1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21#include <linux/bvec.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/pagemap.h>
25#include <linux/splice.h>
26#include <linux/memcontrol.h>
27#include <linux/mm_inline.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/export.h>
31#include <linux/syscalls.h>
32#include <linux/uio.h>
33#include <linux/fsnotify.h>
34#include <linux/security.h>
35#include <linux/gfp.h>
36#include <linux/net.h>
37#include <linux/socket.h>
38#include <linux/sched/signal.h>
39
40#include "internal.h"
41
42/*
43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44 * indicate they support non-blocking reads or writes, we must clear it
45 * here if set to avoid blocking other users of this pipe if splice is
46 * being done on it.
47 */
48static noinline void noinline pipe_clear_nowait(struct file *file)
49{
50	fmode_t fmode = READ_ONCE(file->f_mode);
51
52	do {
53		if (!(fmode & FMODE_NOWAIT))
54			break;
55	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56}
57
58/*
59 * Attempt to steal a page from a pipe buffer. This should perhaps go into
60 * a vm helper function, it's already simplified quite a bit by the
61 * addition of remove_mapping(). If success is returned, the caller may
62 * attempt to reuse this page for another destination.
63 */
64static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65		struct pipe_buffer *buf)
66{
67	struct folio *folio = page_folio(buf->page);
68	struct address_space *mapping;
69
70	folio_lock(folio);
71
72	mapping = folio_mapping(folio);
73	if (mapping) {
74		WARN_ON(!folio_test_uptodate(folio));
75
76		/*
77		 * At least for ext2 with nobh option, we need to wait on
78		 * writeback completing on this folio, since we'll remove it
79		 * from the pagecache.  Otherwise truncate wont wait on the
80		 * folio, allowing the disk blocks to be reused by someone else
81		 * before we actually wrote our data to them. fs corruption
82		 * ensues.
83		 */
84		folio_wait_writeback(folio);
85
86		if (!filemap_release_folio(folio, GFP_KERNEL))
87			goto out_unlock;
88
89		/*
90		 * If we succeeded in removing the mapping, set LRU flag
91		 * and return good.
92		 */
93		if (remove_mapping(mapping, folio)) {
94			buf->flags |= PIPE_BUF_FLAG_LRU;
95			return true;
96		}
97	}
98
99	/*
100	 * Raced with truncate or failed to remove folio from current
101	 * address space, unlock and return failure.
102	 */
103out_unlock:
104	folio_unlock(folio);
105	return false;
106}
107
108static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109					struct pipe_buffer *buf)
110{
111	put_page(buf->page);
112	buf->flags &= ~PIPE_BUF_FLAG_LRU;
113}
114
115/*
116 * Check whether the contents of buf is OK to access. Since the content
117 * is a page cache page, IO may be in flight.
118 */
119static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120				       struct pipe_buffer *buf)
121{
122	struct folio *folio = page_folio(buf->page);
123	int err;
124
125	if (!folio_test_uptodate(folio)) {
126		folio_lock(folio);
127
128		/*
129		 * Folio got truncated/unhashed. This will cause a 0-byte
130		 * splice, if this is the first page.
131		 */
132		if (!folio->mapping) {
133			err = -ENODATA;
134			goto error;
135		}
136
137		/*
138		 * Uh oh, read-error from disk.
139		 */
140		if (!folio_test_uptodate(folio)) {
141			err = -EIO;
142			goto error;
143		}
144
145		/* Folio is ok after all, we are done */
146		folio_unlock(folio);
147	}
148
149	return 0;
150error:
151	folio_unlock(folio);
152	return err;
153}
154
155const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156	.confirm	= page_cache_pipe_buf_confirm,
157	.release	= page_cache_pipe_buf_release,
158	.try_steal	= page_cache_pipe_buf_try_steal,
159	.get		= generic_pipe_buf_get,
160};
161
162static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163		struct pipe_buffer *buf)
164{
165	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166		return false;
167
168	buf->flags |= PIPE_BUF_FLAG_LRU;
169	return generic_pipe_buf_try_steal(pipe, buf);
170}
171
172static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173	.release	= page_cache_pipe_buf_release,
174	.try_steal	= user_page_pipe_buf_try_steal,
175	.get		= generic_pipe_buf_get,
176};
177
178static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179{
180	smp_mb();
181	if (waitqueue_active(&pipe->rd_wait))
182		wake_up_interruptible(&pipe->rd_wait);
183	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184}
185
186/**
187 * splice_to_pipe - fill passed data into a pipe
188 * @pipe:	pipe to fill
189 * @spd:	data to fill
190 *
191 * Description:
192 *    @spd contains a map of pages and len/offset tuples, along with
193 *    the struct pipe_buf_operations associated with these pages. This
194 *    function will link that data to the pipe.
195 *
196 */
197ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198		       struct splice_pipe_desc *spd)
199{
200	unsigned int spd_pages = spd->nr_pages;
201	unsigned int tail = pipe->tail;
202	unsigned int head = pipe->head;
203	unsigned int mask = pipe->ring_size - 1;
204	ssize_t ret = 0;
205	int page_nr = 0;
206
207	if (!spd_pages)
208		return 0;
209
210	if (unlikely(!pipe->readers)) {
211		send_sig(SIGPIPE, current, 0);
212		ret = -EPIPE;
213		goto out;
214	}
215
216	while (!pipe_full(head, tail, pipe->max_usage)) {
217		struct pipe_buffer *buf = &pipe->bufs[head & mask];
218
219		buf->page = spd->pages[page_nr];
220		buf->offset = spd->partial[page_nr].offset;
221		buf->len = spd->partial[page_nr].len;
222		buf->private = spd->partial[page_nr].private;
223		buf->ops = spd->ops;
224		buf->flags = 0;
225
226		head++;
227		pipe->head = head;
228		page_nr++;
229		ret += buf->len;
230
231		if (!--spd->nr_pages)
232			break;
233	}
234
235	if (!ret)
236		ret = -EAGAIN;
237
238out:
239	while (page_nr < spd_pages)
240		spd->spd_release(spd, page_nr++);
241
242	return ret;
243}
244EXPORT_SYMBOL_GPL(splice_to_pipe);
245
246ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
247{
248	unsigned int head = pipe->head;
249	unsigned int tail = pipe->tail;
250	unsigned int mask = pipe->ring_size - 1;
251	int ret;
252
253	if (unlikely(!pipe->readers)) {
254		send_sig(SIGPIPE, current, 0);
255		ret = -EPIPE;
256	} else if (pipe_full(head, tail, pipe->max_usage)) {
257		ret = -EAGAIN;
258	} else {
259		pipe->bufs[head & mask] = *buf;
260		pipe->head = head + 1;
261		return buf->len;
262	}
263	pipe_buf_release(pipe, buf);
264	return ret;
265}
266EXPORT_SYMBOL(add_to_pipe);
267
268/*
269 * Check if we need to grow the arrays holding pages and partial page
270 * descriptions.
271 */
272int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273{
274	unsigned int max_usage = READ_ONCE(pipe->max_usage);
275
276	spd->nr_pages_max = max_usage;
277	if (max_usage <= PIPE_DEF_BUFFERS)
278		return 0;
279
280	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282				     GFP_KERNEL);
283
284	if (spd->pages && spd->partial)
285		return 0;
286
287	kfree(spd->pages);
288	kfree(spd->partial);
289	return -ENOMEM;
290}
291
292void splice_shrink_spd(struct splice_pipe_desc *spd)
293{
294	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295		return;
296
297	kfree(spd->pages);
298	kfree(spd->partial);
299}
300
301/**
302 * copy_splice_read -  Copy data from a file and splice the copy into a pipe
303 * @in: The file to read from
304 * @ppos: Pointer to the file position to read from
305 * @pipe: The pipe to splice into
306 * @len: The amount to splice
307 * @flags: The SPLICE_F_* flags
308 *
309 * This function allocates a bunch of pages sufficient to hold the requested
310 * amount of data (but limited by the remaining pipe capacity), passes it to
311 * the file's ->read_iter() to read into and then splices the used pages into
312 * the pipe.
313 *
314 * Return: On success, the number of bytes read will be returned and *@ppos
315 * will be updated if appropriate; 0 will be returned if there is no more data
316 * to be read; -EAGAIN will be returned if the pipe had no space, and some
317 * other negative error code will be returned on error.  A short read may occur
318 * if the pipe has insufficient space, we reach the end of the data or we hit a
319 * hole.
320 */
321ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322			 struct pipe_inode_info *pipe,
323			 size_t len, unsigned int flags)
324{
325	struct iov_iter to;
326	struct bio_vec *bv;
327	struct kiocb kiocb;
328	struct page **pages;
329	ssize_t ret;
330	size_t used, npages, chunk, remain, keep = 0;
331	int i;
332
333	/* Work out how much data we can actually add into the pipe */
334	used = pipe_occupancy(pipe->head, pipe->tail);
335	npages = max_t(ssize_t, pipe->max_usage - used, 0);
336	len = min_t(size_t, len, npages * PAGE_SIZE);
337	npages = DIV_ROUND_UP(len, PAGE_SIZE);
338
339	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341	if (!bv)
342		return -ENOMEM;
343
344	pages = (struct page **)(bv + npages);
345	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346	if (!npages) {
347		kfree(bv);
348		return -ENOMEM;
349	}
350
351	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
352
353	for (i = 0; i < npages; i++) {
354		chunk = min_t(size_t, PAGE_SIZE, remain);
355		bv[i].bv_page = pages[i];
356		bv[i].bv_offset = 0;
357		bv[i].bv_len = chunk;
358		remain -= chunk;
359	}
360
361	/* Do the I/O */
362	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363	init_sync_kiocb(&kiocb, in);
364	kiocb.ki_pos = *ppos;
365	ret = call_read_iter(in, &kiocb, &to);
366
367	if (ret > 0) {
368		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369		*ppos = kiocb.ki_pos;
370	}
371
372	/*
373	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374	 * there", rather than -EFAULT.
375	 */
376	if (ret == -EFAULT)
377		ret = -EAGAIN;
378
379	/* Free any pages that didn't get touched at all. */
380	if (keep < npages)
381		release_pages(pages + keep, npages - keep);
382
383	/* Push the remaining pages into the pipe. */
384	remain = ret;
385	for (i = 0; i < keep; i++) {
386		struct pipe_buffer *buf = pipe_head_buf(pipe);
387
388		chunk = min_t(size_t, remain, PAGE_SIZE);
389		*buf = (struct pipe_buffer) {
390			.ops	= &default_pipe_buf_ops,
391			.page	= bv[i].bv_page,
392			.offset	= 0,
393			.len	= chunk,
394		};
395		pipe->head++;
396		remain -= chunk;
397	}
398
399	kfree(bv);
400	return ret;
401}
402EXPORT_SYMBOL(copy_splice_read);
403
404const struct pipe_buf_operations default_pipe_buf_ops = {
405	.release	= generic_pipe_buf_release,
406	.try_steal	= generic_pipe_buf_try_steal,
407	.get		= generic_pipe_buf_get,
408};
409
410/* Pipe buffer operations for a socket and similar. */
411const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412	.release	= generic_pipe_buf_release,
413	.get		= generic_pipe_buf_get,
414};
415EXPORT_SYMBOL(nosteal_pipe_buf_ops);
416
417static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
418{
419	smp_mb();
420	if (waitqueue_active(&pipe->wr_wait))
421		wake_up_interruptible(&pipe->wr_wait);
422	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423}
424
425/**
426 * splice_from_pipe_feed - feed available data from a pipe to a file
427 * @pipe:	pipe to splice from
428 * @sd:		information to @actor
429 * @actor:	handler that splices the data
430 *
431 * Description:
432 *    This function loops over the pipe and calls @actor to do the
433 *    actual moving of a single struct pipe_buffer to the desired
434 *    destination.  It returns when there's no more buffers left in
435 *    the pipe or if the requested number of bytes (@sd->total_len)
436 *    have been copied.  It returns a positive number (one) if the
437 *    pipe needs to be filled with more data, zero if the required
438 *    number of bytes have been copied and -errno on error.
439 *
440 *    This, together with splice_from_pipe_{begin,end,next}, may be
441 *    used to implement the functionality of __splice_from_pipe() when
442 *    locking is required around copying the pipe buffers to the
443 *    destination.
444 */
445static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446			  splice_actor *actor)
447{
448	unsigned int head = pipe->head;
449	unsigned int tail = pipe->tail;
450	unsigned int mask = pipe->ring_size - 1;
451	int ret;
452
453	while (!pipe_empty(head, tail)) {
454		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
455
456		sd->len = buf->len;
457		if (sd->len > sd->total_len)
458			sd->len = sd->total_len;
459
460		ret = pipe_buf_confirm(pipe, buf);
461		if (unlikely(ret)) {
462			if (ret == -ENODATA)
463				ret = 0;
464			return ret;
465		}
466
467		ret = actor(pipe, buf, sd);
468		if (ret <= 0)
469			return ret;
470
471		buf->offset += ret;
472		buf->len -= ret;
473
474		sd->num_spliced += ret;
475		sd->len -= ret;
476		sd->pos += ret;
477		sd->total_len -= ret;
478
479		if (!buf->len) {
480			pipe_buf_release(pipe, buf);
481			tail++;
482			pipe->tail = tail;
483			if (pipe->files)
484				sd->need_wakeup = true;
485		}
486
487		if (!sd->total_len)
488			return 0;
489	}
490
491	return 1;
492}
493
494/* We know we have a pipe buffer, but maybe it's empty? */
495static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
496{
497	unsigned int tail = pipe->tail;
498	unsigned int mask = pipe->ring_size - 1;
499	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500
501	if (unlikely(!buf->len)) {
502		pipe_buf_release(pipe, buf);
503		pipe->tail = tail+1;
504		return true;
505	}
506
507	return false;
508}
509
510/**
511 * splice_from_pipe_next - wait for some data to splice from
512 * @pipe:	pipe to splice from
513 * @sd:		information about the splice operation
514 *
515 * Description:
516 *    This function will wait for some data and return a positive
517 *    value (one) if pipe buffers are available.  It will return zero
518 *    or -errno if no more data needs to be spliced.
519 */
520static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
521{
522	/*
523	 * Check for signal early to make process killable when there are
524	 * always buffers available
525	 */
526	if (signal_pending(current))
527		return -ERESTARTSYS;
528
529repeat:
530	while (pipe_empty(pipe->head, pipe->tail)) {
531		if (!pipe->writers)
532			return 0;
533
534		if (sd->num_spliced)
535			return 0;
536
537		if (sd->flags & SPLICE_F_NONBLOCK)
538			return -EAGAIN;
539
540		if (signal_pending(current))
541			return -ERESTARTSYS;
542
543		if (sd->need_wakeup) {
544			wakeup_pipe_writers(pipe);
545			sd->need_wakeup = false;
546		}
547
548		pipe_wait_readable(pipe);
549	}
550
551	if (eat_empty_buffer(pipe))
552		goto repeat;
553
554	return 1;
555}
556
557/**
558 * splice_from_pipe_begin - start splicing from pipe
559 * @sd:		information about the splice operation
560 *
561 * Description:
562 *    This function should be called before a loop containing
563 *    splice_from_pipe_next() and splice_from_pipe_feed() to
564 *    initialize the necessary fields of @sd.
565 */
566static void splice_from_pipe_begin(struct splice_desc *sd)
567{
568	sd->num_spliced = 0;
569	sd->need_wakeup = false;
570}
571
572/**
573 * splice_from_pipe_end - finish splicing from pipe
574 * @pipe:	pipe to splice from
575 * @sd:		information about the splice operation
576 *
577 * Description:
578 *    This function will wake up pipe writers if necessary.  It should
579 *    be called after a loop containing splice_from_pipe_next() and
580 *    splice_from_pipe_feed().
581 */
582static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
583{
584	if (sd->need_wakeup)
585		wakeup_pipe_writers(pipe);
586}
587
588/**
589 * __splice_from_pipe - splice data from a pipe to given actor
590 * @pipe:	pipe to splice from
591 * @sd:		information to @actor
592 * @actor:	handler that splices the data
593 *
594 * Description:
595 *    This function does little more than loop over the pipe and call
596 *    @actor to do the actual moving of a single struct pipe_buffer to
597 *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598 *    pipe_to_user.
599 *
600 */
601ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602			   splice_actor *actor)
603{
604	int ret;
605
606	splice_from_pipe_begin(sd);
607	do {
608		cond_resched();
609		ret = splice_from_pipe_next(pipe, sd);
610		if (ret > 0)
611			ret = splice_from_pipe_feed(pipe, sd, actor);
612	} while (ret > 0);
613	splice_from_pipe_end(pipe, sd);
614
615	return sd->num_spliced ? sd->num_spliced : ret;
616}
617EXPORT_SYMBOL(__splice_from_pipe);
618
619/**
620 * splice_from_pipe - splice data from a pipe to a file
621 * @pipe:	pipe to splice from
622 * @out:	file to splice to
623 * @ppos:	position in @out
624 * @len:	how many bytes to splice
625 * @flags:	splice modifier flags
626 * @actor:	handler that splices the data
627 *
628 * Description:
629 *    See __splice_from_pipe. This function locks the pipe inode,
630 *    otherwise it's identical to __splice_from_pipe().
631 *
632 */
633ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634			 loff_t *ppos, size_t len, unsigned int flags,
635			 splice_actor *actor)
636{
637	ssize_t ret;
638	struct splice_desc sd = {
639		.total_len = len,
640		.flags = flags,
641		.pos = *ppos,
642		.u.file = out,
643	};
644
645	pipe_lock(pipe);
646	ret = __splice_from_pipe(pipe, &sd, actor);
647	pipe_unlock(pipe);
648
649	return ret;
650}
651
652/**
653 * iter_file_splice_write - splice data from a pipe to a file
654 * @pipe:	pipe info
655 * @out:	file to write to
656 * @ppos:	position in @out
657 * @len:	number of bytes to splice
658 * @flags:	splice modifier flags
659 *
660 * Description:
661 *    Will either move or copy pages (determined by @flags options) from
662 *    the given pipe inode to the given file.
663 *    This one is ->write_iter-based.
664 *
665 */
666ssize_t
667iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668			  loff_t *ppos, size_t len, unsigned int flags)
669{
670	struct splice_desc sd = {
671		.total_len = len,
672		.flags = flags,
673		.pos = *ppos,
674		.u.file = out,
675	};
676	int nbufs = pipe->max_usage;
677	struct bio_vec *array;
678	ssize_t ret;
679
680	if (!out->f_op->write_iter)
681		return -EINVAL;
682
683	array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
684	if (unlikely(!array))
685		return -ENOMEM;
686
687	pipe_lock(pipe);
688
689	splice_from_pipe_begin(&sd);
690	while (sd.total_len) {
691		struct kiocb kiocb;
692		struct iov_iter from;
693		unsigned int head, tail, mask;
694		size_t left;
695		int n;
696
697		ret = splice_from_pipe_next(pipe, &sd);
698		if (ret <= 0)
699			break;
700
701		if (unlikely(nbufs < pipe->max_usage)) {
702			kfree(array);
703			nbufs = pipe->max_usage;
704			array = kcalloc(nbufs, sizeof(struct bio_vec),
705					GFP_KERNEL);
706			if (!array) {
707				ret = -ENOMEM;
708				break;
709			}
710		}
711
712		head = pipe->head;
713		tail = pipe->tail;
714		mask = pipe->ring_size - 1;
715
716		/* build the vector */
717		left = sd.total_len;
718		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
719			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
720			size_t this_len = buf->len;
721
722			/* zero-length bvecs are not supported, skip them */
723			if (!this_len)
724				continue;
725			this_len = min(this_len, left);
726
727			ret = pipe_buf_confirm(pipe, buf);
728			if (unlikely(ret)) {
729				if (ret == -ENODATA)
730					ret = 0;
731				goto done;
732			}
733
734			bvec_set_page(&array[n], buf->page, this_len,
735				      buf->offset);
736			left -= this_len;
737			n++;
738		}
739
740		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
741		init_sync_kiocb(&kiocb, out);
742		kiocb.ki_pos = sd.pos;
743		ret = call_write_iter(out, &kiocb, &from);
744		sd.pos = kiocb.ki_pos;
745		if (ret <= 0)
746			break;
747
748		sd.num_spliced += ret;
749		sd.total_len -= ret;
750		*ppos = sd.pos;
751
752		/* dismiss the fully eaten buffers, adjust the partial one */
753		tail = pipe->tail;
754		while (ret) {
755			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
756			if (ret >= buf->len) {
757				ret -= buf->len;
758				buf->len = 0;
759				pipe_buf_release(pipe, buf);
760				tail++;
761				pipe->tail = tail;
762				if (pipe->files)
763					sd.need_wakeup = true;
764			} else {
765				buf->offset += ret;
766				buf->len -= ret;
767				ret = 0;
768			}
769		}
770	}
771done:
772	kfree(array);
773	splice_from_pipe_end(pipe, &sd);
774
775	pipe_unlock(pipe);
776
777	if (sd.num_spliced)
778		ret = sd.num_spliced;
779
780	return ret;
781}
782
783EXPORT_SYMBOL(iter_file_splice_write);
784
785#ifdef CONFIG_NET
786/**
787 * splice_to_socket - splice data from a pipe to a socket
788 * @pipe:	pipe to splice from
789 * @out:	socket to write to
790 * @ppos:	position in @out
791 * @len:	number of bytes to splice
792 * @flags:	splice modifier flags
793 *
794 * Description:
795 *    Will send @len bytes from the pipe to a network socket. No data copying
796 *    is involved.
797 *
798 */
799ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
800			 loff_t *ppos, size_t len, unsigned int flags)
801{
802	struct socket *sock = sock_from_file(out);
803	struct bio_vec bvec[16];
804	struct msghdr msg = {};
805	ssize_t ret = 0;
806	size_t spliced = 0;
807	bool need_wakeup = false;
808
809	pipe_lock(pipe);
810
811	while (len > 0) {
812		unsigned int head, tail, mask, bc = 0;
813		size_t remain = len;
814
815		/*
816		 * Check for signal early to make process killable when there
817		 * are always buffers available
818		 */
819		ret = -ERESTARTSYS;
820		if (signal_pending(current))
821			break;
822
823		while (pipe_empty(pipe->head, pipe->tail)) {
824			ret = 0;
825			if (!pipe->writers)
826				goto out;
827
828			if (spliced)
829				goto out;
830
831			ret = -EAGAIN;
832			if (flags & SPLICE_F_NONBLOCK)
833				goto out;
834
835			ret = -ERESTARTSYS;
836			if (signal_pending(current))
837				goto out;
838
839			if (need_wakeup) {
840				wakeup_pipe_writers(pipe);
841				need_wakeup = false;
842			}
843
844			pipe_wait_readable(pipe);
845		}
846
847		head = pipe->head;
848		tail = pipe->tail;
849		mask = pipe->ring_size - 1;
850
851		while (!pipe_empty(head, tail)) {
852			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
853			size_t seg;
854
855			if (!buf->len) {
856				tail++;
857				continue;
858			}
859
860			seg = min_t(size_t, remain, buf->len);
861
862			ret = pipe_buf_confirm(pipe, buf);
863			if (unlikely(ret)) {
864				if (ret == -ENODATA)
865					ret = 0;
866				break;
867			}
868
869			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
870			remain -= seg;
871			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
872				break;
873			tail++;
874		}
875
876		if (!bc)
877			break;
878
879		msg.msg_flags = MSG_SPLICE_PAGES;
880		if (flags & SPLICE_F_MORE)
881			msg.msg_flags |= MSG_MORE;
882		if (remain && pipe_occupancy(pipe->head, tail) > 0)
883			msg.msg_flags |= MSG_MORE;
884		if (out->f_flags & O_NONBLOCK)
885			msg.msg_flags |= MSG_DONTWAIT;
886
887		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
888			      len - remain);
889		ret = sock_sendmsg(sock, &msg);
890		if (ret <= 0)
891			break;
892
893		spliced += ret;
894		len -= ret;
895		tail = pipe->tail;
896		while (ret > 0) {
897			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
898			size_t seg = min_t(size_t, ret, buf->len);
899
900			buf->offset += seg;
901			buf->len -= seg;
902			ret -= seg;
903
904			if (!buf->len) {
905				pipe_buf_release(pipe, buf);
906				tail++;
907			}
908		}
909
910		if (tail != pipe->tail) {
911			pipe->tail = tail;
912			if (pipe->files)
913				need_wakeup = true;
914		}
915	}
916
917out:
918	pipe_unlock(pipe);
919	if (need_wakeup)
920		wakeup_pipe_writers(pipe);
921	return spliced ?: ret;
922}
923#endif
924
925static int warn_unsupported(struct file *file, const char *op)
926{
927	pr_debug_ratelimited(
928		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
929		op, file, current->pid, current->comm);
930	return -EINVAL;
931}
932
933/*
934 * Attempt to initiate a splice from pipe to file.
935 */
936static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
937			      loff_t *ppos, size_t len, unsigned int flags)
938{
939	if (unlikely(!out->f_op->splice_write))
940		return warn_unsupported(out, "write");
941	return out->f_op->splice_write(pipe, out, ppos, len, flags);
942}
943
944/*
945 * Indicate to the caller that there was a premature EOF when reading from the
946 * source and the caller didn't indicate they would be sending more data after
947 * this.
948 */
949static void do_splice_eof(struct splice_desc *sd)
950{
951	if (sd->splice_eof)
952		sd->splice_eof(sd);
953}
954
955/*
956 * Callers already called rw_verify_area() on the entire range.
957 * No need to call it for sub ranges.
958 */
959static ssize_t do_splice_read(struct file *in, loff_t *ppos,
960			      struct pipe_inode_info *pipe, size_t len,
961			      unsigned int flags)
962{
963	unsigned int p_space;
964
965	if (unlikely(!(in->f_mode & FMODE_READ)))
966		return -EBADF;
967	if (!len)
968		return 0;
969
970	/* Don't try to read more the pipe has space for. */
971	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
972	len = min_t(size_t, len, p_space << PAGE_SHIFT);
973
974	if (unlikely(len > MAX_RW_COUNT))
975		len = MAX_RW_COUNT;
976
977	if (unlikely(!in->f_op->splice_read))
978		return warn_unsupported(in, "read");
979	/*
980	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
981	 * buffer, copy into it and splice that into the pipe.
982	 */
983	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
984		return copy_splice_read(in, ppos, pipe, len, flags);
985	return in->f_op->splice_read(in, ppos, pipe, len, flags);
986}
987
988/**
989 * vfs_splice_read - Read data from a file and splice it into a pipe
990 * @in:		File to splice from
991 * @ppos:	Input file offset
992 * @pipe:	Pipe to splice to
993 * @len:	Number of bytes to splice
994 * @flags:	Splice modifier flags (SPLICE_F_*)
995 *
996 * Splice the requested amount of data from the input file to the pipe.  This
997 * is synchronous as the caller must hold the pipe lock across the entire
998 * operation.
999 *
1000 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001 * a hole and a negative error code otherwise.
1002 */
1003ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004			struct pipe_inode_info *pipe, size_t len,
1005			unsigned int flags)
1006{
1007	ssize_t ret;
1008
1009	ret = rw_verify_area(READ, in, ppos, len);
1010	if (unlikely(ret < 0))
1011		return ret;
1012
1013	return do_splice_read(in, ppos, pipe, len, flags);
1014}
1015EXPORT_SYMBOL_GPL(vfs_splice_read);
1016
1017/**
1018 * splice_direct_to_actor - splices data directly between two non-pipes
1019 * @in:		file to splice from
1020 * @sd:		actor information on where to splice to
1021 * @actor:	handles the data splicing
1022 *
1023 * Description:
1024 *    This is a special case helper to splice directly between two
1025 *    points, without requiring an explicit pipe. Internally an allocated
1026 *    pipe is cached in the process, and reused during the lifetime of
1027 *    that process.
1028 *
1029 */
1030ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031			       splice_direct_actor *actor)
1032{
1033	struct pipe_inode_info *pipe;
1034	ssize_t ret, bytes;
1035	size_t len;
1036	int i, flags, more;
1037
1038	/*
1039	 * We require the input to be seekable, as we don't want to randomly
1040	 * drop data for eg socket -> socket splicing. Use the piped splicing
1041	 * for that!
1042	 */
1043	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1044		return -EINVAL;
1045
1046	/*
1047	 * neither in nor out is a pipe, setup an internal pipe attached to
1048	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1049	 */
1050	pipe = current->splice_pipe;
1051	if (unlikely(!pipe)) {
1052		pipe = alloc_pipe_info();
1053		if (!pipe)
1054			return -ENOMEM;
1055
1056		/*
1057		 * We don't have an immediate reader, but we'll read the stuff
1058		 * out of the pipe right after the splice_to_pipe(). So set
1059		 * PIPE_READERS appropriately.
1060		 */
1061		pipe->readers = 1;
1062
1063		current->splice_pipe = pipe;
1064	}
1065
1066	/*
1067	 * Do the splice.
1068	 */
1069	bytes = 0;
1070	len = sd->total_len;
1071
1072	/* Don't block on output, we have to drain the direct pipe. */
1073	flags = sd->flags;
1074	sd->flags &= ~SPLICE_F_NONBLOCK;
1075
1076	/*
1077	 * We signal MORE until we've read sufficient data to fulfill the
1078	 * request and we keep signalling it if the caller set it.
1079	 */
1080	more = sd->flags & SPLICE_F_MORE;
1081	sd->flags |= SPLICE_F_MORE;
1082
1083	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1084
1085	while (len) {
1086		size_t read_len;
1087		loff_t pos = sd->pos, prev_pos = pos;
1088
1089		ret = do_splice_read(in, &pos, pipe, len, flags);
1090		if (unlikely(ret <= 0))
1091			goto read_failure;
1092
1093		read_len = ret;
1094		sd->total_len = read_len;
1095
1096		/*
1097		 * If we now have sufficient data to fulfill the request then
1098		 * we clear SPLICE_F_MORE if it was not set initially.
1099		 */
1100		if (read_len >= len && !more)
1101			sd->flags &= ~SPLICE_F_MORE;
1102
1103		/*
1104		 * NOTE: nonblocking mode only applies to the input. We
1105		 * must not do the output in nonblocking mode as then we
1106		 * could get stuck data in the internal pipe:
1107		 */
1108		ret = actor(pipe, sd);
1109		if (unlikely(ret <= 0)) {
1110			sd->pos = prev_pos;
1111			goto out_release;
1112		}
1113
1114		bytes += ret;
1115		len -= ret;
1116		sd->pos = pos;
1117
1118		if (ret < read_len) {
1119			sd->pos = prev_pos + ret;
1120			goto out_release;
1121		}
1122	}
1123
1124done:
1125	pipe->tail = pipe->head = 0;
1126	file_accessed(in);
1127	return bytes;
1128
1129read_failure:
1130	/*
1131	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134	 * least 1 byte *then* we will also do the ->splice_eof() call.
1135	 */
1136	if (ret == 0 && !more && len > 0 && bytes)
1137		do_splice_eof(sd);
1138out_release:
1139	/*
1140	 * If we did an incomplete transfer we must release
1141	 * the pipe buffers in question:
1142	 */
1143	for (i = 0; i < pipe->ring_size; i++) {
1144		struct pipe_buffer *buf = &pipe->bufs[i];
1145
1146		if (buf->ops)
1147			pipe_buf_release(pipe, buf);
1148	}
1149
1150	if (!bytes)
1151		bytes = ret;
1152
1153	goto done;
1154}
1155EXPORT_SYMBOL(splice_direct_to_actor);
1156
1157static int direct_splice_actor(struct pipe_inode_info *pipe,
1158			       struct splice_desc *sd)
1159{
1160	struct file *file = sd->u.file;
1161	long ret;
1162
1163	file_start_write(file);
1164	ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165	file_end_write(file);
1166	return ret;
1167}
1168
1169static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170					struct splice_desc *sd)
1171{
1172	struct file *file = sd->u.file;
1173
1174	return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1175}
1176
1177static void direct_file_splice_eof(struct splice_desc *sd)
1178{
1179	struct file *file = sd->u.file;
1180
1181	if (file->f_op->splice_eof)
1182		file->f_op->splice_eof(file);
1183}
1184
1185static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186				      struct file *out, loff_t *opos,
1187				      size_t len, unsigned int flags,
1188				      splice_direct_actor *actor)
1189{
1190	struct splice_desc sd = {
1191		.len		= len,
1192		.total_len	= len,
1193		.flags		= flags,
1194		.pos		= *ppos,
1195		.u.file		= out,
1196		.splice_eof	= direct_file_splice_eof,
1197		.opos		= opos,
1198	};
1199	ssize_t ret;
1200
1201	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202		return -EBADF;
1203
1204	if (unlikely(out->f_flags & O_APPEND))
1205		return -EINVAL;
1206
1207	ret = splice_direct_to_actor(in, &sd, actor);
1208	if (ret > 0)
1209		*ppos = sd.pos;
1210
1211	return ret;
1212}
1213/**
1214 * do_splice_direct - splices data directly between two files
1215 * @in:		file to splice from
1216 * @ppos:	input file offset
1217 * @out:	file to splice to
1218 * @opos:	output file offset
1219 * @len:	number of bytes to splice
1220 * @flags:	splice modifier flags
1221 *
1222 * Description:
1223 *    For use by do_sendfile(). splice can easily emulate sendfile, but
1224 *    doing it in the application would incur an extra system call
1225 *    (splice in + splice out, as compared to just sendfile()). So this helper
1226 *    can splice directly through a process-private pipe.
1227 *
1228 * Callers already called rw_verify_area() on the entire range.
1229 */
1230ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231			 loff_t *opos, size_t len, unsigned int flags)
1232{
1233	return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234				      direct_splice_actor);
1235}
1236EXPORT_SYMBOL(do_splice_direct);
1237
1238/**
1239 * splice_file_range - splices data between two files for copy_file_range()
1240 * @in:		file to splice from
1241 * @ppos:	input file offset
1242 * @out:	file to splice to
1243 * @opos:	output file offset
1244 * @len:	number of bytes to splice
1245 *
1246 * Description:
1247 *    For use by ->copy_file_range() methods.
1248 *    Like do_splice_direct(), but vfs_copy_file_range() already holds
1249 *    start_file_write() on @out file.
1250 *
1251 * Callers already called rw_verify_area() on the entire range.
1252 */
1253ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254			  loff_t *opos, size_t len)
1255{
1256	lockdep_assert(file_write_started(out));
1257
1258	return do_splice_direct_actor(in, ppos, out, opos,
1259				      min_t(size_t, len, MAX_RW_COUNT),
1260				      0, splice_file_range_actor);
1261}
1262EXPORT_SYMBOL(splice_file_range);
1263
1264static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1265{
1266	for (;;) {
1267		if (unlikely(!pipe->readers)) {
1268			send_sig(SIGPIPE, current, 0);
1269			return -EPIPE;
1270		}
1271		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272			return 0;
1273		if (flags & SPLICE_F_NONBLOCK)
1274			return -EAGAIN;
1275		if (signal_pending(current))
1276			return -ERESTARTSYS;
1277		pipe_wait_writable(pipe);
1278	}
1279}
1280
1281static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282			       struct pipe_inode_info *opipe,
1283			       size_t len, unsigned int flags);
1284
1285ssize_t splice_file_to_pipe(struct file *in,
1286			    struct pipe_inode_info *opipe,
1287			    loff_t *offset,
1288			    size_t len, unsigned int flags)
1289{
1290	ssize_t ret;
1291
1292	pipe_lock(opipe);
1293	ret = wait_for_space(opipe, flags);
1294	if (!ret)
1295		ret = do_splice_read(in, offset, opipe, len, flags);
1296	pipe_unlock(opipe);
1297	if (ret > 0)
1298		wakeup_pipe_readers(opipe);
1299	return ret;
1300}
1301
1302/*
1303 * Determine where to splice to/from.
1304 */
1305ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306		  loff_t *off_out, size_t len, unsigned int flags)
1307{
1308	struct pipe_inode_info *ipipe;
1309	struct pipe_inode_info *opipe;
1310	loff_t offset;
1311	ssize_t ret;
1312
1313	if (unlikely(!(in->f_mode & FMODE_READ) ||
1314		     !(out->f_mode & FMODE_WRITE)))
1315		return -EBADF;
1316
1317	ipipe = get_pipe_info(in, true);
1318	opipe = get_pipe_info(out, true);
1319
1320	if (ipipe && opipe) {
1321		if (off_in || off_out)
1322			return -ESPIPE;
1323
1324		/* Splicing to self would be fun, but... */
1325		if (ipipe == opipe)
1326			return -EINVAL;
1327
1328		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329			flags |= SPLICE_F_NONBLOCK;
1330
1331		ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332	} else if (ipipe) {
1333		if (off_in)
1334			return -ESPIPE;
1335		if (off_out) {
1336			if (!(out->f_mode & FMODE_PWRITE))
1337				return -EINVAL;
1338			offset = *off_out;
1339		} else {
1340			offset = out->f_pos;
1341		}
1342
1343		if (unlikely(out->f_flags & O_APPEND))
1344			return -EINVAL;
1345
1346		ret = rw_verify_area(WRITE, out, &offset, len);
1347		if (unlikely(ret < 0))
1348			return ret;
1349
1350		if (in->f_flags & O_NONBLOCK)
1351			flags |= SPLICE_F_NONBLOCK;
1352
1353		file_start_write(out);
1354		ret = do_splice_from(ipipe, out, &offset, len, flags);
1355		file_end_write(out);
1356
1357		if (!off_out)
1358			out->f_pos = offset;
1359		else
1360			*off_out = offset;
1361	} else if (opipe) {
1362		if (off_out)
1363			return -ESPIPE;
1364		if (off_in) {
1365			if (!(in->f_mode & FMODE_PREAD))
1366				return -EINVAL;
1367			offset = *off_in;
1368		} else {
1369			offset = in->f_pos;
1370		}
1371
1372		ret = rw_verify_area(READ, in, &offset, len);
1373		if (unlikely(ret < 0))
1374			return ret;
1375
1376		if (out->f_flags & O_NONBLOCK)
1377			flags |= SPLICE_F_NONBLOCK;
1378
1379		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1380
1381		if (!off_in)
1382			in->f_pos = offset;
1383		else
1384			*off_in = offset;
1385	} else {
1386		ret = -EINVAL;
1387	}
1388
1389	if (ret > 0) {
1390		/*
1391		 * Generate modify out before access in:
1392		 * do_splice_from() may've already sent modify out,
1393		 * and this ensures the events get merged.
1394		 */
1395		fsnotify_modify(out);
1396		fsnotify_access(in);
1397	}
1398
1399	return ret;
1400}
1401
1402static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403			   struct file *out, loff_t __user *off_out,
1404			   size_t len, unsigned int flags)
1405{
1406	struct pipe_inode_info *ipipe;
1407	struct pipe_inode_info *opipe;
1408	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409	ssize_t ret;
1410
1411	ipipe = get_pipe_info(in, true);
1412	opipe = get_pipe_info(out, true);
1413
1414	if (ipipe) {
1415		if (off_in)
1416			return -ESPIPE;
1417		pipe_clear_nowait(in);
1418	}
1419	if (opipe) {
1420		if (off_out)
1421			return -ESPIPE;
1422		pipe_clear_nowait(out);
1423	}
1424
1425	if (off_out) {
1426		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427			return -EFAULT;
1428		__off_out = &offset;
1429	}
1430	if (off_in) {
1431		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432			return -EFAULT;
1433		__off_in = &offset;
1434	}
1435
1436	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437	if (ret < 0)
1438		return ret;
1439
1440	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441		return -EFAULT;
1442	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443		return -EFAULT;
1444
1445	return ret;
1446}
1447
1448static ssize_t iter_to_pipe(struct iov_iter *from,
1449			    struct pipe_inode_info *pipe,
1450			    unsigned int flags)
1451{
1452	struct pipe_buffer buf = {
1453		.ops = &user_page_pipe_buf_ops,
1454		.flags = flags
1455	};
1456	size_t total = 0;
1457	ssize_t ret = 0;
1458
1459	while (iov_iter_count(from)) {
1460		struct page *pages[16];
1461		ssize_t left;
1462		size_t start;
1463		int i, n;
1464
1465		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466		if (left <= 0) {
1467			ret = left;
1468			break;
1469		}
1470
1471		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472		for (i = 0; i < n; i++) {
1473			int size = min_t(int, left, PAGE_SIZE - start);
1474
1475			buf.page = pages[i];
1476			buf.offset = start;
1477			buf.len = size;
1478			ret = add_to_pipe(pipe, &buf);
1479			if (unlikely(ret < 0)) {
1480				iov_iter_revert(from, left);
1481				// this one got dropped by add_to_pipe()
1482				while (++i < n)
1483					put_page(pages[i]);
1484				goto out;
1485			}
1486			total += ret;
1487			left -= size;
1488			start = 0;
1489		}
1490	}
1491out:
1492	return total ? total : ret;
1493}
1494
1495static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496			struct splice_desc *sd)
1497{
1498	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499	return n == sd->len ? n : -EFAULT;
1500}
1501
1502/*
1503 * For lack of a better implementation, implement vmsplice() to userspace
1504 * as a simple copy of the pipes pages to the user iov.
1505 */
1506static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507				unsigned int flags)
1508{
1509	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510	struct splice_desc sd = {
1511		.total_len = iov_iter_count(iter),
1512		.flags = flags,
1513		.u.data = iter
1514	};
1515	ssize_t ret = 0;
1516
1517	if (!pipe)
1518		return -EBADF;
1519
1520	pipe_clear_nowait(file);
1521
1522	if (sd.total_len) {
1523		pipe_lock(pipe);
1524		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525		pipe_unlock(pipe);
1526	}
1527
1528	if (ret > 0)
1529		fsnotify_access(file);
1530
1531	return ret;
1532}
1533
1534/*
1535 * vmsplice splices a user address range into a pipe. It can be thought of
1536 * as splice-from-memory, where the regular splice is splice-from-file (or
1537 * to file). In both cases the output is a pipe, naturally.
1538 */
1539static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540				unsigned int flags)
1541{
1542	struct pipe_inode_info *pipe;
1543	ssize_t ret = 0;
1544	unsigned buf_flag = 0;
1545
1546	if (flags & SPLICE_F_GIFT)
1547		buf_flag = PIPE_BUF_FLAG_GIFT;
1548
1549	pipe = get_pipe_info(file, true);
1550	if (!pipe)
1551		return -EBADF;
1552
1553	pipe_clear_nowait(file);
1554
1555	pipe_lock(pipe);
1556	ret = wait_for_space(pipe, flags);
1557	if (!ret)
1558		ret = iter_to_pipe(iter, pipe, buf_flag);
1559	pipe_unlock(pipe);
1560	if (ret > 0) {
1561		wakeup_pipe_readers(pipe);
1562		fsnotify_modify(file);
1563	}
1564	return ret;
1565}
1566
1567static int vmsplice_type(struct fd f, int *type)
1568{
1569	if (!f.file)
1570		return -EBADF;
1571	if (f.file->f_mode & FMODE_WRITE) {
1572		*type = ITER_SOURCE;
1573	} else if (f.file->f_mode & FMODE_READ) {
1574		*type = ITER_DEST;
1575	} else {
1576		fdput(f);
1577		return -EBADF;
1578	}
1579	return 0;
1580}
1581
1582/*
1583 * Note that vmsplice only really supports true splicing _from_ user memory
1584 * to a pipe, not the other way around. Splicing from user memory is a simple
1585 * operation that can be supported without any funky alignment restrictions
1586 * or nasty vm tricks. We simply map in the user memory and fill them into
1587 * a pipe. The reverse isn't quite as easy, though. There are two possible
1588 * solutions for that:
1589 *
1590 *	- memcpy() the data internally, at which point we might as well just
1591 *	  do a regular read() on the buffer anyway.
1592 *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1593 *	  has restriction limitations on both ends of the pipe).
1594 *
1595 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1596 *
1597 */
1598SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1599		unsigned long, nr_segs, unsigned int, flags)
1600{
1601	struct iovec iovstack[UIO_FASTIOV];
1602	struct iovec *iov = iovstack;
1603	struct iov_iter iter;
1604	ssize_t error;
1605	struct fd f;
1606	int type;
1607
1608	if (unlikely(flags & ~SPLICE_F_ALL))
1609		return -EINVAL;
1610
1611	f = fdget(fd);
1612	error = vmsplice_type(f, &type);
1613	if (error)
1614		return error;
1615
1616	error = import_iovec(type, uiov, nr_segs,
1617			     ARRAY_SIZE(iovstack), &iov, &iter);
1618	if (error < 0)
1619		goto out_fdput;
1620
1621	if (!iov_iter_count(&iter))
1622		error = 0;
1623	else if (type == ITER_SOURCE)
1624		error = vmsplice_to_pipe(f.file, &iter, flags);
1625	else
1626		error = vmsplice_to_user(f.file, &iter, flags);
1627
1628	kfree(iov);
1629out_fdput:
1630	fdput(f);
1631	return error;
1632}
1633
1634SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1635		int, fd_out, loff_t __user *, off_out,
1636		size_t, len, unsigned int, flags)
1637{
1638	struct fd in, out;
1639	ssize_t error;
1640
1641	if (unlikely(!len))
1642		return 0;
1643
1644	if (unlikely(flags & ~SPLICE_F_ALL))
1645		return -EINVAL;
1646
1647	error = -EBADF;
1648	in = fdget(fd_in);
1649	if (in.file) {
1650		out = fdget(fd_out);
1651		if (out.file) {
1652			error = __do_splice(in.file, off_in, out.file, off_out,
1653					    len, flags);
1654			fdput(out);
1655		}
1656		fdput(in);
1657	}
1658	return error;
1659}
1660
1661/*
1662 * Make sure there's data to read. Wait for input if we can, otherwise
1663 * return an appropriate error.
1664 */
1665static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1666{
1667	int ret;
1668
1669	/*
1670	 * Check the pipe occupancy without the inode lock first. This function
1671	 * is speculative anyways, so missing one is ok.
1672	 */
1673	if (!pipe_empty(pipe->head, pipe->tail))
1674		return 0;
1675
1676	ret = 0;
1677	pipe_lock(pipe);
1678
1679	while (pipe_empty(pipe->head, pipe->tail)) {
1680		if (signal_pending(current)) {
1681			ret = -ERESTARTSYS;
1682			break;
1683		}
1684		if (!pipe->writers)
1685			break;
1686		if (flags & SPLICE_F_NONBLOCK) {
1687			ret = -EAGAIN;
1688			break;
1689		}
1690		pipe_wait_readable(pipe);
1691	}
1692
1693	pipe_unlock(pipe);
1694	return ret;
1695}
1696
1697/*
1698 * Make sure there's writeable room. Wait for room if we can, otherwise
1699 * return an appropriate error.
1700 */
1701static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1702{
1703	int ret;
1704
1705	/*
1706	 * Check pipe occupancy without the inode lock first. This function
1707	 * is speculative anyways, so missing one is ok.
1708	 */
1709	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1710		return 0;
1711
1712	ret = 0;
1713	pipe_lock(pipe);
1714
1715	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1716		if (!pipe->readers) {
1717			send_sig(SIGPIPE, current, 0);
1718			ret = -EPIPE;
1719			break;
1720		}
1721		if (flags & SPLICE_F_NONBLOCK) {
1722			ret = -EAGAIN;
1723			break;
1724		}
1725		if (signal_pending(current)) {
1726			ret = -ERESTARTSYS;
1727			break;
1728		}
1729		pipe_wait_writable(pipe);
1730	}
1731
1732	pipe_unlock(pipe);
1733	return ret;
1734}
1735
1736/*
1737 * Splice contents of ipipe to opipe.
1738 */
1739static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1740			       struct pipe_inode_info *opipe,
1741			       size_t len, unsigned int flags)
1742{
1743	struct pipe_buffer *ibuf, *obuf;
1744	unsigned int i_head, o_head;
1745	unsigned int i_tail, o_tail;
1746	unsigned int i_mask, o_mask;
1747	int ret = 0;
1748	bool input_wakeup = false;
1749
1750
1751retry:
1752	ret = ipipe_prep(ipipe, flags);
1753	if (ret)
1754		return ret;
1755
1756	ret = opipe_prep(opipe, flags);
1757	if (ret)
1758		return ret;
1759
1760	/*
1761	 * Potential ABBA deadlock, work around it by ordering lock
1762	 * grabbing by pipe info address. Otherwise two different processes
1763	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1764	 */
1765	pipe_double_lock(ipipe, opipe);
1766
1767	i_tail = ipipe->tail;
1768	i_mask = ipipe->ring_size - 1;
1769	o_head = opipe->head;
1770	o_mask = opipe->ring_size - 1;
1771
1772	do {
1773		size_t o_len;
1774
1775		if (!opipe->readers) {
1776			send_sig(SIGPIPE, current, 0);
1777			if (!ret)
1778				ret = -EPIPE;
1779			break;
1780		}
1781
1782		i_head = ipipe->head;
1783		o_tail = opipe->tail;
1784
1785		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1786			break;
1787
1788		/*
1789		 * Cannot make any progress, because either the input
1790		 * pipe is empty or the output pipe is full.
1791		 */
1792		if (pipe_empty(i_head, i_tail) ||
1793		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1794			/* Already processed some buffers, break */
1795			if (ret)
1796				break;
1797
1798			if (flags & SPLICE_F_NONBLOCK) {
1799				ret = -EAGAIN;
1800				break;
1801			}
1802
1803			/*
1804			 * We raced with another reader/writer and haven't
1805			 * managed to process any buffers.  A zero return
1806			 * value means EOF, so retry instead.
1807			 */
1808			pipe_unlock(ipipe);
1809			pipe_unlock(opipe);
1810			goto retry;
1811		}
1812
1813		ibuf = &ipipe->bufs[i_tail & i_mask];
1814		obuf = &opipe->bufs[o_head & o_mask];
1815
1816		if (len >= ibuf->len) {
1817			/*
1818			 * Simply move the whole buffer from ipipe to opipe
1819			 */
1820			*obuf = *ibuf;
1821			ibuf->ops = NULL;
1822			i_tail++;
1823			ipipe->tail = i_tail;
1824			input_wakeup = true;
1825			o_len = obuf->len;
1826			o_head++;
1827			opipe->head = o_head;
1828		} else {
1829			/*
1830			 * Get a reference to this pipe buffer,
1831			 * so we can copy the contents over.
1832			 */
1833			if (!pipe_buf_get(ipipe, ibuf)) {
1834				if (ret == 0)
1835					ret = -EFAULT;
1836				break;
1837			}
1838			*obuf = *ibuf;
1839
1840			/*
1841			 * Don't inherit the gift and merge flags, we need to
1842			 * prevent multiple steals of this page.
1843			 */
1844			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1845			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1846
1847			obuf->len = len;
1848			ibuf->offset += len;
1849			ibuf->len -= len;
1850			o_len = len;
1851			o_head++;
1852			opipe->head = o_head;
1853		}
1854		ret += o_len;
1855		len -= o_len;
1856	} while (len);
1857
1858	pipe_unlock(ipipe);
1859	pipe_unlock(opipe);
1860
1861	/*
1862	 * If we put data in the output pipe, wakeup any potential readers.
1863	 */
1864	if (ret > 0)
1865		wakeup_pipe_readers(opipe);
1866
1867	if (input_wakeup)
1868		wakeup_pipe_writers(ipipe);
1869
1870	return ret;
1871}
1872
1873/*
1874 * Link contents of ipipe to opipe.
1875 */
1876static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1877			 struct pipe_inode_info *opipe,
1878			 size_t len, unsigned int flags)
1879{
1880	struct pipe_buffer *ibuf, *obuf;
1881	unsigned int i_head, o_head;
1882	unsigned int i_tail, o_tail;
1883	unsigned int i_mask, o_mask;
1884	ssize_t ret = 0;
1885
1886	/*
1887	 * Potential ABBA deadlock, work around it by ordering lock
1888	 * grabbing by pipe info address. Otherwise two different processes
1889	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1890	 */
1891	pipe_double_lock(ipipe, opipe);
1892
1893	i_tail = ipipe->tail;
1894	i_mask = ipipe->ring_size - 1;
1895	o_head = opipe->head;
1896	o_mask = opipe->ring_size - 1;
1897
1898	do {
1899		if (!opipe->readers) {
1900			send_sig(SIGPIPE, current, 0);
1901			if (!ret)
1902				ret = -EPIPE;
1903			break;
1904		}
1905
1906		i_head = ipipe->head;
1907		o_tail = opipe->tail;
1908
1909		/*
1910		 * If we have iterated all input buffers or run out of
1911		 * output room, break.
1912		 */
1913		if (pipe_empty(i_head, i_tail) ||
1914		    pipe_full(o_head, o_tail, opipe->max_usage))
1915			break;
1916
1917		ibuf = &ipipe->bufs[i_tail & i_mask];
1918		obuf = &opipe->bufs[o_head & o_mask];
1919
1920		/*
1921		 * Get a reference to this pipe buffer,
1922		 * so we can copy the contents over.
1923		 */
1924		if (!pipe_buf_get(ipipe, ibuf)) {
1925			if (ret == 0)
1926				ret = -EFAULT;
1927			break;
1928		}
1929
1930		*obuf = *ibuf;
1931
1932		/*
1933		 * Don't inherit the gift and merge flag, we need to prevent
1934		 * multiple steals of this page.
1935		 */
1936		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1937		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1938
1939		if (obuf->len > len)
1940			obuf->len = len;
1941		ret += obuf->len;
1942		len -= obuf->len;
1943
1944		o_head++;
1945		opipe->head = o_head;
1946		i_tail++;
1947	} while (len);
1948
1949	pipe_unlock(ipipe);
1950	pipe_unlock(opipe);
1951
1952	/*
1953	 * If we put data in the output pipe, wakeup any potential readers.
1954	 */
1955	if (ret > 0)
1956		wakeup_pipe_readers(opipe);
1957
1958	return ret;
1959}
1960
1961/*
1962 * This is a tee(1) implementation that works on pipes. It doesn't copy
1963 * any data, it simply references the 'in' pages on the 'out' pipe.
1964 * The 'flags' used are the SPLICE_F_* variants, currently the only
1965 * applicable one is SPLICE_F_NONBLOCK.
1966 */
1967ssize_t do_tee(struct file *in, struct file *out, size_t len,
1968	       unsigned int flags)
1969{
1970	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1971	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1972	ssize_t ret = -EINVAL;
1973
1974	if (unlikely(!(in->f_mode & FMODE_READ) ||
1975		     !(out->f_mode & FMODE_WRITE)))
1976		return -EBADF;
1977
1978	/*
1979	 * Duplicate the contents of ipipe to opipe without actually
1980	 * copying the data.
1981	 */
1982	if (ipipe && opipe && ipipe != opipe) {
1983		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1984			flags |= SPLICE_F_NONBLOCK;
1985
1986		/*
1987		 * Keep going, unless we encounter an error. The ipipe/opipe
1988		 * ordering doesn't really matter.
1989		 */
1990		ret = ipipe_prep(ipipe, flags);
1991		if (!ret) {
1992			ret = opipe_prep(opipe, flags);
1993			if (!ret)
1994				ret = link_pipe(ipipe, opipe, len, flags);
1995		}
1996	}
1997
1998	if (ret > 0) {
1999		fsnotify_access(in);
2000		fsnotify_modify(out);
2001	}
2002
2003	return ret;
2004}
2005
2006SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2007{
2008	struct fd in, out;
2009	ssize_t error;
2010
2011	if (unlikely(flags & ~SPLICE_F_ALL))
2012		return -EINVAL;
2013
2014	if (unlikely(!len))
2015		return 0;
2016
2017	error = -EBADF;
2018	in = fdget(fdin);
2019	if (in.file) {
2020		out = fdget(fdout);
2021		if (out.file) {
2022			error = do_tee(in.file, out.file, len, flags);
2023			fdput(out);
2024		}
2025 		fdput(in);
2026 	}
2027
2028	return error;
2029}
2030