1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file implements functions needed to recover from unclean un-mounts.
13 * When UBIFS is mounted, it checks a flag on the master node to determine if
14 * an un-mount was completed successfully. If not, the process of mounting
15 * incorporates additional checking and fixing of on-flash data structures.
16 * UBIFS always cleans away all remnants of an unclean un-mount, so that
17 * errors do not accumulate. However UBIFS defers recovery if it is mounted
18 * read-only, and the flash is not modified in that case.
19 *
20 * The general UBIFS approach to the recovery is that it recovers from
21 * corruptions which could be caused by power cuts, but it refuses to recover
22 * from corruption caused by other reasons. And UBIFS tries to distinguish
23 * between these 2 reasons of corruptions and silently recover in the former
24 * case and loudly complain in the latter case.
25 *
26 * UBIFS writes only to erased LEBs, so it writes only to the flash space
27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
28 * of the LEB to the end. And UBIFS assumes that the underlying flash media
29 * writes in @c->max_write_size bytes at a time.
30 *
31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
32 * I/O unit corresponding to offset X to contain corrupted data, all the
33 * following min. I/O units have to contain empty space (all 0xFFs). If this is
34 * not true, the corruption cannot be the result of a power cut, and UBIFS
35 * refuses to mount.
36 */
37
38#include <linux/crc32.h>
39#include <linux/slab.h>
40#include "ubifs.h"
41
42/**
43 * is_empty - determine whether a buffer is empty (contains all 0xff).
44 * @buf: buffer to clean
45 * @len: length of buffer
46 *
47 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
48 * %0 is returned.
49 */
50static int is_empty(void *buf, int len)
51{
52	uint8_t *p = buf;
53	int i;
54
55	for (i = 0; i < len; i++)
56		if (*p++ != 0xff)
57			return 0;
58	return 1;
59}
60
61/**
62 * first_non_ff - find offset of the first non-0xff byte.
63 * @buf: buffer to search in
64 * @len: length of buffer
65 *
66 * This function returns offset of the first non-0xff byte in @buf or %-1 if
67 * the buffer contains only 0xff bytes.
68 */
69static int first_non_ff(void *buf, int len)
70{
71	uint8_t *p = buf;
72	int i;
73
74	for (i = 0; i < len; i++)
75		if (*p++ != 0xff)
76			return i;
77	return -1;
78}
79
80/**
81 * get_master_node - get the last valid master node allowing for corruption.
82 * @c: UBIFS file-system description object
83 * @lnum: LEB number
84 * @pbuf: buffer containing the LEB read, is returned here
85 * @mst: master node, if found, is returned here
86 * @cor: corruption, if found, is returned here
87 *
88 * This function allocates a buffer, reads the LEB into it, and finds and
89 * returns the last valid master node allowing for one area of corruption.
90 * The corrupt area, if there is one, must be consistent with the assumption
91 * that it is the result of an unclean unmount while the master node was being
92 * written. Under those circumstances, it is valid to use the previously written
93 * master node.
94 *
95 * This function returns %0 on success and a negative error code on failure.
96 */
97static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
98			   struct ubifs_mst_node **mst, void **cor)
99{
100	const int sz = c->mst_node_alsz;
101	int err, offs, len;
102	void *sbuf, *buf;
103
104	sbuf = vmalloc(c->leb_size);
105	if (!sbuf)
106		return -ENOMEM;
107
108	err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
109	if (err && err != -EBADMSG)
110		goto out_free;
111
112	/* Find the first position that is definitely not a node */
113	offs = 0;
114	buf = sbuf;
115	len = c->leb_size;
116	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
117		struct ubifs_ch *ch = buf;
118
119		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
120			break;
121		offs += sz;
122		buf  += sz;
123		len  -= sz;
124	}
125	/* See if there was a valid master node before that */
126	if (offs) {
127		int ret;
128
129		offs -= sz;
130		buf  -= sz;
131		len  += sz;
132		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
133		if (ret != SCANNED_A_NODE && offs) {
134			/* Could have been corruption so check one place back */
135			offs -= sz;
136			buf  -= sz;
137			len  += sz;
138			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
139			if (ret != SCANNED_A_NODE)
140				/*
141				 * We accept only one area of corruption because
142				 * we are assuming that it was caused while
143				 * trying to write a master node.
144				 */
145				goto out_err;
146		}
147		if (ret == SCANNED_A_NODE) {
148			struct ubifs_ch *ch = buf;
149
150			if (ch->node_type != UBIFS_MST_NODE)
151				goto out_err;
152			dbg_rcvry("found a master node at %d:%d", lnum, offs);
153			*mst = buf;
154			offs += sz;
155			buf  += sz;
156			len  -= sz;
157		}
158	}
159	/* Check for corruption */
160	if (offs < c->leb_size) {
161		if (!is_empty(buf, min_t(int, len, sz))) {
162			*cor = buf;
163			dbg_rcvry("found corruption at %d:%d", lnum, offs);
164		}
165		offs += sz;
166		buf  += sz;
167		len  -= sz;
168	}
169	/* Check remaining empty space */
170	if (offs < c->leb_size)
171		if (!is_empty(buf, len))
172			goto out_err;
173	*pbuf = sbuf;
174	return 0;
175
176out_err:
177	err = -EINVAL;
178out_free:
179	vfree(sbuf);
180	*mst = NULL;
181	*cor = NULL;
182	return err;
183}
184
185/**
186 * write_rcvrd_mst_node - write recovered master node.
187 * @c: UBIFS file-system description object
188 * @mst: master node
189 *
190 * This function returns %0 on success and a negative error code on failure.
191 */
192static int write_rcvrd_mst_node(struct ubifs_info *c,
193				struct ubifs_mst_node *mst)
194{
195	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
196	__le32 save_flags;
197
198	dbg_rcvry("recovery");
199
200	save_flags = mst->flags;
201	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
202
203	err = ubifs_prepare_node_hmac(c, mst, UBIFS_MST_NODE_SZ,
204				      offsetof(struct ubifs_mst_node, hmac), 1);
205	if (err)
206		goto out;
207	err = ubifs_leb_change(c, lnum, mst, sz);
208	if (err)
209		goto out;
210	err = ubifs_leb_change(c, lnum + 1, mst, sz);
211	if (err)
212		goto out;
213out:
214	mst->flags = save_flags;
215	return err;
216}
217
218/**
219 * ubifs_recover_master_node - recover the master node.
220 * @c: UBIFS file-system description object
221 *
222 * This function recovers the master node from corruption that may occur due to
223 * an unclean unmount.
224 *
225 * This function returns %0 on success and a negative error code on failure.
226 */
227int ubifs_recover_master_node(struct ubifs_info *c)
228{
229	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
230	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
231	const int sz = c->mst_node_alsz;
232	int err, offs1, offs2;
233
234	dbg_rcvry("recovery");
235
236	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
237	if (err)
238		goto out_free;
239
240	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
241	if (err)
242		goto out_free;
243
244	if (mst1) {
245		offs1 = (void *)mst1 - buf1;
246		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
247		    (offs1 == 0 && !cor1)) {
248			/*
249			 * mst1 was written by recovery at offset 0 with no
250			 * corruption.
251			 */
252			dbg_rcvry("recovery recovery");
253			mst = mst1;
254		} else if (mst2) {
255			offs2 = (void *)mst2 - buf2;
256			if (offs1 == offs2) {
257				/* Same offset, so must be the same */
258				if (ubifs_compare_master_node(c, mst1, mst2))
259					goto out_err;
260				mst = mst1;
261			} else if (offs2 + sz == offs1) {
262				/* 1st LEB was written, 2nd was not */
263				if (cor1)
264					goto out_err;
265				mst = mst1;
266			} else if (offs1 == 0 &&
267				   c->leb_size - offs2 - sz < sz) {
268				/* 1st LEB was unmapped and written, 2nd not */
269				if (cor1)
270					goto out_err;
271				mst = mst1;
272			} else
273				goto out_err;
274		} else {
275			/*
276			 * 2nd LEB was unmapped and about to be written, so
277			 * there must be only one master node in the first LEB
278			 * and no corruption.
279			 */
280			if (offs1 != 0 || cor1)
281				goto out_err;
282			mst = mst1;
283		}
284	} else {
285		if (!mst2)
286			goto out_err;
287		/*
288		 * 1st LEB was unmapped and about to be written, so there must
289		 * be no room left in 2nd LEB.
290		 */
291		offs2 = (void *)mst2 - buf2;
292		if (offs2 + sz + sz <= c->leb_size)
293			goto out_err;
294		mst = mst2;
295	}
296
297	ubifs_msg(c, "recovered master node from LEB %d",
298		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
299
300	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
301
302	if (c->ro_mount) {
303		/* Read-only mode. Keep a copy for switching to rw mode */
304		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
305		if (!c->rcvrd_mst_node) {
306			err = -ENOMEM;
307			goto out_free;
308		}
309		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
310
311		/*
312		 * We had to recover the master node, which means there was an
313		 * unclean reboot. However, it is possible that the master node
314		 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
315		 * E.g., consider the following chain of events:
316		 *
317		 * 1. UBIFS was cleanly unmounted, so the master node is clean
318		 * 2. UBIFS is being mounted R/W and starts changing the master
319		 *    node in the first (%UBIFS_MST_LNUM). A power cut happens,
320		 *    so this LEB ends up with some amount of garbage at the
321		 *    end.
322		 * 3. UBIFS is being mounted R/O. We reach this place and
323		 *    recover the master node from the second LEB
324		 *    (%UBIFS_MST_LNUM + 1). But we cannot update the media
325		 *    because we are being mounted R/O. We have to defer the
326		 *    operation.
327		 * 4. However, this master node (@c->mst_node) is marked as
328		 *    clean (since the step 1). And if we just return, the
329		 *    mount code will be confused and won't recover the master
330		 *    node when it is re-mounter R/W later.
331		 *
332		 *    Thus, to force the recovery by marking the master node as
333		 *    dirty.
334		 */
335		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
336	} else {
337		/* Write the recovered master node */
338		c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
339		err = write_rcvrd_mst_node(c, c->mst_node);
340		if (err)
341			goto out_free;
342	}
343
344	vfree(buf2);
345	vfree(buf1);
346
347	return 0;
348
349out_err:
350	err = -EINVAL;
351out_free:
352	ubifs_err(c, "failed to recover master node");
353	if (mst1) {
354		ubifs_err(c, "dumping first master node");
355		ubifs_dump_node(c, mst1, c->leb_size - ((void *)mst1 - buf1));
356	}
357	if (mst2) {
358		ubifs_err(c, "dumping second master node");
359		ubifs_dump_node(c, mst2, c->leb_size - ((void *)mst2 - buf2));
360	}
361	vfree(buf2);
362	vfree(buf1);
363	return err;
364}
365
366/**
367 * ubifs_write_rcvrd_mst_node - write the recovered master node.
368 * @c: UBIFS file-system description object
369 *
370 * This function writes the master node that was recovered during mounting in
371 * read-only mode and must now be written because we are remounting rw.
372 *
373 * This function returns %0 on success and a negative error code on failure.
374 */
375int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
376{
377	int err;
378
379	if (!c->rcvrd_mst_node)
380		return 0;
381	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
382	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
383	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
384	if (err)
385		return err;
386	kfree(c->rcvrd_mst_node);
387	c->rcvrd_mst_node = NULL;
388	return 0;
389}
390
391/**
392 * is_last_write - determine if an offset was in the last write to a LEB.
393 * @c: UBIFS file-system description object
394 * @buf: buffer to check
395 * @offs: offset to check
396 *
397 * This function returns %1 if @offs was in the last write to the LEB whose data
398 * is in @buf, otherwise %0 is returned. The determination is made by checking
399 * for subsequent empty space starting from the next @c->max_write_size
400 * boundary.
401 */
402static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
403{
404	int empty_offs, check_len;
405	uint8_t *p;
406
407	/*
408	 * Round up to the next @c->max_write_size boundary i.e. @offs is in
409	 * the last wbuf written. After that should be empty space.
410	 */
411	empty_offs = ALIGN(offs + 1, c->max_write_size);
412	check_len = c->leb_size - empty_offs;
413	p = buf + empty_offs - offs;
414	return is_empty(p, check_len);
415}
416
417/**
418 * clean_buf - clean the data from an LEB sitting in a buffer.
419 * @c: UBIFS file-system description object
420 * @buf: buffer to clean
421 * @lnum: LEB number to clean
422 * @offs: offset from which to clean
423 * @len: length of buffer
424 *
425 * This function pads up to the next min_io_size boundary (if there is one) and
426 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
427 * @c->min_io_size boundary.
428 */
429static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
430		      int *offs, int *len)
431{
432	int empty_offs, pad_len;
433
434	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
435
436	ubifs_assert(c, !(*offs & 7));
437	empty_offs = ALIGN(*offs, c->min_io_size);
438	pad_len = empty_offs - *offs;
439	ubifs_pad(c, *buf, pad_len);
440	*offs += pad_len;
441	*buf += pad_len;
442	*len -= pad_len;
443	memset(*buf, 0xff, c->leb_size - empty_offs);
444}
445
446/**
447 * no_more_nodes - determine if there are no more nodes in a buffer.
448 * @c: UBIFS file-system description object
449 * @buf: buffer to check
450 * @len: length of buffer
451 * @lnum: LEB number of the LEB from which @buf was read
452 * @offs: offset from which @buf was read
453 *
454 * This function ensures that the corrupted node at @offs is the last thing
455 * written to a LEB. This function returns %1 if more data is not found and
456 * %0 if more data is found.
457 */
458static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
459			int lnum, int offs)
460{
461	struct ubifs_ch *ch = buf;
462	int skip, dlen = le32_to_cpu(ch->len);
463
464	/* Check for empty space after the corrupt node's common header */
465	skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
466	if (is_empty(buf + skip, len - skip))
467		return 1;
468	/*
469	 * The area after the common header size is not empty, so the common
470	 * header must be intact. Check it.
471	 */
472	if (ubifs_check_node(c, buf, len, lnum, offs, 1, 0) != -EUCLEAN) {
473		dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
474		return 0;
475	}
476	/* Now we know the corrupt node's length we can skip over it */
477	skip = ALIGN(offs + dlen, c->max_write_size) - offs;
478	/* After which there should be empty space */
479	if (is_empty(buf + skip, len - skip))
480		return 1;
481	dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
482	return 0;
483}
484
485/**
486 * fix_unclean_leb - fix an unclean LEB.
487 * @c: UBIFS file-system description object
488 * @sleb: scanned LEB information
489 * @start: offset where scan started
490 */
491static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
492			   int start)
493{
494	int lnum = sleb->lnum, endpt = start;
495
496	/* Get the end offset of the last node we are keeping */
497	if (!list_empty(&sleb->nodes)) {
498		struct ubifs_scan_node *snod;
499
500		snod = list_entry(sleb->nodes.prev,
501				  struct ubifs_scan_node, list);
502		endpt = snod->offs + snod->len;
503	}
504
505	if (c->ro_mount && !c->remounting_rw) {
506		/* Add to recovery list */
507		struct ubifs_unclean_leb *ucleb;
508
509		dbg_rcvry("need to fix LEB %d start %d endpt %d",
510			  lnum, start, sleb->endpt);
511		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
512		if (!ucleb)
513			return -ENOMEM;
514		ucleb->lnum = lnum;
515		ucleb->endpt = endpt;
516		list_add_tail(&ucleb->list, &c->unclean_leb_list);
517	} else {
518		/* Write the fixed LEB back to flash */
519		int err;
520
521		dbg_rcvry("fixing LEB %d start %d endpt %d",
522			  lnum, start, sleb->endpt);
523		if (endpt == 0) {
524			err = ubifs_leb_unmap(c, lnum);
525			if (err)
526				return err;
527		} else {
528			int len = ALIGN(endpt, c->min_io_size);
529
530			if (start) {
531				err = ubifs_leb_read(c, lnum, sleb->buf, 0,
532						     start, 1);
533				if (err)
534					return err;
535			}
536			/* Pad to min_io_size */
537			if (len > endpt) {
538				int pad_len = len - ALIGN(endpt, 8);
539
540				if (pad_len > 0) {
541					void *buf = sleb->buf + len - pad_len;
542
543					ubifs_pad(c, buf, pad_len);
544				}
545			}
546			err = ubifs_leb_change(c, lnum, sleb->buf, len);
547			if (err)
548				return err;
549		}
550	}
551	return 0;
552}
553
554/**
555 * drop_last_group - drop the last group of nodes.
556 * @sleb: scanned LEB information
557 * @offs: offset of dropped nodes is returned here
558 *
559 * This is a helper function for 'ubifs_recover_leb()' which drops the last
560 * group of nodes of the scanned LEB.
561 */
562static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
563{
564	while (!list_empty(&sleb->nodes)) {
565		struct ubifs_scan_node *snod;
566		struct ubifs_ch *ch;
567
568		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
569				  list);
570		ch = snod->node;
571		if (ch->group_type != UBIFS_IN_NODE_GROUP)
572			break;
573
574		dbg_rcvry("dropping grouped node at %d:%d",
575			  sleb->lnum, snod->offs);
576		*offs = snod->offs;
577		list_del(&snod->list);
578		kfree(snod);
579		sleb->nodes_cnt -= 1;
580	}
581}
582
583/**
584 * drop_last_node - drop the last node.
585 * @sleb: scanned LEB information
586 * @offs: offset of dropped nodes is returned here
587 *
588 * This is a helper function for 'ubifs_recover_leb()' which drops the last
589 * node of the scanned LEB.
590 */
591static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
592{
593	struct ubifs_scan_node *snod;
594
595	if (!list_empty(&sleb->nodes)) {
596		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
597				  list);
598
599		dbg_rcvry("dropping last node at %d:%d",
600			  sleb->lnum, snod->offs);
601		*offs = snod->offs;
602		list_del(&snod->list);
603		kfree(snod);
604		sleb->nodes_cnt -= 1;
605	}
606}
607
608/**
609 * ubifs_recover_leb - scan and recover a LEB.
610 * @c: UBIFS file-system description object
611 * @lnum: LEB number
612 * @offs: offset
613 * @sbuf: LEB-sized buffer to use
614 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
615 *         belong to any journal head)
616 *
617 * This function does a scan of a LEB, but caters for errors that might have
618 * been caused by the unclean unmount from which we are attempting to recover.
619 * Returns the scanned information on success and a negative error code on
620 * failure.
621 */
622struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
623					 int offs, void *sbuf, int jhead)
624{
625	int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
626	int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
627	struct ubifs_scan_leb *sleb;
628	void *buf = sbuf + offs;
629
630	dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
631
632	sleb = ubifs_start_scan(c, lnum, offs, sbuf);
633	if (IS_ERR(sleb))
634		return sleb;
635
636	ubifs_assert(c, len >= 8);
637	while (len >= 8) {
638		dbg_scan("look at LEB %d:%d (%d bytes left)",
639			 lnum, offs, len);
640
641		cond_resched();
642
643		/*
644		 * Scan quietly until there is an error from which we cannot
645		 * recover
646		 */
647		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
648		if (ret == SCANNED_A_NODE) {
649			/* A valid node, and not a padding node */
650			struct ubifs_ch *ch = buf;
651			int node_len;
652
653			err = ubifs_add_snod(c, sleb, buf, offs);
654			if (err)
655				goto error;
656			node_len = ALIGN(le32_to_cpu(ch->len), 8);
657			offs += node_len;
658			buf += node_len;
659			len -= node_len;
660		} else if (ret > 0) {
661			/* Padding bytes or a valid padding node */
662			offs += ret;
663			buf += ret;
664			len -= ret;
665		} else if (ret == SCANNED_EMPTY_SPACE ||
666			   ret == SCANNED_GARBAGE     ||
667			   ret == SCANNED_A_BAD_PAD_NODE ||
668			   ret == SCANNED_A_CORRUPT_NODE) {
669			dbg_rcvry("found corruption (%d) at %d:%d",
670				  ret, lnum, offs);
671			break;
672		} else {
673			ubifs_err(c, "unexpected return value %d", ret);
674			err = -EINVAL;
675			goto error;
676		}
677	}
678
679	if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
680		if (!is_last_write(c, buf, offs))
681			goto corrupted_rescan;
682	} else if (ret == SCANNED_A_CORRUPT_NODE) {
683		if (!no_more_nodes(c, buf, len, lnum, offs))
684			goto corrupted_rescan;
685	} else if (!is_empty(buf, len)) {
686		if (!is_last_write(c, buf, offs)) {
687			int corruption = first_non_ff(buf, len);
688
689			/*
690			 * See header comment for this file for more
691			 * explanations about the reasons we have this check.
692			 */
693			ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
694				  lnum, offs, corruption);
695			/* Make sure we dump interesting non-0xFF data */
696			offs += corruption;
697			buf += corruption;
698			goto corrupted;
699		}
700	}
701
702	min_io_unit = round_down(offs, c->min_io_size);
703	if (grouped)
704		/*
705		 * If nodes are grouped, always drop the incomplete group at
706		 * the end.
707		 */
708		drop_last_group(sleb, &offs);
709
710	if (jhead == GCHD) {
711		/*
712		 * If this LEB belongs to the GC head then while we are in the
713		 * middle of the same min. I/O unit keep dropping nodes. So
714		 * basically, what we want is to make sure that the last min.
715		 * I/O unit where we saw the corruption is dropped completely
716		 * with all the uncorrupted nodes which may possibly sit there.
717		 *
718		 * In other words, let's name the min. I/O unit where the
719		 * corruption starts B, and the previous min. I/O unit A. The
720		 * below code tries to deal with a situation when half of B
721		 * contains valid nodes or the end of a valid node, and the
722		 * second half of B contains corrupted data or garbage. This
723		 * means that UBIFS had been writing to B just before the power
724		 * cut happened. I do not know how realistic is this scenario
725		 * that half of the min. I/O unit had been written successfully
726		 * and the other half not, but this is possible in our 'failure
727		 * mode emulation' infrastructure at least.
728		 *
729		 * So what is the problem, why we need to drop those nodes? Why
730		 * can't we just clean-up the second half of B by putting a
731		 * padding node there? We can, and this works fine with one
732		 * exception which was reproduced with power cut emulation
733		 * testing and happens extremely rarely.
734		 *
735		 * Imagine the file-system is full, we run GC which starts
736		 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
737		 * the current GC head LEB). The @c->gc_lnum is -1, which means
738		 * that GC will retain LEB X and will try to continue. Imagine
739		 * that LEB X is currently the dirtiest LEB, and the amount of
740		 * used space in LEB Y is exactly the same as amount of free
741		 * space in LEB X.
742		 *
743		 * And a power cut happens when nodes are moved from LEB X to
744		 * LEB Y. We are here trying to recover LEB Y which is the GC
745		 * head LEB. We find the min. I/O unit B as described above.
746		 * Then we clean-up LEB Y by padding min. I/O unit. And later
747		 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
748		 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
749		 * does not match because the amount of valid nodes there does
750		 * not fit the free space in LEB Y any more! And this is
751		 * because of the padding node which we added to LEB Y. The
752		 * user-visible effect of this which I once observed and
753		 * analysed is that we cannot mount the file-system with
754		 * -ENOSPC error.
755		 *
756		 * So obviously, to make sure that situation does not happen we
757		 * should free min. I/O unit B in LEB Y completely and the last
758		 * used min. I/O unit in LEB Y should be A. This is basically
759		 * what the below code tries to do.
760		 */
761		while (offs > min_io_unit)
762			drop_last_node(sleb, &offs);
763	}
764
765	buf = sbuf + offs;
766	len = c->leb_size - offs;
767
768	clean_buf(c, &buf, lnum, &offs, &len);
769	ubifs_end_scan(c, sleb, lnum, offs);
770
771	err = fix_unclean_leb(c, sleb, start);
772	if (err)
773		goto error;
774
775	return sleb;
776
777corrupted_rescan:
778	/* Re-scan the corrupted data with verbose messages */
779	ubifs_err(c, "corruption %d", ret);
780	ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
781corrupted:
782	ubifs_scanned_corruption(c, lnum, offs, buf);
783	err = -EUCLEAN;
784error:
785	ubifs_err(c, "LEB %d scanning failed", lnum);
786	ubifs_scan_destroy(sleb);
787	return ERR_PTR(err);
788}
789
790/**
791 * get_cs_sqnum - get commit start sequence number.
792 * @c: UBIFS file-system description object
793 * @lnum: LEB number of commit start node
794 * @offs: offset of commit start node
795 * @cs_sqnum: commit start sequence number is returned here
796 *
797 * This function returns %0 on success and a negative error code on failure.
798 */
799static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
800			unsigned long long *cs_sqnum)
801{
802	struct ubifs_cs_node *cs_node = NULL;
803	int err, ret;
804
805	dbg_rcvry("at %d:%d", lnum, offs);
806	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
807	if (!cs_node)
808		return -ENOMEM;
809	if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
810		goto out_err;
811	err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
812			     UBIFS_CS_NODE_SZ, 0);
813	if (err && err != -EBADMSG)
814		goto out_free;
815	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
816	if (ret != SCANNED_A_NODE) {
817		ubifs_err(c, "Not a valid node");
818		goto out_err;
819	}
820	if (cs_node->ch.node_type != UBIFS_CS_NODE) {
821		ubifs_err(c, "Not a CS node, type is %d", cs_node->ch.node_type);
822		goto out_err;
823	}
824	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
825		ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
826			  (unsigned long long)le64_to_cpu(cs_node->cmt_no),
827			  c->cmt_no);
828		goto out_err;
829	}
830	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
831	dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
832	kfree(cs_node);
833	return 0;
834
835out_err:
836	err = -EINVAL;
837out_free:
838	ubifs_err(c, "failed to get CS sqnum");
839	kfree(cs_node);
840	return err;
841}
842
843/**
844 * ubifs_recover_log_leb - scan and recover a log LEB.
845 * @c: UBIFS file-system description object
846 * @lnum: LEB number
847 * @offs: offset
848 * @sbuf: LEB-sized buffer to use
849 *
850 * This function does a scan of a LEB, but caters for errors that might have
851 * been caused by unclean reboots from which we are attempting to recover
852 * (assume that only the last log LEB can be corrupted by an unclean reboot).
853 *
854 * This function returns %0 on success and a negative error code on failure.
855 */
856struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
857					     int offs, void *sbuf)
858{
859	struct ubifs_scan_leb *sleb;
860	int next_lnum;
861
862	dbg_rcvry("LEB %d", lnum);
863	next_lnum = lnum + 1;
864	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
865		next_lnum = UBIFS_LOG_LNUM;
866	if (next_lnum != c->ltail_lnum) {
867		/*
868		 * We can only recover at the end of the log, so check that the
869		 * next log LEB is empty or out of date.
870		 */
871		sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
872		if (IS_ERR(sleb))
873			return sleb;
874		if (sleb->nodes_cnt) {
875			struct ubifs_scan_node *snod;
876			unsigned long long cs_sqnum = c->cs_sqnum;
877
878			snod = list_entry(sleb->nodes.next,
879					  struct ubifs_scan_node, list);
880			if (cs_sqnum == 0) {
881				int err;
882
883				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
884				if (err) {
885					ubifs_scan_destroy(sleb);
886					return ERR_PTR(err);
887				}
888			}
889			if (snod->sqnum > cs_sqnum) {
890				ubifs_err(c, "unrecoverable log corruption in LEB %d",
891					  lnum);
892				ubifs_scan_destroy(sleb);
893				return ERR_PTR(-EUCLEAN);
894			}
895		}
896		ubifs_scan_destroy(sleb);
897	}
898	return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
899}
900
901/**
902 * recover_head - recover a head.
903 * @c: UBIFS file-system description object
904 * @lnum: LEB number of head to recover
905 * @offs: offset of head to recover
906 * @sbuf: LEB-sized buffer to use
907 *
908 * This function ensures that there is no data on the flash at a head location.
909 *
910 * This function returns %0 on success and a negative error code on failure.
911 */
912static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
913{
914	int len = c->max_write_size, err;
915
916	if (offs + len > c->leb_size)
917		len = c->leb_size - offs;
918
919	if (!len)
920		return 0;
921
922	/* Read at the head location and check it is empty flash */
923	err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
924	if (err || !is_empty(sbuf, len)) {
925		dbg_rcvry("cleaning head at %d:%d", lnum, offs);
926		if (offs == 0)
927			return ubifs_leb_unmap(c, lnum);
928		err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
929		if (err)
930			return err;
931		return ubifs_leb_change(c, lnum, sbuf, offs);
932	}
933
934	return 0;
935}
936
937/**
938 * ubifs_recover_inl_heads - recover index and LPT heads.
939 * @c: UBIFS file-system description object
940 * @sbuf: LEB-sized buffer to use
941 *
942 * This function ensures that there is no data on the flash at the index and
943 * LPT head locations.
944 *
945 * This deals with the recovery of a half-completed journal commit. UBIFS is
946 * careful never to overwrite the last version of the index or the LPT. Because
947 * the index and LPT are wandering trees, data from a half-completed commit will
948 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
949 * assumed to be empty and will be unmapped anyway before use, or in the index
950 * and LPT heads.
951 *
952 * This function returns %0 on success and a negative error code on failure.
953 */
954int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
955{
956	int err;
957
958	ubifs_assert(c, !c->ro_mount || c->remounting_rw);
959
960	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
961	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
962	if (err)
963		return err;
964
965	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
966
967	return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
968}
969
970/**
971 * clean_an_unclean_leb - read and write a LEB to remove corruption.
972 * @c: UBIFS file-system description object
973 * @ucleb: unclean LEB information
974 * @sbuf: LEB-sized buffer to use
975 *
976 * This function reads a LEB up to a point pre-determined by the mount recovery,
977 * checks the nodes, and writes the result back to the flash, thereby cleaning
978 * off any following corruption, or non-fatal ECC errors.
979 *
980 * This function returns %0 on success and a negative error code on failure.
981 */
982static int clean_an_unclean_leb(struct ubifs_info *c,
983				struct ubifs_unclean_leb *ucleb, void *sbuf)
984{
985	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
986	void *buf = sbuf;
987
988	dbg_rcvry("LEB %d len %d", lnum, len);
989
990	if (len == 0) {
991		/* Nothing to read, just unmap it */
992		return ubifs_leb_unmap(c, lnum);
993	}
994
995	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
996	if (err && err != -EBADMSG)
997		return err;
998
999	while (len >= 8) {
1000		int ret;
1001
1002		cond_resched();
1003
1004		/* Scan quietly until there is an error */
1005		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1006
1007		if (ret == SCANNED_A_NODE) {
1008			/* A valid node, and not a padding node */
1009			struct ubifs_ch *ch = buf;
1010			int node_len;
1011
1012			node_len = ALIGN(le32_to_cpu(ch->len), 8);
1013			offs += node_len;
1014			buf += node_len;
1015			len -= node_len;
1016			continue;
1017		}
1018
1019		if (ret > 0) {
1020			/* Padding bytes or a valid padding node */
1021			offs += ret;
1022			buf += ret;
1023			len -= ret;
1024			continue;
1025		}
1026
1027		if (ret == SCANNED_EMPTY_SPACE) {
1028			ubifs_err(c, "unexpected empty space at %d:%d",
1029				  lnum, offs);
1030			return -EUCLEAN;
1031		}
1032
1033		if (quiet) {
1034			/* Redo the last scan but noisily */
1035			quiet = 0;
1036			continue;
1037		}
1038
1039		ubifs_scanned_corruption(c, lnum, offs, buf);
1040		return -EUCLEAN;
1041	}
1042
1043	/* Pad to min_io_size */
1044	len = ALIGN(ucleb->endpt, c->min_io_size);
1045	if (len > ucleb->endpt) {
1046		int pad_len = len - ALIGN(ucleb->endpt, 8);
1047
1048		if (pad_len > 0) {
1049			buf = c->sbuf + len - pad_len;
1050			ubifs_pad(c, buf, pad_len);
1051		}
1052	}
1053
1054	/* Write back the LEB atomically */
1055	err = ubifs_leb_change(c, lnum, sbuf, len);
1056	if (err)
1057		return err;
1058
1059	dbg_rcvry("cleaned LEB %d", lnum);
1060
1061	return 0;
1062}
1063
1064/**
1065 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1066 * @c: UBIFS file-system description object
1067 * @sbuf: LEB-sized buffer to use
1068 *
1069 * This function cleans a LEB identified during recovery that needs to be
1070 * written but was not because UBIFS was mounted read-only. This happens when
1071 * remounting to read-write mode.
1072 *
1073 * This function returns %0 on success and a negative error code on failure.
1074 */
1075int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1076{
1077	dbg_rcvry("recovery");
1078	while (!list_empty(&c->unclean_leb_list)) {
1079		struct ubifs_unclean_leb *ucleb;
1080		int err;
1081
1082		ucleb = list_entry(c->unclean_leb_list.next,
1083				   struct ubifs_unclean_leb, list);
1084		err = clean_an_unclean_leb(c, ucleb, sbuf);
1085		if (err)
1086			return err;
1087		list_del(&ucleb->list);
1088		kfree(ucleb);
1089	}
1090	return 0;
1091}
1092
1093/**
1094 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1095 * @c: UBIFS file-system description object
1096 *
1097 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1098 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1099 * zero in case of success and a negative error code in case of failure.
1100 */
1101static int grab_empty_leb(struct ubifs_info *c)
1102{
1103	int lnum, err;
1104
1105	/*
1106	 * Note, it is very important to first search for an empty LEB and then
1107	 * run the commit, not vice-versa. The reason is that there might be
1108	 * only one empty LEB at the moment, the one which has been the
1109	 * @c->gc_lnum just before the power cut happened. During the regular
1110	 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1111	 * one but GC can grab it. But at this moment this single empty LEB is
1112	 * not marked as taken, so if we run commit - what happens? Right, the
1113	 * commit will grab it and write the index there. Remember that the
1114	 * index always expands as long as there is free space, and it only
1115	 * starts consolidating when we run out of space.
1116	 *
1117	 * IOW, if we run commit now, we might not be able to find a free LEB
1118	 * after this.
1119	 */
1120	lnum = ubifs_find_free_leb_for_idx(c);
1121	if (lnum < 0) {
1122		ubifs_err(c, "could not find an empty LEB");
1123		ubifs_dump_lprops(c);
1124		ubifs_dump_budg(c, &c->bi);
1125		return lnum;
1126	}
1127
1128	/* Reset the index flag */
1129	err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1130				  LPROPS_INDEX, 0);
1131	if (err)
1132		return err;
1133
1134	c->gc_lnum = lnum;
1135	dbg_rcvry("found empty LEB %d, run commit", lnum);
1136
1137	return ubifs_run_commit(c);
1138}
1139
1140/**
1141 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1142 * @c: UBIFS file-system description object
1143 *
1144 * Out-of-place garbage collection requires always one empty LEB with which to
1145 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1146 * written to the master node on unmounting. In the case of an unclean unmount
1147 * the value of gc_lnum recorded in the master node is out of date and cannot
1148 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1149 * However, there may not be enough empty space, in which case it must be
1150 * possible to GC the dirtiest LEB into the GC head LEB.
1151 *
1152 * This function also runs the commit which causes the TNC updates from
1153 * size-recovery and orphans to be written to the flash. That is important to
1154 * ensure correct replay order for subsequent mounts.
1155 *
1156 * This function returns %0 on success and a negative error code on failure.
1157 */
1158int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1159{
1160	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1161	struct ubifs_lprops lp;
1162	int err;
1163
1164	dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1165
1166	c->gc_lnum = -1;
1167	if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1168		return grab_empty_leb(c);
1169
1170	err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1171	if (err) {
1172		if (err != -ENOSPC)
1173			return err;
1174
1175		dbg_rcvry("could not find a dirty LEB");
1176		return grab_empty_leb(c);
1177	}
1178
1179	ubifs_assert(c, !(lp.flags & LPROPS_INDEX));
1180	ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs);
1181
1182	/*
1183	 * We run the commit before garbage collection otherwise subsequent
1184	 * mounts will see the GC and orphan deletion in a different order.
1185	 */
1186	dbg_rcvry("committing");
1187	err = ubifs_run_commit(c);
1188	if (err)
1189		return err;
1190
1191	dbg_rcvry("GC'ing LEB %d", lp.lnum);
1192	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1193	err = ubifs_garbage_collect_leb(c, &lp);
1194	if (err >= 0) {
1195		int err2 = ubifs_wbuf_sync_nolock(wbuf);
1196
1197		if (err2)
1198			err = err2;
1199	}
1200	mutex_unlock(&wbuf->io_mutex);
1201	if (err < 0) {
1202		ubifs_err(c, "GC failed, error %d", err);
1203		if (err == -EAGAIN)
1204			err = -EINVAL;
1205		return err;
1206	}
1207
1208	ubifs_assert(c, err == LEB_RETAINED);
1209	if (err != LEB_RETAINED)
1210		return -EINVAL;
1211
1212	err = ubifs_leb_unmap(c, c->gc_lnum);
1213	if (err)
1214		return err;
1215
1216	dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1217	return 0;
1218}
1219
1220/**
1221 * struct size_entry - inode size information for recovery.
1222 * @rb: link in the RB-tree of sizes
1223 * @inum: inode number
1224 * @i_size: size on inode
1225 * @d_size: maximum size based on data nodes
1226 * @exists: indicates whether the inode exists
1227 * @inode: inode if pinned in memory awaiting rw mode to fix it
1228 */
1229struct size_entry {
1230	struct rb_node rb;
1231	ino_t inum;
1232	loff_t i_size;
1233	loff_t d_size;
1234	int exists;
1235	struct inode *inode;
1236};
1237
1238/**
1239 * add_ino - add an entry to the size tree.
1240 * @c: UBIFS file-system description object
1241 * @inum: inode number
1242 * @i_size: size on inode
1243 * @d_size: maximum size based on data nodes
1244 * @exists: indicates whether the inode exists
1245 */
1246static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1247		   loff_t d_size, int exists)
1248{
1249	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1250	struct size_entry *e;
1251
1252	while (*p) {
1253		parent = *p;
1254		e = rb_entry(parent, struct size_entry, rb);
1255		if (inum < e->inum)
1256			p = &(*p)->rb_left;
1257		else
1258			p = &(*p)->rb_right;
1259	}
1260
1261	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1262	if (!e)
1263		return -ENOMEM;
1264
1265	e->inum = inum;
1266	e->i_size = i_size;
1267	e->d_size = d_size;
1268	e->exists = exists;
1269
1270	rb_link_node(&e->rb, parent, p);
1271	rb_insert_color(&e->rb, &c->size_tree);
1272
1273	return 0;
1274}
1275
1276/**
1277 * find_ino - find an entry on the size tree.
1278 * @c: UBIFS file-system description object
1279 * @inum: inode number
1280 */
1281static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1282{
1283	struct rb_node *p = c->size_tree.rb_node;
1284	struct size_entry *e;
1285
1286	while (p) {
1287		e = rb_entry(p, struct size_entry, rb);
1288		if (inum < e->inum)
1289			p = p->rb_left;
1290		else if (inum > e->inum)
1291			p = p->rb_right;
1292		else
1293			return e;
1294	}
1295	return NULL;
1296}
1297
1298/**
1299 * remove_ino - remove an entry from the size tree.
1300 * @c: UBIFS file-system description object
1301 * @inum: inode number
1302 */
1303static void remove_ino(struct ubifs_info *c, ino_t inum)
1304{
1305	struct size_entry *e = find_ino(c, inum);
1306
1307	if (!e)
1308		return;
1309	rb_erase(&e->rb, &c->size_tree);
1310	kfree(e);
1311}
1312
1313/**
1314 * ubifs_destroy_size_tree - free resources related to the size tree.
1315 * @c: UBIFS file-system description object
1316 */
1317void ubifs_destroy_size_tree(struct ubifs_info *c)
1318{
1319	struct size_entry *e, *n;
1320
1321	rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1322		iput(e->inode);
1323		kfree(e);
1324	}
1325
1326	c->size_tree = RB_ROOT;
1327}
1328
1329/**
1330 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1331 * @c: UBIFS file-system description object
1332 * @key: node key
1333 * @deletion: node is for a deletion
1334 * @new_size: inode size
1335 *
1336 * This function has two purposes:
1337 *     1) to ensure there are no data nodes that fall outside the inode size
1338 *     2) to ensure there are no data nodes for inodes that do not exist
1339 * To accomplish those purposes, a rb-tree is constructed containing an entry
1340 * for each inode number in the journal that has not been deleted, and recording
1341 * the size from the inode node, the maximum size of any data node (also altered
1342 * by truncations) and a flag indicating a inode number for which no inode node
1343 * was present in the journal.
1344 *
1345 * Note that there is still the possibility that there are data nodes that have
1346 * been committed that are beyond the inode size, however the only way to find
1347 * them would be to scan the entire index. Alternatively, some provision could
1348 * be made to record the size of inodes at the start of commit, which would seem
1349 * very cumbersome for a scenario that is quite unlikely and the only negative
1350 * consequence of which is wasted space.
1351 *
1352 * This functions returns %0 on success and a negative error code on failure.
1353 */
1354int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1355			     int deletion, loff_t new_size)
1356{
1357	ino_t inum = key_inum(c, key);
1358	struct size_entry *e;
1359	int err;
1360
1361	switch (key_type(c, key)) {
1362	case UBIFS_INO_KEY:
1363		if (deletion)
1364			remove_ino(c, inum);
1365		else {
1366			e = find_ino(c, inum);
1367			if (e) {
1368				e->i_size = new_size;
1369				e->exists = 1;
1370			} else {
1371				err = add_ino(c, inum, new_size, 0, 1);
1372				if (err)
1373					return err;
1374			}
1375		}
1376		break;
1377	case UBIFS_DATA_KEY:
1378		e = find_ino(c, inum);
1379		if (e) {
1380			if (new_size > e->d_size)
1381				e->d_size = new_size;
1382		} else {
1383			err = add_ino(c, inum, 0, new_size, 0);
1384			if (err)
1385				return err;
1386		}
1387		break;
1388	case UBIFS_TRUN_KEY:
1389		e = find_ino(c, inum);
1390		if (e)
1391			e->d_size = new_size;
1392		break;
1393	}
1394	return 0;
1395}
1396
1397/**
1398 * fix_size_in_place - fix inode size in place on flash.
1399 * @c: UBIFS file-system description object
1400 * @e: inode size information for recovery
1401 */
1402static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1403{
1404	struct ubifs_ino_node *ino = c->sbuf;
1405	unsigned char *p;
1406	union ubifs_key key;
1407	int err, lnum, offs, len;
1408	loff_t i_size;
1409	uint32_t crc;
1410
1411	/* Locate the inode node LEB number and offset */
1412	ino_key_init(c, &key, e->inum);
1413	err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1414	if (err)
1415		goto out;
1416	/*
1417	 * If the size recorded on the inode node is greater than the size that
1418	 * was calculated from nodes in the journal then don't change the inode.
1419	 */
1420	i_size = le64_to_cpu(ino->size);
1421	if (i_size >= e->d_size)
1422		return 0;
1423	/* Read the LEB */
1424	err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1425	if (err)
1426		goto out;
1427	/* Change the size field and recalculate the CRC */
1428	ino = c->sbuf + offs;
1429	ino->size = cpu_to_le64(e->d_size);
1430	len = le32_to_cpu(ino->ch.len);
1431	crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1432	ino->ch.crc = cpu_to_le32(crc);
1433	/* Work out where data in the LEB ends and free space begins */
1434	p = c->sbuf;
1435	len = c->leb_size - 1;
1436	while (p[len] == 0xff)
1437		len -= 1;
1438	len = ALIGN(len + 1, c->min_io_size);
1439	/* Atomically write the fixed LEB back again */
1440	err = ubifs_leb_change(c, lnum, c->sbuf, len);
1441	if (err)
1442		goto out;
1443	dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1444		  (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1445	return 0;
1446
1447out:
1448	ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1449		   (unsigned long)e->inum, e->i_size, e->d_size, err);
1450	return err;
1451}
1452
1453/**
1454 * inode_fix_size - fix inode size
1455 * @c: UBIFS file-system description object
1456 * @e: inode size information for recovery
1457 */
1458static int inode_fix_size(struct ubifs_info *c, struct size_entry *e)
1459{
1460	struct inode *inode;
1461	struct ubifs_inode *ui;
1462	int err;
1463
1464	if (c->ro_mount)
1465		ubifs_assert(c, !e->inode);
1466
1467	if (e->inode) {
1468		/* Remounting rw, pick up inode we stored earlier */
1469		inode = e->inode;
1470	} else {
1471		inode = ubifs_iget(c->vfs_sb, e->inum);
1472		if (IS_ERR(inode))
1473			return PTR_ERR(inode);
1474
1475		if (inode->i_size >= e->d_size) {
1476			/*
1477			 * The original inode in the index already has a size
1478			 * big enough, nothing to do
1479			 */
1480			iput(inode);
1481			return 0;
1482		}
1483
1484		dbg_rcvry("ino %lu size %lld -> %lld",
1485			  (unsigned long)e->inum,
1486			  inode->i_size, e->d_size);
1487
1488		ui = ubifs_inode(inode);
1489
1490		inode->i_size = e->d_size;
1491		ui->ui_size = e->d_size;
1492		ui->synced_i_size = e->d_size;
1493
1494		e->inode = inode;
1495	}
1496
1497	/*
1498	 * In readonly mode just keep the inode pinned in memory until we go
1499	 * readwrite. In readwrite mode write the inode to the journal with the
1500	 * fixed size.
1501	 */
1502	if (c->ro_mount)
1503		return 0;
1504
1505	err = ubifs_jnl_write_inode(c, inode);
1506
1507	iput(inode);
1508
1509	if (err)
1510		return err;
1511
1512	rb_erase(&e->rb, &c->size_tree);
1513	kfree(e);
1514
1515	return 0;
1516}
1517
1518/**
1519 * ubifs_recover_size - recover inode size.
1520 * @c: UBIFS file-system description object
1521 * @in_place: If true, do a in-place size fixup
1522 *
1523 * This function attempts to fix inode size discrepancies identified by the
1524 * 'ubifs_recover_size_accum()' function.
1525 *
1526 * This functions returns %0 on success and a negative error code on failure.
1527 */
1528int ubifs_recover_size(struct ubifs_info *c, bool in_place)
1529{
1530	struct rb_node *this = rb_first(&c->size_tree);
1531
1532	while (this) {
1533		struct size_entry *e;
1534		int err;
1535
1536		e = rb_entry(this, struct size_entry, rb);
1537
1538		this = rb_next(this);
1539
1540		if (!e->exists) {
1541			union ubifs_key key;
1542
1543			ino_key_init(c, &key, e->inum);
1544			err = ubifs_tnc_lookup(c, &key, c->sbuf);
1545			if (err && err != -ENOENT)
1546				return err;
1547			if (err == -ENOENT) {
1548				/* Remove data nodes that have no inode */
1549				dbg_rcvry("removing ino %lu",
1550					  (unsigned long)e->inum);
1551				err = ubifs_tnc_remove_ino(c, e->inum);
1552				if (err)
1553					return err;
1554			} else {
1555				struct ubifs_ino_node *ino = c->sbuf;
1556
1557				e->exists = 1;
1558				e->i_size = le64_to_cpu(ino->size);
1559			}
1560		}
1561
1562		if (e->exists && e->i_size < e->d_size) {
1563			ubifs_assert(c, !(c->ro_mount && in_place));
1564
1565			/*
1566			 * We found data that is outside the found inode size,
1567			 * fixup the inode size
1568			 */
1569
1570			if (in_place) {
1571				err = fix_size_in_place(c, e);
1572				if (err)
1573					return err;
1574				iput(e->inode);
1575			} else {
1576				err = inode_fix_size(c, e);
1577				if (err)
1578					return err;
1579				continue;
1580			}
1581		}
1582
1583		rb_erase(&e->rb, &c->size_tree);
1584		kfree(e);
1585	}
1586
1587	return 0;
1588}
1589