1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (���������������� ����������)
9 */
10
11/*
12 * This file implements the functions that access LEB properties and their
13 * categories. LEBs are categorized based on the needs of UBIFS, and the
14 * categories are stored as either heaps or lists to provide a fast way of
15 * finding a LEB in a particular category. For example, UBIFS may need to find
16 * an empty LEB for the journal, or a very dirty LEB for garbage collection.
17 */
18
19#include "ubifs.h"
20
21/**
22 * get_heap_comp_val - get the LEB properties value for heap comparisons.
23 * @lprops: LEB properties
24 * @cat: LEB category
25 */
26static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
27{
28	switch (cat) {
29	case LPROPS_FREE:
30		return lprops->free;
31	case LPROPS_DIRTY_IDX:
32		return lprops->free + lprops->dirty;
33	default:
34		return lprops->dirty;
35	}
36}
37
38/**
39 * move_up_lpt_heap - move a new heap entry up as far as possible.
40 * @c: UBIFS file-system description object
41 * @heap: LEB category heap
42 * @lprops: LEB properties to move
43 * @cat: LEB category
44 *
45 * New entries to a heap are added at the bottom and then moved up until the
46 * parent's value is greater.  In the case of LPT's category heaps, the value
47 * is either the amount of free space or the amount of dirty space, depending
48 * on the category.
49 */
50static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
51			     struct ubifs_lprops *lprops, int cat)
52{
53	int val1, val2, hpos;
54
55	hpos = lprops->hpos;
56	if (!hpos)
57		return; /* Already top of the heap */
58	val1 = get_heap_comp_val(lprops, cat);
59	/* Compare to parent and, if greater, move up the heap */
60	do {
61		int ppos = (hpos - 1) / 2;
62
63		val2 = get_heap_comp_val(heap->arr[ppos], cat);
64		if (val2 >= val1)
65			return;
66		/* Greater than parent so move up */
67		heap->arr[ppos]->hpos = hpos;
68		heap->arr[hpos] = heap->arr[ppos];
69		heap->arr[ppos] = lprops;
70		lprops->hpos = ppos;
71		hpos = ppos;
72	} while (hpos);
73}
74
75/**
76 * adjust_lpt_heap - move a changed heap entry up or down the heap.
77 * @c: UBIFS file-system description object
78 * @heap: LEB category heap
79 * @lprops: LEB properties to move
80 * @hpos: heap position of @lprops
81 * @cat: LEB category
82 *
83 * Changed entries in a heap are moved up or down until the parent's value is
84 * greater.  In the case of LPT's category heaps, the value is either the amount
85 * of free space or the amount of dirty space, depending on the category.
86 */
87static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
88			    struct ubifs_lprops *lprops, int hpos, int cat)
89{
90	int val1, val2, val3, cpos;
91
92	val1 = get_heap_comp_val(lprops, cat);
93	/* Compare to parent and, if greater than parent, move up the heap */
94	if (hpos) {
95		int ppos = (hpos - 1) / 2;
96
97		val2 = get_heap_comp_val(heap->arr[ppos], cat);
98		if (val1 > val2) {
99			/* Greater than parent so move up */
100			while (1) {
101				heap->arr[ppos]->hpos = hpos;
102				heap->arr[hpos] = heap->arr[ppos];
103				heap->arr[ppos] = lprops;
104				lprops->hpos = ppos;
105				hpos = ppos;
106				if (!hpos)
107					return;
108				ppos = (hpos - 1) / 2;
109				val2 = get_heap_comp_val(heap->arr[ppos], cat);
110				if (val1 <= val2)
111					return;
112				/* Still greater than parent so keep going */
113			}
114		}
115	}
116
117	/* Not greater than parent, so compare to children */
118	while (1) {
119		/* Compare to left child */
120		cpos = hpos * 2 + 1;
121		if (cpos >= heap->cnt)
122			return;
123		val2 = get_heap_comp_val(heap->arr[cpos], cat);
124		if (val1 < val2) {
125			/* Less than left child, so promote biggest child */
126			if (cpos + 1 < heap->cnt) {
127				val3 = get_heap_comp_val(heap->arr[cpos + 1],
128							 cat);
129				if (val3 > val2)
130					cpos += 1; /* Right child is bigger */
131			}
132			heap->arr[cpos]->hpos = hpos;
133			heap->arr[hpos] = heap->arr[cpos];
134			heap->arr[cpos] = lprops;
135			lprops->hpos = cpos;
136			hpos = cpos;
137			continue;
138		}
139		/* Compare to right child */
140		cpos += 1;
141		if (cpos >= heap->cnt)
142			return;
143		val3 = get_heap_comp_val(heap->arr[cpos], cat);
144		if (val1 < val3) {
145			/* Less than right child, so promote right child */
146			heap->arr[cpos]->hpos = hpos;
147			heap->arr[hpos] = heap->arr[cpos];
148			heap->arr[cpos] = lprops;
149			lprops->hpos = cpos;
150			hpos = cpos;
151			continue;
152		}
153		return;
154	}
155}
156
157/**
158 * add_to_lpt_heap - add LEB properties to a LEB category heap.
159 * @c: UBIFS file-system description object
160 * @lprops: LEB properties to add
161 * @cat: LEB category
162 *
163 * This function returns %1 if @lprops is added to the heap for LEB category
164 * @cat, otherwise %0 is returned because the heap is full.
165 */
166static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
167			   int cat)
168{
169	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
170
171	if (heap->cnt >= heap->max_cnt) {
172		const int b = LPT_HEAP_SZ / 2 - 1;
173		int cpos, val1, val2;
174
175		/* Compare to some other LEB on the bottom of heap */
176		/* Pick a position kind of randomly */
177		cpos = (((size_t)lprops >> 4) & b) + b;
178		ubifs_assert(c, cpos >= b);
179		ubifs_assert(c, cpos < LPT_HEAP_SZ);
180		ubifs_assert(c, cpos < heap->cnt);
181
182		val1 = get_heap_comp_val(lprops, cat);
183		val2 = get_heap_comp_val(heap->arr[cpos], cat);
184		if (val1 > val2) {
185			struct ubifs_lprops *lp;
186
187			lp = heap->arr[cpos];
188			lp->flags &= ~LPROPS_CAT_MASK;
189			lp->flags |= LPROPS_UNCAT;
190			list_add(&lp->list, &c->uncat_list);
191			lprops->hpos = cpos;
192			heap->arr[cpos] = lprops;
193			move_up_lpt_heap(c, heap, lprops, cat);
194			dbg_check_heap(c, heap, cat, lprops->hpos);
195			return 1; /* Added to heap */
196		}
197		dbg_check_heap(c, heap, cat, -1);
198		return 0; /* Not added to heap */
199	} else {
200		lprops->hpos = heap->cnt++;
201		heap->arr[lprops->hpos] = lprops;
202		move_up_lpt_heap(c, heap, lprops, cat);
203		dbg_check_heap(c, heap, cat, lprops->hpos);
204		return 1; /* Added to heap */
205	}
206}
207
208/**
209 * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
210 * @c: UBIFS file-system description object
211 * @lprops: LEB properties to remove
212 * @cat: LEB category
213 */
214static void remove_from_lpt_heap(struct ubifs_info *c,
215				 struct ubifs_lprops *lprops, int cat)
216{
217	struct ubifs_lpt_heap *heap;
218	int hpos = lprops->hpos;
219
220	heap = &c->lpt_heap[cat - 1];
221	ubifs_assert(c, hpos >= 0 && hpos < heap->cnt);
222	ubifs_assert(c, heap->arr[hpos] == lprops);
223	heap->cnt -= 1;
224	if (hpos < heap->cnt) {
225		heap->arr[hpos] = heap->arr[heap->cnt];
226		heap->arr[hpos]->hpos = hpos;
227		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
228	}
229	dbg_check_heap(c, heap, cat, -1);
230}
231
232/**
233 * lpt_heap_replace - replace lprops in a category heap.
234 * @c: UBIFS file-system description object
235 * @new_lprops: LEB properties with which to replace
236 * @cat: LEB category
237 *
238 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
239 * and the lprops that the pnode contains.  When that happens, references in
240 * the category heaps to those lprops must be updated to point to the new
241 * lprops.  This function does that.
242 */
243static void lpt_heap_replace(struct ubifs_info *c,
244			     struct ubifs_lprops *new_lprops, int cat)
245{
246	struct ubifs_lpt_heap *heap;
247	int hpos = new_lprops->hpos;
248
249	heap = &c->lpt_heap[cat - 1];
250	heap->arr[hpos] = new_lprops;
251}
252
253/**
254 * ubifs_add_to_cat - add LEB properties to a category list or heap.
255 * @c: UBIFS file-system description object
256 * @lprops: LEB properties to add
257 * @cat: LEB category to which to add
258 *
259 * LEB properties are categorized to enable fast find operations.
260 */
261void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
262		      int cat)
263{
264	switch (cat) {
265	case LPROPS_DIRTY:
266	case LPROPS_DIRTY_IDX:
267	case LPROPS_FREE:
268		if (add_to_lpt_heap(c, lprops, cat))
269			break;
270		/* No more room on heap so make it un-categorized */
271		cat = LPROPS_UNCAT;
272		fallthrough;
273	case LPROPS_UNCAT:
274		list_add(&lprops->list, &c->uncat_list);
275		break;
276	case LPROPS_EMPTY:
277		list_add(&lprops->list, &c->empty_list);
278		break;
279	case LPROPS_FREEABLE:
280		list_add(&lprops->list, &c->freeable_list);
281		c->freeable_cnt += 1;
282		break;
283	case LPROPS_FRDI_IDX:
284		list_add(&lprops->list, &c->frdi_idx_list);
285		break;
286	default:
287		ubifs_assert(c, 0);
288	}
289
290	lprops->flags &= ~LPROPS_CAT_MASK;
291	lprops->flags |= cat;
292	c->in_a_category_cnt += 1;
293	ubifs_assert(c, c->in_a_category_cnt <= c->main_lebs);
294}
295
296/**
297 * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
298 * @c: UBIFS file-system description object
299 * @lprops: LEB properties to remove
300 * @cat: LEB category from which to remove
301 *
302 * LEB properties are categorized to enable fast find operations.
303 */
304static void ubifs_remove_from_cat(struct ubifs_info *c,
305				  struct ubifs_lprops *lprops, int cat)
306{
307	switch (cat) {
308	case LPROPS_DIRTY:
309	case LPROPS_DIRTY_IDX:
310	case LPROPS_FREE:
311		remove_from_lpt_heap(c, lprops, cat);
312		break;
313	case LPROPS_FREEABLE:
314		c->freeable_cnt -= 1;
315		ubifs_assert(c, c->freeable_cnt >= 0);
316		fallthrough;
317	case LPROPS_UNCAT:
318	case LPROPS_EMPTY:
319	case LPROPS_FRDI_IDX:
320		ubifs_assert(c, !list_empty(&lprops->list));
321		list_del(&lprops->list);
322		break;
323	default:
324		ubifs_assert(c, 0);
325	}
326
327	c->in_a_category_cnt -= 1;
328	ubifs_assert(c, c->in_a_category_cnt >= 0);
329}
330
331/**
332 * ubifs_replace_cat - replace lprops in a category list or heap.
333 * @c: UBIFS file-system description object
334 * @old_lprops: LEB properties to replace
335 * @new_lprops: LEB properties with which to replace
336 *
337 * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
338 * and the lprops that the pnode contains. When that happens, references in
339 * category lists and heaps must be replaced. This function does that.
340 */
341void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
342		       struct ubifs_lprops *new_lprops)
343{
344	int cat;
345
346	cat = new_lprops->flags & LPROPS_CAT_MASK;
347	switch (cat) {
348	case LPROPS_DIRTY:
349	case LPROPS_DIRTY_IDX:
350	case LPROPS_FREE:
351		lpt_heap_replace(c, new_lprops, cat);
352		break;
353	case LPROPS_UNCAT:
354	case LPROPS_EMPTY:
355	case LPROPS_FREEABLE:
356	case LPROPS_FRDI_IDX:
357		list_replace(&old_lprops->list, &new_lprops->list);
358		break;
359	default:
360		ubifs_assert(c, 0);
361	}
362}
363
364/**
365 * ubifs_ensure_cat - ensure LEB properties are categorized.
366 * @c: UBIFS file-system description object
367 * @lprops: LEB properties
368 *
369 * A LEB may have fallen off of the bottom of a heap, and ended up as
370 * un-categorized even though it has enough space for us now. If that is the
371 * case this function will put the LEB back onto a heap.
372 */
373void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
374{
375	int cat = lprops->flags & LPROPS_CAT_MASK;
376
377	if (cat != LPROPS_UNCAT)
378		return;
379	cat = ubifs_categorize_lprops(c, lprops);
380	if (cat == LPROPS_UNCAT)
381		return;
382	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
383	ubifs_add_to_cat(c, lprops, cat);
384}
385
386/**
387 * ubifs_categorize_lprops - categorize LEB properties.
388 * @c: UBIFS file-system description object
389 * @lprops: LEB properties to categorize
390 *
391 * LEB properties are categorized to enable fast find operations. This function
392 * returns the LEB category to which the LEB properties belong. Note however
393 * that if the LEB category is stored as a heap and the heap is full, the
394 * LEB properties may have their category changed to %LPROPS_UNCAT.
395 */
396int ubifs_categorize_lprops(const struct ubifs_info *c,
397			    const struct ubifs_lprops *lprops)
398{
399	if (lprops->flags & LPROPS_TAKEN)
400		return LPROPS_UNCAT;
401
402	if (lprops->free == c->leb_size) {
403		ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
404		return LPROPS_EMPTY;
405	}
406
407	if (lprops->free + lprops->dirty == c->leb_size) {
408		if (lprops->flags & LPROPS_INDEX)
409			return LPROPS_FRDI_IDX;
410		else
411			return LPROPS_FREEABLE;
412	}
413
414	if (lprops->flags & LPROPS_INDEX) {
415		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
416			return LPROPS_DIRTY_IDX;
417	} else {
418		if (lprops->dirty >= c->dead_wm &&
419		    lprops->dirty > lprops->free)
420			return LPROPS_DIRTY;
421		if (lprops->free > 0)
422			return LPROPS_FREE;
423	}
424
425	return LPROPS_UNCAT;
426}
427
428/**
429 * change_category - change LEB properties category.
430 * @c: UBIFS file-system description object
431 * @lprops: LEB properties to re-categorize
432 *
433 * LEB properties are categorized to enable fast find operations. When the LEB
434 * properties change they must be re-categorized.
435 */
436static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
437{
438	int old_cat = lprops->flags & LPROPS_CAT_MASK;
439	int new_cat = ubifs_categorize_lprops(c, lprops);
440
441	if (old_cat == new_cat) {
442		struct ubifs_lpt_heap *heap;
443
444		/* lprops on a heap now must be moved up or down */
445		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
446			return; /* Not on a heap */
447		heap = &c->lpt_heap[new_cat - 1];
448		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
449	} else {
450		ubifs_remove_from_cat(c, lprops, old_cat);
451		ubifs_add_to_cat(c, lprops, new_cat);
452	}
453}
454
455/**
456 * ubifs_calc_dark - calculate LEB dark space size.
457 * @c: the UBIFS file-system description object
458 * @spc: amount of free and dirty space in the LEB
459 *
460 * This function calculates and returns amount of dark space in an LEB which
461 * has @spc bytes of free and dirty space.
462 *
463 * UBIFS is trying to account the space which might not be usable, and this
464 * space is called "dark space". For example, if an LEB has only %512 free
465 * bytes, it is dark space, because it cannot fit a large data node.
466 */
467int ubifs_calc_dark(const struct ubifs_info *c, int spc)
468{
469	ubifs_assert(c, !(spc & 7));
470
471	if (spc < c->dark_wm)
472		return spc;
473
474	/*
475	 * If we have slightly more space then the dark space watermark, we can
476	 * anyway safely assume it we'll be able to write a node of the
477	 * smallest size there.
478	 */
479	if (spc - c->dark_wm < MIN_WRITE_SZ)
480		return spc - MIN_WRITE_SZ;
481
482	return c->dark_wm;
483}
484
485/**
486 * is_lprops_dirty - determine if LEB properties are dirty.
487 * @c: the UBIFS file-system description object
488 * @lprops: LEB properties to test
489 */
490static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
491{
492	struct ubifs_pnode *pnode;
493	int pos;
494
495	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
496	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
497						   struct ubifs_pnode,
498						   lprops[0]);
499	return !test_bit(COW_CNODE, &pnode->flags) &&
500	       test_bit(DIRTY_CNODE, &pnode->flags);
501}
502
503/**
504 * ubifs_change_lp - change LEB properties.
505 * @c: the UBIFS file-system description object
506 * @lp: LEB properties to change
507 * @free: new free space amount
508 * @dirty: new dirty space amount
509 * @flags: new flags
510 * @idx_gc_cnt: change to the count of @idx_gc list
511 *
512 * This function changes LEB properties (@free, @dirty or @flag). However, the
513 * property which has the %LPROPS_NC value is not changed. Returns a pointer to
514 * the updated LEB properties on success and a negative error code on failure.
515 *
516 * Note, the LEB properties may have had to be copied (due to COW) and
517 * consequently the pointer returned may not be the same as the pointer
518 * passed.
519 */
520const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
521					   const struct ubifs_lprops *lp,
522					   int free, int dirty, int flags,
523					   int idx_gc_cnt)
524{
525	/*
526	 * This is the only function that is allowed to change lprops, so we
527	 * discard the "const" qualifier.
528	 */
529	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
530
531	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
532	       lprops->lnum, free, dirty, flags);
533
534	ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
535	ubifs_assert(c, c->lst.empty_lebs >= 0 &&
536		     c->lst.empty_lebs <= c->main_lebs);
537	ubifs_assert(c, c->freeable_cnt >= 0);
538	ubifs_assert(c, c->freeable_cnt <= c->main_lebs);
539	ubifs_assert(c, c->lst.taken_empty_lebs >= 0);
540	ubifs_assert(c, c->lst.taken_empty_lebs <= c->lst.empty_lebs);
541	ubifs_assert(c, !(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
542	ubifs_assert(c, !(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
543	ubifs_assert(c, !(c->lst.total_used & 7));
544	ubifs_assert(c, free == LPROPS_NC || free >= 0);
545	ubifs_assert(c, dirty == LPROPS_NC || dirty >= 0);
546
547	if (!is_lprops_dirty(c, lprops)) {
548		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
549		if (IS_ERR(lprops))
550			return lprops;
551	} else
552		ubifs_assert(c, lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
553
554	ubifs_assert(c, !(lprops->free & 7) && !(lprops->dirty & 7));
555
556	spin_lock(&c->space_lock);
557	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
558		c->lst.taken_empty_lebs -= 1;
559
560	if (!(lprops->flags & LPROPS_INDEX)) {
561		int old_spc;
562
563		old_spc = lprops->free + lprops->dirty;
564		if (old_spc < c->dead_wm)
565			c->lst.total_dead -= old_spc;
566		else
567			c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
568
569		c->lst.total_used -= c->leb_size - old_spc;
570	}
571
572	if (free != LPROPS_NC) {
573		free = ALIGN(free, 8);
574		c->lst.total_free += free - lprops->free;
575
576		/* Increase or decrease empty LEBs counter if needed */
577		if (free == c->leb_size) {
578			if (lprops->free != c->leb_size)
579				c->lst.empty_lebs += 1;
580		} else if (lprops->free == c->leb_size)
581			c->lst.empty_lebs -= 1;
582		lprops->free = free;
583	}
584
585	if (dirty != LPROPS_NC) {
586		dirty = ALIGN(dirty, 8);
587		c->lst.total_dirty += dirty - lprops->dirty;
588		lprops->dirty = dirty;
589	}
590
591	if (flags != LPROPS_NC) {
592		/* Take care about indexing LEBs counter if needed */
593		if ((lprops->flags & LPROPS_INDEX)) {
594			if (!(flags & LPROPS_INDEX))
595				c->lst.idx_lebs -= 1;
596		} else if (flags & LPROPS_INDEX)
597			c->lst.idx_lebs += 1;
598		lprops->flags = flags;
599	}
600
601	if (!(lprops->flags & LPROPS_INDEX)) {
602		int new_spc;
603
604		new_spc = lprops->free + lprops->dirty;
605		if (new_spc < c->dead_wm)
606			c->lst.total_dead += new_spc;
607		else
608			c->lst.total_dark += ubifs_calc_dark(c, new_spc);
609
610		c->lst.total_used += c->leb_size - new_spc;
611	}
612
613	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
614		c->lst.taken_empty_lebs += 1;
615
616	change_category(c, lprops);
617	c->idx_gc_cnt += idx_gc_cnt;
618	spin_unlock(&c->space_lock);
619	return lprops;
620}
621
622/**
623 * ubifs_get_lp_stats - get lprops statistics.
624 * @c: UBIFS file-system description object
625 * @lst: return statistics
626 */
627void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
628{
629	spin_lock(&c->space_lock);
630	memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
631	spin_unlock(&c->space_lock);
632}
633
634/**
635 * ubifs_change_one_lp - change LEB properties.
636 * @c: the UBIFS file-system description object
637 * @lnum: LEB to change properties for
638 * @free: amount of free space
639 * @dirty: amount of dirty space
640 * @flags_set: flags to set
641 * @flags_clean: flags to clean
642 * @idx_gc_cnt: change to the count of idx_gc list
643 *
644 * This function changes properties of LEB @lnum. It is a helper wrapper over
645 * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
646 * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
647 * a negative error code in case of failure.
648 */
649int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
650			int flags_set, int flags_clean, int idx_gc_cnt)
651{
652	int err = 0, flags;
653	const struct ubifs_lprops *lp;
654
655	ubifs_get_lprops(c);
656
657	lp = ubifs_lpt_lookup_dirty(c, lnum);
658	if (IS_ERR(lp)) {
659		err = PTR_ERR(lp);
660		goto out;
661	}
662
663	flags = (lp->flags | flags_set) & ~flags_clean;
664	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
665	if (IS_ERR(lp))
666		err = PTR_ERR(lp);
667
668out:
669	ubifs_release_lprops(c);
670	if (err)
671		ubifs_err(c, "cannot change properties of LEB %d, error %d",
672			  lnum, err);
673	return err;
674}
675
676/**
677 * ubifs_update_one_lp - update LEB properties.
678 * @c: the UBIFS file-system description object
679 * @lnum: LEB to change properties for
680 * @free: amount of free space
681 * @dirty: amount of dirty space to add
682 * @flags_set: flags to set
683 * @flags_clean: flags to clean
684 *
685 * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
686 * current dirty space, not substitutes it.
687 */
688int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
689			int flags_set, int flags_clean)
690{
691	int err = 0, flags;
692	const struct ubifs_lprops *lp;
693
694	ubifs_get_lprops(c);
695
696	lp = ubifs_lpt_lookup_dirty(c, lnum);
697	if (IS_ERR(lp)) {
698		err = PTR_ERR(lp);
699		goto out;
700	}
701
702	flags = (lp->flags | flags_set) & ~flags_clean;
703	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
704	if (IS_ERR(lp))
705		err = PTR_ERR(lp);
706
707out:
708	ubifs_release_lprops(c);
709	if (err)
710		ubifs_err(c, "cannot update properties of LEB %d, error %d",
711			  lnum, err);
712	return err;
713}
714
715/**
716 * ubifs_read_one_lp - read LEB properties.
717 * @c: the UBIFS file-system description object
718 * @lnum: LEB to read properties for
719 * @lp: where to store read properties
720 *
721 * This helper function reads properties of a LEB @lnum and stores them in @lp.
722 * Returns zero in case of success and a negative error code in case of
723 * failure.
724 */
725int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
726{
727	int err = 0;
728	const struct ubifs_lprops *lpp;
729
730	ubifs_get_lprops(c);
731
732	lpp = ubifs_lpt_lookup(c, lnum);
733	if (IS_ERR(lpp)) {
734		err = PTR_ERR(lpp);
735		ubifs_err(c, "cannot read properties of LEB %d, error %d",
736			  lnum, err);
737		goto out;
738	}
739
740	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
741
742out:
743	ubifs_release_lprops(c);
744	return err;
745}
746
747/**
748 * ubifs_fast_find_free - try to find a LEB with free space quickly.
749 * @c: the UBIFS file-system description object
750 *
751 * This function returns LEB properties for a LEB with free space or %NULL if
752 * the function is unable to find a LEB quickly.
753 */
754const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
755{
756	struct ubifs_lprops *lprops;
757	struct ubifs_lpt_heap *heap;
758
759	ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
760
761	heap = &c->lpt_heap[LPROPS_FREE - 1];
762	if (heap->cnt == 0)
763		return NULL;
764
765	lprops = heap->arr[0];
766	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
767	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
768	return lprops;
769}
770
771/**
772 * ubifs_fast_find_empty - try to find an empty LEB quickly.
773 * @c: the UBIFS file-system description object
774 *
775 * This function returns LEB properties for an empty LEB or %NULL if the
776 * function is unable to find an empty LEB quickly.
777 */
778const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
779{
780	struct ubifs_lprops *lprops;
781
782	ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
783
784	if (list_empty(&c->empty_list))
785		return NULL;
786
787	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
788	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
789	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
790	ubifs_assert(c, lprops->free == c->leb_size);
791	return lprops;
792}
793
794/**
795 * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
796 * @c: the UBIFS file-system description object
797 *
798 * This function returns LEB properties for a freeable LEB or %NULL if the
799 * function is unable to find a freeable LEB quickly.
800 */
801const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
802{
803	struct ubifs_lprops *lprops;
804
805	ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
806
807	if (list_empty(&c->freeable_list))
808		return NULL;
809
810	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
811	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
812	ubifs_assert(c, !(lprops->flags & LPROPS_INDEX));
813	ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
814	ubifs_assert(c, c->freeable_cnt > 0);
815	return lprops;
816}
817
818/**
819 * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
820 * @c: the UBIFS file-system description object
821 *
822 * This function returns LEB properties for a freeable index LEB or %NULL if the
823 * function is unable to find a freeable index LEB quickly.
824 */
825const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
826{
827	struct ubifs_lprops *lprops;
828
829	ubifs_assert(c, mutex_is_locked(&c->lp_mutex));
830
831	if (list_empty(&c->frdi_idx_list))
832		return NULL;
833
834	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
835	ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN));
836	ubifs_assert(c, (lprops->flags & LPROPS_INDEX));
837	ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size);
838	return lprops;
839}
840
841/*
842 * Everything below is related to debugging.
843 */
844
845/**
846 * dbg_check_cats - check category heaps and lists.
847 * @c: UBIFS file-system description object
848 *
849 * This function returns %0 on success and a negative error code on failure.
850 */
851int dbg_check_cats(struct ubifs_info *c)
852{
853	struct ubifs_lprops *lprops;
854	struct list_head *pos;
855	int i, cat;
856
857	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
858		return 0;
859
860	list_for_each_entry(lprops, &c->empty_list, list) {
861		if (lprops->free != c->leb_size) {
862			ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
863				  lprops->lnum, lprops->free, lprops->dirty,
864				  lprops->flags);
865			return -EINVAL;
866		}
867		if (lprops->flags & LPROPS_TAKEN) {
868			ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
869				  lprops->lnum, lprops->free, lprops->dirty,
870				  lprops->flags);
871			return -EINVAL;
872		}
873	}
874
875	i = 0;
876	list_for_each_entry(lprops, &c->freeable_list, list) {
877		if (lprops->free + lprops->dirty != c->leb_size) {
878			ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
879				  lprops->lnum, lprops->free, lprops->dirty,
880				  lprops->flags);
881			return -EINVAL;
882		}
883		if (lprops->flags & LPROPS_TAKEN) {
884			ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
885				  lprops->lnum, lprops->free, lprops->dirty,
886				  lprops->flags);
887			return -EINVAL;
888		}
889		i += 1;
890	}
891	if (i != c->freeable_cnt) {
892		ubifs_err(c, "freeable list count %d expected %d", i,
893			  c->freeable_cnt);
894		return -EINVAL;
895	}
896
897	i = 0;
898	list_for_each(pos, &c->idx_gc)
899		i += 1;
900	if (i != c->idx_gc_cnt) {
901		ubifs_err(c, "idx_gc list count %d expected %d", i,
902			  c->idx_gc_cnt);
903		return -EINVAL;
904	}
905
906	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
907		if (lprops->free + lprops->dirty != c->leb_size) {
908			ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
909				  lprops->lnum, lprops->free, lprops->dirty,
910				  lprops->flags);
911			return -EINVAL;
912		}
913		if (lprops->flags & LPROPS_TAKEN) {
914			ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
915				  lprops->lnum, lprops->free, lprops->dirty,
916				  lprops->flags);
917			return -EINVAL;
918		}
919		if (!(lprops->flags & LPROPS_INDEX)) {
920			ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
921				  lprops->lnum, lprops->free, lprops->dirty,
922				  lprops->flags);
923			return -EINVAL;
924		}
925	}
926
927	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
928		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
929
930		for (i = 0; i < heap->cnt; i++) {
931			lprops = heap->arr[i];
932			if (!lprops) {
933				ubifs_err(c, "null ptr in LPT heap cat %d", cat);
934				return -EINVAL;
935			}
936			if (lprops->hpos != i) {
937				ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
938				return -EINVAL;
939			}
940			if (lprops->flags & LPROPS_TAKEN) {
941				ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
942				return -EINVAL;
943			}
944		}
945	}
946
947	return 0;
948}
949
950void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
951		    int add_pos)
952{
953	int i = 0, j, err = 0;
954
955	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
956		return;
957
958	for (i = 0; i < heap->cnt; i++) {
959		struct ubifs_lprops *lprops = heap->arr[i];
960		struct ubifs_lprops *lp;
961
962		if (i != add_pos)
963			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
964				err = 1;
965				goto out;
966			}
967		if (lprops->hpos != i) {
968			err = 2;
969			goto out;
970		}
971		lp = ubifs_lpt_lookup(c, lprops->lnum);
972		if (IS_ERR(lp)) {
973			err = 3;
974			goto out;
975		}
976		if (lprops != lp) {
977			ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
978				  (size_t)lprops, (size_t)lp, lprops->lnum,
979				  lp->lnum);
980			err = 4;
981			goto out;
982		}
983		for (j = 0; j < i; j++) {
984			lp = heap->arr[j];
985			if (lp == lprops) {
986				err = 5;
987				goto out;
988			}
989			if (lp->lnum == lprops->lnum) {
990				err = 6;
991				goto out;
992			}
993		}
994	}
995out:
996	if (err) {
997		ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
998		dump_stack();
999		ubifs_dump_heap(c, heap, cat);
1000	}
1001}
1002
1003/**
1004 * scan_check_cb - scan callback.
1005 * @c: the UBIFS file-system description object
1006 * @lp: LEB properties to scan
1007 * @in_tree: whether the LEB properties are in main memory
1008 * @lst: lprops statistics to update
1009 *
1010 * This function returns a code that indicates whether the scan should continue
1011 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1012 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1013 * (%LPT_SCAN_STOP).
1014 */
1015static int scan_check_cb(struct ubifs_info *c,
1016			 const struct ubifs_lprops *lp, int in_tree,
1017			 void *arg)
1018{
1019	struct ubifs_lp_stats *lst = arg;
1020	struct ubifs_scan_leb *sleb;
1021	struct ubifs_scan_node *snod;
1022	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1023	void *buf = NULL;
1024
1025	cat = lp->flags & LPROPS_CAT_MASK;
1026	if (cat != LPROPS_UNCAT) {
1027		cat = ubifs_categorize_lprops(c, lp);
1028		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1029			ubifs_err(c, "bad LEB category %d expected %d",
1030				  (lp->flags & LPROPS_CAT_MASK), cat);
1031			return -EINVAL;
1032		}
1033	}
1034
1035	/* Check lp is on its category list (if it has one) */
1036	if (in_tree) {
1037		struct list_head *list = NULL;
1038
1039		switch (cat) {
1040		case LPROPS_EMPTY:
1041			list = &c->empty_list;
1042			break;
1043		case LPROPS_FREEABLE:
1044			list = &c->freeable_list;
1045			break;
1046		case LPROPS_FRDI_IDX:
1047			list = &c->frdi_idx_list;
1048			break;
1049		case LPROPS_UNCAT:
1050			list = &c->uncat_list;
1051			break;
1052		}
1053		if (list) {
1054			struct ubifs_lprops *lprops;
1055			int found = 0;
1056
1057			list_for_each_entry(lprops, list, list) {
1058				if (lprops == lp) {
1059					found = 1;
1060					break;
1061				}
1062			}
1063			if (!found) {
1064				ubifs_err(c, "bad LPT list (category %d)", cat);
1065				return -EINVAL;
1066			}
1067		}
1068	}
1069
1070	/* Check lp is on its category heap (if it has one) */
1071	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1072		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1073
1074		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1075		    lp != heap->arr[lp->hpos]) {
1076			ubifs_err(c, "bad LPT heap (category %d)", cat);
1077			return -EINVAL;
1078		}
1079	}
1080
1081	/*
1082	 * After an unclean unmount, empty and freeable LEBs
1083	 * may contain garbage - do not scan them.
1084	 */
1085	if (lp->free == c->leb_size) {
1086		lst->empty_lebs += 1;
1087		lst->total_free += c->leb_size;
1088		lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1089		return LPT_SCAN_CONTINUE;
1090	}
1091	if (lp->free + lp->dirty == c->leb_size &&
1092	    !(lp->flags & LPROPS_INDEX)) {
1093		lst->total_free  += lp->free;
1094		lst->total_dirty += lp->dirty;
1095		lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1096		return LPT_SCAN_CONTINUE;
1097	}
1098
1099	buf = __vmalloc(c->leb_size, GFP_NOFS);
1100	if (!buf)
1101		return -ENOMEM;
1102
1103	sleb = ubifs_scan(c, lnum, 0, buf, 0);
1104	if (IS_ERR(sleb)) {
1105		ret = PTR_ERR(sleb);
1106		if (ret == -EUCLEAN) {
1107			ubifs_dump_lprops(c);
1108			ubifs_dump_budg(c, &c->bi);
1109		}
1110		goto out;
1111	}
1112
1113	is_idx = -1;
1114	list_for_each_entry(snod, &sleb->nodes, list) {
1115		int found, level = 0;
1116
1117		cond_resched();
1118
1119		if (is_idx == -1)
1120			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1121
1122		if (is_idx && snod->type != UBIFS_IDX_NODE) {
1123			ubifs_err(c, "indexing node in data LEB %d:%d",
1124				  lnum, snod->offs);
1125			goto out_destroy;
1126		}
1127
1128		if (snod->type == UBIFS_IDX_NODE) {
1129			struct ubifs_idx_node *idx = snod->node;
1130
1131			key_read(c, ubifs_idx_key(c, idx), &snod->key);
1132			level = le16_to_cpu(idx->level);
1133		}
1134
1135		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1136					   snod->offs, is_idx);
1137		if (found) {
1138			if (found < 0)
1139				goto out_destroy;
1140			used += ALIGN(snod->len, 8);
1141		}
1142	}
1143
1144	free = c->leb_size - sleb->endpt;
1145	dirty = sleb->endpt - used;
1146
1147	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1148	    dirty < 0) {
1149		ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1150			  lnum, free, dirty);
1151		goto out_destroy;
1152	}
1153
1154	if (lp->free + lp->dirty == c->leb_size &&
1155	    free + dirty == c->leb_size)
1156		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1157		    (!is_idx && free == c->leb_size) ||
1158		    lp->free == c->leb_size) {
1159			/*
1160			 * Empty or freeable LEBs could contain index
1161			 * nodes from an uncompleted commit due to an
1162			 * unclean unmount. Or they could be empty for
1163			 * the same reason. Or it may simply not have been
1164			 * unmapped.
1165			 */
1166			free = lp->free;
1167			dirty = lp->dirty;
1168			is_idx = 0;
1169		    }
1170
1171	if (is_idx && lp->free + lp->dirty == free + dirty &&
1172	    lnum != c->ihead_lnum) {
1173		/*
1174		 * After an unclean unmount, an index LEB could have a different
1175		 * amount of free space than the value recorded by lprops. That
1176		 * is because the in-the-gaps method may use free space or
1177		 * create free space (as a side-effect of using ubi_leb_change
1178		 * and not writing the whole LEB). The incorrect free space
1179		 * value is not a problem because the index is only ever
1180		 * allocated empty LEBs, so there will never be an attempt to
1181		 * write to the free space at the end of an index LEB - except
1182		 * by the in-the-gaps method for which it is not a problem.
1183		 */
1184		free = lp->free;
1185		dirty = lp->dirty;
1186	}
1187
1188	if (lp->free != free || lp->dirty != dirty)
1189		goto out_print;
1190
1191	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1192		if (free == c->leb_size)
1193			/* Free but not unmapped LEB, it's fine */
1194			is_idx = 0;
1195		else {
1196			ubifs_err(c, "indexing node without indexing flag");
1197			goto out_print;
1198		}
1199	}
1200
1201	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1202		ubifs_err(c, "data node with indexing flag");
1203		goto out_print;
1204	}
1205
1206	if (free == c->leb_size)
1207		lst->empty_lebs += 1;
1208
1209	if (is_idx)
1210		lst->idx_lebs += 1;
1211
1212	if (!(lp->flags & LPROPS_INDEX))
1213		lst->total_used += c->leb_size - free - dirty;
1214	lst->total_free += free;
1215	lst->total_dirty += dirty;
1216
1217	if (!(lp->flags & LPROPS_INDEX)) {
1218		int spc = free + dirty;
1219
1220		if (spc < c->dead_wm)
1221			lst->total_dead += spc;
1222		else
1223			lst->total_dark += ubifs_calc_dark(c, spc);
1224	}
1225
1226	ubifs_scan_destroy(sleb);
1227	vfree(buf);
1228	return LPT_SCAN_CONTINUE;
1229
1230out_print:
1231	ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1232		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1233	ubifs_dump_leb(c, lnum);
1234out_destroy:
1235	ubifs_scan_destroy(sleb);
1236	ret = -EINVAL;
1237out:
1238	vfree(buf);
1239	return ret;
1240}
1241
1242/**
1243 * dbg_check_lprops - check all LEB properties.
1244 * @c: UBIFS file-system description object
1245 *
1246 * This function checks all LEB properties and makes sure they are all correct.
1247 * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1248 * and other negative error codes in case of other errors. This function is
1249 * called while the file system is locked (because of commit start), so no
1250 * additional locking is required. Note that locking the LPT mutex would cause
1251 * a circular lock dependency with the TNC mutex.
1252 */
1253int dbg_check_lprops(struct ubifs_info *c)
1254{
1255	int i, err;
1256	struct ubifs_lp_stats lst;
1257
1258	if (!dbg_is_chk_lprops(c))
1259		return 0;
1260
1261	/*
1262	 * As we are going to scan the media, the write buffers have to be
1263	 * synchronized.
1264	 */
1265	for (i = 0; i < c->jhead_cnt; i++) {
1266		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1267		if (err)
1268			return err;
1269	}
1270
1271	memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1272	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1273				    scan_check_cb, &lst);
1274	if (err && err != -ENOSPC)
1275		goto out;
1276
1277	if (lst.empty_lebs != c->lst.empty_lebs ||
1278	    lst.idx_lebs != c->lst.idx_lebs ||
1279	    lst.total_free != c->lst.total_free ||
1280	    lst.total_dirty != c->lst.total_dirty ||
1281	    lst.total_used != c->lst.total_used) {
1282		ubifs_err(c, "bad overall accounting");
1283		ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1284			  lst.empty_lebs, lst.idx_lebs, lst.total_free,
1285			  lst.total_dirty, lst.total_used);
1286		ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1287			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1288			  c->lst.total_dirty, c->lst.total_used);
1289		err = -EINVAL;
1290		goto out;
1291	}
1292
1293	if (lst.total_dead != c->lst.total_dead ||
1294	    lst.total_dark != c->lst.total_dark) {
1295		ubifs_err(c, "bad dead/dark space accounting");
1296		ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1297			  lst.total_dead, lst.total_dark);
1298		ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1299			  c->lst.total_dead, c->lst.total_dark);
1300		err = -EINVAL;
1301		goto out;
1302	}
1303
1304	err = dbg_check_cats(c);
1305out:
1306	return err;
1307}
1308