1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *   Copyright (C) 2017, Microsoft Corporation.
4 *
5 *   Author(s): Long Li <longli@microsoft.com>
6 */
7#include <linux/module.h>
8#include <linux/highmem.h>
9#include "smbdirect.h"
10#include "cifs_debug.h"
11#include "cifsproto.h"
12#include "smb2proto.h"
13
14static struct smbd_response *get_empty_queue_buffer(
15		struct smbd_connection *info);
16static struct smbd_response *get_receive_buffer(
17		struct smbd_connection *info);
18static void put_receive_buffer(
19		struct smbd_connection *info,
20		struct smbd_response *response);
21static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22static void destroy_receive_buffers(struct smbd_connection *info);
23
24static void put_empty_packet(
25		struct smbd_connection *info, struct smbd_response *response);
26static void enqueue_reassembly(
27		struct smbd_connection *info,
28		struct smbd_response *response, int data_length);
29static struct smbd_response *_get_first_reassembly(
30		struct smbd_connection *info);
31
32static int smbd_post_recv(
33		struct smbd_connection *info,
34		struct smbd_response *response);
35
36static int smbd_post_send_empty(struct smbd_connection *info);
37
38static void destroy_mr_list(struct smbd_connection *info);
39static int allocate_mr_list(struct smbd_connection *info);
40
41struct smb_extract_to_rdma {
42	struct ib_sge		*sge;
43	unsigned int		nr_sge;
44	unsigned int		max_sge;
45	struct ib_device	*device;
46	u32			local_dma_lkey;
47	enum dma_data_direction	direction;
48};
49static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
50					struct smb_extract_to_rdma *rdma);
51
52/* SMBD version number */
53#define SMBD_V1	0x0100
54
55/* Port numbers for SMBD transport */
56#define SMB_PORT	445
57#define SMBD_PORT	5445
58
59/* Address lookup and resolve timeout in ms */
60#define RDMA_RESOLVE_TIMEOUT	5000
61
62/* SMBD negotiation timeout in seconds */
63#define SMBD_NEGOTIATE_TIMEOUT	120
64
65/* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
66#define SMBD_MIN_RECEIVE_SIZE		128
67#define SMBD_MIN_FRAGMENTED_SIZE	131072
68
69/*
70 * Default maximum number of RDMA read/write outstanding on this connection
71 * This value is possibly decreased during QP creation on hardware limit
72 */
73#define SMBD_CM_RESPONDER_RESOURCES	32
74
75/* Maximum number of retries on data transfer operations */
76#define SMBD_CM_RETRY			6
77/* No need to retry on Receiver Not Ready since SMBD manages credits */
78#define SMBD_CM_RNR_RETRY		0
79
80/*
81 * User configurable initial values per SMBD transport connection
82 * as defined in [MS-SMBD] 3.1.1.1
83 * Those may change after a SMBD negotiation
84 */
85/* The local peer's maximum number of credits to grant to the peer */
86int smbd_receive_credit_max = 255;
87
88/* The remote peer's credit request of local peer */
89int smbd_send_credit_target = 255;
90
91/* The maximum single message size can be sent to remote peer */
92int smbd_max_send_size = 1364;
93
94/*  The maximum fragmented upper-layer payload receive size supported */
95int smbd_max_fragmented_recv_size = 1024 * 1024;
96
97/*  The maximum single-message size which can be received */
98int smbd_max_receive_size = 1364;
99
100/* The timeout to initiate send of a keepalive message on idle */
101int smbd_keep_alive_interval = 120;
102
103/*
104 * User configurable initial values for RDMA transport
105 * The actual values used may be lower and are limited to hardware capabilities
106 */
107/* Default maximum number of pages in a single RDMA write/read */
108int smbd_max_frmr_depth = 2048;
109
110/* If payload is less than this byte, use RDMA send/recv not read/write */
111int rdma_readwrite_threshold = 4096;
112
113/* Transport logging functions
114 * Logging are defined as classes. They can be OR'ed to define the actual
115 * logging level via module parameter smbd_logging_class
116 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
117 * log_rdma_event()
118 */
119#define LOG_OUTGOING			0x1
120#define LOG_INCOMING			0x2
121#define LOG_READ			0x4
122#define LOG_WRITE			0x8
123#define LOG_RDMA_SEND			0x10
124#define LOG_RDMA_RECV			0x20
125#define LOG_KEEP_ALIVE			0x40
126#define LOG_RDMA_EVENT			0x80
127#define LOG_RDMA_MR			0x100
128static unsigned int smbd_logging_class;
129module_param(smbd_logging_class, uint, 0644);
130MODULE_PARM_DESC(smbd_logging_class,
131	"Logging class for SMBD transport 0x0 to 0x100");
132
133#define ERR		0x0
134#define INFO		0x1
135static unsigned int smbd_logging_level = ERR;
136module_param(smbd_logging_level, uint, 0644);
137MODULE_PARM_DESC(smbd_logging_level,
138	"Logging level for SMBD transport, 0 (default): error, 1: info");
139
140#define log_rdma(level, class, fmt, args...)				\
141do {									\
142	if (level <= smbd_logging_level || class & smbd_logging_class)	\
143		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
144} while (0)
145
146#define log_outgoing(level, fmt, args...) \
147		log_rdma(level, LOG_OUTGOING, fmt, ##args)
148#define log_incoming(level, fmt, args...) \
149		log_rdma(level, LOG_INCOMING, fmt, ##args)
150#define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
151#define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
152#define log_rdma_send(level, fmt, args...) \
153		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
154#define log_rdma_recv(level, fmt, args...) \
155		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
156#define log_keep_alive(level, fmt, args...) \
157		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
158#define log_rdma_event(level, fmt, args...) \
159		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
160#define log_rdma_mr(level, fmt, args...) \
161		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
162
163static void smbd_disconnect_rdma_work(struct work_struct *work)
164{
165	struct smbd_connection *info =
166		container_of(work, struct smbd_connection, disconnect_work);
167
168	if (info->transport_status == SMBD_CONNECTED) {
169		info->transport_status = SMBD_DISCONNECTING;
170		rdma_disconnect(info->id);
171	}
172}
173
174static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
175{
176	queue_work(info->workqueue, &info->disconnect_work);
177}
178
179/* Upcall from RDMA CM */
180static int smbd_conn_upcall(
181		struct rdma_cm_id *id, struct rdma_cm_event *event)
182{
183	struct smbd_connection *info = id->context;
184
185	log_rdma_event(INFO, "event=%d status=%d\n",
186		event->event, event->status);
187
188	switch (event->event) {
189	case RDMA_CM_EVENT_ADDR_RESOLVED:
190	case RDMA_CM_EVENT_ROUTE_RESOLVED:
191		info->ri_rc = 0;
192		complete(&info->ri_done);
193		break;
194
195	case RDMA_CM_EVENT_ADDR_ERROR:
196		info->ri_rc = -EHOSTUNREACH;
197		complete(&info->ri_done);
198		break;
199
200	case RDMA_CM_EVENT_ROUTE_ERROR:
201		info->ri_rc = -ENETUNREACH;
202		complete(&info->ri_done);
203		break;
204
205	case RDMA_CM_EVENT_ESTABLISHED:
206		log_rdma_event(INFO, "connected event=%d\n", event->event);
207		info->transport_status = SMBD_CONNECTED;
208		wake_up_interruptible(&info->conn_wait);
209		break;
210
211	case RDMA_CM_EVENT_CONNECT_ERROR:
212	case RDMA_CM_EVENT_UNREACHABLE:
213	case RDMA_CM_EVENT_REJECTED:
214		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
215		info->transport_status = SMBD_DISCONNECTED;
216		wake_up_interruptible(&info->conn_wait);
217		break;
218
219	case RDMA_CM_EVENT_DEVICE_REMOVAL:
220	case RDMA_CM_EVENT_DISCONNECTED:
221		/* This happenes when we fail the negotiation */
222		if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
223			info->transport_status = SMBD_DISCONNECTED;
224			wake_up(&info->conn_wait);
225			break;
226		}
227
228		info->transport_status = SMBD_DISCONNECTED;
229		wake_up_interruptible(&info->disconn_wait);
230		wake_up_interruptible(&info->wait_reassembly_queue);
231		wake_up_interruptible_all(&info->wait_send_queue);
232		break;
233
234	default:
235		break;
236	}
237
238	return 0;
239}
240
241/* Upcall from RDMA QP */
242static void
243smbd_qp_async_error_upcall(struct ib_event *event, void *context)
244{
245	struct smbd_connection *info = context;
246
247	log_rdma_event(ERR, "%s on device %s info %p\n",
248		ib_event_msg(event->event), event->device->name, info);
249
250	switch (event->event) {
251	case IB_EVENT_CQ_ERR:
252	case IB_EVENT_QP_FATAL:
253		smbd_disconnect_rdma_connection(info);
254		break;
255
256	default:
257		break;
258	}
259}
260
261static inline void *smbd_request_payload(struct smbd_request *request)
262{
263	return (void *)request->packet;
264}
265
266static inline void *smbd_response_payload(struct smbd_response *response)
267{
268	return (void *)response->packet;
269}
270
271/* Called when a RDMA send is done */
272static void send_done(struct ib_cq *cq, struct ib_wc *wc)
273{
274	int i;
275	struct smbd_request *request =
276		container_of(wc->wr_cqe, struct smbd_request, cqe);
277
278	log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
279		request, wc->status);
280
281	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
282		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
283			wc->status, wc->opcode);
284		smbd_disconnect_rdma_connection(request->info);
285	}
286
287	for (i = 0; i < request->num_sge; i++)
288		ib_dma_unmap_single(request->info->id->device,
289			request->sge[i].addr,
290			request->sge[i].length,
291			DMA_TO_DEVICE);
292
293	if (atomic_dec_and_test(&request->info->send_pending))
294		wake_up(&request->info->wait_send_pending);
295
296	wake_up(&request->info->wait_post_send);
297
298	mempool_free(request, request->info->request_mempool);
299}
300
301static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
302{
303	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
304		       resp->min_version, resp->max_version,
305		       resp->negotiated_version, resp->credits_requested,
306		       resp->credits_granted, resp->status,
307		       resp->max_readwrite_size, resp->preferred_send_size,
308		       resp->max_receive_size, resp->max_fragmented_size);
309}
310
311/*
312 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
313 * response, packet_length: the negotiation response message
314 * return value: true if negotiation is a success, false if failed
315 */
316static bool process_negotiation_response(
317		struct smbd_response *response, int packet_length)
318{
319	struct smbd_connection *info = response->info;
320	struct smbd_negotiate_resp *packet = smbd_response_payload(response);
321
322	if (packet_length < sizeof(struct smbd_negotiate_resp)) {
323		log_rdma_event(ERR,
324			"error: packet_length=%d\n", packet_length);
325		return false;
326	}
327
328	if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
329		log_rdma_event(ERR, "error: negotiated_version=%x\n",
330			le16_to_cpu(packet->negotiated_version));
331		return false;
332	}
333	info->protocol = le16_to_cpu(packet->negotiated_version);
334
335	if (packet->credits_requested == 0) {
336		log_rdma_event(ERR, "error: credits_requested==0\n");
337		return false;
338	}
339	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
340
341	if (packet->credits_granted == 0) {
342		log_rdma_event(ERR, "error: credits_granted==0\n");
343		return false;
344	}
345	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
346
347	atomic_set(&info->receive_credits, 0);
348
349	if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
350		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
351			le32_to_cpu(packet->preferred_send_size));
352		return false;
353	}
354	info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
355
356	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
357		log_rdma_event(ERR, "error: max_receive_size=%d\n",
358			le32_to_cpu(packet->max_receive_size));
359		return false;
360	}
361	info->max_send_size = min_t(int, info->max_send_size,
362					le32_to_cpu(packet->max_receive_size));
363
364	if (le32_to_cpu(packet->max_fragmented_size) <
365			SMBD_MIN_FRAGMENTED_SIZE) {
366		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
367			le32_to_cpu(packet->max_fragmented_size));
368		return false;
369	}
370	info->max_fragmented_send_size =
371		le32_to_cpu(packet->max_fragmented_size);
372	info->rdma_readwrite_threshold =
373		rdma_readwrite_threshold > info->max_fragmented_send_size ?
374		info->max_fragmented_send_size :
375		rdma_readwrite_threshold;
376
377
378	info->max_readwrite_size = min_t(u32,
379			le32_to_cpu(packet->max_readwrite_size),
380			info->max_frmr_depth * PAGE_SIZE);
381	info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
382
383	return true;
384}
385
386static void smbd_post_send_credits(struct work_struct *work)
387{
388	int ret = 0;
389	int use_receive_queue = 1;
390	int rc;
391	struct smbd_response *response;
392	struct smbd_connection *info =
393		container_of(work, struct smbd_connection,
394			post_send_credits_work);
395
396	if (info->transport_status != SMBD_CONNECTED) {
397		wake_up(&info->wait_receive_queues);
398		return;
399	}
400
401	if (info->receive_credit_target >
402		atomic_read(&info->receive_credits)) {
403		while (true) {
404			if (use_receive_queue)
405				response = get_receive_buffer(info);
406			else
407				response = get_empty_queue_buffer(info);
408			if (!response) {
409				/* now switch to emtpy packet queue */
410				if (use_receive_queue) {
411					use_receive_queue = 0;
412					continue;
413				} else
414					break;
415			}
416
417			response->type = SMBD_TRANSFER_DATA;
418			response->first_segment = false;
419			rc = smbd_post_recv(info, response);
420			if (rc) {
421				log_rdma_recv(ERR,
422					"post_recv failed rc=%d\n", rc);
423				put_receive_buffer(info, response);
424				break;
425			}
426
427			ret++;
428		}
429	}
430
431	spin_lock(&info->lock_new_credits_offered);
432	info->new_credits_offered += ret;
433	spin_unlock(&info->lock_new_credits_offered);
434
435	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
436	info->send_immediate = true;
437	if (atomic_read(&info->receive_credits) <
438		info->receive_credit_target - 1) {
439		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
440		    info->send_immediate) {
441			log_keep_alive(INFO, "send an empty message\n");
442			smbd_post_send_empty(info);
443		}
444	}
445}
446
447/* Called from softirq, when recv is done */
448static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
449{
450	struct smbd_data_transfer *data_transfer;
451	struct smbd_response *response =
452		container_of(wc->wr_cqe, struct smbd_response, cqe);
453	struct smbd_connection *info = response->info;
454	int data_length = 0;
455
456	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
457		      response, response->type, wc->status, wc->opcode,
458		      wc->byte_len, wc->pkey_index);
459
460	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
461		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
462			wc->status, wc->opcode);
463		smbd_disconnect_rdma_connection(info);
464		goto error;
465	}
466
467	ib_dma_sync_single_for_cpu(
468		wc->qp->device,
469		response->sge.addr,
470		response->sge.length,
471		DMA_FROM_DEVICE);
472
473	switch (response->type) {
474	/* SMBD negotiation response */
475	case SMBD_NEGOTIATE_RESP:
476		dump_smbd_negotiate_resp(smbd_response_payload(response));
477		info->full_packet_received = true;
478		info->negotiate_done =
479			process_negotiation_response(response, wc->byte_len);
480		complete(&info->negotiate_completion);
481		break;
482
483	/* SMBD data transfer packet */
484	case SMBD_TRANSFER_DATA:
485		data_transfer = smbd_response_payload(response);
486		data_length = le32_to_cpu(data_transfer->data_length);
487
488		/*
489		 * If this is a packet with data playload place the data in
490		 * reassembly queue and wake up the reading thread
491		 */
492		if (data_length) {
493			if (info->full_packet_received)
494				response->first_segment = true;
495
496			if (le32_to_cpu(data_transfer->remaining_data_length))
497				info->full_packet_received = false;
498			else
499				info->full_packet_received = true;
500
501			enqueue_reassembly(
502				info,
503				response,
504				data_length);
505		} else
506			put_empty_packet(info, response);
507
508		if (data_length)
509			wake_up_interruptible(&info->wait_reassembly_queue);
510
511		atomic_dec(&info->receive_credits);
512		info->receive_credit_target =
513			le16_to_cpu(data_transfer->credits_requested);
514		if (le16_to_cpu(data_transfer->credits_granted)) {
515			atomic_add(le16_to_cpu(data_transfer->credits_granted),
516				&info->send_credits);
517			/*
518			 * We have new send credits granted from remote peer
519			 * If any sender is waiting for credits, unblock it
520			 */
521			wake_up_interruptible(&info->wait_send_queue);
522		}
523
524		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
525			     le16_to_cpu(data_transfer->flags),
526			     le32_to_cpu(data_transfer->data_offset),
527			     le32_to_cpu(data_transfer->data_length),
528			     le32_to_cpu(data_transfer->remaining_data_length));
529
530		/* Send a KEEP_ALIVE response right away if requested */
531		info->keep_alive_requested = KEEP_ALIVE_NONE;
532		if (le16_to_cpu(data_transfer->flags) &
533				SMB_DIRECT_RESPONSE_REQUESTED) {
534			info->keep_alive_requested = KEEP_ALIVE_PENDING;
535		}
536
537		return;
538
539	default:
540		log_rdma_recv(ERR,
541			"unexpected response type=%d\n", response->type);
542	}
543
544error:
545	put_receive_buffer(info, response);
546}
547
548static struct rdma_cm_id *smbd_create_id(
549		struct smbd_connection *info,
550		struct sockaddr *dstaddr, int port)
551{
552	struct rdma_cm_id *id;
553	int rc;
554	__be16 *sport;
555
556	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
557		RDMA_PS_TCP, IB_QPT_RC);
558	if (IS_ERR(id)) {
559		rc = PTR_ERR(id);
560		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
561		return id;
562	}
563
564	if (dstaddr->sa_family == AF_INET6)
565		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
566	else
567		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
568
569	*sport = htons(port);
570
571	init_completion(&info->ri_done);
572	info->ri_rc = -ETIMEDOUT;
573
574	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
575		RDMA_RESOLVE_TIMEOUT);
576	if (rc) {
577		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
578		goto out;
579	}
580	rc = wait_for_completion_interruptible_timeout(
581		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
582	/* e.g. if interrupted returns -ERESTARTSYS */
583	if (rc < 0) {
584		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
585		goto out;
586	}
587	rc = info->ri_rc;
588	if (rc) {
589		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
590		goto out;
591	}
592
593	info->ri_rc = -ETIMEDOUT;
594	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
595	if (rc) {
596		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
597		goto out;
598	}
599	rc = wait_for_completion_interruptible_timeout(
600		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
601	/* e.g. if interrupted returns -ERESTARTSYS */
602	if (rc < 0)  {
603		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
604		goto out;
605	}
606	rc = info->ri_rc;
607	if (rc) {
608		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
609		goto out;
610	}
611
612	return id;
613
614out:
615	rdma_destroy_id(id);
616	return ERR_PTR(rc);
617}
618
619/*
620 * Test if FRWR (Fast Registration Work Requests) is supported on the device
621 * This implementation requries FRWR on RDMA read/write
622 * return value: true if it is supported
623 */
624static bool frwr_is_supported(struct ib_device_attr *attrs)
625{
626	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
627		return false;
628	if (attrs->max_fast_reg_page_list_len == 0)
629		return false;
630	return true;
631}
632
633static int smbd_ia_open(
634		struct smbd_connection *info,
635		struct sockaddr *dstaddr, int port)
636{
637	int rc;
638
639	info->id = smbd_create_id(info, dstaddr, port);
640	if (IS_ERR(info->id)) {
641		rc = PTR_ERR(info->id);
642		goto out1;
643	}
644
645	if (!frwr_is_supported(&info->id->device->attrs)) {
646		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
647		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
648			       info->id->device->attrs.device_cap_flags,
649			       info->id->device->attrs.max_fast_reg_page_list_len);
650		rc = -EPROTONOSUPPORT;
651		goto out2;
652	}
653	info->max_frmr_depth = min_t(int,
654		smbd_max_frmr_depth,
655		info->id->device->attrs.max_fast_reg_page_list_len);
656	info->mr_type = IB_MR_TYPE_MEM_REG;
657	if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
658		info->mr_type = IB_MR_TYPE_SG_GAPS;
659
660	info->pd = ib_alloc_pd(info->id->device, 0);
661	if (IS_ERR(info->pd)) {
662		rc = PTR_ERR(info->pd);
663		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
664		goto out2;
665	}
666
667	return 0;
668
669out2:
670	rdma_destroy_id(info->id);
671	info->id = NULL;
672
673out1:
674	return rc;
675}
676
677/*
678 * Send a negotiation request message to the peer
679 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
680 * After negotiation, the transport is connected and ready for
681 * carrying upper layer SMB payload
682 */
683static int smbd_post_send_negotiate_req(struct smbd_connection *info)
684{
685	struct ib_send_wr send_wr;
686	int rc = -ENOMEM;
687	struct smbd_request *request;
688	struct smbd_negotiate_req *packet;
689
690	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
691	if (!request)
692		return rc;
693
694	request->info = info;
695
696	packet = smbd_request_payload(request);
697	packet->min_version = cpu_to_le16(SMBD_V1);
698	packet->max_version = cpu_to_le16(SMBD_V1);
699	packet->reserved = 0;
700	packet->credits_requested = cpu_to_le16(info->send_credit_target);
701	packet->preferred_send_size = cpu_to_le32(info->max_send_size);
702	packet->max_receive_size = cpu_to_le32(info->max_receive_size);
703	packet->max_fragmented_size =
704		cpu_to_le32(info->max_fragmented_recv_size);
705
706	request->num_sge = 1;
707	request->sge[0].addr = ib_dma_map_single(
708				info->id->device, (void *)packet,
709				sizeof(*packet), DMA_TO_DEVICE);
710	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
711		rc = -EIO;
712		goto dma_mapping_failed;
713	}
714
715	request->sge[0].length = sizeof(*packet);
716	request->sge[0].lkey = info->pd->local_dma_lkey;
717
718	ib_dma_sync_single_for_device(
719		info->id->device, request->sge[0].addr,
720		request->sge[0].length, DMA_TO_DEVICE);
721
722	request->cqe.done = send_done;
723
724	send_wr.next = NULL;
725	send_wr.wr_cqe = &request->cqe;
726	send_wr.sg_list = request->sge;
727	send_wr.num_sge = request->num_sge;
728	send_wr.opcode = IB_WR_SEND;
729	send_wr.send_flags = IB_SEND_SIGNALED;
730
731	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
732		request->sge[0].addr,
733		request->sge[0].length, request->sge[0].lkey);
734
735	atomic_inc(&info->send_pending);
736	rc = ib_post_send(info->id->qp, &send_wr, NULL);
737	if (!rc)
738		return 0;
739
740	/* if we reach here, post send failed */
741	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
742	atomic_dec(&info->send_pending);
743	ib_dma_unmap_single(info->id->device, request->sge[0].addr,
744		request->sge[0].length, DMA_TO_DEVICE);
745
746	smbd_disconnect_rdma_connection(info);
747
748dma_mapping_failed:
749	mempool_free(request, info->request_mempool);
750	return rc;
751}
752
753/*
754 * Extend the credits to remote peer
755 * This implements [MS-SMBD] 3.1.5.9
756 * The idea is that we should extend credits to remote peer as quickly as
757 * it's allowed, to maintain data flow. We allocate as much receive
758 * buffer as possible, and extend the receive credits to remote peer
759 * return value: the new credtis being granted.
760 */
761static int manage_credits_prior_sending(struct smbd_connection *info)
762{
763	int new_credits;
764
765	spin_lock(&info->lock_new_credits_offered);
766	new_credits = info->new_credits_offered;
767	info->new_credits_offered = 0;
768	spin_unlock(&info->lock_new_credits_offered);
769
770	return new_credits;
771}
772
773/*
774 * Check if we need to send a KEEP_ALIVE message
775 * The idle connection timer triggers a KEEP_ALIVE message when expires
776 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
777 * back a response.
778 * return value:
779 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
780 * 0: otherwise
781 */
782static int manage_keep_alive_before_sending(struct smbd_connection *info)
783{
784	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
785		info->keep_alive_requested = KEEP_ALIVE_SENT;
786		return 1;
787	}
788	return 0;
789}
790
791/* Post the send request */
792static int smbd_post_send(struct smbd_connection *info,
793		struct smbd_request *request)
794{
795	struct ib_send_wr send_wr;
796	int rc, i;
797
798	for (i = 0; i < request->num_sge; i++) {
799		log_rdma_send(INFO,
800			"rdma_request sge[%d] addr=0x%llx length=%u\n",
801			i, request->sge[i].addr, request->sge[i].length);
802		ib_dma_sync_single_for_device(
803			info->id->device,
804			request->sge[i].addr,
805			request->sge[i].length,
806			DMA_TO_DEVICE);
807	}
808
809	request->cqe.done = send_done;
810
811	send_wr.next = NULL;
812	send_wr.wr_cqe = &request->cqe;
813	send_wr.sg_list = request->sge;
814	send_wr.num_sge = request->num_sge;
815	send_wr.opcode = IB_WR_SEND;
816	send_wr.send_flags = IB_SEND_SIGNALED;
817
818	rc = ib_post_send(info->id->qp, &send_wr, NULL);
819	if (rc) {
820		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
821		smbd_disconnect_rdma_connection(info);
822		rc = -EAGAIN;
823	} else
824		/* Reset timer for idle connection after packet is sent */
825		mod_delayed_work(info->workqueue, &info->idle_timer_work,
826			info->keep_alive_interval*HZ);
827
828	return rc;
829}
830
831static int smbd_post_send_iter(struct smbd_connection *info,
832			       struct iov_iter *iter,
833			       int *_remaining_data_length)
834{
835	int i, rc;
836	int header_length;
837	int data_length;
838	struct smbd_request *request;
839	struct smbd_data_transfer *packet;
840	int new_credits = 0;
841
842wait_credit:
843	/* Wait for send credits. A SMBD packet needs one credit */
844	rc = wait_event_interruptible(info->wait_send_queue,
845		atomic_read(&info->send_credits) > 0 ||
846		info->transport_status != SMBD_CONNECTED);
847	if (rc)
848		goto err_wait_credit;
849
850	if (info->transport_status != SMBD_CONNECTED) {
851		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
852		rc = -EAGAIN;
853		goto err_wait_credit;
854	}
855	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
856		atomic_inc(&info->send_credits);
857		goto wait_credit;
858	}
859
860wait_send_queue:
861	wait_event(info->wait_post_send,
862		atomic_read(&info->send_pending) < info->send_credit_target ||
863		info->transport_status != SMBD_CONNECTED);
864
865	if (info->transport_status != SMBD_CONNECTED) {
866		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
867		rc = -EAGAIN;
868		goto err_wait_send_queue;
869	}
870
871	if (unlikely(atomic_inc_return(&info->send_pending) >
872				info->send_credit_target)) {
873		atomic_dec(&info->send_pending);
874		goto wait_send_queue;
875	}
876
877	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
878	if (!request) {
879		rc = -ENOMEM;
880		goto err_alloc;
881	}
882
883	request->info = info;
884	memset(request->sge, 0, sizeof(request->sge));
885
886	/* Fill in the data payload to find out how much data we can add */
887	if (iter) {
888		struct smb_extract_to_rdma extract = {
889			.nr_sge		= 1,
890			.max_sge	= SMBDIRECT_MAX_SEND_SGE,
891			.sge		= request->sge,
892			.device		= info->id->device,
893			.local_dma_lkey	= info->pd->local_dma_lkey,
894			.direction	= DMA_TO_DEVICE,
895		};
896
897		rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length,
898					      &extract);
899		if (rc < 0)
900			goto err_dma;
901		data_length = rc;
902		request->num_sge = extract.nr_sge;
903		*_remaining_data_length -= data_length;
904	} else {
905		data_length = 0;
906		request->num_sge = 1;
907	}
908
909	/* Fill in the packet header */
910	packet = smbd_request_payload(request);
911	packet->credits_requested = cpu_to_le16(info->send_credit_target);
912
913	new_credits = manage_credits_prior_sending(info);
914	atomic_add(new_credits, &info->receive_credits);
915	packet->credits_granted = cpu_to_le16(new_credits);
916
917	info->send_immediate = false;
918
919	packet->flags = 0;
920	if (manage_keep_alive_before_sending(info))
921		packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
922
923	packet->reserved = 0;
924	if (!data_length)
925		packet->data_offset = 0;
926	else
927		packet->data_offset = cpu_to_le32(24);
928	packet->data_length = cpu_to_le32(data_length);
929	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
930	packet->padding = 0;
931
932	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
933		     le16_to_cpu(packet->credits_requested),
934		     le16_to_cpu(packet->credits_granted),
935		     le32_to_cpu(packet->data_offset),
936		     le32_to_cpu(packet->data_length),
937		     le32_to_cpu(packet->remaining_data_length));
938
939	/* Map the packet to DMA */
940	header_length = sizeof(struct smbd_data_transfer);
941	/* If this is a packet without payload, don't send padding */
942	if (!data_length)
943		header_length = offsetof(struct smbd_data_transfer, padding);
944
945	request->sge[0].addr = ib_dma_map_single(info->id->device,
946						 (void *)packet,
947						 header_length,
948						 DMA_TO_DEVICE);
949	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
950		rc = -EIO;
951		request->sge[0].addr = 0;
952		goto err_dma;
953	}
954
955	request->sge[0].length = header_length;
956	request->sge[0].lkey = info->pd->local_dma_lkey;
957
958	rc = smbd_post_send(info, request);
959	if (!rc)
960		return 0;
961
962err_dma:
963	for (i = 0; i < request->num_sge; i++)
964		if (request->sge[i].addr)
965			ib_dma_unmap_single(info->id->device,
966					    request->sge[i].addr,
967					    request->sge[i].length,
968					    DMA_TO_DEVICE);
969	mempool_free(request, info->request_mempool);
970
971	/* roll back receive credits and credits to be offered */
972	spin_lock(&info->lock_new_credits_offered);
973	info->new_credits_offered += new_credits;
974	spin_unlock(&info->lock_new_credits_offered);
975	atomic_sub(new_credits, &info->receive_credits);
976
977err_alloc:
978	if (atomic_dec_and_test(&info->send_pending))
979		wake_up(&info->wait_send_pending);
980
981err_wait_send_queue:
982	/* roll back send credits and pending */
983	atomic_inc(&info->send_credits);
984
985err_wait_credit:
986	return rc;
987}
988
989/*
990 * Send an empty message
991 * Empty message is used to extend credits to peer to for keep live
992 * while there is no upper layer payload to send at the time
993 */
994static int smbd_post_send_empty(struct smbd_connection *info)
995{
996	int remaining_data_length = 0;
997
998	info->count_send_empty++;
999	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1000}
1001
1002/*
1003 * Post a receive request to the transport
1004 * The remote peer can only send data when a receive request is posted
1005 * The interaction is controlled by send/receive credit system
1006 */
1007static int smbd_post_recv(
1008		struct smbd_connection *info, struct smbd_response *response)
1009{
1010	struct ib_recv_wr recv_wr;
1011	int rc = -EIO;
1012
1013	response->sge.addr = ib_dma_map_single(
1014				info->id->device, response->packet,
1015				info->max_receive_size, DMA_FROM_DEVICE);
1016	if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1017		return rc;
1018
1019	response->sge.length = info->max_receive_size;
1020	response->sge.lkey = info->pd->local_dma_lkey;
1021
1022	response->cqe.done = recv_done;
1023
1024	recv_wr.wr_cqe = &response->cqe;
1025	recv_wr.next = NULL;
1026	recv_wr.sg_list = &response->sge;
1027	recv_wr.num_sge = 1;
1028
1029	rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1030	if (rc) {
1031		ib_dma_unmap_single(info->id->device, response->sge.addr,
1032				    response->sge.length, DMA_FROM_DEVICE);
1033		smbd_disconnect_rdma_connection(info);
1034		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1035	}
1036
1037	return rc;
1038}
1039
1040/* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1041static int smbd_negotiate(struct smbd_connection *info)
1042{
1043	int rc;
1044	struct smbd_response *response = get_receive_buffer(info);
1045
1046	response->type = SMBD_NEGOTIATE_RESP;
1047	rc = smbd_post_recv(info, response);
1048	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1049		       rc, response->sge.addr,
1050		       response->sge.length, response->sge.lkey);
1051	if (rc)
1052		return rc;
1053
1054	init_completion(&info->negotiate_completion);
1055	info->negotiate_done = false;
1056	rc = smbd_post_send_negotiate_req(info);
1057	if (rc)
1058		return rc;
1059
1060	rc = wait_for_completion_interruptible_timeout(
1061		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1062	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1063
1064	if (info->negotiate_done)
1065		return 0;
1066
1067	if (rc == 0)
1068		rc = -ETIMEDOUT;
1069	else if (rc == -ERESTARTSYS)
1070		rc = -EINTR;
1071	else
1072		rc = -ENOTCONN;
1073
1074	return rc;
1075}
1076
1077static void put_empty_packet(
1078		struct smbd_connection *info, struct smbd_response *response)
1079{
1080	spin_lock(&info->empty_packet_queue_lock);
1081	list_add_tail(&response->list, &info->empty_packet_queue);
1082	info->count_empty_packet_queue++;
1083	spin_unlock(&info->empty_packet_queue_lock);
1084
1085	queue_work(info->workqueue, &info->post_send_credits_work);
1086}
1087
1088/*
1089 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1090 * This is a queue for reassembling upper layer payload and present to upper
1091 * layer. All the inncoming payload go to the reassembly queue, regardless of
1092 * if reassembly is required. The uuper layer code reads from the queue for all
1093 * incoming payloads.
1094 * Put a received packet to the reassembly queue
1095 * response: the packet received
1096 * data_length: the size of payload in this packet
1097 */
1098static void enqueue_reassembly(
1099	struct smbd_connection *info,
1100	struct smbd_response *response,
1101	int data_length)
1102{
1103	spin_lock(&info->reassembly_queue_lock);
1104	list_add_tail(&response->list, &info->reassembly_queue);
1105	info->reassembly_queue_length++;
1106	/*
1107	 * Make sure reassembly_data_length is updated after list and
1108	 * reassembly_queue_length are updated. On the dequeue side
1109	 * reassembly_data_length is checked without a lock to determine
1110	 * if reassembly_queue_length and list is up to date
1111	 */
1112	virt_wmb();
1113	info->reassembly_data_length += data_length;
1114	spin_unlock(&info->reassembly_queue_lock);
1115	info->count_reassembly_queue++;
1116	info->count_enqueue_reassembly_queue++;
1117}
1118
1119/*
1120 * Get the first entry at the front of reassembly queue
1121 * Caller is responsible for locking
1122 * return value: the first entry if any, NULL if queue is empty
1123 */
1124static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1125{
1126	struct smbd_response *ret = NULL;
1127
1128	if (!list_empty(&info->reassembly_queue)) {
1129		ret = list_first_entry(
1130			&info->reassembly_queue,
1131			struct smbd_response, list);
1132	}
1133	return ret;
1134}
1135
1136static struct smbd_response *get_empty_queue_buffer(
1137		struct smbd_connection *info)
1138{
1139	struct smbd_response *ret = NULL;
1140	unsigned long flags;
1141
1142	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1143	if (!list_empty(&info->empty_packet_queue)) {
1144		ret = list_first_entry(
1145			&info->empty_packet_queue,
1146			struct smbd_response, list);
1147		list_del(&ret->list);
1148		info->count_empty_packet_queue--;
1149	}
1150	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1151
1152	return ret;
1153}
1154
1155/*
1156 * Get a receive buffer
1157 * For each remote send, we need to post a receive. The receive buffers are
1158 * pre-allocated in advance.
1159 * return value: the receive buffer, NULL if none is available
1160 */
1161static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1162{
1163	struct smbd_response *ret = NULL;
1164	unsigned long flags;
1165
1166	spin_lock_irqsave(&info->receive_queue_lock, flags);
1167	if (!list_empty(&info->receive_queue)) {
1168		ret = list_first_entry(
1169			&info->receive_queue,
1170			struct smbd_response, list);
1171		list_del(&ret->list);
1172		info->count_receive_queue--;
1173		info->count_get_receive_buffer++;
1174	}
1175	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1176
1177	return ret;
1178}
1179
1180/*
1181 * Return a receive buffer
1182 * Upon returning of a receive buffer, we can post new receive and extend
1183 * more receive credits to remote peer. This is done immediately after a
1184 * receive buffer is returned.
1185 */
1186static void put_receive_buffer(
1187	struct smbd_connection *info, struct smbd_response *response)
1188{
1189	unsigned long flags;
1190
1191	ib_dma_unmap_single(info->id->device, response->sge.addr,
1192		response->sge.length, DMA_FROM_DEVICE);
1193
1194	spin_lock_irqsave(&info->receive_queue_lock, flags);
1195	list_add_tail(&response->list, &info->receive_queue);
1196	info->count_receive_queue++;
1197	info->count_put_receive_buffer++;
1198	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1199
1200	queue_work(info->workqueue, &info->post_send_credits_work);
1201}
1202
1203/* Preallocate all receive buffer on transport establishment */
1204static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1205{
1206	int i;
1207	struct smbd_response *response;
1208
1209	INIT_LIST_HEAD(&info->reassembly_queue);
1210	spin_lock_init(&info->reassembly_queue_lock);
1211	info->reassembly_data_length = 0;
1212	info->reassembly_queue_length = 0;
1213
1214	INIT_LIST_HEAD(&info->receive_queue);
1215	spin_lock_init(&info->receive_queue_lock);
1216	info->count_receive_queue = 0;
1217
1218	INIT_LIST_HEAD(&info->empty_packet_queue);
1219	spin_lock_init(&info->empty_packet_queue_lock);
1220	info->count_empty_packet_queue = 0;
1221
1222	init_waitqueue_head(&info->wait_receive_queues);
1223
1224	for (i = 0; i < num_buf; i++) {
1225		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1226		if (!response)
1227			goto allocate_failed;
1228
1229		response->info = info;
1230		list_add_tail(&response->list, &info->receive_queue);
1231		info->count_receive_queue++;
1232	}
1233
1234	return 0;
1235
1236allocate_failed:
1237	while (!list_empty(&info->receive_queue)) {
1238		response = list_first_entry(
1239				&info->receive_queue,
1240				struct smbd_response, list);
1241		list_del(&response->list);
1242		info->count_receive_queue--;
1243
1244		mempool_free(response, info->response_mempool);
1245	}
1246	return -ENOMEM;
1247}
1248
1249static void destroy_receive_buffers(struct smbd_connection *info)
1250{
1251	struct smbd_response *response;
1252
1253	while ((response = get_receive_buffer(info)))
1254		mempool_free(response, info->response_mempool);
1255
1256	while ((response = get_empty_queue_buffer(info)))
1257		mempool_free(response, info->response_mempool);
1258}
1259
1260/* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1261static void idle_connection_timer(struct work_struct *work)
1262{
1263	struct smbd_connection *info = container_of(
1264					work, struct smbd_connection,
1265					idle_timer_work.work);
1266
1267	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1268		log_keep_alive(ERR,
1269			"error status info->keep_alive_requested=%d\n",
1270			info->keep_alive_requested);
1271		smbd_disconnect_rdma_connection(info);
1272		return;
1273	}
1274
1275	log_keep_alive(INFO, "about to send an empty idle message\n");
1276	smbd_post_send_empty(info);
1277
1278	/* Setup the next idle timeout work */
1279	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1280			info->keep_alive_interval*HZ);
1281}
1282
1283/*
1284 * Destroy the transport and related RDMA and memory resources
1285 * Need to go through all the pending counters and make sure on one is using
1286 * the transport while it is destroyed
1287 */
1288void smbd_destroy(struct TCP_Server_Info *server)
1289{
1290	struct smbd_connection *info = server->smbd_conn;
1291	struct smbd_response *response;
1292	unsigned long flags;
1293
1294	if (!info) {
1295		log_rdma_event(INFO, "rdma session already destroyed\n");
1296		return;
1297	}
1298
1299	log_rdma_event(INFO, "destroying rdma session\n");
1300	if (info->transport_status != SMBD_DISCONNECTED) {
1301		rdma_disconnect(server->smbd_conn->id);
1302		log_rdma_event(INFO, "wait for transport being disconnected\n");
1303		wait_event_interruptible(
1304			info->disconn_wait,
1305			info->transport_status == SMBD_DISCONNECTED);
1306	}
1307
1308	log_rdma_event(INFO, "destroying qp\n");
1309	ib_drain_qp(info->id->qp);
1310	rdma_destroy_qp(info->id);
1311
1312	log_rdma_event(INFO, "cancelling idle timer\n");
1313	cancel_delayed_work_sync(&info->idle_timer_work);
1314
1315	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1316	wait_event(info->wait_send_pending,
1317		atomic_read(&info->send_pending) == 0);
1318
1319	/* It's not possible for upper layer to get to reassembly */
1320	log_rdma_event(INFO, "drain the reassembly queue\n");
1321	do {
1322		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1323		response = _get_first_reassembly(info);
1324		if (response) {
1325			list_del(&response->list);
1326			spin_unlock_irqrestore(
1327				&info->reassembly_queue_lock, flags);
1328			put_receive_buffer(info, response);
1329		} else
1330			spin_unlock_irqrestore(
1331				&info->reassembly_queue_lock, flags);
1332	} while (response);
1333	info->reassembly_data_length = 0;
1334
1335	log_rdma_event(INFO, "free receive buffers\n");
1336	wait_event(info->wait_receive_queues,
1337		info->count_receive_queue + info->count_empty_packet_queue
1338			== info->receive_credit_max);
1339	destroy_receive_buffers(info);
1340
1341	/*
1342	 * For performance reasons, memory registration and deregistration
1343	 * are not locked by srv_mutex. It is possible some processes are
1344	 * blocked on transport srv_mutex while holding memory registration.
1345	 * Release the transport srv_mutex to allow them to hit the failure
1346	 * path when sending data, and then release memory registartions.
1347	 */
1348	log_rdma_event(INFO, "freeing mr list\n");
1349	wake_up_interruptible_all(&info->wait_mr);
1350	while (atomic_read(&info->mr_used_count)) {
1351		cifs_server_unlock(server);
1352		msleep(1000);
1353		cifs_server_lock(server);
1354	}
1355	destroy_mr_list(info);
1356
1357	ib_free_cq(info->send_cq);
1358	ib_free_cq(info->recv_cq);
1359	ib_dealloc_pd(info->pd);
1360	rdma_destroy_id(info->id);
1361
1362	/* free mempools */
1363	mempool_destroy(info->request_mempool);
1364	kmem_cache_destroy(info->request_cache);
1365
1366	mempool_destroy(info->response_mempool);
1367	kmem_cache_destroy(info->response_cache);
1368
1369	info->transport_status = SMBD_DESTROYED;
1370
1371	destroy_workqueue(info->workqueue);
1372	log_rdma_event(INFO,  "rdma session destroyed\n");
1373	kfree(info);
1374	server->smbd_conn = NULL;
1375}
1376
1377/*
1378 * Reconnect this SMBD connection, called from upper layer
1379 * return value: 0 on success, or actual error code
1380 */
1381int smbd_reconnect(struct TCP_Server_Info *server)
1382{
1383	log_rdma_event(INFO, "reconnecting rdma session\n");
1384
1385	if (!server->smbd_conn) {
1386		log_rdma_event(INFO, "rdma session already destroyed\n");
1387		goto create_conn;
1388	}
1389
1390	/*
1391	 * This is possible if transport is disconnected and we haven't received
1392	 * notification from RDMA, but upper layer has detected timeout
1393	 */
1394	if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1395		log_rdma_event(INFO, "disconnecting transport\n");
1396		smbd_destroy(server);
1397	}
1398
1399create_conn:
1400	log_rdma_event(INFO, "creating rdma session\n");
1401	server->smbd_conn = smbd_get_connection(
1402		server, (struct sockaddr *) &server->dstaddr);
1403
1404	if (server->smbd_conn) {
1405		cifs_dbg(VFS, "RDMA transport re-established\n");
1406		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1407		return 0;
1408	}
1409	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1410	return -ENOENT;
1411}
1412
1413static void destroy_caches_and_workqueue(struct smbd_connection *info)
1414{
1415	destroy_receive_buffers(info);
1416	destroy_workqueue(info->workqueue);
1417	mempool_destroy(info->response_mempool);
1418	kmem_cache_destroy(info->response_cache);
1419	mempool_destroy(info->request_mempool);
1420	kmem_cache_destroy(info->request_cache);
1421}
1422
1423#define MAX_NAME_LEN	80
1424static int allocate_caches_and_workqueue(struct smbd_connection *info)
1425{
1426	char name[MAX_NAME_LEN];
1427	int rc;
1428
1429	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1430	info->request_cache =
1431		kmem_cache_create(
1432			name,
1433			sizeof(struct smbd_request) +
1434				sizeof(struct smbd_data_transfer),
1435			0, SLAB_HWCACHE_ALIGN, NULL);
1436	if (!info->request_cache)
1437		return -ENOMEM;
1438
1439	info->request_mempool =
1440		mempool_create(info->send_credit_target, mempool_alloc_slab,
1441			mempool_free_slab, info->request_cache);
1442	if (!info->request_mempool)
1443		goto out1;
1444
1445	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1446	info->response_cache =
1447		kmem_cache_create(
1448			name,
1449			sizeof(struct smbd_response) +
1450				info->max_receive_size,
1451			0, SLAB_HWCACHE_ALIGN, NULL);
1452	if (!info->response_cache)
1453		goto out2;
1454
1455	info->response_mempool =
1456		mempool_create(info->receive_credit_max, mempool_alloc_slab,
1457		       mempool_free_slab, info->response_cache);
1458	if (!info->response_mempool)
1459		goto out3;
1460
1461	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1462	info->workqueue = create_workqueue(name);
1463	if (!info->workqueue)
1464		goto out4;
1465
1466	rc = allocate_receive_buffers(info, info->receive_credit_max);
1467	if (rc) {
1468		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1469		goto out5;
1470	}
1471
1472	return 0;
1473
1474out5:
1475	destroy_workqueue(info->workqueue);
1476out4:
1477	mempool_destroy(info->response_mempool);
1478out3:
1479	kmem_cache_destroy(info->response_cache);
1480out2:
1481	mempool_destroy(info->request_mempool);
1482out1:
1483	kmem_cache_destroy(info->request_cache);
1484	return -ENOMEM;
1485}
1486
1487/* Create a SMBD connection, called by upper layer */
1488static struct smbd_connection *_smbd_get_connection(
1489	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1490{
1491	int rc;
1492	struct smbd_connection *info;
1493	struct rdma_conn_param conn_param;
1494	struct ib_qp_init_attr qp_attr;
1495	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1496	struct ib_port_immutable port_immutable;
1497	u32 ird_ord_hdr[2];
1498
1499	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1500	if (!info)
1501		return NULL;
1502
1503	info->transport_status = SMBD_CONNECTING;
1504	rc = smbd_ia_open(info, dstaddr, port);
1505	if (rc) {
1506		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1507		goto create_id_failed;
1508	}
1509
1510	if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1511	    smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1512		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1513			       smbd_send_credit_target,
1514			       info->id->device->attrs.max_cqe,
1515			       info->id->device->attrs.max_qp_wr);
1516		goto config_failed;
1517	}
1518
1519	if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1520	    smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1521		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1522			       smbd_receive_credit_max,
1523			       info->id->device->attrs.max_cqe,
1524			       info->id->device->attrs.max_qp_wr);
1525		goto config_failed;
1526	}
1527
1528	info->receive_credit_max = smbd_receive_credit_max;
1529	info->send_credit_target = smbd_send_credit_target;
1530	info->max_send_size = smbd_max_send_size;
1531	info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1532	info->max_receive_size = smbd_max_receive_size;
1533	info->keep_alive_interval = smbd_keep_alive_interval;
1534
1535	if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1536	    info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1537		log_rdma_event(ERR,
1538			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1539			IB_DEVICE_NAME_MAX,
1540			info->id->device->name,
1541			info->id->device->attrs.max_send_sge,
1542			info->id->device->attrs.max_recv_sge);
1543		goto config_failed;
1544	}
1545
1546	info->send_cq = NULL;
1547	info->recv_cq = NULL;
1548	info->send_cq =
1549		ib_alloc_cq_any(info->id->device, info,
1550				info->send_credit_target, IB_POLL_SOFTIRQ);
1551	if (IS_ERR(info->send_cq)) {
1552		info->send_cq = NULL;
1553		goto alloc_cq_failed;
1554	}
1555
1556	info->recv_cq =
1557		ib_alloc_cq_any(info->id->device, info,
1558				info->receive_credit_max, IB_POLL_SOFTIRQ);
1559	if (IS_ERR(info->recv_cq)) {
1560		info->recv_cq = NULL;
1561		goto alloc_cq_failed;
1562	}
1563
1564	memset(&qp_attr, 0, sizeof(qp_attr));
1565	qp_attr.event_handler = smbd_qp_async_error_upcall;
1566	qp_attr.qp_context = info;
1567	qp_attr.cap.max_send_wr = info->send_credit_target;
1568	qp_attr.cap.max_recv_wr = info->receive_credit_max;
1569	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1570	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1571	qp_attr.cap.max_inline_data = 0;
1572	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1573	qp_attr.qp_type = IB_QPT_RC;
1574	qp_attr.send_cq = info->send_cq;
1575	qp_attr.recv_cq = info->recv_cq;
1576	qp_attr.port_num = ~0;
1577
1578	rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1579	if (rc) {
1580		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1581		goto create_qp_failed;
1582	}
1583
1584	memset(&conn_param, 0, sizeof(conn_param));
1585	conn_param.initiator_depth = 0;
1586
1587	conn_param.responder_resources =
1588		info->id->device->attrs.max_qp_rd_atom
1589			< SMBD_CM_RESPONDER_RESOURCES ?
1590		info->id->device->attrs.max_qp_rd_atom :
1591		SMBD_CM_RESPONDER_RESOURCES;
1592	info->responder_resources = conn_param.responder_resources;
1593	log_rdma_mr(INFO, "responder_resources=%d\n",
1594		info->responder_resources);
1595
1596	/* Need to send IRD/ORD in private data for iWARP */
1597	info->id->device->ops.get_port_immutable(
1598		info->id->device, info->id->port_num, &port_immutable);
1599	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1600		ird_ord_hdr[0] = info->responder_resources;
1601		ird_ord_hdr[1] = 1;
1602		conn_param.private_data = ird_ord_hdr;
1603		conn_param.private_data_len = sizeof(ird_ord_hdr);
1604	} else {
1605		conn_param.private_data = NULL;
1606		conn_param.private_data_len = 0;
1607	}
1608
1609	conn_param.retry_count = SMBD_CM_RETRY;
1610	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1611	conn_param.flow_control = 0;
1612
1613	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1614		&addr_in->sin_addr, port);
1615
1616	init_waitqueue_head(&info->conn_wait);
1617	init_waitqueue_head(&info->disconn_wait);
1618	init_waitqueue_head(&info->wait_reassembly_queue);
1619	rc = rdma_connect(info->id, &conn_param);
1620	if (rc) {
1621		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1622		goto rdma_connect_failed;
1623	}
1624
1625	wait_event_interruptible(
1626		info->conn_wait, info->transport_status != SMBD_CONNECTING);
1627
1628	if (info->transport_status != SMBD_CONNECTED) {
1629		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1630		goto rdma_connect_failed;
1631	}
1632
1633	log_rdma_event(INFO, "rdma_connect connected\n");
1634
1635	rc = allocate_caches_and_workqueue(info);
1636	if (rc) {
1637		log_rdma_event(ERR, "cache allocation failed\n");
1638		goto allocate_cache_failed;
1639	}
1640
1641	init_waitqueue_head(&info->wait_send_queue);
1642	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1643	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1644		info->keep_alive_interval*HZ);
1645
1646	init_waitqueue_head(&info->wait_send_pending);
1647	atomic_set(&info->send_pending, 0);
1648
1649	init_waitqueue_head(&info->wait_post_send);
1650
1651	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1652	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1653	info->new_credits_offered = 0;
1654	spin_lock_init(&info->lock_new_credits_offered);
1655
1656	rc = smbd_negotiate(info);
1657	if (rc) {
1658		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1659		goto negotiation_failed;
1660	}
1661
1662	rc = allocate_mr_list(info);
1663	if (rc) {
1664		log_rdma_mr(ERR, "memory registration allocation failed\n");
1665		goto allocate_mr_failed;
1666	}
1667
1668	return info;
1669
1670allocate_mr_failed:
1671	/* At this point, need to a full transport shutdown */
1672	server->smbd_conn = info;
1673	smbd_destroy(server);
1674	return NULL;
1675
1676negotiation_failed:
1677	cancel_delayed_work_sync(&info->idle_timer_work);
1678	destroy_caches_and_workqueue(info);
1679	info->transport_status = SMBD_NEGOTIATE_FAILED;
1680	init_waitqueue_head(&info->conn_wait);
1681	rdma_disconnect(info->id);
1682	wait_event(info->conn_wait,
1683		info->transport_status == SMBD_DISCONNECTED);
1684
1685allocate_cache_failed:
1686rdma_connect_failed:
1687	rdma_destroy_qp(info->id);
1688
1689create_qp_failed:
1690alloc_cq_failed:
1691	if (info->send_cq)
1692		ib_free_cq(info->send_cq);
1693	if (info->recv_cq)
1694		ib_free_cq(info->recv_cq);
1695
1696config_failed:
1697	ib_dealloc_pd(info->pd);
1698	rdma_destroy_id(info->id);
1699
1700create_id_failed:
1701	kfree(info);
1702	return NULL;
1703}
1704
1705struct smbd_connection *smbd_get_connection(
1706	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1707{
1708	struct smbd_connection *ret;
1709	int port = SMBD_PORT;
1710
1711try_again:
1712	ret = _smbd_get_connection(server, dstaddr, port);
1713
1714	/* Try SMB_PORT if SMBD_PORT doesn't work */
1715	if (!ret && port == SMBD_PORT) {
1716		port = SMB_PORT;
1717		goto try_again;
1718	}
1719	return ret;
1720}
1721
1722/*
1723 * Receive data from receive reassembly queue
1724 * All the incoming data packets are placed in reassembly queue
1725 * buf: the buffer to read data into
1726 * size: the length of data to read
1727 * return value: actual data read
1728 * Note: this implementation copies the data from reassebmly queue to receive
1729 * buffers used by upper layer. This is not the optimal code path. A better way
1730 * to do it is to not have upper layer allocate its receive buffers but rather
1731 * borrow the buffer from reassembly queue, and return it after data is
1732 * consumed. But this will require more changes to upper layer code, and also
1733 * need to consider packet boundaries while they still being reassembled.
1734 */
1735static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1736		unsigned int size)
1737{
1738	struct smbd_response *response;
1739	struct smbd_data_transfer *data_transfer;
1740	int to_copy, to_read, data_read, offset;
1741	u32 data_length, remaining_data_length, data_offset;
1742	int rc;
1743
1744again:
1745	/*
1746	 * No need to hold the reassembly queue lock all the time as we are
1747	 * the only one reading from the front of the queue. The transport
1748	 * may add more entries to the back of the queue at the same time
1749	 */
1750	log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1751		info->reassembly_data_length);
1752	if (info->reassembly_data_length >= size) {
1753		int queue_length;
1754		int queue_removed = 0;
1755
1756		/*
1757		 * Need to make sure reassembly_data_length is read before
1758		 * reading reassembly_queue_length and calling
1759		 * _get_first_reassembly. This call is lock free
1760		 * as we never read at the end of the queue which are being
1761		 * updated in SOFTIRQ as more data is received
1762		 */
1763		virt_rmb();
1764		queue_length = info->reassembly_queue_length;
1765		data_read = 0;
1766		to_read = size;
1767		offset = info->first_entry_offset;
1768		while (data_read < size) {
1769			response = _get_first_reassembly(info);
1770			data_transfer = smbd_response_payload(response);
1771			data_length = le32_to_cpu(data_transfer->data_length);
1772			remaining_data_length =
1773				le32_to_cpu(
1774					data_transfer->remaining_data_length);
1775			data_offset = le32_to_cpu(data_transfer->data_offset);
1776
1777			/*
1778			 * The upper layer expects RFC1002 length at the
1779			 * beginning of the payload. Return it to indicate
1780			 * the total length of the packet. This minimize the
1781			 * change to upper layer packet processing logic. This
1782			 * will be eventually remove when an intermediate
1783			 * transport layer is added
1784			 */
1785			if (response->first_segment && size == 4) {
1786				unsigned int rfc1002_len =
1787					data_length + remaining_data_length;
1788				*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1789				data_read = 4;
1790				response->first_segment = false;
1791				log_read(INFO, "returning rfc1002 length %d\n",
1792					rfc1002_len);
1793				goto read_rfc1002_done;
1794			}
1795
1796			to_copy = min_t(int, data_length - offset, to_read);
1797			memcpy(
1798				buf + data_read,
1799				(char *)data_transfer + data_offset + offset,
1800				to_copy);
1801
1802			/* move on to the next buffer? */
1803			if (to_copy == data_length - offset) {
1804				queue_length--;
1805				/*
1806				 * No need to lock if we are not at the
1807				 * end of the queue
1808				 */
1809				if (queue_length)
1810					list_del(&response->list);
1811				else {
1812					spin_lock_irq(
1813						&info->reassembly_queue_lock);
1814					list_del(&response->list);
1815					spin_unlock_irq(
1816						&info->reassembly_queue_lock);
1817				}
1818				queue_removed++;
1819				info->count_reassembly_queue--;
1820				info->count_dequeue_reassembly_queue++;
1821				put_receive_buffer(info, response);
1822				offset = 0;
1823				log_read(INFO, "put_receive_buffer offset=0\n");
1824			} else
1825				offset += to_copy;
1826
1827			to_read -= to_copy;
1828			data_read += to_copy;
1829
1830			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1831				 to_copy, data_length - offset,
1832				 to_read, data_read, offset);
1833		}
1834
1835		spin_lock_irq(&info->reassembly_queue_lock);
1836		info->reassembly_data_length -= data_read;
1837		info->reassembly_queue_length -= queue_removed;
1838		spin_unlock_irq(&info->reassembly_queue_lock);
1839
1840		info->first_entry_offset = offset;
1841		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1842			 data_read, info->reassembly_data_length,
1843			 info->first_entry_offset);
1844read_rfc1002_done:
1845		return data_read;
1846	}
1847
1848	log_read(INFO, "wait_event on more data\n");
1849	rc = wait_event_interruptible(
1850		info->wait_reassembly_queue,
1851		info->reassembly_data_length >= size ||
1852			info->transport_status != SMBD_CONNECTED);
1853	/* Don't return any data if interrupted */
1854	if (rc)
1855		return rc;
1856
1857	if (info->transport_status != SMBD_CONNECTED) {
1858		log_read(ERR, "disconnected\n");
1859		return -ECONNABORTED;
1860	}
1861
1862	goto again;
1863}
1864
1865/*
1866 * Receive a page from receive reassembly queue
1867 * page: the page to read data into
1868 * to_read: the length of data to read
1869 * return value: actual data read
1870 */
1871static int smbd_recv_page(struct smbd_connection *info,
1872		struct page *page, unsigned int page_offset,
1873		unsigned int to_read)
1874{
1875	int ret;
1876	char *to_address;
1877	void *page_address;
1878
1879	/* make sure we have the page ready for read */
1880	ret = wait_event_interruptible(
1881		info->wait_reassembly_queue,
1882		info->reassembly_data_length >= to_read ||
1883			info->transport_status != SMBD_CONNECTED);
1884	if (ret)
1885		return ret;
1886
1887	/* now we can read from reassembly queue and not sleep */
1888	page_address = kmap_atomic(page);
1889	to_address = (char *) page_address + page_offset;
1890
1891	log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1892		page, to_address, to_read);
1893
1894	ret = smbd_recv_buf(info, to_address, to_read);
1895	kunmap_atomic(page_address);
1896
1897	return ret;
1898}
1899
1900/*
1901 * Receive data from transport
1902 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1903 * return: total bytes read, or 0. SMB Direct will not do partial read.
1904 */
1905int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1906{
1907	char *buf;
1908	struct page *page;
1909	unsigned int to_read, page_offset;
1910	int rc;
1911
1912	if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1913		/* It's a bug in upper layer to get there */
1914		cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1915			 iov_iter_rw(&msg->msg_iter));
1916		rc = -EINVAL;
1917		goto out;
1918	}
1919
1920	switch (iov_iter_type(&msg->msg_iter)) {
1921	case ITER_KVEC:
1922		buf = msg->msg_iter.kvec->iov_base;
1923		to_read = msg->msg_iter.kvec->iov_len;
1924		rc = smbd_recv_buf(info, buf, to_read);
1925		break;
1926
1927	case ITER_BVEC:
1928		page = msg->msg_iter.bvec->bv_page;
1929		page_offset = msg->msg_iter.bvec->bv_offset;
1930		to_read = msg->msg_iter.bvec->bv_len;
1931		rc = smbd_recv_page(info, page, page_offset, to_read);
1932		break;
1933
1934	default:
1935		/* It's a bug in upper layer to get there */
1936		cifs_dbg(VFS, "Invalid msg type %d\n",
1937			 iov_iter_type(&msg->msg_iter));
1938		rc = -EINVAL;
1939	}
1940
1941out:
1942	/* SMBDirect will read it all or nothing */
1943	if (rc > 0)
1944		msg->msg_iter.count = 0;
1945	return rc;
1946}
1947
1948/*
1949 * Send data to transport
1950 * Each rqst is transported as a SMBDirect payload
1951 * rqst: the data to write
1952 * return value: 0 if successfully write, otherwise error code
1953 */
1954int smbd_send(struct TCP_Server_Info *server,
1955	int num_rqst, struct smb_rqst *rqst_array)
1956{
1957	struct smbd_connection *info = server->smbd_conn;
1958	struct smb_rqst *rqst;
1959	struct iov_iter iter;
1960	unsigned int remaining_data_length, klen;
1961	int rc, i, rqst_idx;
1962
1963	if (info->transport_status != SMBD_CONNECTED)
1964		return -EAGAIN;
1965
1966	/*
1967	 * Add in the page array if there is one. The caller needs to set
1968	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1969	 * ends at page boundary
1970	 */
1971	remaining_data_length = 0;
1972	for (i = 0; i < num_rqst; i++)
1973		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1974
1975	if (unlikely(remaining_data_length > info->max_fragmented_send_size)) {
1976		/* assertion: payload never exceeds negotiated maximum */
1977		log_write(ERR, "payload size %d > max size %d\n",
1978			remaining_data_length, info->max_fragmented_send_size);
1979		return -EINVAL;
1980	}
1981
1982	log_write(INFO, "num_rqst=%d total length=%u\n",
1983			num_rqst, remaining_data_length);
1984
1985	rqst_idx = 0;
1986	do {
1987		rqst = &rqst_array[rqst_idx];
1988
1989		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1990			 rqst_idx, smb_rqst_len(server, rqst));
1991		for (i = 0; i < rqst->rq_nvec; i++)
1992			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1993
1994		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1995			  rqst_idx, rqst->rq_nvec, remaining_data_length,
1996			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1997
1998		/* Send the metadata pages. */
1999		klen = 0;
2000		for (i = 0; i < rqst->rq_nvec; i++)
2001			klen += rqst->rq_iov[i].iov_len;
2002		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2003
2004		rc = smbd_post_send_iter(info, &iter, &remaining_data_length);
2005		if (rc < 0)
2006			break;
2007
2008		if (iov_iter_count(&rqst->rq_iter) > 0) {
2009			/* And then the data pages if there are any */
2010			rc = smbd_post_send_iter(info, &rqst->rq_iter,
2011						 &remaining_data_length);
2012			if (rc < 0)
2013				break;
2014		}
2015
2016	} while (++rqst_idx < num_rqst);
2017
2018	/*
2019	 * As an optimization, we don't wait for individual I/O to finish
2020	 * before sending the next one.
2021	 * Send them all and wait for pending send count to get to 0
2022	 * that means all the I/Os have been out and we are good to return
2023	 */
2024
2025	wait_event(info->wait_send_pending,
2026		atomic_read(&info->send_pending) == 0);
2027
2028	return rc;
2029}
2030
2031static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2032{
2033	struct smbd_mr *mr;
2034	struct ib_cqe *cqe;
2035
2036	if (wc->status) {
2037		log_rdma_mr(ERR, "status=%d\n", wc->status);
2038		cqe = wc->wr_cqe;
2039		mr = container_of(cqe, struct smbd_mr, cqe);
2040		smbd_disconnect_rdma_connection(mr->conn);
2041	}
2042}
2043
2044/*
2045 * The work queue function that recovers MRs
2046 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2047 * again. Both calls are slow, so finish them in a workqueue. This will not
2048 * block I/O path.
2049 * There is one workqueue that recovers MRs, there is no need to lock as the
2050 * I/O requests calling smbd_register_mr will never update the links in the
2051 * mr_list.
2052 */
2053static void smbd_mr_recovery_work(struct work_struct *work)
2054{
2055	struct smbd_connection *info =
2056		container_of(work, struct smbd_connection, mr_recovery_work);
2057	struct smbd_mr *smbdirect_mr;
2058	int rc;
2059
2060	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2061		if (smbdirect_mr->state == MR_ERROR) {
2062
2063			/* recover this MR entry */
2064			rc = ib_dereg_mr(smbdirect_mr->mr);
2065			if (rc) {
2066				log_rdma_mr(ERR,
2067					"ib_dereg_mr failed rc=%x\n",
2068					rc);
2069				smbd_disconnect_rdma_connection(info);
2070				continue;
2071			}
2072
2073			smbdirect_mr->mr = ib_alloc_mr(
2074				info->pd, info->mr_type,
2075				info->max_frmr_depth);
2076			if (IS_ERR(smbdirect_mr->mr)) {
2077				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2078					    info->mr_type,
2079					    info->max_frmr_depth);
2080				smbd_disconnect_rdma_connection(info);
2081				continue;
2082			}
2083		} else
2084			/* This MR is being used, don't recover it */
2085			continue;
2086
2087		smbdirect_mr->state = MR_READY;
2088
2089		/* smbdirect_mr->state is updated by this function
2090		 * and is read and updated by I/O issuing CPUs trying
2091		 * to get a MR, the call to atomic_inc_return
2092		 * implicates a memory barrier and guarantees this
2093		 * value is updated before waking up any calls to
2094		 * get_mr() from the I/O issuing CPUs
2095		 */
2096		if (atomic_inc_return(&info->mr_ready_count) == 1)
2097			wake_up_interruptible(&info->wait_mr);
2098	}
2099}
2100
2101static void destroy_mr_list(struct smbd_connection *info)
2102{
2103	struct smbd_mr *mr, *tmp;
2104
2105	cancel_work_sync(&info->mr_recovery_work);
2106	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2107		if (mr->state == MR_INVALIDATED)
2108			ib_dma_unmap_sg(info->id->device, mr->sgt.sgl,
2109				mr->sgt.nents, mr->dir);
2110		ib_dereg_mr(mr->mr);
2111		kfree(mr->sgt.sgl);
2112		kfree(mr);
2113	}
2114}
2115
2116/*
2117 * Allocate MRs used for RDMA read/write
2118 * The number of MRs will not exceed hardware capability in responder_resources
2119 * All MRs are kept in mr_list. The MR can be recovered after it's used
2120 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2121 * as MRs are used and recovered for I/O, but the list links will not change
2122 */
2123static int allocate_mr_list(struct smbd_connection *info)
2124{
2125	int i;
2126	struct smbd_mr *smbdirect_mr, *tmp;
2127
2128	INIT_LIST_HEAD(&info->mr_list);
2129	init_waitqueue_head(&info->wait_mr);
2130	spin_lock_init(&info->mr_list_lock);
2131	atomic_set(&info->mr_ready_count, 0);
2132	atomic_set(&info->mr_used_count, 0);
2133	init_waitqueue_head(&info->wait_for_mr_cleanup);
2134	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2135	/* Allocate more MRs (2x) than hardware responder_resources */
2136	for (i = 0; i < info->responder_resources * 2; i++) {
2137		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2138		if (!smbdirect_mr)
2139			goto cleanup_entries;
2140		smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2141					info->max_frmr_depth);
2142		if (IS_ERR(smbdirect_mr->mr)) {
2143			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2144				    info->mr_type, info->max_frmr_depth);
2145			goto out;
2146		}
2147		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2148						sizeof(struct scatterlist),
2149						GFP_KERNEL);
2150		if (!smbdirect_mr->sgt.sgl) {
2151			log_rdma_mr(ERR, "failed to allocate sgl\n");
2152			ib_dereg_mr(smbdirect_mr->mr);
2153			goto out;
2154		}
2155		smbdirect_mr->state = MR_READY;
2156		smbdirect_mr->conn = info;
2157
2158		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2159		atomic_inc(&info->mr_ready_count);
2160	}
2161	return 0;
2162
2163out:
2164	kfree(smbdirect_mr);
2165cleanup_entries:
2166	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2167		list_del(&smbdirect_mr->list);
2168		ib_dereg_mr(smbdirect_mr->mr);
2169		kfree(smbdirect_mr->sgt.sgl);
2170		kfree(smbdirect_mr);
2171	}
2172	return -ENOMEM;
2173}
2174
2175/*
2176 * Get a MR from mr_list. This function waits until there is at least one
2177 * MR available in the list. It may access the list while the
2178 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2179 * as they never modify the same places. However, there may be several CPUs
2180 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2181 * protect this situation.
2182 */
2183static struct smbd_mr *get_mr(struct smbd_connection *info)
2184{
2185	struct smbd_mr *ret;
2186	int rc;
2187again:
2188	rc = wait_event_interruptible(info->wait_mr,
2189		atomic_read(&info->mr_ready_count) ||
2190		info->transport_status != SMBD_CONNECTED);
2191	if (rc) {
2192		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2193		return NULL;
2194	}
2195
2196	if (info->transport_status != SMBD_CONNECTED) {
2197		log_rdma_mr(ERR, "info->transport_status=%x\n",
2198			info->transport_status);
2199		return NULL;
2200	}
2201
2202	spin_lock(&info->mr_list_lock);
2203	list_for_each_entry(ret, &info->mr_list, list) {
2204		if (ret->state == MR_READY) {
2205			ret->state = MR_REGISTERED;
2206			spin_unlock(&info->mr_list_lock);
2207			atomic_dec(&info->mr_ready_count);
2208			atomic_inc(&info->mr_used_count);
2209			return ret;
2210		}
2211	}
2212
2213	spin_unlock(&info->mr_list_lock);
2214	/*
2215	 * It is possible that we could fail to get MR because other processes may
2216	 * try to acquire a MR at the same time. If this is the case, retry it.
2217	 */
2218	goto again;
2219}
2220
2221/*
2222 * Transcribe the pages from an iterator into an MR scatterlist.
2223 */
2224static int smbd_iter_to_mr(struct smbd_connection *info,
2225			   struct iov_iter *iter,
2226			   struct sg_table *sgt,
2227			   unsigned int max_sg)
2228{
2229	int ret;
2230
2231	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2232
2233	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2234	WARN_ON(ret < 0);
2235	if (sgt->nents > 0)
2236		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2237	return ret;
2238}
2239
2240/*
2241 * Register memory for RDMA read/write
2242 * iter: the buffer to register memory with
2243 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2244 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2245 * return value: the MR registered, NULL if failed.
2246 */
2247struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2248				 struct iov_iter *iter,
2249				 bool writing, bool need_invalidate)
2250{
2251	struct smbd_mr *smbdirect_mr;
2252	int rc, num_pages;
2253	enum dma_data_direction dir;
2254	struct ib_reg_wr *reg_wr;
2255
2256	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2257	if (num_pages > info->max_frmr_depth) {
2258		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2259			num_pages, info->max_frmr_depth);
2260		WARN_ON_ONCE(1);
2261		return NULL;
2262	}
2263
2264	smbdirect_mr = get_mr(info);
2265	if (!smbdirect_mr) {
2266		log_rdma_mr(ERR, "get_mr returning NULL\n");
2267		return NULL;
2268	}
2269
2270	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2271	smbdirect_mr->dir = dir;
2272	smbdirect_mr->need_invalidate = need_invalidate;
2273	smbdirect_mr->sgt.nents = 0;
2274	smbdirect_mr->sgt.orig_nents = 0;
2275
2276	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2277		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2278	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2279
2280	rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgt.sgl,
2281			   smbdirect_mr->sgt.nents, dir);
2282	if (!rc) {
2283		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2284			num_pages, dir, rc);
2285		goto dma_map_error;
2286	}
2287
2288	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2289			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2290	if (rc != smbdirect_mr->sgt.nents) {
2291		log_rdma_mr(ERR,
2292			"ib_map_mr_sg failed rc = %d nents = %x\n",
2293			rc, smbdirect_mr->sgt.nents);
2294		goto map_mr_error;
2295	}
2296
2297	ib_update_fast_reg_key(smbdirect_mr->mr,
2298		ib_inc_rkey(smbdirect_mr->mr->rkey));
2299	reg_wr = &smbdirect_mr->wr;
2300	reg_wr->wr.opcode = IB_WR_REG_MR;
2301	smbdirect_mr->cqe.done = register_mr_done;
2302	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2303	reg_wr->wr.num_sge = 0;
2304	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2305	reg_wr->mr = smbdirect_mr->mr;
2306	reg_wr->key = smbdirect_mr->mr->rkey;
2307	reg_wr->access = writing ?
2308			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2309			IB_ACCESS_REMOTE_READ;
2310
2311	/*
2312	 * There is no need for waiting for complemtion on ib_post_send
2313	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2314	 * on the next ib_post_send when we actaully send I/O to remote peer
2315	 */
2316	rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2317	if (!rc)
2318		return smbdirect_mr;
2319
2320	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2321		rc, reg_wr->key);
2322
2323	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2324map_mr_error:
2325	ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgt.sgl,
2326			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2327
2328dma_map_error:
2329	smbdirect_mr->state = MR_ERROR;
2330	if (atomic_dec_and_test(&info->mr_used_count))
2331		wake_up(&info->wait_for_mr_cleanup);
2332
2333	smbd_disconnect_rdma_connection(info);
2334
2335	return NULL;
2336}
2337
2338static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2339{
2340	struct smbd_mr *smbdirect_mr;
2341	struct ib_cqe *cqe;
2342
2343	cqe = wc->wr_cqe;
2344	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2345	smbdirect_mr->state = MR_INVALIDATED;
2346	if (wc->status != IB_WC_SUCCESS) {
2347		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2348		smbdirect_mr->state = MR_ERROR;
2349	}
2350	complete(&smbdirect_mr->invalidate_done);
2351}
2352
2353/*
2354 * Deregister a MR after I/O is done
2355 * This function may wait if remote invalidation is not used
2356 * and we have to locally invalidate the buffer to prevent data is being
2357 * modified by remote peer after upper layer consumes it
2358 */
2359int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2360{
2361	struct ib_send_wr *wr;
2362	struct smbd_connection *info = smbdirect_mr->conn;
2363	int rc = 0;
2364
2365	if (smbdirect_mr->need_invalidate) {
2366		/* Need to finish local invalidation before returning */
2367		wr = &smbdirect_mr->inv_wr;
2368		wr->opcode = IB_WR_LOCAL_INV;
2369		smbdirect_mr->cqe.done = local_inv_done;
2370		wr->wr_cqe = &smbdirect_mr->cqe;
2371		wr->num_sge = 0;
2372		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2373		wr->send_flags = IB_SEND_SIGNALED;
2374
2375		init_completion(&smbdirect_mr->invalidate_done);
2376		rc = ib_post_send(info->id->qp, wr, NULL);
2377		if (rc) {
2378			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2379			smbd_disconnect_rdma_connection(info);
2380			goto done;
2381		}
2382		wait_for_completion(&smbdirect_mr->invalidate_done);
2383		smbdirect_mr->need_invalidate = false;
2384	} else
2385		/*
2386		 * For remote invalidation, just set it to MR_INVALIDATED
2387		 * and defer to mr_recovery_work to recover the MR for next use
2388		 */
2389		smbdirect_mr->state = MR_INVALIDATED;
2390
2391	if (smbdirect_mr->state == MR_INVALIDATED) {
2392		ib_dma_unmap_sg(
2393			info->id->device, smbdirect_mr->sgt.sgl,
2394			smbdirect_mr->sgt.nents,
2395			smbdirect_mr->dir);
2396		smbdirect_mr->state = MR_READY;
2397		if (atomic_inc_return(&info->mr_ready_count) == 1)
2398			wake_up_interruptible(&info->wait_mr);
2399	} else
2400		/*
2401		 * Schedule the work to do MR recovery for future I/Os MR
2402		 * recovery is slow and don't want it to block current I/O
2403		 */
2404		queue_work(info->workqueue, &info->mr_recovery_work);
2405
2406done:
2407	if (atomic_dec_and_test(&info->mr_used_count))
2408		wake_up(&info->wait_for_mr_cleanup);
2409
2410	return rc;
2411}
2412
2413static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2414			struct page *lowest_page, size_t off, size_t len)
2415{
2416	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2417	u64 addr;
2418
2419	addr = ib_dma_map_page(rdma->device, lowest_page,
2420			       off, len, rdma->direction);
2421	if (ib_dma_mapping_error(rdma->device, addr))
2422		return false;
2423
2424	sge->addr   = addr;
2425	sge->length = len;
2426	sge->lkey   = rdma->local_dma_lkey;
2427	rdma->nr_sge++;
2428	return true;
2429}
2430
2431/*
2432 * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2433 * element list.  The pages are not pinned.
2434 */
2435static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2436					struct smb_extract_to_rdma *rdma,
2437					ssize_t maxsize)
2438{
2439	const struct bio_vec *bv = iter->bvec;
2440	unsigned long start = iter->iov_offset;
2441	unsigned int i;
2442	ssize_t ret = 0;
2443
2444	for (i = 0; i < iter->nr_segs; i++) {
2445		size_t off, len;
2446
2447		len = bv[i].bv_len;
2448		if (start >= len) {
2449			start -= len;
2450			continue;
2451		}
2452
2453		len = min_t(size_t, maxsize, len - start);
2454		off = bv[i].bv_offset + start;
2455
2456		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2457			return -EIO;
2458
2459		ret += len;
2460		maxsize -= len;
2461		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2462			break;
2463		start = 0;
2464	}
2465
2466	return ret;
2467}
2468
2469/*
2470 * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2471 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2472 * The pages are not pinned.
2473 */
2474static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2475					struct smb_extract_to_rdma *rdma,
2476					ssize_t maxsize)
2477{
2478	const struct kvec *kv = iter->kvec;
2479	unsigned long start = iter->iov_offset;
2480	unsigned int i;
2481	ssize_t ret = 0;
2482
2483	for (i = 0; i < iter->nr_segs; i++) {
2484		struct page *page;
2485		unsigned long kaddr;
2486		size_t off, len, seg;
2487
2488		len = kv[i].iov_len;
2489		if (start >= len) {
2490			start -= len;
2491			continue;
2492		}
2493
2494		kaddr = (unsigned long)kv[i].iov_base + start;
2495		off = kaddr & ~PAGE_MASK;
2496		len = min_t(size_t, maxsize, len - start);
2497		kaddr &= PAGE_MASK;
2498
2499		maxsize -= len;
2500		do {
2501			seg = min_t(size_t, len, PAGE_SIZE - off);
2502
2503			if (is_vmalloc_or_module_addr((void *)kaddr))
2504				page = vmalloc_to_page((void *)kaddr);
2505			else
2506				page = virt_to_page((void *)kaddr);
2507
2508			if (!smb_set_sge(rdma, page, off, seg))
2509				return -EIO;
2510
2511			ret += seg;
2512			len -= seg;
2513			kaddr += PAGE_SIZE;
2514			off = 0;
2515		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2516
2517		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2518			break;
2519		start = 0;
2520	}
2521
2522	return ret;
2523}
2524
2525/*
2526 * Extract folio fragments from an XARRAY-class iterator and add them to an
2527 * RDMA list.  The folios are not pinned.
2528 */
2529static ssize_t smb_extract_xarray_to_rdma(struct iov_iter *iter,
2530					  struct smb_extract_to_rdma *rdma,
2531					  ssize_t maxsize)
2532{
2533	struct xarray *xa = iter->xarray;
2534	struct folio *folio;
2535	loff_t start = iter->xarray_start + iter->iov_offset;
2536	pgoff_t index = start / PAGE_SIZE;
2537	ssize_t ret = 0;
2538	size_t off, len;
2539	XA_STATE(xas, xa, index);
2540
2541	rcu_read_lock();
2542
2543	xas_for_each(&xas, folio, ULONG_MAX) {
2544		if (xas_retry(&xas, folio))
2545			continue;
2546		if (WARN_ON(xa_is_value(folio)))
2547			break;
2548		if (WARN_ON(folio_test_hugetlb(folio)))
2549			break;
2550
2551		off = offset_in_folio(folio, start);
2552		len = min_t(size_t, maxsize, folio_size(folio) - off);
2553
2554		if (!smb_set_sge(rdma, folio_page(folio, 0), off, len)) {
2555			rcu_read_unlock();
2556			return -EIO;
2557		}
2558
2559		maxsize -= len;
2560		ret += len;
2561		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2562			break;
2563	}
2564
2565	rcu_read_unlock();
2566	return ret;
2567}
2568
2569/*
2570 * Extract page fragments from up to the given amount of the source iterator
2571 * and build up an RDMA list that refers to all of those bits.  The RDMA list
2572 * is appended to, up to the maximum number of elements set in the parameter
2573 * block.
2574 *
2575 * The extracted page fragments are not pinned or ref'd in any way; if an
2576 * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2577 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2578 * way.
2579 */
2580static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2581					struct smb_extract_to_rdma *rdma)
2582{
2583	ssize_t ret;
2584	int before = rdma->nr_sge;
2585
2586	switch (iov_iter_type(iter)) {
2587	case ITER_BVEC:
2588		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2589		break;
2590	case ITER_KVEC:
2591		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2592		break;
2593	case ITER_XARRAY:
2594		ret = smb_extract_xarray_to_rdma(iter, rdma, len);
2595		break;
2596	default:
2597		WARN_ON_ONCE(1);
2598		return -EIO;
2599	}
2600
2601	if (ret > 0) {
2602		iov_iter_advance(iter, ret);
2603	} else if (ret < 0) {
2604		while (rdma->nr_sge > before) {
2605			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2606
2607			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2608					    rdma->direction);
2609			sge->addr = 0;
2610		}
2611	}
2612
2613	return ret;
2614}
2615