1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (���������������� ����������)
8 *          Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS journal.
13 *
14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15 * length and position, while a bud logical eraseblock is any LEB in the main
16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17 * contains only references to buds and some other stuff like commit
18 * start node. The idea is that when we commit the journal, we do
19 * not copy the data, the buds just become indexed. Since after the commit the
20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22 * become leafs in the future.
23 *
24 * The journal is multi-headed because we want to write data to the journal as
25 * optimally as possible. It is nice to have nodes belonging to the same inode
26 * in one LEB, so we may write data owned by different inodes to different
27 * journal heads, although at present only one data head is used.
28 *
29 * For recovery reasons, the base head contains all inode nodes, all directory
30 * entry nodes and all truncate nodes. This means that the other heads contain
31 * only data nodes.
32 *
33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34 * time of commit, the bud is retained to continue to be used in the journal,
35 * even though the "front" of the LEB is now indexed. In that case, the log
36 * reference contains the offset where the bud starts for the purposes of the
37 * journal.
38 *
39 * The journal size has to be limited, because the larger is the journal, the
40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41 * takes (indexing in the TNC).
42 *
43 * All the journal write operations like 'ubifs_jnl_update()' here, which write
44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45 * unclean reboots. Should the unclean reboot happen, the recovery code drops
46 * all the nodes.
47 */
48
49#include "ubifs.h"
50
51/**
52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53 * @ino: the inode to zero out
54 */
55static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56{
57	memset(ino->padding1, 0, 4);
58	memset(ino->padding2, 0, 26);
59}
60
61/**
62 * zero_dent_node_unused - zero out unused fields of an on-flash directory
63 *                         entry node.
64 * @dent: the directory entry to zero out
65 */
66static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67{
68	dent->padding1 = 0;
69}
70
71/**
72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73 *                         node.
74 * @trun: the truncation node to zero out
75 */
76static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77{
78	memset(trun->padding, 0, 12);
79}
80
81static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82{
83	if (ubifs_authenticated(c))
84		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85}
86
87/**
88 * reserve_space - reserve space in the journal.
89 * @c: UBIFS file-system description object
90 * @jhead: journal head number
91 * @len: node length
92 *
93 * This function reserves space in journal head @head. If the reservation
94 * succeeded, the journal head stays locked and later has to be unlocked using
95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96 * be done, and other negative error codes in case of other failures.
97 */
98static int reserve_space(struct ubifs_info *c, int jhead, int len)
99{
100	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102
103	/*
104	 * Typically, the base head has smaller nodes written to it, so it is
105	 * better to try to allocate space at the ends of eraseblocks. This is
106	 * what the squeeze parameter does.
107	 */
108	ubifs_assert(c, !c->ro_media && !c->ro_mount);
109	squeeze = (jhead == BASEHD);
110again:
111	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112
113	if (c->ro_error) {
114		err = -EROFS;
115		goto out_unlock;
116	}
117
118	avail = c->leb_size - wbuf->offs - wbuf->used;
119	if (wbuf->lnum != -1 && avail >= len)
120		return 0;
121
122	/*
123	 * Write buffer wasn't seek'ed or there is no enough space - look for an
124	 * LEB with some empty space.
125	 */
126	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127	if (lnum >= 0)
128		goto out;
129
130	err = lnum;
131	if (err != -ENOSPC)
132		goto out_unlock;
133
134	/*
135	 * No free space, we have to run garbage collector to make
136	 * some. But the write-buffer mutex has to be unlocked because
137	 * GC also takes it.
138	 */
139	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140	mutex_unlock(&wbuf->io_mutex);
141
142	lnum = ubifs_garbage_collect(c, 0);
143	if (lnum < 0) {
144		err = lnum;
145		if (err != -ENOSPC)
146			return err;
147
148		/*
149		 * GC could not make a free LEB. But someone else may
150		 * have allocated new bud for this journal head,
151		 * because we dropped @wbuf->io_mutex, so try once
152		 * again.
153		 */
154		dbg_jnl("GC couldn't make a free LEB for jhead %s",
155			dbg_jhead(jhead));
156		if (retries++ < 2) {
157			dbg_jnl("retry (%d)", retries);
158			goto again;
159		}
160
161		dbg_jnl("return -ENOSPC");
162		return err;
163	}
164
165	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167	avail = c->leb_size - wbuf->offs - wbuf->used;
168
169	if (wbuf->lnum != -1 && avail >= len) {
170		/*
171		 * Someone else has switched the journal head and we have
172		 * enough space now. This happens when more than one process is
173		 * trying to write to the same journal head at the same time.
174		 */
175		dbg_jnl("return LEB %d back, already have LEB %d:%d",
176			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177		err = ubifs_return_leb(c, lnum);
178		if (err)
179			goto out_unlock;
180		return 0;
181	}
182
183	offs = 0;
184
185out:
186	/*
187	 * Make sure we synchronize the write-buffer before we add the new bud
188	 * to the log. Otherwise we may have a power cut after the log
189	 * reference node for the last bud (@lnum) is written but before the
190	 * write-buffer data are written to the next-to-last bud
191	 * (@wbuf->lnum). And the effect would be that the recovery would see
192	 * that there is corruption in the next-to-last bud.
193	 */
194	err = ubifs_wbuf_sync_nolock(wbuf);
195	if (err)
196		goto out_return;
197	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198	if (err)
199		goto out_return;
200	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201	if (err)
202		goto out_unlock;
203
204	return 0;
205
206out_unlock:
207	mutex_unlock(&wbuf->io_mutex);
208	return err;
209
210out_return:
211	/* An error occurred and the LEB has to be returned to lprops */
212	ubifs_assert(c, err < 0);
213	err1 = ubifs_return_leb(c, lnum);
214	if (err1 && err == -EAGAIN)
215		/*
216		 * Return original error code only if it is not %-EAGAIN,
217		 * which is not really an error. Otherwise, return the error
218		 * code of 'ubifs_return_leb()'.
219		 */
220		err = err1;
221	mutex_unlock(&wbuf->io_mutex);
222	return err;
223}
224
225static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226			     int len, struct shash_desc *hash)
227{
228	int auth_node_size = ubifs_auth_node_sz(c);
229	int err;
230
231	while (1) {
232		const struct ubifs_ch *ch = node;
233		int nodelen = le32_to_cpu(ch->len);
234
235		ubifs_assert(c, len >= auth_node_size);
236
237		if (len == auth_node_size)
238			break;
239
240		ubifs_assert(c, len > nodelen);
241		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242
243		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244		if (err)
245			return err;
246
247		node += ALIGN(nodelen, 8);
248		len -= ALIGN(nodelen, 8);
249	}
250
251	return ubifs_prepare_auth_node(c, node, hash);
252}
253
254/**
255 * write_head - write data to a journal head.
256 * @c: UBIFS file-system description object
257 * @jhead: journal head
258 * @buf: buffer to write
259 * @len: length to write
260 * @lnum: LEB number written is returned here
261 * @offs: offset written is returned here
262 * @sync: non-zero if the write-buffer has to by synchronized
263 *
264 * This function writes data to the reserved space of journal head @jhead.
265 * Returns zero in case of success and a negative error code in case of
266 * failure.
267 */
268static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269		      int *lnum, int *offs, int sync)
270{
271	int err;
272	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273
274	ubifs_assert(c, jhead != GCHD);
275
276	*lnum = c->jheads[jhead].wbuf.lnum;
277	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278	dbg_jnl("jhead %s, LEB %d:%d, len %d",
279		dbg_jhead(jhead), *lnum, *offs, len);
280
281	if (ubifs_authenticated(c)) {
282		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283		if (err)
284			return err;
285	}
286
287	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288	if (err)
289		return err;
290	if (sync)
291		err = ubifs_wbuf_sync_nolock(wbuf);
292	return err;
293}
294
295/**
296 * __queue_and_wait - queue a task and wait until the task is waked up.
297 * @c: UBIFS file-system description object
298 *
299 * This function adds current task in queue and waits until the task is waked
300 * up. This function should be called with @c->reserve_space_wq locked.
301 */
302static void __queue_and_wait(struct ubifs_info *c)
303{
304	DEFINE_WAIT(wait);
305
306	__add_wait_queue_entry_tail_exclusive(&c->reserve_space_wq, &wait);
307	set_current_state(TASK_UNINTERRUPTIBLE);
308	spin_unlock(&c->reserve_space_wq.lock);
309
310	schedule();
311	finish_wait(&c->reserve_space_wq, &wait);
312}
313
314/**
315 * wait_for_reservation - try queuing current task to wait until waked up.
316 * @c: UBIFS file-system description object
317 *
318 * This function queues current task to wait until waked up, if queuing is
319 * started(@c->need_wait_space is not %0). Returns %true if current task is
320 * added in queue, otherwise %false is returned.
321 */
322static bool wait_for_reservation(struct ubifs_info *c)
323{
324	if (likely(atomic_read(&c->need_wait_space) == 0))
325		/* Quick path to check whether queuing is started. */
326		return false;
327
328	spin_lock(&c->reserve_space_wq.lock);
329	if (atomic_read(&c->need_wait_space) == 0) {
330		/* Queuing is not started, don't queue current task. */
331		spin_unlock(&c->reserve_space_wq.lock);
332		return false;
333	}
334
335	__queue_and_wait(c);
336	return true;
337}
338
339/**
340 * wake_up_reservation - wake up first task in queue or stop queuing.
341 * @c: UBIFS file-system description object
342 *
343 * This function wakes up the first task in queue if it exists, or stops
344 * queuing if no tasks in queue.
345 */
346static void wake_up_reservation(struct ubifs_info *c)
347{
348	spin_lock(&c->reserve_space_wq.lock);
349	if (waitqueue_active(&c->reserve_space_wq))
350		wake_up_locked(&c->reserve_space_wq);
351	else
352		/*
353		 * Compared with wait_for_reservation(), set @c->need_wait_space
354		 * under the protection of wait queue lock, which can avoid that
355		 * @c->need_wait_space is set to 0 after new task queued.
356		 */
357		atomic_set(&c->need_wait_space, 0);
358	spin_unlock(&c->reserve_space_wq.lock);
359}
360
361/**
362 * wake_up_reservation - add current task in queue or start queuing.
363 * @c: UBIFS file-system description object
364 *
365 * This function starts queuing if queuing is not started, otherwise adds
366 * current task in queue.
367 */
368static void add_or_start_queue(struct ubifs_info *c)
369{
370	spin_lock(&c->reserve_space_wq.lock);
371	if (atomic_cmpxchg(&c->need_wait_space, 0, 1) == 0) {
372		/* Starts queuing, task can go on directly. */
373		spin_unlock(&c->reserve_space_wq.lock);
374		return;
375	}
376
377	/*
378	 * There are at least two tasks have retried more than 32 times
379	 * at certain point, first task has started queuing, just queue
380	 * the left tasks.
381	 */
382	__queue_and_wait(c);
383}
384
385/**
386 * make_reservation - reserve journal space.
387 * @c: UBIFS file-system description object
388 * @jhead: journal head
389 * @len: how many bytes to reserve
390 *
391 * This function makes space reservation in journal head @jhead. The function
392 * takes the commit lock and locks the journal head, and the caller has to
393 * unlock the head and finish the reservation with 'finish_reservation()'.
394 * Returns zero in case of success and a negative error code in case of
395 * failure.
396 *
397 * Note, the journal head may be unlocked as soon as the data is written, while
398 * the commit lock has to be released after the data has been added to the
399 * TNC.
400 */
401static int make_reservation(struct ubifs_info *c, int jhead, int len)
402{
403	int err, cmt_retries = 0, nospc_retries = 0;
404	bool blocked = wait_for_reservation(c);
405
406again:
407	down_read(&c->commit_sem);
408	err = reserve_space(c, jhead, len);
409	if (!err) {
410		/* c->commit_sem will get released via finish_reservation(). */
411		goto out_wake_up;
412	}
413	up_read(&c->commit_sem);
414
415	if (err == -ENOSPC) {
416		/*
417		 * GC could not make any progress. We should try to commit
418		 * because it could make some dirty space and GC would make
419		 * progress, so make the error -EAGAIN so that the below
420		 * will commit and re-try.
421		 */
422		nospc_retries++;
423		dbg_jnl("no space, retry");
424		err = -EAGAIN;
425	}
426
427	if (err != -EAGAIN)
428		goto out;
429
430	/*
431	 * -EAGAIN means that the journal is full or too large, or the above
432	 * code wants to do one commit. Do this and re-try.
433	 */
434	if (cmt_retries > 128) {
435		/*
436		 * This should not happen unless:
437		 * 1. The journal size limitations are too tough.
438		 * 2. The budgeting is incorrect. We always have to be able to
439		 *    write to the media, because all operations are budgeted.
440		 *    Deletions are not budgeted, though, but we reserve an
441		 *    extra LEB for them.
442		 */
443		ubifs_err(c, "stuck in space allocation, nospc_retries %d",
444			  nospc_retries);
445		err = -ENOSPC;
446		goto out;
447	} else if (cmt_retries > 32) {
448		/*
449		 * It's almost impossible to happen, unless there are many tasks
450		 * making reservation concurrently and someone task has retried
451		 * gc + commit for many times, generated available space during
452		 * this period are grabbed by other tasks.
453		 * But if it happens, start queuing up all tasks that will make
454		 * space reservation, then there is only one task making space
455		 * reservation at any time, and it can always make success under
456		 * the premise of correct budgeting.
457		 */
458		ubifs_warn(c, "too many space allocation cmt_retries (%d) "
459			   "nospc_retries (%d), start queuing tasks",
460			   cmt_retries, nospc_retries);
461
462		if (!blocked) {
463			blocked = true;
464			add_or_start_queue(c);
465		}
466	}
467
468	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
469		cmt_retries);
470	cmt_retries += 1;
471
472	err = ubifs_run_commit(c);
473	if (err)
474		goto out_wake_up;
475	goto again;
476
477out:
478	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
479		  len, jhead, err);
480	if (err == -ENOSPC) {
481		/* This are some budgeting problems, print useful information */
482		down_write(&c->commit_sem);
483		dump_stack();
484		ubifs_dump_budg(c, &c->bi);
485		ubifs_dump_lprops(c);
486		cmt_retries = dbg_check_lprops(c);
487		up_write(&c->commit_sem);
488	}
489out_wake_up:
490	if (blocked) {
491		/*
492		 * Only tasks that have ever started queuing or ever been queued
493		 * can wake up other queued tasks, which can make sure that
494		 * there is only one task waked up to make space reservation.
495		 * For example:
496		 *      task A          task B           task C
497		 *                 make_reservation  make_reservation
498		 * reserve_space // 0
499		 * wake_up_reservation
500		 *                  atomic_cmpxchg // 0, start queuing
501		 *                  reserve_space
502		 *                                    wait_for_reservation
503		 *                                     __queue_and_wait
504		 *                                      add_wait_queue
505		 *  if (blocked) // false
506		 *  // So that task C won't be waked up to race with task B
507		 */
508		wake_up_reservation(c);
509	}
510	return err;
511}
512
513/**
514 * release_head - release a journal head.
515 * @c: UBIFS file-system description object
516 * @jhead: journal head
517 *
518 * This function releases journal head @jhead which was locked by
519 * the 'make_reservation()' function. It has to be called after each successful
520 * 'make_reservation()' invocation.
521 */
522static inline void release_head(struct ubifs_info *c, int jhead)
523{
524	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
525}
526
527/**
528 * finish_reservation - finish a reservation.
529 * @c: UBIFS file-system description object
530 *
531 * This function finishes journal space reservation. It must be called after
532 * 'make_reservation()'.
533 */
534static void finish_reservation(struct ubifs_info *c)
535{
536	up_read(&c->commit_sem);
537}
538
539/**
540 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
541 * @mode: inode mode
542 */
543static int get_dent_type(int mode)
544{
545	switch (mode & S_IFMT) {
546	case S_IFREG:
547		return UBIFS_ITYPE_REG;
548	case S_IFDIR:
549		return UBIFS_ITYPE_DIR;
550	case S_IFLNK:
551		return UBIFS_ITYPE_LNK;
552	case S_IFBLK:
553		return UBIFS_ITYPE_BLK;
554	case S_IFCHR:
555		return UBIFS_ITYPE_CHR;
556	case S_IFIFO:
557		return UBIFS_ITYPE_FIFO;
558	case S_IFSOCK:
559		return UBIFS_ITYPE_SOCK;
560	default:
561		BUG();
562	}
563	return 0;
564}
565
566/**
567 * pack_inode - pack an inode node.
568 * @c: UBIFS file-system description object
569 * @ino: buffer in which to pack inode node
570 * @inode: inode to pack
571 * @last: indicates the last node of the group
572 */
573static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
574		       const struct inode *inode, int last)
575{
576	int data_len = 0, last_reference = !inode->i_nlink;
577	struct ubifs_inode *ui = ubifs_inode(inode);
578
579	ino->ch.node_type = UBIFS_INO_NODE;
580	ino_key_init_flash(c, &ino->key, inode->i_ino);
581	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
582	ino->atime_sec  = cpu_to_le64(inode_get_atime_sec(inode));
583	ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
584	ino->ctime_sec  = cpu_to_le64(inode_get_ctime_sec(inode));
585	ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
586	ino->mtime_sec  = cpu_to_le64(inode_get_mtime_sec(inode));
587	ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
588	ino->uid   = cpu_to_le32(i_uid_read(inode));
589	ino->gid   = cpu_to_le32(i_gid_read(inode));
590	ino->mode  = cpu_to_le32(inode->i_mode);
591	ino->flags = cpu_to_le32(ui->flags);
592	ino->size  = cpu_to_le64(ui->ui_size);
593	ino->nlink = cpu_to_le32(inode->i_nlink);
594	ino->compr_type  = cpu_to_le16(ui->compr_type);
595	ino->data_len    = cpu_to_le32(ui->data_len);
596	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
597	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
598	ino->xattr_names = cpu_to_le32(ui->xattr_names);
599	zero_ino_node_unused(ino);
600
601	/*
602	 * Drop the attached data if this is a deletion inode, the data is not
603	 * needed anymore.
604	 */
605	if (!last_reference) {
606		memcpy(ino->data, ui->data, ui->data_len);
607		data_len = ui->data_len;
608	}
609
610	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
611}
612
613/**
614 * mark_inode_clean - mark UBIFS inode as clean.
615 * @c: UBIFS file-system description object
616 * @ui: UBIFS inode to mark as clean
617 *
618 * This helper function marks UBIFS inode @ui as clean by cleaning the
619 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
620 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
621 * just do nothing.
622 */
623static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
624{
625	if (ui->dirty)
626		ubifs_release_dirty_inode_budget(c, ui);
627	ui->dirty = 0;
628}
629
630static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
631{
632	if (c->double_hash)
633		dent->cookie = (__force __le32) get_random_u32();
634	else
635		dent->cookie = 0;
636}
637
638/**
639 * ubifs_jnl_update - update inode.
640 * @c: UBIFS file-system description object
641 * @dir: parent inode or host inode in case of extended attributes
642 * @nm: directory entry name
643 * @inode: inode to update
644 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
645 * @xent: non-zero if the directory entry is an extended attribute entry
646 *
647 * This function updates an inode by writing a directory entry (or extended
648 * attribute entry), the inode itself, and the parent directory inode (or the
649 * host inode) to the journal.
650 *
651 * The function writes the host inode @dir last, which is important in case of
652 * extended attributes. Indeed, then we guarantee that if the host inode gets
653 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
654 * the extended attribute inode gets flushed too. And this is exactly what the
655 * user expects - synchronizing the host inode synchronizes its extended
656 * attributes. Similarly, this guarantees that if @dir is synchronized, its
657 * directory entry corresponding to @nm gets synchronized too.
658 *
659 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
660 * function synchronizes the write-buffer.
661 *
662 * This function marks the @dir and @inode inodes as clean and returns zero on
663 * success. In case of failure, a negative error code is returned.
664 */
665int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
666		     const struct fscrypt_name *nm, const struct inode *inode,
667		     int deletion, int xent)
668{
669	int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
670	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
671	int last_reference = !!(deletion && inode->i_nlink == 0);
672	struct ubifs_inode *ui = ubifs_inode(inode);
673	struct ubifs_inode *host_ui = ubifs_inode(dir);
674	struct ubifs_dent_node *dent;
675	struct ubifs_ino_node *ino;
676	union ubifs_key dent_key, ino_key;
677	u8 hash_dent[UBIFS_HASH_ARR_SZ];
678	u8 hash_ino[UBIFS_HASH_ARR_SZ];
679	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
680
681	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
682
683	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
684	ilen = UBIFS_INO_NODE_SZ;
685
686	/*
687	 * If the last reference to the inode is being deleted, then there is
688	 * no need to attach and write inode data, it is being deleted anyway.
689	 * And if the inode is being deleted, no need to synchronize
690	 * write-buffer even if the inode is synchronous.
691	 */
692	if (!last_reference) {
693		ilen += ui->data_len;
694		sync |= IS_SYNC(inode);
695	}
696
697	aligned_dlen = ALIGN(dlen, 8);
698	aligned_ilen = ALIGN(ilen, 8);
699
700	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
701	/* Make sure to also account for extended attributes */
702	if (ubifs_authenticated(c))
703		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
704	else
705		len += host_ui->data_len;
706
707	dent = kzalloc(len, GFP_NOFS);
708	if (!dent)
709		return -ENOMEM;
710
711	/* Make reservation before allocating sequence numbers */
712	err = make_reservation(c, BASEHD, len);
713	if (err)
714		goto out_free;
715
716	if (!xent) {
717		dent->ch.node_type = UBIFS_DENT_NODE;
718		if (fname_name(nm) == NULL)
719			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
720		else
721			dent_key_init(c, &dent_key, dir->i_ino, nm);
722	} else {
723		dent->ch.node_type = UBIFS_XENT_NODE;
724		xent_key_init(c, &dent_key, dir->i_ino, nm);
725	}
726
727	key_write(c, &dent_key, dent->key);
728	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
729	dent->type = get_dent_type(inode->i_mode);
730	dent->nlen = cpu_to_le16(fname_len(nm));
731	memcpy(dent->name, fname_name(nm), fname_len(nm));
732	dent->name[fname_len(nm)] = '\0';
733	set_dent_cookie(c, dent);
734
735	zero_dent_node_unused(dent);
736	ubifs_prep_grp_node(c, dent, dlen, 0);
737	err = ubifs_node_calc_hash(c, dent, hash_dent);
738	if (err)
739		goto out_release;
740
741	ino = (void *)dent + aligned_dlen;
742	pack_inode(c, ino, inode, 0);
743	err = ubifs_node_calc_hash(c, ino, hash_ino);
744	if (err)
745		goto out_release;
746
747	ino = (void *)ino + aligned_ilen;
748	pack_inode(c, ino, dir, 1);
749	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
750	if (err)
751		goto out_release;
752
753	if (last_reference) {
754		err = ubifs_add_orphan(c, inode->i_ino);
755		if (err) {
756			release_head(c, BASEHD);
757			goto out_finish;
758		}
759		ui->del_cmtno = c->cmt_no;
760		orphan_added = 1;
761	}
762
763	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
764	if (err)
765		goto out_release;
766	if (!sync) {
767		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
768
769		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
770		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
771	}
772	release_head(c, BASEHD);
773	kfree(dent);
774	ubifs_add_auth_dirt(c, lnum);
775
776	if (deletion) {
777		if (fname_name(nm) == NULL)
778			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
779		else
780			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
781		if (err)
782			goto out_ro;
783		err = ubifs_add_dirt(c, lnum, dlen);
784	} else
785		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
786				       hash_dent, nm);
787	if (err)
788		goto out_ro;
789
790	/*
791	 * Note, we do not remove the inode from TNC even if the last reference
792	 * to it has just been deleted, because the inode may still be opened.
793	 * Instead, the inode has been added to orphan lists and the orphan
794	 * subsystem will take further care about it.
795	 */
796	ino_key_init(c, &ino_key, inode->i_ino);
797	ino_offs = dent_offs + aligned_dlen;
798	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
799	if (err)
800		goto out_ro;
801
802	ino_key_init(c, &ino_key, dir->i_ino);
803	ino_offs += aligned_ilen;
804	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
805			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
806	if (err)
807		goto out_ro;
808
809	finish_reservation(c);
810	spin_lock(&ui->ui_lock);
811	ui->synced_i_size = ui->ui_size;
812	spin_unlock(&ui->ui_lock);
813	if (xent) {
814		spin_lock(&host_ui->ui_lock);
815		host_ui->synced_i_size = host_ui->ui_size;
816		spin_unlock(&host_ui->ui_lock);
817	}
818	mark_inode_clean(c, ui);
819	mark_inode_clean(c, host_ui);
820	return 0;
821
822out_finish:
823	finish_reservation(c);
824out_free:
825	kfree(dent);
826	return err;
827
828out_release:
829	release_head(c, BASEHD);
830	kfree(dent);
831out_ro:
832	ubifs_ro_mode(c, err);
833	if (orphan_added)
834		ubifs_delete_orphan(c, inode->i_ino);
835	finish_reservation(c);
836	return err;
837}
838
839/**
840 * ubifs_jnl_write_data - write a data node to the journal.
841 * @c: UBIFS file-system description object
842 * @inode: inode the data node belongs to
843 * @key: node key
844 * @buf: buffer to write
845 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
846 *
847 * This function writes a data node to the journal. Returns %0 if the data node
848 * was successfully written, and a negative error code in case of failure.
849 */
850int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
851			 const union ubifs_key *key, const void *buf, int len)
852{
853	struct ubifs_data_node *data;
854	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
855	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
856	int write_len;
857	struct ubifs_inode *ui = ubifs_inode(inode);
858	bool encrypted = IS_ENCRYPTED(inode);
859	u8 hash[UBIFS_HASH_ARR_SZ];
860
861	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
862		(unsigned long)key_inum(c, key), key_block(c, key), len);
863	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
864
865	if (encrypted)
866		dlen += UBIFS_CIPHER_BLOCK_SIZE;
867
868	auth_len = ubifs_auth_node_sz(c);
869
870	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
871	if (!data) {
872		/*
873		 * Fall-back to the write reserve buffer. Note, we might be
874		 * currently on the memory reclaim path, when the kernel is
875		 * trying to free some memory by writing out dirty pages. The
876		 * write reserve buffer helps us to guarantee that we are
877		 * always able to write the data.
878		 */
879		allocated = 0;
880		mutex_lock(&c->write_reserve_mutex);
881		data = c->write_reserve_buf;
882	}
883
884	data->ch.node_type = UBIFS_DATA_NODE;
885	key_write(c, key, &data->key);
886	data->size = cpu_to_le32(len);
887
888	if (!(ui->flags & UBIFS_COMPR_FL))
889		/* Compression is disabled for this inode */
890		compr_type = UBIFS_COMPR_NONE;
891	else
892		compr_type = ui->compr_type;
893
894	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
895	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
896	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
897
898	if (encrypted) {
899		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
900		if (err)
901			goto out_free;
902
903	} else {
904		data->compr_size = 0;
905		out_len = compr_len;
906	}
907
908	dlen = UBIFS_DATA_NODE_SZ + out_len;
909	if (ubifs_authenticated(c))
910		write_len = ALIGN(dlen, 8) + auth_len;
911	else
912		write_len = dlen;
913
914	data->compr_type = cpu_to_le16(compr_type);
915
916	/* Make reservation before allocating sequence numbers */
917	err = make_reservation(c, DATAHD, write_len);
918	if (err)
919		goto out_free;
920
921	ubifs_prepare_node(c, data, dlen, 0);
922	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
923	if (err)
924		goto out_release;
925
926	err = ubifs_node_calc_hash(c, data, hash);
927	if (err)
928		goto out_release;
929
930	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
931	release_head(c, DATAHD);
932
933	ubifs_add_auth_dirt(c, lnum);
934
935	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
936	if (err)
937		goto out_ro;
938
939	finish_reservation(c);
940	if (!allocated)
941		mutex_unlock(&c->write_reserve_mutex);
942	else
943		kfree(data);
944	return 0;
945
946out_release:
947	release_head(c, DATAHD);
948out_ro:
949	ubifs_ro_mode(c, err);
950	finish_reservation(c);
951out_free:
952	if (!allocated)
953		mutex_unlock(&c->write_reserve_mutex);
954	else
955		kfree(data);
956	return err;
957}
958
959/**
960 * ubifs_jnl_write_inode - flush inode to the journal.
961 * @c: UBIFS file-system description object
962 * @inode: inode to flush
963 *
964 * This function writes inode @inode to the journal. If the inode is
965 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
966 * success and a negative error code in case of failure.
967 */
968int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
969{
970	int err, lnum, offs;
971	struct ubifs_ino_node *ino, *ino_start;
972	struct ubifs_inode *ui = ubifs_inode(inode);
973	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
974	int last_reference = !inode->i_nlink;
975	int kill_xattrs = ui->xattr_cnt && last_reference;
976	u8 hash[UBIFS_HASH_ARR_SZ];
977
978	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
979
980	/*
981	 * If the inode is being deleted, do not write the attached data. No
982	 * need to synchronize the write-buffer either.
983	 */
984	if (!last_reference) {
985		ilen += ui->data_len;
986		sync = IS_SYNC(inode);
987	} else if (kill_xattrs) {
988		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
989	}
990
991	if (ubifs_authenticated(c))
992		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
993	else
994		write_len += ilen;
995
996	ino_start = ino = kmalloc(write_len, GFP_NOFS);
997	if (!ino)
998		return -ENOMEM;
999
1000	/* Make reservation before allocating sequence numbers */
1001	err = make_reservation(c, BASEHD, write_len);
1002	if (err)
1003		goto out_free;
1004
1005	if (kill_xattrs) {
1006		union ubifs_key key;
1007		struct fscrypt_name nm = {0};
1008		struct inode *xino;
1009		struct ubifs_dent_node *xent, *pxent = NULL;
1010
1011		if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
1012			err = -EPERM;
1013			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
1014			goto out_release;
1015		}
1016
1017		lowest_xent_key(c, &key, inode->i_ino);
1018		while (1) {
1019			xent = ubifs_tnc_next_ent(c, &key, &nm);
1020			if (IS_ERR(xent)) {
1021				err = PTR_ERR(xent);
1022				if (err == -ENOENT)
1023					break;
1024
1025				kfree(pxent);
1026				goto out_release;
1027			}
1028
1029			fname_name(&nm) = xent->name;
1030			fname_len(&nm) = le16_to_cpu(xent->nlen);
1031
1032			xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
1033			if (IS_ERR(xino)) {
1034				err = PTR_ERR(xino);
1035				ubifs_err(c, "dead directory entry '%s', error %d",
1036					  xent->name, err);
1037				ubifs_ro_mode(c, err);
1038				kfree(pxent);
1039				kfree(xent);
1040				goto out_release;
1041			}
1042			ubifs_assert(c, ubifs_inode(xino)->xattr);
1043
1044			clear_nlink(xino);
1045			pack_inode(c, ino, xino, 0);
1046			ino = (void *)ino + UBIFS_INO_NODE_SZ;
1047			iput(xino);
1048
1049			kfree(pxent);
1050			pxent = xent;
1051			key_read(c, &xent->key, &key);
1052		}
1053		kfree(pxent);
1054	}
1055
1056	pack_inode(c, ino, inode, 1);
1057	err = ubifs_node_calc_hash(c, ino, hash);
1058	if (err)
1059		goto out_release;
1060
1061	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
1062	if (err)
1063		goto out_release;
1064	if (!sync)
1065		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1066					  inode->i_ino);
1067	release_head(c, BASEHD);
1068
1069	if (last_reference) {
1070		err = ubifs_tnc_remove_ino(c, inode->i_ino);
1071		if (err)
1072			goto out_ro;
1073		ubifs_delete_orphan(c, inode->i_ino);
1074		err = ubifs_add_dirt(c, lnum, write_len);
1075	} else {
1076		union ubifs_key key;
1077
1078		ubifs_add_auth_dirt(c, lnum);
1079
1080		ino_key_init(c, &key, inode->i_ino);
1081		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
1082	}
1083	if (err)
1084		goto out_ro;
1085
1086	finish_reservation(c);
1087	spin_lock(&ui->ui_lock);
1088	ui->synced_i_size = ui->ui_size;
1089	spin_unlock(&ui->ui_lock);
1090	kfree(ino_start);
1091	return 0;
1092
1093out_release:
1094	release_head(c, BASEHD);
1095out_ro:
1096	ubifs_ro_mode(c, err);
1097	finish_reservation(c);
1098out_free:
1099	kfree(ino_start);
1100	return err;
1101}
1102
1103/**
1104 * ubifs_jnl_delete_inode - delete an inode.
1105 * @c: UBIFS file-system description object
1106 * @inode: inode to delete
1107 *
1108 * This function deletes inode @inode which includes removing it from orphans,
1109 * deleting it from TNC and, in some cases, writing a deletion inode to the
1110 * journal.
1111 *
1112 * When regular file inodes are unlinked or a directory inode is removed, the
1113 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
1114 * direntry to the media, and adds the inode to orphans. After this, when the
1115 * last reference to this inode has been dropped, this function is called. In
1116 * general, it has to write one more deletion inode to the media, because if
1117 * a commit happened between 'ubifs_jnl_update()' and
1118 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
1119 * anymore, and in fact it might not be on the flash anymore, because it might
1120 * have been garbage-collected already. And for optimization reasons UBIFS does
1121 * not read the orphan area if it has been unmounted cleanly, so it would have
1122 * no indication in the journal that there is a deleted inode which has to be
1123 * removed from TNC.
1124 *
1125 * However, if there was no commit between 'ubifs_jnl_update()' and
1126 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1127 * inode to the media for the second time. And this is quite a typical case.
1128 *
1129 * This function returns zero in case of success and a negative error code in
1130 * case of failure.
1131 */
1132int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1133{
1134	int err;
1135	struct ubifs_inode *ui = ubifs_inode(inode);
1136
1137	ubifs_assert(c, inode->i_nlink == 0);
1138
1139	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1140		/* A commit happened for sure or inode hosts xattrs */
1141		return ubifs_jnl_write_inode(c, inode);
1142
1143	down_read(&c->commit_sem);
1144	/*
1145	 * Check commit number again, because the first test has been done
1146	 * without @c->commit_sem, so a commit might have happened.
1147	 */
1148	if (ui->del_cmtno != c->cmt_no) {
1149		up_read(&c->commit_sem);
1150		return ubifs_jnl_write_inode(c, inode);
1151	}
1152
1153	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1154	if (err)
1155		ubifs_ro_mode(c, err);
1156	else
1157		ubifs_delete_orphan(c, inode->i_ino);
1158	up_read(&c->commit_sem);
1159	return err;
1160}
1161
1162/**
1163 * ubifs_jnl_xrename - cross rename two directory entries.
1164 * @c: UBIFS file-system description object
1165 * @fst_dir: parent inode of 1st directory entry to exchange
1166 * @fst_inode: 1st inode to exchange
1167 * @fst_nm: name of 1st inode to exchange
1168 * @snd_dir: parent inode of 2nd directory entry to exchange
1169 * @snd_inode: 2nd inode to exchange
1170 * @snd_nm: name of 2nd inode to exchange
1171 * @sync: non-zero if the write-buffer has to be synchronized
1172 *
1173 * This function implements the cross rename operation which may involve
1174 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1175 * and returns zero on success. In case of failure, a negative error code is
1176 * returned.
1177 */
1178int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1179		      const struct inode *fst_inode,
1180		      const struct fscrypt_name *fst_nm,
1181		      const struct inode *snd_dir,
1182		      const struct inode *snd_inode,
1183		      const struct fscrypt_name *snd_nm, int sync)
1184{
1185	union ubifs_key key;
1186	struct ubifs_dent_node *dent1, *dent2;
1187	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1188	int aligned_dlen1, aligned_dlen2;
1189	int twoparents = (fst_dir != snd_dir);
1190	void *p;
1191	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1192	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1193	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1194	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1195
1196	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1197	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1198	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1199	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1200
1201	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1202	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1203	aligned_dlen1 = ALIGN(dlen1, 8);
1204	aligned_dlen2 = ALIGN(dlen2, 8);
1205
1206	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1207	if (twoparents)
1208		len += plen;
1209
1210	len += ubifs_auth_node_sz(c);
1211
1212	dent1 = kzalloc(len, GFP_NOFS);
1213	if (!dent1)
1214		return -ENOMEM;
1215
1216	/* Make reservation before allocating sequence numbers */
1217	err = make_reservation(c, BASEHD, len);
1218	if (err)
1219		goto out_free;
1220
1221	/* Make new dent for 1st entry */
1222	dent1->ch.node_type = UBIFS_DENT_NODE;
1223	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1224	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1225	dent1->type = get_dent_type(fst_inode->i_mode);
1226	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1227	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1228	dent1->name[fname_len(snd_nm)] = '\0';
1229	set_dent_cookie(c, dent1);
1230	zero_dent_node_unused(dent1);
1231	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1232	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1233	if (err)
1234		goto out_release;
1235
1236	/* Make new dent for 2nd entry */
1237	dent2 = (void *)dent1 + aligned_dlen1;
1238	dent2->ch.node_type = UBIFS_DENT_NODE;
1239	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1240	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1241	dent2->type = get_dent_type(snd_inode->i_mode);
1242	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1243	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1244	dent2->name[fname_len(fst_nm)] = '\0';
1245	set_dent_cookie(c, dent2);
1246	zero_dent_node_unused(dent2);
1247	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1248	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1249	if (err)
1250		goto out_release;
1251
1252	p = (void *)dent2 + aligned_dlen2;
1253	if (!twoparents) {
1254		pack_inode(c, p, fst_dir, 1);
1255		err = ubifs_node_calc_hash(c, p, hash_p1);
1256		if (err)
1257			goto out_release;
1258	} else {
1259		pack_inode(c, p, fst_dir, 0);
1260		err = ubifs_node_calc_hash(c, p, hash_p1);
1261		if (err)
1262			goto out_release;
1263		p += ALIGN(plen, 8);
1264		pack_inode(c, p, snd_dir, 1);
1265		err = ubifs_node_calc_hash(c, p, hash_p2);
1266		if (err)
1267			goto out_release;
1268	}
1269
1270	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1271	if (err)
1272		goto out_release;
1273	if (!sync) {
1274		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1275
1276		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1277		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1278	}
1279	release_head(c, BASEHD);
1280
1281	ubifs_add_auth_dirt(c, lnum);
1282
1283	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1284	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1285	if (err)
1286		goto out_ro;
1287
1288	offs += aligned_dlen1;
1289	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1290	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1291	if (err)
1292		goto out_ro;
1293
1294	offs += aligned_dlen2;
1295
1296	ino_key_init(c, &key, fst_dir->i_ino);
1297	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1298	if (err)
1299		goto out_ro;
1300
1301	if (twoparents) {
1302		offs += ALIGN(plen, 8);
1303		ino_key_init(c, &key, snd_dir->i_ino);
1304		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1305		if (err)
1306			goto out_ro;
1307	}
1308
1309	finish_reservation(c);
1310
1311	mark_inode_clean(c, ubifs_inode(fst_dir));
1312	if (twoparents)
1313		mark_inode_clean(c, ubifs_inode(snd_dir));
1314	kfree(dent1);
1315	return 0;
1316
1317out_release:
1318	release_head(c, BASEHD);
1319out_ro:
1320	ubifs_ro_mode(c, err);
1321	finish_reservation(c);
1322out_free:
1323	kfree(dent1);
1324	return err;
1325}
1326
1327/**
1328 * ubifs_jnl_rename - rename a directory entry.
1329 * @c: UBIFS file-system description object
1330 * @old_dir: parent inode of directory entry to rename
1331 * @old_inode: directory entry's inode to rename
1332 * @old_nm: name of the old directory entry to rename
1333 * @new_dir: parent inode of directory entry to rename
1334 * @new_inode: new directory entry's inode (or directory entry's inode to
1335 *		replace)
1336 * @new_nm: new name of the new directory entry
1337 * @whiteout: whiteout inode
1338 * @sync: non-zero if the write-buffer has to be synchronized
1339 *
1340 * This function implements the re-name operation which may involve writing up
1341 * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1342 * and 2 directory entries. It marks the written inodes as clean and returns
1343 * zero on success. In case of failure, a negative error code is returned.
1344 */
1345int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1346		     const struct inode *old_inode,
1347		     const struct fscrypt_name *old_nm,
1348		     const struct inode *new_dir,
1349		     const struct inode *new_inode,
1350		     const struct fscrypt_name *new_nm,
1351		     const struct inode *whiteout, int sync)
1352{
1353	void *p;
1354	union ubifs_key key;
1355	struct ubifs_dent_node *dent, *dent2;
1356	int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1357	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1358	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1359	int move = (old_dir != new_dir);
1360	struct ubifs_inode *new_ui, *whiteout_ui;
1361	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1362	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1363	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1364	u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1365	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1366	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1367
1368	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1369	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1370	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1371	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1372
1373	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1374	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1375	if (new_inode) {
1376		new_ui = ubifs_inode(new_inode);
1377		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1378		ilen = UBIFS_INO_NODE_SZ;
1379		if (!last_reference)
1380			ilen += new_ui->data_len;
1381	} else
1382		ilen = 0;
1383
1384	if (whiteout) {
1385		whiteout_ui = ubifs_inode(whiteout);
1386		ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1387		ubifs_assert(c, whiteout->i_nlink == 1);
1388		ubifs_assert(c, !whiteout_ui->dirty);
1389		wlen = UBIFS_INO_NODE_SZ;
1390		wlen += whiteout_ui->data_len;
1391	} else
1392		wlen = 0;
1393
1394	aligned_dlen1 = ALIGN(dlen1, 8);
1395	aligned_dlen2 = ALIGN(dlen2, 8);
1396	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1397	      ALIGN(wlen, 8) + ALIGN(plen, 8);
1398	if (move)
1399		len += plen;
1400
1401	len += ubifs_auth_node_sz(c);
1402
1403	dent = kzalloc(len, GFP_NOFS);
1404	if (!dent)
1405		return -ENOMEM;
1406
1407	/* Make reservation before allocating sequence numbers */
1408	err = make_reservation(c, BASEHD, len);
1409	if (err)
1410		goto out_free;
1411
1412	/* Make new dent */
1413	dent->ch.node_type = UBIFS_DENT_NODE;
1414	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1415	dent->inum = cpu_to_le64(old_inode->i_ino);
1416	dent->type = get_dent_type(old_inode->i_mode);
1417	dent->nlen = cpu_to_le16(fname_len(new_nm));
1418	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1419	dent->name[fname_len(new_nm)] = '\0';
1420	set_dent_cookie(c, dent);
1421	zero_dent_node_unused(dent);
1422	ubifs_prep_grp_node(c, dent, dlen1, 0);
1423	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1424	if (err)
1425		goto out_release;
1426
1427	dent2 = (void *)dent + aligned_dlen1;
1428	dent2->ch.node_type = UBIFS_DENT_NODE;
1429	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1430
1431	if (whiteout) {
1432		dent2->inum = cpu_to_le64(whiteout->i_ino);
1433		dent2->type = get_dent_type(whiteout->i_mode);
1434	} else {
1435		/* Make deletion dent */
1436		dent2->inum = 0;
1437		dent2->type = DT_UNKNOWN;
1438	}
1439	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1440	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1441	dent2->name[fname_len(old_nm)] = '\0';
1442	set_dent_cookie(c, dent2);
1443	zero_dent_node_unused(dent2);
1444	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1445	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1446	if (err)
1447		goto out_release;
1448
1449	p = (void *)dent2 + aligned_dlen2;
1450	if (new_inode) {
1451		pack_inode(c, p, new_inode, 0);
1452		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1453		if (err)
1454			goto out_release;
1455
1456		p += ALIGN(ilen, 8);
1457	}
1458
1459	if (whiteout) {
1460		pack_inode(c, p, whiteout, 0);
1461		err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1462		if (err)
1463			goto out_release;
1464
1465		p += ALIGN(wlen, 8);
1466	}
1467
1468	if (!move) {
1469		pack_inode(c, p, old_dir, 1);
1470		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1471		if (err)
1472			goto out_release;
1473	} else {
1474		pack_inode(c, p, old_dir, 0);
1475		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1476		if (err)
1477			goto out_release;
1478
1479		p += ALIGN(plen, 8);
1480		pack_inode(c, p, new_dir, 1);
1481		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1482		if (err)
1483			goto out_release;
1484	}
1485
1486	if (last_reference) {
1487		err = ubifs_add_orphan(c, new_inode->i_ino);
1488		if (err) {
1489			release_head(c, BASEHD);
1490			goto out_finish;
1491		}
1492		new_ui->del_cmtno = c->cmt_no;
1493		orphan_added = 1;
1494	}
1495
1496	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1497	if (err)
1498		goto out_release;
1499	if (!sync) {
1500		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1501
1502		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1503		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1504		if (new_inode)
1505			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1506						  new_inode->i_ino);
1507		if (whiteout)
1508			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1509						  whiteout->i_ino);
1510	}
1511	release_head(c, BASEHD);
1512
1513	ubifs_add_auth_dirt(c, lnum);
1514
1515	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1516	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1517	if (err)
1518		goto out_ro;
1519
1520	offs += aligned_dlen1;
1521	if (whiteout) {
1522		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1523		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1524		if (err)
1525			goto out_ro;
1526	} else {
1527		err = ubifs_add_dirt(c, lnum, dlen2);
1528		if (err)
1529			goto out_ro;
1530
1531		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1532		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1533		if (err)
1534			goto out_ro;
1535	}
1536
1537	offs += aligned_dlen2;
1538	if (new_inode) {
1539		ino_key_init(c, &key, new_inode->i_ino);
1540		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1541		if (err)
1542			goto out_ro;
1543		offs += ALIGN(ilen, 8);
1544	}
1545
1546	if (whiteout) {
1547		ino_key_init(c, &key, whiteout->i_ino);
1548		err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1549				    hash_whiteout_inode);
1550		if (err)
1551			goto out_ro;
1552		offs += ALIGN(wlen, 8);
1553	}
1554
1555	ino_key_init(c, &key, old_dir->i_ino);
1556	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1557	if (err)
1558		goto out_ro;
1559
1560	if (move) {
1561		offs += ALIGN(plen, 8);
1562		ino_key_init(c, &key, new_dir->i_ino);
1563		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1564		if (err)
1565			goto out_ro;
1566	}
1567
1568	finish_reservation(c);
1569	if (new_inode) {
1570		mark_inode_clean(c, new_ui);
1571		spin_lock(&new_ui->ui_lock);
1572		new_ui->synced_i_size = new_ui->ui_size;
1573		spin_unlock(&new_ui->ui_lock);
1574	}
1575	/*
1576	 * No need to mark whiteout inode clean.
1577	 * Whiteout doesn't have non-zero size, no need to update
1578	 * synced_i_size for whiteout_ui.
1579	 */
1580	mark_inode_clean(c, ubifs_inode(old_dir));
1581	if (move)
1582		mark_inode_clean(c, ubifs_inode(new_dir));
1583	kfree(dent);
1584	return 0;
1585
1586out_release:
1587	release_head(c, BASEHD);
1588out_ro:
1589	ubifs_ro_mode(c, err);
1590	if (orphan_added)
1591		ubifs_delete_orphan(c, new_inode->i_ino);
1592out_finish:
1593	finish_reservation(c);
1594out_free:
1595	kfree(dent);
1596	return err;
1597}
1598
1599/**
1600 * truncate_data_node - re-compress/encrypt a truncated data node.
1601 * @c: UBIFS file-system description object
1602 * @inode: inode which refers to the data node
1603 * @block: data block number
1604 * @dn: data node to re-compress
1605 * @new_len: new length
1606 * @dn_size: size of the data node @dn in memory
1607 *
1608 * This function is used when an inode is truncated and the last data node of
1609 * the inode has to be re-compressed/encrypted and re-written.
1610 */
1611static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1612			      unsigned int block, struct ubifs_data_node *dn,
1613			      int *new_len, int dn_size)
1614{
1615	void *buf;
1616	int err, dlen, compr_type, out_len, data_size;
1617
1618	out_len = le32_to_cpu(dn->size);
1619	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1620	if (!buf)
1621		return -ENOMEM;
1622
1623	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1624	data_size = dn_size - UBIFS_DATA_NODE_SZ;
1625	compr_type = le16_to_cpu(dn->compr_type);
1626
1627	if (IS_ENCRYPTED(inode)) {
1628		err = ubifs_decrypt(inode, dn, &dlen, block);
1629		if (err)
1630			goto out;
1631	}
1632
1633	if (compr_type == UBIFS_COMPR_NONE) {
1634		out_len = *new_len;
1635	} else {
1636		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1637		if (err)
1638			goto out;
1639
1640		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1641	}
1642
1643	if (IS_ENCRYPTED(inode)) {
1644		err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1645		if (err)
1646			goto out;
1647
1648		out_len = data_size;
1649	} else {
1650		dn->compr_size = 0;
1651	}
1652
1653	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1654	dn->compr_type = cpu_to_le16(compr_type);
1655	dn->size = cpu_to_le32(*new_len);
1656	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1657	err = 0;
1658out:
1659	kfree(buf);
1660	return err;
1661}
1662
1663/**
1664 * ubifs_jnl_truncate - update the journal for a truncation.
1665 * @c: UBIFS file-system description object
1666 * @inode: inode to truncate
1667 * @old_size: old size
1668 * @new_size: new size
1669 *
1670 * When the size of a file decreases due to truncation, a truncation node is
1671 * written, the journal tree is updated, and the last data block is re-written
1672 * if it has been affected. The inode is also updated in order to synchronize
1673 * the new inode size.
1674 *
1675 * This function marks the inode as clean and returns zero on success. In case
1676 * of failure, a negative error code is returned.
1677 */
1678int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1679		       loff_t old_size, loff_t new_size)
1680{
1681	union ubifs_key key, to_key;
1682	struct ubifs_ino_node *ino;
1683	struct ubifs_trun_node *trun;
1684	struct ubifs_data_node *dn;
1685	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1686	int dn_size;
1687	struct ubifs_inode *ui = ubifs_inode(inode);
1688	ino_t inum = inode->i_ino;
1689	unsigned int blk;
1690	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1691	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1692
1693	dbg_jnl("ino %lu, size %lld -> %lld",
1694		(unsigned long)inum, old_size, new_size);
1695	ubifs_assert(c, !ui->data_len);
1696	ubifs_assert(c, S_ISREG(inode->i_mode));
1697	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1698
1699	dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1700
1701	if (IS_ENCRYPTED(inode))
1702		dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1703
1704	sz =  UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1705		dn_size + ubifs_auth_node_sz(c);
1706
1707	ino = kmalloc(sz, GFP_NOFS);
1708	if (!ino)
1709		return -ENOMEM;
1710
1711	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1712	trun->ch.node_type = UBIFS_TRUN_NODE;
1713	trun->inum = cpu_to_le32(inum);
1714	trun->old_size = cpu_to_le64(old_size);
1715	trun->new_size = cpu_to_le64(new_size);
1716	zero_trun_node_unused(trun);
1717
1718	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1719	if (dlen) {
1720		/* Get last data block so it can be truncated */
1721		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1722		blk = new_size >> UBIFS_BLOCK_SHIFT;
1723		data_key_init(c, &key, inum, blk);
1724		dbg_jnlk(&key, "last block key ");
1725		err = ubifs_tnc_lookup(c, &key, dn);
1726		if (err == -ENOENT)
1727			dlen = 0; /* Not found (so it is a hole) */
1728		else if (err)
1729			goto out_free;
1730		else {
1731			int dn_len = le32_to_cpu(dn->size);
1732
1733			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1734				ubifs_err(c, "bad data node (block %u, inode %lu)",
1735					  blk, inode->i_ino);
1736				ubifs_dump_node(c, dn, dn_size);
1737				err = -EUCLEAN;
1738				goto out_free;
1739			}
1740
1741			if (dn_len <= dlen)
1742				dlen = 0; /* Nothing to do */
1743			else {
1744				err = truncate_data_node(c, inode, blk, dn,
1745						&dlen, dn_size);
1746				if (err)
1747					goto out_free;
1748			}
1749		}
1750	}
1751
1752	/* Must make reservation before allocating sequence numbers */
1753	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1754
1755	if (ubifs_authenticated(c))
1756		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1757	else
1758		len += dlen;
1759
1760	err = make_reservation(c, BASEHD, len);
1761	if (err)
1762		goto out_free;
1763
1764	pack_inode(c, ino, inode, 0);
1765	err = ubifs_node_calc_hash(c, ino, hash_ino);
1766	if (err)
1767		goto out_release;
1768
1769	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1770	if (dlen) {
1771		ubifs_prep_grp_node(c, dn, dlen, 1);
1772		err = ubifs_node_calc_hash(c, dn, hash_dn);
1773		if (err)
1774			goto out_release;
1775	}
1776
1777	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1778	if (err)
1779		goto out_release;
1780	if (!sync)
1781		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1782	release_head(c, BASEHD);
1783
1784	ubifs_add_auth_dirt(c, lnum);
1785
1786	if (dlen) {
1787		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1788		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1789		if (err)
1790			goto out_ro;
1791	}
1792
1793	ino_key_init(c, &key, inum);
1794	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1795	if (err)
1796		goto out_ro;
1797
1798	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1799	if (err)
1800		goto out_ro;
1801
1802	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1803	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1804	data_key_init(c, &key, inum, blk);
1805
1806	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1807	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1808	data_key_init(c, &to_key, inum, blk);
1809
1810	err = ubifs_tnc_remove_range(c, &key, &to_key);
1811	if (err)
1812		goto out_ro;
1813
1814	finish_reservation(c);
1815	spin_lock(&ui->ui_lock);
1816	ui->synced_i_size = ui->ui_size;
1817	spin_unlock(&ui->ui_lock);
1818	mark_inode_clean(c, ui);
1819	kfree(ino);
1820	return 0;
1821
1822out_release:
1823	release_head(c, BASEHD);
1824out_ro:
1825	ubifs_ro_mode(c, err);
1826	finish_reservation(c);
1827out_free:
1828	kfree(ino);
1829	return err;
1830}
1831
1832
1833/**
1834 * ubifs_jnl_delete_xattr - delete an extended attribute.
1835 * @c: UBIFS file-system description object
1836 * @host: host inode
1837 * @inode: extended attribute inode
1838 * @nm: extended attribute entry name
1839 *
1840 * This function delete an extended attribute which is very similar to
1841 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1842 * updates the target inode. Returns zero in case of success and a negative
1843 * error code in case of failure.
1844 */
1845int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1846			   const struct inode *inode,
1847			   const struct fscrypt_name *nm)
1848{
1849	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1850	struct ubifs_dent_node *xent;
1851	struct ubifs_ino_node *ino;
1852	union ubifs_key xent_key, key1, key2;
1853	int sync = IS_DIRSYNC(host);
1854	struct ubifs_inode *host_ui = ubifs_inode(host);
1855	u8 hash[UBIFS_HASH_ARR_SZ];
1856
1857	ubifs_assert(c, inode->i_nlink == 0);
1858	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1859
1860	/*
1861	 * Since we are deleting the inode, we do not bother to attach any data
1862	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1863	 */
1864	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1865	aligned_xlen = ALIGN(xlen, 8);
1866	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1867	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1868
1869	write_len = len + ubifs_auth_node_sz(c);
1870
1871	xent = kzalloc(write_len, GFP_NOFS);
1872	if (!xent)
1873		return -ENOMEM;
1874
1875	/* Make reservation before allocating sequence numbers */
1876	err = make_reservation(c, BASEHD, write_len);
1877	if (err) {
1878		kfree(xent);
1879		return err;
1880	}
1881
1882	xent->ch.node_type = UBIFS_XENT_NODE;
1883	xent_key_init(c, &xent_key, host->i_ino, nm);
1884	key_write(c, &xent_key, xent->key);
1885	xent->inum = 0;
1886	xent->type = get_dent_type(inode->i_mode);
1887	xent->nlen = cpu_to_le16(fname_len(nm));
1888	memcpy(xent->name, fname_name(nm), fname_len(nm));
1889	xent->name[fname_len(nm)] = '\0';
1890	zero_dent_node_unused(xent);
1891	ubifs_prep_grp_node(c, xent, xlen, 0);
1892
1893	ino = (void *)xent + aligned_xlen;
1894	pack_inode(c, ino, inode, 0);
1895	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1896	pack_inode(c, ino, host, 1);
1897	err = ubifs_node_calc_hash(c, ino, hash);
1898	if (err)
1899		goto out_release;
1900
1901	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1902	if (!sync && !err)
1903		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1904	release_head(c, BASEHD);
1905
1906	ubifs_add_auth_dirt(c, lnum);
1907	kfree(xent);
1908	if (err)
1909		goto out_ro;
1910
1911	/* Remove the extended attribute entry from TNC */
1912	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1913	if (err)
1914		goto out_ro;
1915	err = ubifs_add_dirt(c, lnum, xlen);
1916	if (err)
1917		goto out_ro;
1918
1919	/*
1920	 * Remove all nodes belonging to the extended attribute inode from TNC.
1921	 * Well, there actually must be only one node - the inode itself.
1922	 */
1923	lowest_ino_key(c, &key1, inode->i_ino);
1924	highest_ino_key(c, &key2, inode->i_ino);
1925	err = ubifs_tnc_remove_range(c, &key1, &key2);
1926	if (err)
1927		goto out_ro;
1928	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1929	if (err)
1930		goto out_ro;
1931
1932	/* And update TNC with the new host inode position */
1933	ino_key_init(c, &key1, host->i_ino);
1934	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1935	if (err)
1936		goto out_ro;
1937
1938	finish_reservation(c);
1939	spin_lock(&host_ui->ui_lock);
1940	host_ui->synced_i_size = host_ui->ui_size;
1941	spin_unlock(&host_ui->ui_lock);
1942	mark_inode_clean(c, host_ui);
1943	return 0;
1944
1945out_release:
1946	kfree(xent);
1947	release_head(c, BASEHD);
1948out_ro:
1949	ubifs_ro_mode(c, err);
1950	finish_reservation(c);
1951	return err;
1952}
1953
1954/**
1955 * ubifs_jnl_change_xattr - change an extended attribute.
1956 * @c: UBIFS file-system description object
1957 * @inode: extended attribute inode
1958 * @host: host inode
1959 *
1960 * This function writes the updated version of an extended attribute inode and
1961 * the host inode to the journal (to the base head). The host inode is written
1962 * after the extended attribute inode in order to guarantee that the extended
1963 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1964 * consequently, the write-buffer is synchronized. This function returns zero
1965 * in case of success and a negative error code in case of failure.
1966 */
1967int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1968			   const struct inode *host)
1969{
1970	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1971	struct ubifs_inode *host_ui = ubifs_inode(host);
1972	struct ubifs_ino_node *ino;
1973	union ubifs_key key;
1974	int sync = IS_DIRSYNC(host);
1975	u8 hash_host[UBIFS_HASH_ARR_SZ];
1976	u8 hash[UBIFS_HASH_ARR_SZ];
1977
1978	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1979	ubifs_assert(c, inode->i_nlink > 0);
1980	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1981
1982	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1983	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1984	aligned_len1 = ALIGN(len1, 8);
1985	aligned_len = aligned_len1 + ALIGN(len2, 8);
1986
1987	aligned_len += ubifs_auth_node_sz(c);
1988
1989	ino = kzalloc(aligned_len, GFP_NOFS);
1990	if (!ino)
1991		return -ENOMEM;
1992
1993	/* Make reservation before allocating sequence numbers */
1994	err = make_reservation(c, BASEHD, aligned_len);
1995	if (err)
1996		goto out_free;
1997
1998	pack_inode(c, ino, host, 0);
1999	err = ubifs_node_calc_hash(c, ino, hash_host);
2000	if (err)
2001		goto out_release;
2002	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
2003	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
2004	if (err)
2005		goto out_release;
2006
2007	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
2008	if (!sync && !err) {
2009		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
2010
2011		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
2012		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
2013	}
2014	release_head(c, BASEHD);
2015	if (err)
2016		goto out_ro;
2017
2018	ubifs_add_auth_dirt(c, lnum);
2019
2020	ino_key_init(c, &key, host->i_ino);
2021	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
2022	if (err)
2023		goto out_ro;
2024
2025	ino_key_init(c, &key, inode->i_ino);
2026	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
2027	if (err)
2028		goto out_ro;
2029
2030	finish_reservation(c);
2031	spin_lock(&host_ui->ui_lock);
2032	host_ui->synced_i_size = host_ui->ui_size;
2033	spin_unlock(&host_ui->ui_lock);
2034	mark_inode_clean(c, host_ui);
2035	kfree(ino);
2036	return 0;
2037
2038out_release:
2039	release_head(c, BASEHD);
2040out_ro:
2041	ubifs_ro_mode(c, err);
2042	finish_reservation(c);
2043out_free:
2044	kfree(ino);
2045	return err;
2046}
2047
2048