen when some nodes were written, but not yet
638	 * the corresponding authentication node. This may only happen on
639	 * the last bud though.
640	 */
641	if (n_not_auth) {
642		if (is_last) {
643			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
644				n_not_auth, sleb->lnum);
645			err = 0;
646		} else {
647			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
648				n_not_auth, sleb->lnum);
649			err = -EPERM;
650		}
651	} else {
652		err = 0;
653	}
654out:
655	return err ? err : n_nodes - n_not_auth;
656}
657
658/**
659 * replay_bud - replay a bud logical eraseblock.
660 * @c: UBIFS file-system description object
661 * @b: bud entry which describes the bud
662 *
663 * This function replays bud @bud, recovers it if needed, and adds all nodes
664 * from this bud to the replay list. Returns zero in case of success and a
665 * negative error code in case of failure.
666 */
667static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
668{
669	int is_last = is_last_bud(c, b->bud);
670	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
671	int n_nodes, n = 0;
672	struct ubifs_scan_leb *sleb;
673	struct ubifs_scan_node *snod;
674
675	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
676		lnum, b->bud->jhead, offs, is_last);
677
678	if (c->need_recovery && is_last)
679		/*
680		 * Recover only last LEBs in the journal heads, because power
681		 * cuts may cause corruptions only in these LEBs, because only
682		 * these LEBs could possibly be written to at the power cut
683		 * time.
684		 */
685		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
686	else
687		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
688	if (IS_ERR(sleb))
689		return PTR_ERR(sleb);
690
691	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
692	if (n_nodes < 0) {
693		err = n_nodes;
694		goto out;
695	}
696
697	ubifs_shash_copy_state(c, b->bud->log_hash,
698			       c->jheads[b->bud->jhead].log_hash);
699
700	/*
701	 * The bud does not have to start from offset zero - the beginning of
702	 * the 'lnum' LEB may contain previously committed data. One of the
703	 * things we have to do in replay is to correctly update lprops with
704	 * newer information about this LEB.
705	 *
706	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
707	 * bytes of free space because it only contain information about
708	 * committed data.
709	 *
710	 * But we know that real amount of free space is 'c->leb_size -
711	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
712	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
713	 * how much of these data are dirty and update lprops with this
714	 * information.
715	 *
716	 * The dirt in that LEB region is comprised of padding nodes, deletion
717	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
718	 * nodes in this LEB. So instead of calculating clean space, we
719	 * calculate used space ('used' variable).
720	 */
721
722	list_for_each_entry(snod, &sleb->nodes, list) {
723		u8 hash[UBIFS_HASH_ARR_SZ];
724		int deletion = 0;
725
726		cond_resched();
727
728		if (snod->sqnum >= SQNUM_WATERMARK) {
729			ubifs_err(c, "file system's life ended");
730			goto out_dump;
731		}
732
733		ubifs_node_calc_hash(c, snod->node, hash);
734
735		if (snod->sqnum > c->max_sqnum)
736			c->max_sqnum = snod->sqnum;
737
738		switch (snod->type) {
739		case UBIFS_INO_NODE:
740		{
741			struct ubifs_ino_node *ino = snod->node;
742			loff_t new_size = le64_to_cpu(ino->size);
743
744			if (le32_to_cpu(ino->nlink) == 0)
745				deletion = 1;
746			err = insert_node(c, lnum, snod->offs, snod->len, hash,
747					  &snod->key, snod->sqnum, deletion,
748					  &used, 0, new_size);
749			break;
750		}
751		case UBIFS_DATA_NODE:
752		{
753			struct ubifs_data_node *dn = snod->node;
754			loff_t new_size = le32_to_cpu(dn->size) +
755					  key_block(c, &snod->key) *
756					  UBIFS_BLOCK_SIZE;
757
758			err = insert_node(c, lnum, snod->offs, snod->len, hash,
759					  &snod->key, snod->sqnum, deletion,
760					  &used, 0, new_size);
761			break;
762		}
763		case UBIFS_DENT_NODE:
764		case UBIFS_XENT_NODE:
765		{
766			struct ubifs_dent_node *dent = snod->node;
767
768			err = ubifs_validate_entry(c, dent);
769			if (err)
770				goto out_dump;
771
772			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
773					  &snod->key, dent->name,
774					  le16_to_cpu(dent->nlen), snod->sqnum,
775					  !le64_to_cpu(dent->inum), &used);
776			break;
777		}
778		case UBIFS_TRUN_NODE:
779		{
780			struct ubifs_trun_node *trun = snod->node;
781			loff_t old_size = le64_to_cpu(trun->old_size);
782			loff_t new_size = le64_to_cpu(trun->new_size);
783			union ubifs_key key;
784
785			/* Validate truncation node */
786			if (old_size < 0 || old_size > c->max_inode_sz ||
787			    new_size < 0 || new_size > c->max_inode_sz ||
788			    old_size <= new_size) {
789				ubifs_err(c, "bad truncation node");
790				goto out_dump;
791			}
792
793			/*
794			 * Create a fake truncation key just to use the same
795			 * functions which expect nodes to have keys.
796			 */
797			trun_key_init(c, &key, le32_to_cpu(trun->inum));
798			err = insert_node(c, lnum, snod->offs, snod->len, hash,
799					  &key, snod->sqnum, 1, &used,
800					  old_size, new_size);
801			break;
802		}
803		case UBIFS_AUTH_NODE:
804			break;
805		default:
806			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
807				  snod->type, lnum, snod->offs);
808			err = -EINVAL;
809			goto out_dump;
810		}
811		if (err)
812			goto out;
813
814		n++;
815		if (n == n_nodes)
816			break;
817	}
818
819	ubifs_assert(c, ubifs_search_bud(c, lnum));
820	ubifs_assert(c, sleb->endpt - offs >= used);
821	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
822
823	b->dirty = sleb->endpt - offs - used;
824	b->free = c->leb_size - sleb->endpt;
825	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
826		lnum, b->dirty, b->free);
827
828out:
829	ubifs_scan_destroy(sleb);
830	return err;
831
832out_dump:
833	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
834	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
835	ubifs_scan_destroy(sleb);
836	return -EINVAL;
837}
838
839/**
840 * replay_buds - replay all buds.
841 * @c: UBIFS file-system description object
842 *
843 * This function returns zero in case of success and a negative error code in
844 * case of failure.
845 */
846static int replay_buds(struct ubifs_info *c)
847{
848	struct bud_entry *b;
849	int err;
850	unsigned long long prev_sqnum = 0;
851
852	list_for_each_entry(b, &c->replay_buds, list) {
853		err = replay_bud(c, b);
854		if (err)
855			return err;
856
857		ubifs_assert(c, b->sqnum > prev_sqnum);
858		prev_sqnum = b->sqnum;
859	}
860
861	return 0;
862}
863
864/**
865 * destroy_bud_list - destroy the list of buds to replay.
866 * @c: UBIFS file-system description object
867 */
868static void destroy_bud_list(struct ubifs_info *c)
869{
870	struct bud_entry *b;
871
872	while (!list_empty(&c->replay_buds)) {
873		b = list_entry(c->replay_buds.next, struct bud_entry, list);
874		list_del(&b->list);
875		kfree(b);
876	}
877}
878
879/**
880 * add_replay_bud - add a bud to the list of buds to replay.
881 * @c: UBIFS file-system description object
882 * @lnum: bud logical eraseblock number to replay
883 * @offs: bud start offset
884 * @jhead: journal head to which this bud belongs
885 * @sqnum: reference node sequence number
886 *
887 * This function returns zero in case of success and a negative error code in
888 * case of failure.
889 */
890static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
891			  unsigned long long sqnum)
892{
893	struct ubifs_bud *bud;
894	struct bud_entry *b;
895	int err;
896
897	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
898
899	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
900	if (!bud)
901		return -ENOMEM;
902
903	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
904	if (!b) {
905		err = -ENOMEM;
906		goto out;
907	}
908
909	bud->lnum = lnum;
910	bud->start = offs;
911	bud->jhead = jhead;
912	bud->log_hash = ubifs_hash_get_desc(c);
913	if (IS_ERR(bud->log_hash)) {
914		err = PTR_ERR(bud->log_hash);
915		goto out;
916	}
917
918	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
919
920	ubifs_add_bud(c, bud);
921
922	b->bud = bud;
923	b->sqnum = sqnum;
924	list_add_tail(&b->list, &c->replay_buds);
925
926	return 0;
927out:
928	kfree(bud);
929	kfree(b);
930
931	return err;
932}
933
934/**
935 * validate_ref - validate a reference node.
936 * @c: UBIFS file-system description object
937 * @ref: the reference node to validate
938 *
939 * This function returns %1 if a bud reference already exists for the LEB. %0 is
940 * returned if the reference node is new, otherwise %-EINVAL is returned if
941 * validation failed.
942 */
943static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
944{
945	struct ubifs_bud *bud;
946	int lnum = le32_to_cpu(ref->lnum);
947	unsigned int offs = le32_to_cpu(ref->offs);
948	unsigned int jhead = le32_to_cpu(ref->jhead);
949
950	/*
951	 * ref->offs may point to the end of LEB when the journal head points
952	 * to the end of LEB and we write reference node for it during commit.
953	 * So this is why we require 'offs > c->leb_size'.
954	 */
955	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
956	    lnum < c->main_first || offs > c->leb_size ||
957	    offs & (c->min_io_size - 1))
958		return -EINVAL;
959
960	/* Make sure we have not already looked at this bud */
961	bud = ubifs_search_bud(c, lnum);
962	if (bud) {
963		if (bud->jhead == jhead && bud->start <= offs)
964			return 1;
965		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
966		return -EINVAL;
967	}
968
969	return 0;
970}
971
972/**
973 * replay_log_leb - replay a log logical eraseblock.
974 * @c: UBIFS file-system description object
975 * @lnum: log logical eraseblock to replay
976 * @offs: offset to start replaying from
977 * @sbuf: scan buffer
978 *
979 * This function replays a log LEB and returns zero in case of success, %1 if
980 * this is the last LEB in the log, and a negative error code in case of
981 * failure.
982 */
983static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
984{
985	int err;
986	struct ubifs_scan_leb *sleb;
987	struct ubifs_scan_node *snod;
988	const struct ubifs_cs_node *node;
989
990	dbg_mnt("replay log LEB %d:%d", lnum, offs);
991	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
992	if (IS_ERR(sleb)) {
993		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
994			return PTR_ERR(sleb);
995		/*
996		 * Note, the below function will recover this log LEB only if
997		 * it is the last, because unclean reboots can possibly corrupt
998		 * only the tail of the log.
999		 */
1000		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1001		if (IS_ERR(sleb))
1002			return PTR_ERR(sleb);
1003	}
1004
1005	if (sleb->nodes_cnt == 0) {
1006		err = 1;
1007		goto out;
1008	}
1009
1010	node = sleb->buf;
1011	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1012	if (c->cs_sqnum == 0) {
1013		/*
1014		 * This is the first log LEB we are looking at, make sure that
1015		 * the first node is a commit start node. Also record its
1016		 * sequence number so that UBIFS can determine where the log
1017		 * ends, because all nodes which were have higher sequence
1018		 * numbers.
1019		 */
1020		if (snod->type != UBIFS_CS_NODE) {
1021			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1022				  lnum, offs);
1023			goto out_dump;
1024		}
1025		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1026			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1027				  lnum, offs,
1028				  (unsigned long long)le64_to_cpu(node->cmt_no),
1029				  c->cmt_no);
1030			goto out_dump;
1031		}
1032
1033		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1034		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1035
1036		err = ubifs_shash_init(c, c->log_hash);
1037		if (err)
1038			goto out;
1039
1040		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1041		if (err < 0)
1042			goto out;
1043	}
1044
1045	if (snod->sqnum < c->cs_sqnum) {
1046		/*
1047		 * This means that we reached end of log and now
1048		 * look to the older log data, which was already
1049		 * committed but the eraseblock was not erased (UBIFS
1050		 * only un-maps it). So this basically means we have to
1051		 * exit with "end of log" code.
1052		 */
1053		err = 1;
1054		goto out;
1055	}
1056
1057	/* Make sure the first node sits at offset zero of the LEB */
1058	if (snod->offs != 0) {
1059		ubifs_err(c, "first node is not at zero offset");
1060		goto out_dump;
1061	}
1062
1063	list_for_each_entry(snod, &sleb->nodes, list) {
1064		cond_resched();
1065
1066		if (snod->sqnum >= SQNUM_WATERMARK) {
1067			ubifs_err(c, "file system's life ended");
1068			goto out_dump;
1069		}
1070
1071		if (snod->sqnum < c->cs_sqnum) {
1072			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1073				  snod->sqnum, c->cs_sqnum);
1074			goto out_dump;
1075		}
1076
1077		if (snod->sqnum > c->max_sqnum)
1078			c->max_sqnum = snod->sqnum;
1079
1080		switch (snod->type) {
1081		case UBIFS_REF_NODE: {
1082			const struct ubifs_ref_node *ref = snod->node;
1083
1084			err = validate_ref(c, ref);
1085			if (err == 1)
1086				break; /* Already have this bud */
1087			if (err)
1088				goto out_dump;
1089
1090			err = ubifs_shash_update(c, c->log_hash, ref,
1091						 UBIFS_REF_NODE_SZ);
1092			if (err)
1093				goto out;
1094
1095			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1096					     le32_to_cpu(ref->offs),
1097					     le32_to_cpu(ref->jhead),
1098					     snod->sqnum);
1099			if (err)
1100				goto out;
1101
1102			break;
1103		}
1104		case UBIFS_CS_NODE:
1105			/* Make sure it sits at the beginning of LEB */
1106			if (snod->offs != 0) {
1107				ubifs_err(c, "unexpected node in log");
1108				goto out_dump;
1109			}
1110			break;
1111		default:
1112			ubifs_err(c, "unexpected node in log");
1113			goto out_dump;
1114		}
1115	}
1116
1117	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1118		c->lhead_lnum = lnum;
1119		c->lhead_offs = sleb->endpt;
1120	}
1121
1122	err = !sleb->endpt;
1123out:
1124	ubifs_scan_destroy(sleb);
1125	return err;
1126
1127out_dump:
1128	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1129		  lnum, offs + snod->offs);
1130	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1131	ubifs_scan_destroy(sleb);
1132	return -EINVAL;
1133}
1134
1135/**
1136 * take_ihead - update the status of the index head in lprops to 'taken'.
1137 * @c: UBIFS file-system description object
1138 *
1139 * This function returns the amount of free space in the index head LEB or a
1140 * negative error code.
1141 */
1142static int take_ihead(struct ubifs_info *c)
1143{
1144	const struct ubifs_lprops *lp;
1145	int err, free;
1146
1147	ubifs_get_lprops(c);
1148
1149	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1150	if (IS_ERR(lp)) {
1151		err = PTR_ERR(lp);
1152		goto out;
1153	}
1154
1155	free = lp->free;
1156
1157	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1158			     lp->flags | LPROPS_TAKEN, 0);
1159	if (IS_ERR(lp)) {
1160		err = PTR_ERR(lp);
1161		goto out;
1162	}
1163
1164	err = free;
1165out:
1166	ubifs_release_lprops(c);
1167	return err;
1168}
1169
1170/**
1171 * ubifs_replay_journal - replay journal.
1172 * @c: UBIFS file-system description object
1173 *
1174 * This function scans the journal, replays and cleans it up. It makes sure all
1175 * memory data structures related to uncommitted journal are built (dirty TNC
1176 * tree, tree of buds, modified lprops, etc).
1177 */
1178int ubifs_replay_journal(struct ubifs_info *c)
1179{
1180	int err, lnum, free;
1181
1182	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1183
1184	/* Update the status of the index head in lprops to 'taken' */
1185	free = take_ihead(c);
1186	if (free < 0)
1187		return free; /* Error code */
1188
1189	if (c->ihead_offs != c->leb_size - free) {
1190		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1191			  c->ihead_offs);
1192		return -EINVAL;
1193	}
1194
1195	dbg_mnt("start replaying the journal");
1196	c->replaying = 1;
1197	lnum = c->ltail_lnum = c->lhead_lnum;
1198
1199	do {
1200		err = replay_log_leb(c, lnum, 0, c->sbuf);
1201		if (err == 1) {
1202			if (lnum != c->lhead_lnum)
1203				/* We hit the end of the log */
1204				break;
1205
1206			/*
1207			 * The head of the log must always start with the
1208			 * "commit start" node on a properly formatted UBIFS.
1209			 * But we found no nodes at all, which means that
1210			 * something went wrong and we cannot proceed mounting
1211			 * the file-system.
1212			 */
1213			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1214				  lnum, 0);
1215			err = -EINVAL;
1216		}
1217		if (err)
1218			goto out;
1219		lnum = ubifs_next_log_lnum(c, lnum);
1220	} while (lnum != c->ltail_lnum);
1221
1222	err = replay_buds(c);
1223	if (err)
1224		goto out;
1225
1226	err = apply_replay_list(c);
1227	if (err)
1228		goto out;
1229
1230	err = set_buds_lprops(c);
1231	if (err)
1232		goto out;
1233
1234	/*
1235	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1236	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1237	 * depend on it. This means we have to initialize it to make sure
1238	 * budgeting works properly.
1239	 */
1240	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1241	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1242
1243	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1244	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1245		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1246		(unsigned long)c->highest_inum);
1247out:
1248	destroy_replay_list(c);
1249	destroy_bud_list(c);
1250	c->replaying = 0;
1251	return err;
1252}
1253